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Preface 
 

Over the last few decades the focus of robotics research has moved beyond the 
traditional area of industrial applications to newer areas, including healthcare and 
domestic applications. These newer applications have given a strong impetus to the 
development of advanced sensors, control strategies and algorithms. The first section 
of this book contains advanced applications of robotics in surgery, rehabilitation, 
modular robotics among others. This is followed by sections on control and sensors, 
while the fourth section is devoted to robot algorithms. 

I would like to thank all the authors for entrusting us with their work and specially the 
editorial members of InTech publishing. 
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for Endoluminal Surgery – 
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Masakatsu G. Fujie, Arianna Menciassi and Paolo Dario 
1The University of Tokyo 
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1. Introduction 
The trend in surgical robots is moving from traditional master-slave robots to miniaturized 
devices for screening and simple surgical operations (Cuschieri, A. 2005). For example, 
capsule endoscopy (Moglia, A. 2007) has been conducted worldwide over the last five years 
with successful outcomes. To enhance the dexterity of commercial endoscopic capsules, 
capsule locomotion has been investigated using legged capsules (Quirini, M. 2008) and 
capsules driven by external magnetic fields (Sendoh, M. 2003; Ciuti, G. 2010; Carpi, F. 2009). 
Endoscopic capsules with miniaturized arms have also been studied to determine their 
potential for use in biopsy (Park, S.-K. 2008). Furthermore, new surgical procedures known 
as natural orifice transluminal endoscopic surgery (NOTES) and Single Port Access surgery 
are accelerating the development of innovative endoscopic devices (Giday, S. 2006; Bardaro, 
S.J. 2006). These advanced surgical devices show potential for the future development of 
minimally invasive and endoluminal surgery. However, the implementable functions in 
such devices are generally limited owing to space constraints. Moreover, advanced capsules 
or endoscopes with miniaturized arms have rather poor dexterity because the diameter of 
such arms must be small (i.e. a few millimeters), which results in a small force being 
generated at the tip.  
A modular surgical robotic system known as the ARES (Assembling Reconfigurable 
Endoluminal Surgical system) system has been proposed based on the aforementioned 
motivations (Harada, K. 2009; Harada, K. 2010; Menciassi, A. 2010). The ARES system is 
designed for screening and interventions in the gastrointestinal (GI) tracts to overcome the 
intrinsic limitations of single-capsules or endoscopic devices. In the proposed system, 
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miniaturized robotic modules are ingested and assembled in the stomach cavity. The 
assembled robot can then change its configuration according to the target location and task. 
Modular surgical robots are interesting owing to their potential for application as self-
reconfigurable modular robots and innovative surgical robots. Many self-reconfigurable 
modular robots have been investigated worldwide (Yim, M. 2007; Murata, S. 2007) with the 
goal of developing systems that are robust and adaptive to the working environment. Most 
of these robots have been designed for autonomous exploration or surveillance tasks in 
unstructured environments; therefore, there are no strict constraints regarding the number 
of modules, modular size or working space. Because the ARES has specific applications and 
is used in the GI tract environment, it raises many issues that have not been discussed in 
depth in the modular robotic field. Modular miniaturization down to the ingestible size is 
one of the most challenging goals. In addition, a new interface must be developed so that 
surgeons can intuitively maneuver the modular surgical robot. 
The purpose of this paper is to clarify the advantages of the modular approach in surgical 
applications, as well as to present proof of concept of the modular robotic surgical system. 
The current paper is organized as follows: Section 2 describes the design of the ARES 
system. Section 3 details the design and prototyping of robotic modules, including the 
experimental results. Section 4 describes a reconfigurable master device designed for the 
robotic modules, and its preliminary evaluation is reported. 

2. Design of the modular surgical system 
2.1 Clinical indications and proposed procedures 
The clinical target of the ARES system is the entire GI tract, i.e., the esophagus, stomach, 
small intestine, and colon. Among GI tract pathologies that can benefit from modular 
robotic features, biopsy for detection of early cancer in the upper side of the stomach (the 
fundus and the cardia) was selected as the surgical task to be focused on as a first step. 
Stomach cancer is the second leading cause of cancer-related deaths worldwide (World 
Health Organization 2006), and stomach cancer occurring in the upper side of the stomach 
has the worst outcome in terms of the 5-year survival ratio (Pesic, M. 2004). Thus, early 
diagnosis of cancer utilizing an advanced endoluminal device may lead to better prognosis. 
The stomach has a large volume (about 1400 ml) when distended, which provides working 
space to assemble the ingested robotic modules and change the topology of the assembled 
robot inside (i.e. reconfiguration). Each robotic module should be small enough to be 
swallowed and pass through the whole GI tract. Because the size of the commercial 
endoscopic capsules (11 mm in diameter and 26 mm in length (Moglia, A. 2007)) has already 
been shown to be acceptable for the majority of patients as an ingestible device, each module 
needs to be miniaturized to this size before being applied to clinical cases.  
The surgical procedures proposed for the ARES system (Harada, K. 2010) are shown in Fig. 
1. Prior to the surgical procedure, the patient drinks a liquid to distend the stomach to a 
volume of about 1400 ml. Next, the patient ingests 10-15 robotic modules that complete the 
assembly process before the liquid naturally drains away from the stomach in 10-20 
minutes. The number of the modules swallowed depends on the target tasks and is 
determined in advance based on the pre-diagnosis. Magnetic self-assembly in the liquid 
using permanent magnets was selected for this study since its feasibility has already been 
demonstrated (Nagy, Z. 2007). Soon after the assembly, the robot configures its topology 
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according to preoperative planning by repeated docking and undocking of the modules (the 
undocking mechanism and electrical contacts between modules are necessary for 
reconfiguration, but they have not been implemented in the presented design). The robotic 
modules are controlled via wireless bidirectional communication with a master device 
operated by the surgeon, while the progress in procedure is observed using intraoperative 
imaging devices such as fluoroscopy and cameras mounted on the modules. After the 
surgical tasks are completed, the robot reconfigures itself to a snake-like shape to pass 
through the pyloric sphincter and travel to examine the small intestine and the colon, or it 
completely disassembles itself into individual modules so that it can be brought out without 
external aid. One of the modules can bring a biopsy tissue sample out of the body for 
detailed examination after the procedure is complete. 
 

 
Fig. 1. Proposed procedures for the ARES system 

2.2 Advantages of the modular approach in surgical applications 
The modular approach has great potential to provide many advantages to surgical 
applications. These advantages are summarized below using the ARES system as shown in 
Fig.2. The numbering of the items in Fig.2 is correlated with the following numbering. 
i. The topology of the modular surgical robot can be customized for each patient 

according to the location of the disease and the size of the body cavity in which the 
modular robot is deployed. A set of functional modules such as cameras, needles and 
forceps can be selected for each patient based on the necessary diagnosis and surgical 
operation. 

ii. The modular approach facilitates delivery of more components inside a body cavity 
that has small entrance/exit hole(s). As there are many cavities in the human body, the 
modular approach would benefit treatment in such difficult-to-reach places. Because 
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several functional modules can be used simultaneously, the modular robot may 
perform rather complicated tasks that a single endoscopic capsule or an endoscopic 
device is not capable of conducting. For example, if more than two camera modules are 
employed, the surgeon can conduct tasks while observing the site from different 
directions. 

iii. Surgical tools of relatively large diameter can be brought into the body cavity. 
Conventionally, small surgical forceps that can pass through an endoscopic channel of a 
few millimeters have been used for endoluminal surgery. Conversely, surgical devices 
that have the same diameter as an endoscope can be used in the modular surgical 
system. Consequently, the force generated at the tip of the devices would be rather 
large, and the performance of the functional devices would be high. 

iv. The surgical system is more adaptive to the given environment and robust to failures. 
Accordingly, it is not necessary for the surgical robot to equip all modules that might be 
necessary in the body because the surgeons can decide whether to add modules with 
different functionalities, even during the surgical operation. After use, the modules can 
be detached and discarded if they are not necessary in the following procedures. 
Similarly, a module can be easily replaced with a new one in case of malfunction. 

As these advantages suggest, a modular surgical robot would be capable of achieving rather 
complicated tasks that have not been performed using existing endoluminal surgical 
devices. These advantages are valid for modular robots that work in any body cavity with a 
small entrance and exit. Moreover, this approach may be introduced to NOTES or Single 
Port Access surgery, in which surgical devices must reach the abdominal cavity through a 
small incision. 
In Section 3, several robotic modules are proposed, and the performance of these modules is 
reported to show the feasibility of the proposed surgical system. 
 

