Electromagnetic Fields, Forces, and Motion
As taught in: Spring 2009

Magnetohydrodynamic generator from the 2003 final exam (PDF). The C-core magnetic circuit is excited by a field coil that carries a current and has a rectangular channel with moving conductive fluid that passes through the magnetic circuit gap. (Image by Prof. Markus Zahn.)
Instructors:
Prof. Markus Zahn
MIT Course Number:
6.641
Level:
Course Features
Course Description
This course examines electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Topics covered include: electromagnetic forces, force densities, and stress tensors, including magnetization and polarization; thermodynamics of electromagnetic fields, equations of motion, and energy conservation; applications to synchronous, induction, and commutator machines; sensors and transducers; microelectromechanical systems; propagation and stability of electromechanical waves; and charge transport phenomena.
Acknowledgments
The instructor would like to thank Thomas Larsen and Matthew Pegler for transcribing into LaTeX the homework problems, homework solutions, and exam solutions.