(i)

(ii)

(iii)

(iv)

 
Fig. 2. Advantages of the modular approach in surgical applications 
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3. Robotic modules 
3.1 Design and prototyping of the robotic modules 
Figure 3 shows the design and prototypes of the Structural Module and the Biopsy Module 
(Harada, K. 2009, Harada, K. 2010). The Structural Module has two degrees of freedom (±90° 
of bending and 360° of rotation). The Structural Module contains a Li-Po battery (20 mAh, 
LP2-FR, Plantraco Ltd., Canada), two brushless DC geared motors that are 4 mm in 
diameter and 17.4 mm in length (SBL04-0829PG337, Namiki Precision Jewel Co. Ltd., Japan) 
and a custom-made motor control board capable of wireless control (Susilo, E. 2009). The 
stall torque of the selected geared motor is 10.6 mNm and the speed is 112 rpm when 
controlled by the developed controller. The bending mechanism is composed of a worm and 
a spur gear (9:1 gear reduction), whereas the rotation mechanism is composed of two spur 
gears (no gear reduction). All gears (DIDEL SA, Switzerland) were made of nylon, and they 
were machined to be implemented in the small space of the capsule. Two permanent 
magnets (Q-05-1.5-01-N, Webcraft GMbH, Switzerland) were attached at each end of the 
module to help with self-alignment and modular docking. The module is 15.4 mm in 
diameter and 36.5 mm in length; it requires further miniaturization before clinical 
application. The casing of the prototype was made of acrylic plastic and fabricated by 3D 
rapid prototyping (Invison XT 3-D Modeler, 3D systems, Inc., USA). The total weight is 5.6 g. 
Assuming that the module would weigh 10 g with the metal chassis and gears, the 
maximum torque required for lifting two connected modules is 5.4 mNm for both the 
bending DOF and rotation DOF. Assuming that the gear transmission efficiency for the 
bending mechanism is 30%, the stall torque for the bending DOF is 28.6 mNm. On the other 
hand, the stall torque for the rotation DOF is 8.5 mNm when the transmission efficiency for 
the rotation mechanism is 80%. The torque was designed to have sufficient force for surgical 
operation, but the transmission efficiency of the miniaturized plastic gears was much 
smaller than the theoretical value as explained in the next subsection. 
• Controller 
The aforementioned brushless DC motor came with a dedicated motor driving board 
(SSD04, Namiki Precision Jewel Co., Ltd., 19.6 mm × 34.4 mm × 3 mm). This board only 
allows driving of one motor; hence, two boards are required for a robotic module with 2 
DOFs. Because there was not sufficient space for the boards in the robotic module, a custom 
made high density control board was designed and developed in-house. This control board 
consisted of one CC2430 microcontroller (Texas Instrument, USA) as the main wireless 
controller and three sets of A3901 dual bridge motor drivers (Allegro MicroSystem, Inc., 
USA). The fabricated board is 9.6 mm in diameter, 2.5 mm in thickness and 0.37 g in weight, 
which is compatible with swallowing. The A3901 motor driver chip was originally intended 
for a brushed DC motor, but a software commutation algorithm was implemented to control 
a brushless DC motor as well. An IEEE 802.15.4 wireless personal area network (WPAN) 
was introduced as an embedded feature (radio peripheral) of the microcontroller. The 
implemented algorithm enables control of the selected brushless DC motor in Back Electro-
Motive Force (BEMF) feedback mode or slow speed stepping mode. When the stepping 
mode is selected, the motor can be driven with a resolution of 0.178º.  
For the modular approach, each control board shall be equipped with a wired locating 
system for intra-modular communication in addition to the wireless communication. Aside 
from wireless networking, the wired locating system, which is not implemented in the 
presented design, would be useful for identification of the sequence of the docked modules 



 
Robotic Systems – Applications, Control and Programming 

 

8 

in real time. The wired locating system is composed of three lines, one for serial multidrop 
communication, one for a peripheral locator and one as a ground reference. When the 
modules are firmly connected, the intra-modular communication can be switched from 
wireless to wired to save power while maintaining the predefined network addresses. When 
one module is detached intentionally or by mistake, it will switch back to wireless mode. 
• Battery 
The battery capacity carried by each module may differ from one to another (e.g. from 10 
mAh to 50 mAh) depending on the available space inside the module. For the current 
design, a 20 mAh Li-Po battery was selected. Continuous driving of the selected motor on its 
maximum speed using a 20 mAh Li-Po battery was found to last up to 17 minutes. A 
module does not withdraw power continuously because the actuation mechanisms can 
maintain their position when there is no current to the motor owing to its high gear 
reduction (337:1). A module consumes power during actuation, but its power use is very 
low in stand-by mode. 
• Biopsy Module 
The Biopsy Module is a Functional Module that can be used to conduct diagnosis. The 
grasping mechanism has a worm and two spur gears, which allows wide opening of the 
grasping parts. The grasping parts can be hidden in the casing at the maximum opening to 
prevent tissue damage during ingestion. The motor and other components used for the 
Biopsy Module are the same as for the Structural Module. The brushless DC geared motors 
(SBL04-0829PG337, Namiki Precision Jewel Co. Ltd., Japan), the control board, a worm gear 
and two spur gears (9:1 gear reduction) were implemented in the Biopsy Module. A 
permanent magnet (Q-05-1.5-01-N, Webcraft GMbH, Switzerland) was placed at one side to 
be connected to another Structural Module. 
 

 
Fig. 3. Design and prototypes of the structural module (left) and the biopsy module (right) 
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The Biopsy Module can generate a force of 7.1 N at its tip, and can also open the grasping 
parts to a width of 19 mm with an opening angle of 90 degrees. These values are much 
larger than those of conventional endoscopic forceps, which are 2-4 mm in diameter. As a 
demonstration, Figure 3 shows the Biopsy Module holding a coin weighing 7.5 g. 
In conventional endoscopy, forceps are inserted through endoscopic channels that are 
parallel to the direction of the endoscopic view, which often results in the forceps hiding the 
target. Conversely, the Biopsy Module can be positioned at any angle relative to the 
endoscopic view owing to the modular approach, thereby allowing adequate approach to 
the target. 

3.2 Performance of the Structural Module 
The mechanical performance of the bending and rotation DOFs of the Structural Module 
was measured in preliminary tests (Menciassi, A. 2010), and the results are summarized in 
Fig.4. The bending angle was varied by up to ± 90° in steps of 10° three times in succession. 
The measured range of the bending angle was -86.0° to +76.3°, and the maximum error was 
15.8°. The rotation angle was increased from 0° to 180° in steps of 45° three times in 
succession, and the measured range of the rotational angle was between 0° and 166.7° with a 
maximum error of 13.3°. The difference between the driven angle and the measured angle 
was due to backlash of the gears and the lack of precision and stiffness of the casing made 
by 3D rapid prototyping. Regardless of the errors and the hysteresis, the repeatability was 
sufficient for the intended application for both DOFs. These results indicate that the 
precision of each motion can be improved by changing the materials of the gears and the 
casing. Since the motor can be controlled with a resolution of 0.178°, very precise surgical 
tasks can be achieved using different manufacturing processes. 
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Fig. 4. Bending angle measurement (left), rotation angle measurement (middle), and torque 
measurement (right) (Menciassi, A. 2010) 

In addition to the angle measurements, both bending and rotation torque were measured. 
The torque was measured by connecting cylindrical parts with permanent magnets at both 
ends until the bending/rotational motion stopped. The length and weight of each cylinder 
was designed in advance, and several types of cylinders were prepared. The measured 
bending torque was 6.5 mNm and the rotation torque was 2.2 mNm. The figure also shows 
one module lifting up two modules attached to its bending mechanism as a demonstration. 
The performance in terms of precision and generated torque, which are very important for 
reconfiguration and surgical tasks, was sufficient; however, the precision was limited owing 
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to the aforementioned fabrication problems. The thin walls of the casing made of acrylic 
plastic were easily deformed, which caused friction between the parts. The casing made of 
metal or PEEK and tailor-made metal gears with high precision will improve the mechanism 
rigidity and performance, thus producing the optimal stability. 

3.3 Possible designs of robotic modules 
Figure 5 shows various designs of robotic modules that can be implemented in the modular 
surgical robot. The modules can be categorized into three types: structural modules, 
functional modules, and other modules. Structural modules are used to configure a robotic 
topology. Functional modules are used for diagnosis or intervention, while other modules 
can be added to enhance the performance and robustness of the robotic system. Obviously, 
an assembled robot made of different types of modules (i.e. a robot with high heterogeneity) 
may provide high dexterity, but the self-assembly in the stomach and control of the modules 
would become more difficult. To optimize the level of heterogeneity, self-assembly of the 
robotic modules must be developed so that the reconfiguration of the robotic topology 
following the self-assembly can be planned in advance. Employing pre-assembled modular 
arms or tethered modules can be another option to facilitate assembly in a body cavity; 
however, this would require further anesthesia, and it would hinder the promotion of 
massive screening. 
 

 
Fig. 5. Various designs of the robotic modules 
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4. Reconfigurable master device 
4.1 Design and prototyping of the reconfigurable master device 
One main advantage of using a modular approach in surgical applications is the adaptivity 
to the given environment as mentioned in Section 2.2. Wherever the robotic platform is 
deployed in the GI tract, the robotic topology can be changed based on preoperative plans 
or the in-situ situation to fit in any particular environment. This dynamic changing and 
reshaping of the robotic topology should be reflected on the user interface. Since it is 
possible for a robotic topology to have redundant DOFs, the master device for the modular 
surgical system needs to be able to handle the redundancy that is inherent to modular 
robots. Based on these considerations, we propose a reconfigurable master device that 
resembles the robotic platform (Fig.6). When the assembled robot changes its topology, the 
master device follows the same configuration. The robotic module shown in Fig. 6 has a 
diameter of 15.4 mm, while a module of the reconfigurable master device has a diameter of 
30 mm. The master modules can be easily assembled or disassembled using set screws, and 
it takes only a few seconds to connect one module to another.  
Each robotic module is equipped with two motors as described in the previous section; thus, 
each master module is equipped with two potentiometers (TW1103KA, Tyco Electronics) 
that are used as angular position sensors. Calculating the angular position of each joint of 
the reconfigurable master device is quite straightforward. A common reference voltage is 
sent from a data acquisition card to all potentiometers, after which the angular position can 
be calculated from the feedback readings. Owing to the identical configuration, the angle of 
each joint of the robotic modules can be easily determined, even if the topology has 
redundancy.  
 

 
Fig. 6. Robotic modules (top line) and the reconfigurable master device (bottom line): one 
module (left), assembled modules (middle) and prototypes (right) 
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The advantages of the proposed master device include intuitive manipulation. For example, 
the rotational movement of a structural module used to twist the arm is limited to ± 180°, 
and the master module also has this limitation. This helps surgeons intuitively understand 
the range of the motion and the reachable working space of the modules. Using a 
conventional master manipulator or an external console, it is possible that the slave 
manipulator cannot move owing to its mechanical constraints, while the master manipulator 
can still move. However, using the proposed master device, the surgeon can intuitively 
understand the mechanical constraints by manipulating the master device during 
practice/training. Furthermore, the position of the master arm can indicate where the 
robotic modules are, even if they are outside of the camera module's view. These 
characteristics increase the safety of the operation. This feature is important because the 
entire robotic system is placed inside the body. In other surgical robotic systems, the 
position or shape of the robotic arms is not important as they are placed outside of the body 
and can be seen during operation. Unlike other master devices, it is also possible for two or 
more surgeons to move the reconfigurable master device together at the same time using 
multi arms with redundant DOFs. 

4.2 Evaluation 
A simulation-based evaluation setup was selected to simplify the preliminary evaluation of 
the feasibility of the reconfigurable master device. The authors previously developed the 
Slave Simulator to evaluate workloads for a master-slave surgical robot (Kawamura, K. 
2006). The Slave Simulator can show the motion of the slave robot in CG (Computer 
Graphics), while the master input device is controlled by an operator. Because the simulator 
can virtually change the parameters of the slave robot or its control, it is easy to evaluate the 
parameters as well as the operability of the master device. This Slave Simulator was 
appropriately modified for the ARES system. The modified Slave Simulator presents the CG 
models of the robotic modules to the operator. The dimension and DOFs of each module in 
CG were determined based on the design of the robotic modules. The angle of each joint is 
given by the signal from the potentiometers of the reconfigurable master device, and the 
slave modules in CG move in real time to reproduce the configuration of the master device. 
This Slave Simulator is capable of altering joint positions and the number of joints of the 
slave arms in CG so that the workspace of the reconfigurable master device can be 
reproduced in a virtual environment for several types of topologies. The simulator is 
composed of a 3D viewer that uses OpenGL and a physical calculation function. This 
function was implemented to detect a collision between the CG modules and an object 
placed in the workspace. 
To simplify the experiments to evaluate the feasibility of the proposed master device and 
usefulness of the developed simulator, only one arm of the reconfigurable master device 
was used. Three topologies that consist of one Biopsy Module and one or two Structural 
Module(s) were selected as illustrated in Fig.7. Topology I consists of a Structural Module 
and a Biopsy Module, and the base is fixed so that the arm appears with an angle of 45 
degrees. One Structural Module is added to Topology I to configure Topology II, and 
Topology III is identical to Topology II, but placed at 0 degrees. Both Topology II and 
Topology III have redundant DOFs. The projection of the workspace of each arm and the 
shared workspace are depicted in Fig.8. A target object on which the arm works in the 
experiments must be placed in this shared area, which makes it easy to compare topologies. 
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A bar was selected as the target object instead of a sphere because the height of the collision 
point is different for each topology when the object appears in the same position in the 2D 
plane. 
The experiment was designed so that a bar appears at random in the shared workspace. The 
bar represents a target area at which the Biopsy Module needs to collect tissue samples, and 
this experiment is a simple example to select one topology among three choices given that 
the arm can reach the target. We assumed that this choice may vary depending on the user, 
and this experiment was designed to determine if the reconfigurability of the master device, 
i.e. customization of the robot, provides advantages and improves performance. 
 

Topology I Topology II Topology III

Combination

Master
device

Simulator

 
Fig. 7. Three topologies used in the experiments 

During the experiment, the operator of the reconfigurable master device could hear a 
beeping sound when the distal end of the arm (i.e. the grasping part of the biopsy module) 
touched the bar. The task designed for the experiments was to move the arm of the 
reconfigurable master device as quickly as possible, touch the bar in CG, and then maintain 
its position for three seconds. The plane in which the bar stands is shown in grids (Fig.9), 
and the operator obtains 3D perception by observing these grids. The plane with the grids is 
the same for all topologies. The angle of the view was set so that the view is similar to that 
from the camera module in Fig.6. 
Five subjects (a-e) participated in the experiments, none of whom were surgeons. Each 
subject was asked to freely move the master device to learn how to operate it; however, this 
practice was allowed for one minute before starting the experiments. Each subject started 
from Topology I, then tested Topology II and finally Topology III. The time needed to touch 
the bar and maintain it for three seconds was measured. This procedure was repeated ten 
times for each topology with a randomized position of the bar. During the procedure, the 
bar appeared at random; however, it always appeared in the shared workspace to ensure 
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that the arm could reach it. After finishing the experiment, the subjects were asked to fill in a 
questionnaire (described below) for each topology. The subjects were also asked which 
topology they preferred. 
 

 
Fig. 8. Workspace of each topology and the shared workspace 

 

 
Fig. 9. Simulator and the master device during one test 

A NASA TLX questionnaire (NASA TLX (website)) was used to objectively and 
quantitatively evaluate the workload that the subjects felt during the experiments. This 
method has versatile uses, and we selected this method also because it was used to evaluate 
the workload in a tele-surgery environment (Kawamura, K. 2006). This method evaluates 
Metal Demand, Physical Demand, Temporal Demand, Performance, Effort and Frustration, 
and gives a score that represents the overall workload that the subject felt during the task. 

4.3 Results 
The time spent conducting the given task, the workload score evaluated using the NASA 
TLX questionnaire and the preference of the topology determined by the subjects are 
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summarized in Table 1. For each item, a smaller value indicates a more favorable evaluation 
by the subject. 
Considering the results of the time and workload score, Topology II was most difficult. The 
difference between Topology I and III was interesting. Two of the subjects ((b) and (c)) 
preferred Topology I, which did not have a redundant DOF. Conversely, three of the 
subjects ((a), (d) and (e)) preferred Topology III because they could select the path to reach 
the target owing to the redundant DOF. The average scores of the NASA TLX parameters 
shown in Fig.10 suggest that the Physical Demand workload was high for Topology I, while 
the Effort workload was high for Topology III.  
The two subjects who preferred Topology I rather than Topology III claimed that it was not 
easy to determine where the bar was located when Topology III was used owing to the lack 
of 3D perception. In addition, they reported that the bar seemed to be placed far from the 
base. However, the bar appeared randomly, but in the same area; therefore, the bar that 
appeared in the experiment that employed Topology III was not placed farther from the 
base when compared to the experiments that used Topology I or Topology II. Accordingly, 
these two subjects may have had difficulty obtaining 3D perception from the gridded plane. 
In Topology III, the arm was partially out of view in the initial position; thus, the operator 
needed to obtain 3D perception by seeing the grids. It is often said that most surgeons can 
obtain 3D perception even if they use a 2D camera, and our preliminary experimental results 
imply that this ability might differ by individual. Some people appear to obtain 3D perception 
primarily by seeing the relative positions between the target and the tool they move. 
Redundant DOFs may also be preferred by operators with better 3D perception capability. 
Although the experiments were preliminary, there must be other factors that accounted for 
the preference of the user. Indeed, it is likely that the preferable topology varies depending 
on the user, and the developed simulator would be useful to evaluate these variations. The 
proposed reconfigurable master device will enable individual surgeons to customize the 
robot and interface as they prefer.  
 

 
Topology 

Subject 
Average 

a b c d e 
Time (s) I 5.7 4.1 4.0 5.8 5.0 4.9 

II 7.6 6.2 4.8 5.5 6.7 6.1 

III 4.9 4.3 5.6 4.4 4.7 4.8 
Work Load: 
NASA-TLX 
Score 

I 30.7 11.3 28.3 32.0 73.3 35.1 

II 47.6 26.7 28.0 53.0 68.3 44.7 

III 37.0 5.0 24.3 14.3 61.3 28.4 
Preference I 3 1 1 3 3 2.2 

II 2 3 2 2 2 2.2 

III 1 2 3 1 1 1.6 

Table 1. Experimental results 
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Fig. 10. NASA TLX parameters for three topologies 

5. Conclusion 
A modular robot was proposed for endoluminal surgery. The design, prototyping and 
evaluation of the modules were reported. Although there are some issues related to the 
fabrication problems, the results of the performance tests show the feasibility of the 
modular surgical system. A reconfigurable master device has also been proposed, and its 
feasibility was evaluated by simulation-based experiments. The preliminary results 
showed that the preferred topology may vary depending on the user. Moreover, the 
reconfigurable master device would enable each surgeon to customize the surgical system 
according to his/her own preferences. Development of the robotic modules and the 
reconfigurable master device provided proof of concept of the modular robotic system for 
endoluminal surgery, suggesting that the modular approach has great potential for 
surgical applications. 
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1. Introduction   
Target point manipulation inside a deformable object by a robotic system is necessary in 
many medical and industrial applications such as breast biopsy, drug injection, suturing, 
precise machining of deformable objects etc. However, this is a challenging problem because 
of the difficulty of imposing the motion of the internal target point by a finite number of 
actuation points located at the boundary of the deformable object. In addition, there exist 
several other important manipulative operations that deal with deformable objects such as 
whole body manipulation [1], shape changing [2], biomanipulation [3] and tumor 
manipulation [4] that have practical applications. The main focus of this chapter is the target 
point manipulation inside a deformable object. For instance, a positioning operation called 
linking in the manufacturing of seamless garments [5] requires manipulation of internal 
points of deformable objects. Mating of a flexible part in electric industry also results in the 
positioning of mated points on the object. In many cases these points cannot be manipulated 
directly since the points of interest in a mating part is inaccessible because of contact with a 
mated part. Additionally, in medical field, many diagnostic and therapeutic procedures 
require accurate needle targeting. In case of needle breast biopsy [4] and prostate cancer 
brachytherapy [6], needles are used to access a designated area to remove a small amount of 
tissue or to implant radio-active seed at the targeted area. The deformation causes the target 
to move away from its original location. To clarify the situation we present a schematic of 
needle insertion for breast biopsy procedure as shown in Figure 1. When tip of the needle 
reaches the interface between two different types of tissue, its further insertion will push the 
tissue, instead of piercing it, causing unwanted deformations. These deformations move the 
target away from its original location as shown in Figure 1(b). In this case, we cannot 
manipulate the targeted area directly because it is internal to the organ. It must be 
manipulated by controlling some other points where forces can be applied as shown in 
Figure 1(c). Therefore, in some cases one would need to move the positioned points to the 
desired locations of these deformable objects (e.g., mating two deformable parts for sewing 
seamlessly) while in other cases one may need to preserve the original target location (e.g., 
guiding the tumor to fall into the path of needle insertion). In either of these situations, the 
ability of a robotic system to control the target of the deformable object becomes important, 
which is the focus of this chapter.  
To control the position of the internal target point inside a deformable object requires 
appropriate contact locations on the surface of the object. Therefore, we address the issue of 
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determining the optimal contact locations for manipulating a deformable object such that 
the internal target point can be positioned to the desired location by three robotic fingers 
using minimum applied forces. A position-based PI controller is developed to control the 
motion of the robotic fingers such that the robotic fingers apply minimum force on the 
surface of the object to position the internal target point to the desired location. However, 
the controller for target position control is non-collocated since the internal target point is 
not directly actuated by the robotic fingers. It is known in the literature that non-collocated 
control of a deformable object is not passive, which may lead to instability [7]. In order to 
protect the object and the robotic fingers from physical damage and also in order to 
diminish the deterioration of performance caused by unwanted oscillation, it is 
indispensable to build stable interaction between the robotic fingers and the object. Here we 
consider that the plant (i.e., the deformable object) is passive and does not generate any 
energy. So, in order to have stable interaction, it is essential that the controller for the robotic 
fingers must be stable. Thus, we present a new passivity-based non-collocated controller for 
the robotic fingers to ensure safe and accurate position control of the internal target point. 
The passivity theory states that a system is passive if the energy flowing in exceeds the 
energy flowing out. Creating a passive interface adds the required damping force to make 
the output energy lower than the input energy. To this end we develop a passivity observer 
(PO) and a passivity controller (PC) based on [8] for individual robotic finger where PO 
monitors the net energy flow out of the system and PC will supply the necessary damping 
force to make PO positive. Our approach extends the concept of PO and PC in [8] to multi-
point contacts with the deformable object. 
 

 
Fig. 1. Schematics of needle breast biopsy procedure: (a) needle insertion, (b) target 
movement, and (c) target manipulation 

The remainder of this chapter is organized as follows: we discuss various issues and prior 
research in Section 2. The problem description is stated in Section 3. Section 4 outlines the 
mathematical modelling of the deformable object. A framework for optimal contact 
locations is presented in Section 5. The control methods are discussed in Section 6. The 
effectiveness of the derived control law is demonstrated by simulation in Section 7. Finally, 
the contributions of this work and the future directions are discussed in Section 8. 

2. Issues and prior research 
A considerable amount of work on multiple robotic systems has been performed during the 
last few decades [9-11, 12-15]. Mostly, the position and/or force control of multiple 
manipulators handling a rigid object were studied in [9-11]. However, there were some 
works on handling deformable object by multiple manipulators presented in [12-15]. Saha 

(a) (b) (c) 
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and Isto [12] presented a motion planner for manipulating deformable linear objects using 
two cooperating robotic arms to tie self-knots and knots around simple static objects. Zhang 
et al. [13] presented a microrobotic system that is capable of picking up and releasing 
operation of microobjects. Sun et al. [14] presented a cooperation task of controlling the 
reference motion and the deformation when handling a deformable object by two 
manipulators. In [15], Tavasoli et al. presented two-time scale control design for trajectory 
tracking of two cooperating planar rigid robots moving a flexible beam. However, to the 
best of our knowledge the works on manipulating an internal target point inside a 
deformable object are rare [4, 5]. Mallapragada et al. [4] developed an external robotic 
system to position the tumor in image-guided breast biopsy procedures. In their work, three 
linear actuators manipulate the tissue phantom externally to position an embedded target 
inline with the needle during insertion. In [5] Hirai et al. developed a robust control law for 
manipulation of 2D deformable parts using tactile and vision feedback to control the motion 
of the deformable object with respect to the position of selected reference points. These 
works are very important to ours present application, but they did not address the optimal 
locations of the contact points for effecting the desired motion. 
A wide variety of modeling approaches have been presented in the literature dealing with 
computer simulation of deformable objects [16]. These are mainly derived from physically-
based models to produce physically valid behaviors. Mass-spring models are one of the 
most common forms of deformable objects. A general mass-spring model consists of a set of 
point masses connected to its neighbors by massless springs. Mass-spring models have been 
used extensively in facial animation [17], cloth motion [18] and surgical simulation [19]. 
Howard and Bekey [20] developed a generalized method to model an elastic object with the 
connections of springs and dampers. Finite element models have been used in the computer 
simulation to model facial tissue and predict surgical outcomes [21, 22]. However, the works 
on controlling an internal point in a deformable object are not attempted. 
In order to manipulate the target point to the desired location, we must know the 
appropriate contact locations for effecting the desired motion. There can be an infinite 
number of possible ways of choosing the contact location based on the object shapes and 
task to be performed. Appropriate selection of the contact points is an important issue for 
performing certain tasks. The determination of optimal contact points for rigid object was 
extensively studied by many researchers with various stability criteria. Salisbury [23] and 
Kerr [24] discussed that a stable grasp was achieved if and only if the grasp matrix is full 
row rank. Abel et al. [25] modelled the contact interaction by point contact with Coulomb 
friction and they stated that optimal grasp has minimum dependency on frictional forces. 
Cutkosky [26] discussed that the size and shape of the object has less effect on the choice of 
grasp than by the tasks to be performed after examining a variety of human grasps. Ferrari 
et al. [27] defined grasp quality to minimize either the maximum value or sum of the finger 
forces as optimality criteria. Garg and Dutta [28] shown that the internal forces required for 
grasping deformable objects vary with size of object and finger contact angle. In [29],  
Watanabe and Yoshikawa investigated optimal contact points on an arbitrary shaped object 
in 3D using the concept of required external force set. Ding et al. proposed an algorithm for 
computing form closure grasp on a 3D polyhedral object using local search strategy in [30]. 
In [31, 32], various concepts and methodologies of robot grasping of rigid objects were 
reviewed. Cornella et al. [33] presented a mathematical approach to obtain optimal solution 
of contact points using the dual theorem of nonlinear programming. Saut et al. [34] 
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presented a method for solving the grasping force optimization problem of multi-fingered 
dexterous hand by minimizing a cost function. All these works are based on grasp of rigid 
objects.  
There are also a few works based on deformable object grasping. Like Gopalakrishnan and 
Goldberg [35] proposed a framework for grasping deformable parts in assembly lines based 
on form closure properties for grasping rigid parts. Foresti and Pellegrino [36] described an 
automatic way of handling deformable objects using vision technique. The vision system 
worked along with a hierarchical self-organizing neural network to select proper grasping 
points in 2D. Wakamatsu et al. [37] analyzed grasping of deformable objects and introduced 
bounded force closure. However, position control of an internal target point in a deformable 
object by multi-fingered gripper has not been attempted. In our work, we address the issue 
of determining the optimal contact locations for manipulating a deformable object such that 
the internal target point can be positioned to the desired location by three robotic fingers 
using minimum applied forces. 
The idea of passivity can be used to guarantee the stable interaction without exact 
knowledge of model information. Anderson and Spong [38] published the first solid result 
by passivation of the system using scattering theory. A passivity based impedance control 
strategy for robotic grasping and manipulation was presented by Stramigioli et al. [39]. 
Recently, Hannaford and Ryu [40] proposed a time-domain passivity control based on the 
energy consumption principle. The proposed algorithm did not require any knowledge 
about the dynamics of the system. They presented a PO and a PC to ensure stability under a 
wide variety of operating conditions. The PO can measure energy flow in and out of one or 
more subsystems in real-time by confining their analysis to system with very fast sampling 
rate. Meanwhile the PC, which is an adaptive dissipation element, absorbs exactly net 
energy output measured by the PO at each time sample. In [41], a model independent 
passivity-based approach to guarantee stability of a flexible manipulator with a non-
collocated sensor-actuator pair is presented. This technique uses an active damping element 
to dissipate energy when the system becomes active. In our work we use the similar concept 
of PO and PC to ensure stable interaction between the robotic fingers and the deformable 
object. Our work also extends the concept of PO and PC for multi-point contact with the 
deformable object. 

3. Problem description 
Consider a case in which multiple robotic fingers are manipulating a deformable object in a 
2D plane to move an internal target point to a desired location. Before we discuss the design 
of the control law, we present a result from [42] to determine the number of actuation points 
required to position the target at an arbitrary location in a 2D plane. The following 
definitions are given according to the convention in [42]. 
Manipulation points: are defined as the points that can be manipulated directly by robotic 
fingers. In our case, the manipulation points are the points where the external robotic fingers 
apply forces on the deformable object. 
Positioned points: are defined as the points that should be positioned indirectly by 
controlling manipulation points appropriately. In our case, the target is the position point. 
The control law to be designed is non-collocated since the internal target point is not directly 
actuated by the robotic fingers. The following result is useful in determining the number of 
actuation points required to accurately position the target at the desired location. 
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Result [42]: The number of manipulated points must be greater than or equal to that of the 
positioned points in order to realize any arbitrary displacement. 
In our present case, we assume that the number of positioned points is one, since we are 
trying to control the position of the target. Hence, ideally the number of contact points 
would also be one. But practically, we assume that there are two constraints: (1) we do not 
want to apply shear force on the deformable object to avoid the damage to the surface, and 
(2) we can only apply control force directed into the deformable object. We cannot pull the 
surface since the robotic fingers are not attached to the surface. Thus we need to control the 
position of the target by applying only unidirectional compressive force. 
In this context, there exists a theorem on the force direction closure in mechanics that helps 
us determining the equivalent number of compressive forces that can replace one 
unconstrained force in a 2D plane. 
Theorem [43]: A set of wrenches w can generate force in any direction if and only if there 
exists a three-tuple of wrenches 1 2 3{ , , }w w w  whose respective force directions 1f , 2f , 3f  
satisfy: 
i. Two of the three directions 1f , 2f , 3f  are independent 
ii. A strictly positive combination of the three directions is zero. 

 1 2 3 0+ + =f f fα β γ  (1) 

where α , β , and γ  are constants. The ramification of this theorem for our problem is that 
we need three control forces distributed around the object such that the end points of their 
direction vectors draw a non-zero triangle that includes their common origin point. With 
such an arrangement we can realize any arbitrary displacement of the target point. Thus the 
problem can be stated as: 
Problem statement: Given the number of actuation points, the initial target and its desired 
locations, find appropriate contact locations and control action such that the target point is 
positioned to its desired location by controlling the boundary points of the object with 
minimum force. 

4. Deformable object modelling 
Consider a schematic in Figure 2 where three robotic fingers are positioning an internal 
target (point A) in a deformable object to the desired location (point B). We assume that all 
the end-effectors of the robotic fingers are in contact with the deformable object such that 
they can apply only push on the object as needed. 
The coordinate systems are defined as follows: w  is the task coordinate system, o  is the 
object coordinate system, fixed on the object and i  is the i-th robotic finger coordinate 
system, fixed on the i-th end-effectors located at the grasping point.  In order to formulate 
the optimal contact locations, we model the deformable object using mass-spring-damper 
systems. The point masses are located at the nodal points and a Voigt element [20] is 
inserted between them. Figure 3 shows a single layer of the deformable object. Each element 
is labeled as jE  for 1,2, ,= j NE  where NE  is total number of elements in a single layer. 
Position vector of the i-th mesh point is defined as [ ]=p T

i i ix y , 1,2,3,...,=i N  where, N  
is total number of point masses. k  and c  are the spring stiffness and the damping 
coefficient, respectively. Assume that no moment exerts on each mesh point. Then, the 
resultant force exerted on the mesh point, pi , can be calculated as  
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 ∂= −
∂

w
pi

i

U  (2) 

where, U  denotes the total potential energy of the object 
 

 
Fig. 2. Schematic of the robotic fingers manipulating a deformable object 
 

 
Fig. 3. Model of a deformable object with interconnected mass-spring-damper 

5. Framework for optimal contact locations 
We develop an optimization technique that satisfies the force closure condition for three 
fingers planar grasp. The resultant wrench for the contacts of three robotic fingers is given by 

 
3

1
( )

=
=w n ri i i

i

f , 2( ) ( 0,  1 3)∀ ∈ℜ ∃ ≥ ≤ ≤w if i  (3) 
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where, ( )n ri i  is the unit inner normal of i-th contact and if  denotes the i-th finger’s force. 
We assume that the contact forces should exist in the friction cone to manipulate objects 
without slip of the fingertip. Now we need to find three distinct points, 1 1( )r θ , 2 2( )r θ , and 

3 3( )r θ , on the boundary of the object such that Equation (3) is satisfied. Here, 1θ , 2θ , and 3θ  
are the three contact point locations measured anti-clockwise with respect to the x axis as 
shown in Figure 4. In addition, we assume that the normal forces have to be non-negative to 
avoid separation and slippage at the contact points, i.e.,  

 0≥if , 1,2,3=i  (4) 
 

 
Fig. 4. Three fingers grasp of a planar object 

A physically realizable grasping configuration can be achieved if the surface normals at 
three contact points positively span the plane so that they do not all lie in the same half-
plane [44]. Therefore, a realizable grasp can be achieved if the pair-wise angles satisfy the 
following constraints 

 min max| |≤ − ≤i jθ θ θ θ  , low high≤ ≤iθ θ θ , , 1,2,3=i j , ≠i j  (5) 

A unique solution to realizable grasping may not always exist. Therefore, we develop an 
optimization technique that minimizes the total force applied on to the object to obtain a 
particular solution. The optimal locations of the contact points would be the solution of the 
following optimization problem. 
min            f fT  
sunject to  

3

1
( )

=
=w n ri i i

i

f

min max≤ − ≤i jθ θ θ θ , , 1,2,3=i j , ≠i j

0≥if , 1,2,3=i

0 360≤ ≤ 
iθ , 1,2,3=i

(6) 
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Once we get the optimal contact locations, all three robotic fingers can be located at their 
respective positions to effect the desired motion at those contact points. 

6. Design of the controller 
In this section, a control law for the robotic fingers is developed to guide a target from any 
point A to an arbitrary point B within the deformable object as shown in Figure 2. 

6.1 Target position control 
At any given time-step, point A is the actual location of the target and point B is the desired 
location of the target. n1, n2 and n3 are unit vectors which determine the direction of force 
application of the actuation points with respect to the global reference frame w . Let 
assume, pd  is the position vector of point B and p is the position vector of point A. 
Referring to Figure 2, the position vector of point A is given by 

 [ ]=p Tx y   (7) 

where, x and y are the position coordinates of point A in the global reference frame w . The 
desired target position is represented by point B whose position vector is given by 

 [ ]=p T
d d dx y   (8) 

where, dx and dy  are the desired target position coordinates. The target position error, e, is 
given by 

 = −e p pd   (9)  

Once the optimal contact locations are determined from Equation (6), the planner generates 
the desired reference locations for these contact points by projecting the error vector 
between the desired and the actual target locations in the direction of the applied forces, 
which is given by 

 * = ⋅ ie e ni  (10) 

where,  
 [ ]=in T

xi yin n   (11) 

All robotic fingers are controlled by their individual controllers using the following 
proportional-integral (PI) control law 

 * *= + e ei Pi i Ii if K K dt ,  1,2,3=i  (12) 

where, PiK , and IiK  are the proportional and integral gains. Note that in the control law 
(12), mechanical properties of the deformable object are not required. Forces applied by the 
fingers on the surface of the deformable object are calculated by projecting the error vector 
in the direction of the applied forces. But the Equation (12) does not guarantee that the 
system will be stable. Thus a passivity-based control approach based on energy monitoring 
is developed to guarantee the stability of the system. 
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6.2 Passivity-based control 
A passivity-based control approach based on energy monitoring is developed for 
deformable object manipulation to guarantee passivity (and consequently stability) of the 
system. The main reason to use passivity-based control is to ensure stability without the 
need of having an accurate model of the deformable object. It is not possible to develop a 
precise dynamic model of a deformable object due to complex nonlinear internal dynamics 
as well as variation in geometry and mechanical properties. Thus passivity based control is 
an ideal candidate to ensure stability since it is a model independent technique. The basic 
idea is to use a PO to monitor the energy generated by the controller and to dissipate the 
excess energy using a PC when the controller becomes active [41], without the need for 
modeling the dynamics of the plant (deformable object). 

Passivity Observer (PO) 

We develop a network model with PO and PC similar to [41] as shown in Figure 5. The PO 
monitors the net energy flow of the individual finger’s controller. When the energy becomes 
negative, PC dissipates excess energy from the individual controller. Similar to [41] energy 
is defined as the integral of the inner product between conjugate input and output, which 
may or may not correspond to physical energy. Definition of passivity [41] states that the 
energy applied to a passive network must be positive for all time. Figure 5 shows a network 
representation of the energetic behavior of this control system. The block diagram in Figure 
5 is partitioned into three elements: the trajectory generator, the controller and the plant. 
Each controller corresponds to one finger. Since three robotic fingers are used for planar 
manipulation, three individual controller transfer energy to the plant.  
The connection between the controller and the plant is a physical interface at which 
conjugate variables ( if , iv ; where if  is the force applied by i-th finger and iv  is the velocity 
of i-th finger) define physical energy flow between controller and plant. The forces and 
velocities are given by 

 Tf f f1 2 3[ ]=f  (13) 

 Tv v v1 2 3[ ]=v  (14) 

The desired target velocity is obtained by differentiating (8) with respect to time and is 
given by 

   T
d d dx y[ ]=p     (15) 

where, dx  and dy  are the desired target velocities, respectively. The desired target velocity 
along the direction of actuation of the i-th robotic finger is given by 

 di d iv = ⋅p n  (16) 

The trajectory generator essentially computes the desired target velocity along the direction 
of actuation of the robotic fingers. If the direction of actuation of the robotic fingers, in , and 
desired target velocity, dp , are known with respect to a global reference frame then the 
trajectory generator computes the desired target velocity along the direction of actuation of 
the fingers using Equation (16). 
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The connections between the trajectory generator and the controller, which traditionally 
consist of a one-way command information flow, are modified by the addition of a virtual 
feedback of the conjugate variable [41]. For the system shown in Figure 5, output of the 
trajectory generator is the desired target velocity, div , along direction of i-th finger and 
output of the controller is calculated from Equation (12). 
 

 
Fig. 5. Network representation of the control system. 1iα and 2 iα are the adjustable damping 
elements at each port, i=1,2,3 

For both connections, virtual feedback is the force applied by the robotic fingers. Integral of 
the inner product between trajectory generator output ( div ) and its conjugate variable ( if ) 
defines “virtual input energy.” The virtual input energy is generated to give a command to 
the controller, which transmits the input energy to the plant through the controller in the 
form of “real output energy.” Real output energy is the physical energy that enters to the 
plant (deformable object) at the point where the robotic finger is in contact with the object. 
Therefore, the plant is a three-port system since three fingers manipulate the object. The 
conjugate pair that represents the power flow is if , iv  (the force and the velocity of i-th 
finger, respectively). The reason for defining virtual input energy is to transfer the source of 
energy from the controllers to the trajectory generator. Thus the controllers can be 
represented as two-ports which characterize energy exchange between the trajectory 
generator and the plant. Note that the conjugate variables that define power flow are 
discrete time values and so the analysis is confined to systems having a sampling rate 
substantially faster than the system dynamics. 
For regulating the target position during manipulation, 0=div . Hence the trajectory 
generator is passive since it does not generate energy. However, for target tracking, 0≠div  
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and 0≠if . Therefore the trajectory generator is not passive because it has a velocity source 
as a power source. It is shown that even if the system has an active term, stability is 
guaranteed as long as the active term is not dependent on the system states [45]. Therefore, 
passivity of the plant and controllers is sufficient to ensure system stability. 
Here, we consider that the plant is passive. Now we design a PO for sufficiently small time-
step ΔT as: 

 
0

( ) ( ( ) ( ) ( ) ( ))
=

= Δ −
k

i k i j di j i j i j
j

E t T f t v t f t v t   (17) 

where, ΔT  is the sampling period and = × Δjt j T . In normal passive operation, ( )i jE t  
should always be positive. In case when ( ) 0<i jE t , the PO indicates that the i-th controller is 
generating energy and going to be active. The sufficient condition to make the whole system 
passive can be written as 

 
0 0

( ) ( ) ( ) ( )
= =

Δ ≥ Δ 
k k

i j di j i j i j
j j

T f t v t T f t v t , 0∀ ≥kt , 1,2,3=i  (18) 

where k  means the k-th step sampling time.  
The active and passive port can be recognized by monitoring the conjugate signal pair of 
each port in real time. A port is active if 0<fv that means energy is flowing out of the 
network system and it is passive if 0≥fv , that means energy is flowing into the network 
system. The input and output energy can be computed as [46]  

 1
1

1

( 1) ( ) ( )  if ( ) ( ) 0
( )

( 1)                      if ( ) ( ) 0
 − + >=  − ≤

T
T i i di i di

i T
i i di

E k f k v k f k v k
E k

E k f k v k
 (19) 

 2
2

2

( 1) ( ) ( )  if ( ) ( ) 0
( )

( 1)                      if ( ) ( ) 0
 − − <=  − ≥

T
T i i di i di

i T
i i di

E k f k v k f k v k
E k

E k f k v k
 (20) 

 1
1

1

( 1) ( ) ( )   if ( ) ( ) 0
( )

( 1)                      if ( ) ( ) 0
 − − <=  − ≥

P
P i i i i i
i P

i i i

E k f k v k f k v k
E k

E k f k v k
 (21) 

 2
2

2

( 1) ( ) ( )  if ( ) ( ) 0
( )

( 1)                      if ( ) ( ) 0
 − + >=  − ≤

P
P i i i i i

i P
i i i

E k f k v k f k v k
E k

E k f k v k
 (22) 

where, 1 ( )T
iE k  and 2 ( )T

iE k  are the energy flowing in and out at the trajectory side of the 
controller port, respectively,  whereas 1 ( )P

iE k and 2 ( )P
iE k are the energy flowing in and out at 

the plant side of the controller port, respectively. So the time domain passivity condition is 
given by 
 

 1 1 2 2( ) ( ) ( ) ( )+ ≥ +T P T P
i i i iE k E k E k E k , 0∀ ≥k  (23) 

Net energy output of an individual controller is given by 
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 1 2 1 2
2 2

1 2

( ) ( ) ( ) ( ) ( )
        ( 1) ( 1) ( 1) ( 1)

= − + −

+ − − + − −

T P P T
i i i i i

i di i i

E k E k E k E k E k

k v k k v kα α
 (24) 

where, the last two terms are the energy dissipated at the previous time step. 1 ( 1)−i kα and 
2 ( 1)−i kα are the damping coefficient calculated based on PO discussed below. 

Passivity Controller (PC) 

In order to dissipate excess energy of the controlled system, a damping force should be 
applied to its moving parts depending on the causality of the port. As it is well known, such 
a force is a function of the system's velocities giving the physical damping action on the 
system. Mathematically, the damping force is given by 

 =df vα  (25) 

where α  is the adjustable damping factor and v  is the velocity. From this simple 
observation, it seems necessary to measure and use the velocities of the robotic fingers in the 
control algorithm in order to enhance the performance by means of controlling the damping 
forces acting on the systems. On the other hand, velocities measurements are not always 
available and in these cases position measurements can be used to estimate velocities and 
therefore to inject damping. 
When the observed energy becomes negative, the damping coefficient is computed using 
the following relation (which obeys the constitutive Equation (25)). Therefore, the algorithm 
used for a 2-port network with impedance causality (i.e., velocity input, force output) at 
each port is given by the following steps: 
1. Two series PCs are designed for several cases as given below: 

Case 1: If ( ) 0≥iE k , i.e., if the output energy is less than the input energy,  there is no 
need to activate any PCs. 
Case 2: If ( ) 0<iE k , i.e., if the output energy is more than the input energy, i.e., 

2 1( ) ( )>P T
i iE k E k , then we need to activate only the plant side PC. 

 1
2

2

( ) 0
( ) ( ) / ( )

=

= −
i

i i i

k

k E k v k

α
α

 (26) 

Case 3: Similarly, if ( ) 0<iE k , 2 1( ) ( )>T P
i iE k E k , then we need to activate only the trajectory 

side PC. 

 
2

1

2

( ) ( ) / ( )
( ) 0

= −
=

i i di

i

k E k v k
k

α
α

 (27) 

2. The contributions of PCs are converted into power variables as 

 1

2

( ) ( ) ( )
( ) ( ) ( )

=

=

t
i i di

p
i i i

f k k v k

f k k v k

α
α

 (28) 

3. Modified outputs are 

 
( ) ( ) ( )
( ) ( ) ( )

= +

= +

T t
i i i

pP
i i i

f k f k f k

f k f k f k
 (29) 
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where, ( )t
if k and ( )p

if k are the PCs’ outputs at trajectory and plant sides of the controller 
ports, respectively. ( )T

if k  and ( )P
if k are the modified outputs at trajectory and plant sides 

of the controller ports, respectively. 

7. Simulation and discussion 
We perform extensive simulations of positioning an internal target point to a desired 
location in a deformable object by external robotic fingers to demonstrate the feasibility of 
the concept. We discretize the deformable object with elements of mass-spring-damper. 
We choose m=0.006 kg for each point mass, k=10 N/m for spring constant and c=5 Ns/m 
for damping coefficient. With this parameter set up, we present four different simulation 
tasks. 
Task 1: 

In Task 1, we present the optimal contact locations of various objects using three robotic 
fingers such that an internal target point is positioned to the desired location with minimum 
force. The optimal contact locations are computed using Equation (6) as shown in Figures 6 
to 8. In these figures, the base of the arrow represents the initial target location and the 
arrow head denotes the desired location of the target point. The contact locations are 
depicted by the bold red dots on the periphery of the deformable object. Note that in 
determining the optimal contact locations, we introduced minimum angle constraints 
between any two robotic fingers to achieve a physically realizable grasping configuration. 
 

1 

2 

3 

1 2 

3 

2 

3 

1 

1 

2 

3 

(a) (b) 

(c) (d) 
 

Fig. 6. Optimal contact locations ( 1θ , 2θ , 3θ ): (a) 59.98o, 204.9o, 244.9o, (b) 14.96o, 159.9o, 
199.9o, (c) 7.54o, 182.54o, 327.54o, and (d) 48.59o, 88.59o, 234.39o 
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1 2 
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1 2 
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1 2 
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(a) 

(c) 

(b) 

(d)  
Fig. 7. Optimal contact locations (

1θ , 
2θ , 

3θ ): (a) 0o, 170o, 253.8o, (b) 29.07o, 116.93o, 233.86o, 
(c) 0o, 175o, 320o, and (d) 76.93o, 116.93o, 261.94o 
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(a) 

(c) 
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Fig. 8. Optimal contact locations ( 1θ , 2θ , 3θ ): (a) 25.18o, 199.48o, 262.22o, (b) 0o, 175o, 262.62o, 
(c) 141.05o, 303.66o, 343.66o and (d) 96.37o, 169.35o, 288.29o 
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Task 2: 

In Task 2, we present a target positioning operation when the robotic fingers are not located 
at their optimal contact locations. For instance, we choose that the robotic fingers are located 
at 0, 120, and 240 degrees with respect to the x-axis as shown in Figure 9. We assume that 
the initial position of the target is at the center of the section of the deformable object, i.e., (0, 
0) mm. The goal is to position the target at the desired location (5, 5) mm with a smooth  
 

 
Fig. 9. Deformable object with contact points located at 0, 120 and 240 degrees with respect 
to x-axis 
 

 
Fig. 10. The desired (red dashed) and the actual (blue solid) straight lines when robotic 
fingers are located at 0, 120, and 240 degrees with respect to x-axis 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x (mm)

y 
(m

m
)

 

 

desired
actual

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

x (m)

y 
(m

)

y

x

1 

2 

3 



 
Robotic Systems – Applications, Control and Programming 

 

34

straight line trajectory. In this simulation, we choose KPi =1000 and KIi =1000, i=1,2,3. Figure 
10 shows the actual and desired position trajectories of the target point. It is noticed that 
there is some error present in the tracking of the desired trajectory. Robotic fingers forces 
generated by the PI controller are presented in Figure 11 and the POs are falling to negative 
as shown in Figure 12. Negative values of POs signify that the interaction between the 
robotic fingers and the deformable object is not stable.  
 

 
Fig. 11. Controller forces when robotic fingers are located at 0, 120, and 240 degrees with 
respect to x-axis 

 

 
Fig. 12. POs when robotic fingers are located at 0, 120, and 240 degrees with respect to x-axis 
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Task 3: 

In Task 3, we consider the same task as discussed above under Task 2 but the robotic fingers 
are positioned at their optimal contact locations (Figure 8(a)) and the target is following the 
desired straight line trajectory. In this case, PCs are not turned on while performing the task. 
A simple position based PI controller generates the control command based on the error 
between the desired and the actual location of the target. Figure 13 shows that the target  
 

 
Fig. 13. The desired (red dashed) and the actual (blue solid) straight lines when PCs are not 
turned on 

 
Fig. 14. Controller forces when PCs are not turned on 
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Fig. 15. (a) POs for three robotic fingers when PCs are not turned on, (b) a magnified version 
of (a) for first few seconds 

(a) 

(b) 

0 1 2 3 4 5 6 7 8 9 10
-0.01

0

0.01

E
1 (N

m
)

0 1 2 3 4 5 6 7 8 9 10
-5

0

5
x 10-3

E
2 (N

m
)

0 1 2 3 4 5 6 7 8 9 10
-5

0

5
x 10-3

E
3 (N

m
)

time (sec.)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.01

0

0.01

E
1 (N

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1
x 10

-6

E
2 (N

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5
x 10

-7

E
3 (N

m
)

time (sec.)



 
Target Point Manipulation Inside a Deformable Object 

 

37 

tracked the desired position trajectory. Robotic fingers forces generated by the PI 
controller are presented in Figure 14. Force values in Figure 14 are quite less than those in 
Figure 11 because of the optimal contact location of the robotic fingers. However, the POs 
for robotic fingers 2 and 3 are become negative as shown in Figure 15. Negative values of 
the POs signify that the output energy of the 2-port network is greater than the input 
energy. Since the plant is considered to be passive, the only source of generating extra 
energy is the controller that makes the whole system unstable. So we must engage 
passivity controller to modify the controller output by dissipating the extra amount of 
energy. 
Task 4: 

In Task 4, the PCs are turned on and the robotic fingers are commanded to effect the desired 
motion of the target. The PCs are activated when the POs cross zero from a positive value. 
The required damping forces are generated to dissipate only the excess amount of energy 
generated by the controller. In this case, the target tracks the desired straight line trajectory 
well with the POs remaining positive. Figure 16 represents the actual and the desired 
trajectories of the target when PCs are turned on. For this case, the PCs on the plant side are 
only activated whereas the PCs on the trajectory side remain idle. Figure 17 shows the PCs 
forces generated at the plant side when the POs cross zero. The POs become positive during 
interaction between the robotic fingers and the object as shown in Figure 18. Hence, the 
stability of the overall system is guaranteed. The PCs on the trajectory side are shown in 
Figure 19, which are all zeros. The modified controller outputs to move the target point are 
shown in Figure 20. 
 

 
Fig. 16. The desired (red dashed) and the actual (blue solid) straight lines when PCs are 
turned on 
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Fig. 17. Required forces supplied by PCs at the plant side when PCs are turned on 

 

 
Fig. 18. POs for three robotic fingers when PCs are turned on 

0 1 2 3 4 5 6 7 8 9 10
-0.01

0

0.01

E
1 (N

m
)

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

E
2 (N

m
)

0 1 2 3 4 5 6 7 8 9 10
-0.01

0

0.01

0.02

E
3 (N

m
)

time (sec.)

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1
f 1p  (N

)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

f 2p  (N
)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

f 3p  (N
)

time (sec.)



 
Target Point Manipulation Inside a Deformable Object 

 

39 

 
Fig. 19. PCs forces at the trajectory side when PCs are turned on 

 
Fig. 20. Modified controller forces when PCs are turned on 
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8. Conclusion and future work  
In this chapter, an optimal contact formulation and a control action are presented in which a 
deformable object is manipulated externally by three robotic fingers such that an internal 
target point is positioned to the desired location. First, we formulated an optimization 
technique to determine the contact locations around the periphery of the object so that the 
target can be manipulated with minimum force applied on the object. The optimization 
technique considers a model of the deformable object. However, it is difficult to build an 
exact model of the deformable object in general due to nonlinear elasticity, friction, 
parameter variations, and other uncertainties. Therefore, we considered a coarse model of 
the deformable object to determine the optimal contact locations which is more realizable. A 
time-domain passivity control scheme with adjustable dissipative elements has been 
developed to guarantee the stability of the whole system. Extensive simulation results 
validate the optimal contact formulation and stable interaction between the robotic fingers 
and the object. 
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1. Introduction 
Assistive robots, with which users can interact directly, have attracted worldwide attention. 
They can assist people with disabilities and older persons in the activities of daily living. 
Assistive robots could be employed for improving quality of life as they can be adjusted 
according to demographic changes. There are several crucial issues to be considered with 
regard to these robots, such as customizing them according to the specific culture of the 
users as well as ensuring cost-effectiveness (Mann, 2005). 
In Korea, the official number of registered people with disabilities due to illnesses, injuries, 
and the natural aging process has already exceeded two million (Employment Development 
Institute, 2009). More than one-third of these disabled people are the elderly. Moreover, due to 
longer life spans and a decline in birthrate, the elderly make up over 10% of the population in 
Korea. As a result, effective caregiving with restricted resources is an urgent problem. 
In order to achieve efficient caregiving for people with disabilities and elderly persons, 
caregivers should physically interact with the people. For example, caregivers have to assist 
people in performing the routine activities of their daily lives, such as eating, changing 
clothes, changing their posture, moving from one location to another, and bathing. Among 
these activities, eating meals is one of the most essential daily activities. In this regard, 
caregivers must interact with people frequently to assist with food selection, feeding 
interval, etc. Existing robotic technologies can be utilized to take over the functions of the 
caregivers. Thus, assistive robots represent one of the solutions by which disabled or elderly 
people can receive support for performing the activities of daily life. 
The design of assistive robots to help with self-feeding depends strongly on the specific 
culture of the user. Korean food consists chiefly of boiled rice, soup, and side dishes such as 
Kimchi. The procedure of having a meal is as follows: the user eats the boiled rice first and 
then the side dishes. These steps are performed repetitively. In comparison with foreign 
boiled rice, Korean boiled rice sticks together very well after cooking. Handling this sticky 
boiled rice can be problematic. In addition, Korean soup includes meat, noodles, and 
various vegetables, thus the existing feeding robots find it difficult to handle Korean foods. 
Various assistive robots have been developed since the late 1980s, as shown in Fig. 1. 
Handy1 (Topping & Smith, 1999) is an assistive robot for daily activities such as eating, 
drinking, washing, shaving, teeth cleaning, and applying make-up. Handy1 consists of a 
five-DOF (degree-of-freedom) robot, a gripper, and a tray unit. The major function of 
Handy1 is to help with eating. Handy1 allows a user to select food from any part of the tray. 
A cup is attached to enable users to drink water with their meal. The walled columns of a 
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food dish serve an important purpose: the food can be scooped on to the dish without any 
resultant mixing of food items. 

 

 
 (a) Handy1   (b) Winsford feeder    (c) Neater Eater 
 

 
 (d) My Spoon   (e) Meal Buddy (f) Mealtime Partner 
   Dining System 
Fig. 1. Feeding systems 

The Winsford feeder (Sammons Preston; Hermann et al., 1999) is a mechanical self-feeding 
system. It uses a mechanical pusher to fill a spoon and a pivoting arm to raise the spoon to 
the user’s mouth that is at a preset position. The plate is rotated to place more food in front of 
the pusher. The user can choose from two input devices: a chin switch and a rocker switch. 
Neater Eater (Neater Solutions) has two versions: a manual–operation-type and an 
automatic-operation-type system. Neater Eater consists of a two-DOF arm and one dish. 
Two types of food can be present on the one dish. The manual type can be used to suppress 
the tremors of a user’s upper limbs while he or she eats. 
My Spoon (Soyama et al., 2003) is suitable in the case of Japanese food. It consists of a five-
DOF manipulator, a gripper, and a meal tray. The meal tray has four rectangular cells. My 
Spoon combines several pre-programmed motions: automatic operation, semiautomatic 
operation, and manual operation. The semiautomatic operation allows a user to select food. 
The manual operation can change the position in which the food is held. The input device 
can be selected from among the following: the chin joystick, reinforcement joystick, and 
switch. The end-effector of the robotic arm has one spoon and one fork, which move 
together to realize the grasping motion. During the grasping process, the gap between the 
spoon and the fork changes and thus the end-effector grasps the food. Then the robot moves 
to a predefined position in front of the user’s mouth, and the fork moves backward to enable 
the user to eat the food off the spoon. 
Meal Buddy (Sammons Preston) has a three-DOF robotic arm and three bowls that can be 
mounted on a board using magnets. After the system scoops the food, the robotic arm 
scrapes the surplus food off the spoon with the rod on the bowls. 
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The Mealtime Partner Dining System (Mealtime Partners) is positioned in front of a user’s 
mouth. Three bowls can rotate in front of the mouth. The spoon picks up the food and then 
moves a short distance toward the preset location of the mouth. This system reduces the 
chances of the spoon slipping on wet food because the underside of the spoon is wiped off 
after scooping. Because of the way the system is positioned, the user does not need to lean 
toward the feeder. In some systems, a beverage straw is located beside the spoon 
(Pourmohammadali, 2007). Other systems are designed for multiple users (Guglielmelli, 
2009). 
Most feeding systems scoop the food with a spoon. Those systems are not suitable for use in 
the case of boiled rice, which is a staple food in Korea. In addition, some systems have a 
single dish, and thus different types of food might be mixed during scooping. My Spoon 
uses the grasping function to pick up food, but this system has difficulty serving Korean rice 
due to its fixed grasping strength and the grasping openness of the gripper. As a result, My 
Spoon’s gripper sometimes gets a lot of rice attached to its surface. The previously 
mentioned self-feeding robotic systems also have difficulty scooping this staple Korean 
food. 
Feeding robots enable users to enjoy food independently during mealtimes. After preparing 
food, users can choose when they want to eat the desired food. We developed an assistive 
robot for self-feeding by taking into consideration the feedback of user candidates and 
clinical experts. We evaluated the self-feeding robot by performing a series of user tests. The 
overall process, i.e., formulating a concept, design, and evaluation involves feedback from 
users and clinical experts. The development process is performed on the basis of the 
philosophy of participatory action design (Ding et al., 2007).  
In this paper, we introduce a newly designed self-feeding robot that will be suitable in the 
case of Korean food, including sticky rice, and we report the results of tests that were 
performed with several disabled people. In Section 2, we will present an overview of the 
new self-feeding robot for Korean food. Basic operational procedures of the self-feeding 
robot will be presented in Section 3. Section 4 contains the results and discussions of tests 
performed with users with spinal cord injuries. Finally, we will present the conclusion in 
Section 5. 

2. Self-feeding robot system 
In this section, we will present an overview of the users, requirements, and system 
configurations of the self-feeding robot system. 

2.1 Users 
The primary users of self-feeding robots are people with physical disabilities who have 
difficulty moving their upper limbs. Such people include those suffering from high-level 
spinal cord injuries, cerebral palsy, and muscular diseases. For example, people with 
cervical level-4 spinal cord injuries have difficulty moving their upper limbs and retain full 
movement only above their necks. Some people afflicted with cerebral palsy cannot move 
their arms and hands, and they often have difficulty moving their necks. When the spoon of 
a self-feeding robot approaches such a user’s mouth, that person has a hard time putting the 
food in his or her mouth. People with muscular diseases have weak muscle movements. 
Even though they can move their hands, they have limited motor functions in their elbows 
and shoulder joints. We can also include senior citizens who have difficulties with the motor 
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functions of their upper limbs, e.g., the fragile elderly, among the abovementioned disabled 
people. It is clear that the number of overall target users of self-feeding robots will be 
growing in the near future. 

2.2 Requirements of a self-feeding robot 
We surveyed a group of people with disabilities as well as clinical experts to learn about the 
requirements of a feeding robot (Song et al., 2010a, 2010b). The focus group consisted of a 
person with a spinal cord injury and a person with cerebral palsy. The clinical experts 
included occupational therapists and medical doctors of physical medicine and 
rehabilitation. 
The major findings of the survey are as follows. Firstly, a user should be able to control the 
feeding interval for the desired food. In the case of caregiving, one of the common problems 
is the difficulty in controlling the feeding interval. People with spinal cord injury are able to 
talk quickly and can therefore manage a short feeding interval. However, people with 
cerebral palsy have difficulty representing their intentions quickly when the feeding interval 
is too short. 
 

 
Fig. 2. Korean food on a standard food container. (From the lower left-hand side going 
counterclockwise: rice, soup, and side dishes.) 

Secondly, the specialists and the user candidates believe that the feeding systems are 
designed more for western-style food. Those systems are not suitable for Korean food, 
which includes boiled rice, soup, and side dishes. A user eats one of the side dishes and then 
the boiled rice in turn. These steps are performed repetitively during mealtime. In 
comparison with foreign boiled rice, Korean boiled rice sticks together very well after 
cooking. One of the problems of self-feeding systems is handling this sticky boiled rice. In 
addition, Korean soup includes meat, noodles, and various vegetables. Therefore, existing 
feeding robots have difficulty handling Korean foods (Fig. 2). 
Thirdly, a feeding robot should be suitable for use in private homes and facilities. From an 
economic point of view, a feeding robot is effective in facilities that have many persons with 
upper-limb disability. Such facilities do not have enough caregivers to help with feeding 
due to the heavily time-consuming nature of this task. Thus, a robot reduces the burden of 
caregiving for feeding. A feeding robot can also be used in an ordinary home to improve the 
quality of life of the users and their families. Members of a family can face each other and 
freely enjoy talking. The other members of the family can go out for a few hours because 
they are freed from the burden of having to help with feeding. 
The location of bowls or a tray is another important factor. According to Korean culture, the 
location of bowls or a tray is strongly related to the dignity of the person. A simple feeding 
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system can be made with the bowls located in front of a user’s mouth. However, some 
senior user candidates hate having the bowls right in front of their mouth; they prefer to eat 
the food like ordinary people. Thus, we focus mainly on using a tabletop tray. 
Other comments of user candidates are as follows: plain machines that can serve simple 
dishes with water are required. When a caregiver goes out for a while, a user needs to be 
able to eat cereal with milk with the help of a self-feeding robot. The water supply tool 
should be located next to the user’s body. The meal tray must have a cover to protect the 
food from dust contamination. The cost should be reasonable, e.g., the price should be 
between US$1800 and $2700. Obviously, a low-cost system is preferred. The feeding robot 
should be able to deal with noodles. The feeding robot should be able to accommodate the 
posture of the user. Finally, the feeding robot should be lightweight. 
We concentrate on rice handling. We do not take into account the handling of soup in this 
development. We will handle the requirements of feeding Korean soup in a future version’s 
design. Instead of handling Korean soup via a self-feeding robot, a user drinks soup stored 
in a cup. Generally, we assume that a user drinks soup or water through a straw. 
Technically, we considered four types of feeding robots in order to ensure that it can grip 
and release boiled rice effectively, as shown in Fig. 3.  
In the first concept, a number of bowls are located in front of a user’s mouth, and the food is 
presented by the spoon with a short traveling distance. For example, if there are three bowls, 
one bowl has rice and two bowls have side dishes. However, two side dishes are not enough 
to constitute a satisfying meal. In general, Korean people eat three or four side dishes with 
boiled rice at a time. Therefore, we need four or five bowls.  
 

                
(a) First concept                      (b) Second concept 

 

                  
(c) Third concept                      (d) Fourth concept 

Fig. 3. Design concepts of a feeding robot. (Third concept is chosen.) 

In the second concept, the bowls are located in the upper front of a user’s mouth, and then the 
food drops from the bottom of a bowl. The food is placed in the spoon by a dropping motion, 
and then the spoon approaches the user’s mouth. This method requires the mechanism of food 
dropping on the spoon. This method could be suitable for a bite-sized rice cake. 
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In the third concept, the system with a food tray is located on a table. The robotic arm picks 
up food and then moves it to a user’s mouth. These tasks are divided into two steps: one is 
picking up the food and the other is moving the food to the user’s mouth. Two arms can be 
used to perform the above two tasks, respectively. One of the user candidates pointed out 
the easy installation of the feeding robots, especially a dual-arm manipulator. This is 
significant because some caregivers might be elderly people who are not familiar with 
brand-new machines. 
Finally, one bowl is located in front of the user’s mouth. The mixed food with rice is loaded 
in that bowl. Some users do not like the mixed food, even though they do prefer a simple 
feeding system. 
We decided on the third concept, which is located on a table, based on the opinions of 
specialists and user candidates. 

2.3 Design of the feeding robot 
We have developed a simple robotic system that has a dual-arm manipulator that can 
handle Korean food such as boiled rice in an ordinary food container, as shown in Fig. 4. We 
divide a self-feeding task into two subtasks: picking up/releasing food and transferring 
food to a user’s mouth. The first robotic arm (a spoon-arm, Arm #1) uses a spoon to transfer 
the food from a container on a table to a user’s mouth. The second robotic arm (a grab-arm, 
Arm #2) picks food up from a container and then puts it on the spoon of a spoon-arm. 
 

 
Fig. 4. Assistive robot for self-feeding. Spoon-arm (Arm #1) uses a spoon to transfer the food 
from a container to a user’s mouth. Grab-arm (Arm #2) picks up the food from a container 
and then loads it onto the spoon of Arm #1 

The two arms have different functions. The design of the end-effectors of the two arms 
could be chosen effectively. To pick up or release the food stably, a grab-arm can use an 
odd-shaped gripper, as shown in the bottom left-hand side of Fig. 4, because that gripper 
does not need to approach a user’s mouth. However, the end-effector of a spoon-arm has an 

Gripper Spoon

Spoon-Arm (Arm #1)

Grab-arm (Arm #2)

Tray
Gripper
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intact round-shaped spoon to serve food to a user’s mouth safely. If an end-effector has an 
unusual shape, then it might pose a danger to the user as it approaches his or her face. 
The two proposed arms with their different end-effectors mimic Korean eating behavior. 
Specifically, Koreans use a spoon and steel chopsticks during mealtime, as shown in Fig. 5 
(a) and (b). Some people use a spoon and chopsticks simultaneously [Fig. 5 (c)]. In the 
designed system, the gripper of a grab-arm and the spoon of a spoon-arm take on the roles 
of chopsticks and a spoon, respectively. Many Korean caregivers pick up food with 
chopsticks and then put it on a spoon in order to serve food to users such as children and 
patients. In that sense, the proposed two-armed system stems from Korean eating tools. 
 

   
 (a)    (b)    (c) 

Fig. 5. (a) A spoon for scooping food. (b) Chopsticks for picking up food. (c) A person using 
a spoon and chopsticks 

A spoon-arm has two degrees of freedom (DOF) in order to transfer food on the spoon 
without changing the orientation of the spoon. A grab-arm includes a three-DOF SCARA 
joint for the planar motion, a one-DOF prismatic joint for the up and down motion, and a 
gripper. The overall number of DOFs of a dual-arm without a gripper is six, as shown in Fig. 
6. The feeding robot can use an ordinary cafeteria tray. 
 

 
Fig. 6. The joint configuration of a novel feeding robot for Korean foods. P1 (Prismatic Joint 
#1) is optionally applied. R = Revolute. P = Prismatic 

The feeding robot uses a microcontroller unit to control a spoon-arm and a grab-arm, as 
shown in Fig. 7. We add a small-sized PC with a touch screen to enable the user to enjoy 
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entertainment and to test various kinds of user interfaces. During mealtime, a user wants to 
enjoy multimedia such as movies or music. In addition, the small-sized PC has a Windows 
operating system, and we can effectively add assistive devices for human computer 
interaction, i.e., switches, a joystick, and biosignal interface devices. 
 

 
Fig. 7. Block diagram of feeding robot 

The microcontroller unit allows a user or a caregiver to select the following: operation 
modes (automatic/semiautomatic/manual mode), the shape and size of a container, the 
location of the mouth, the robot’s speed, the time to stay in front of the mouth, and so on. 
Depending on the types of food, a user also selects the divided grasping region in each 
container and the grab strength of the gripper of the grab-arm. Our system will be capable 
of selecting the above parameters. A user can save the parameters of various kinds of food. 
We expect that in a community, different members will be able to exchange their robots 
effectively by exchanging their individual parameters via the Internet. 
The grasping regions of boiled rice in a bowl could be defined in 3D space because the bowl 
should be over 50 mm in height. The grasping volume of dishes could be defined as shown 
in Fig. 8. Our team is making the prototype of the proposed feeding robot. Fig. 9 shows the 
designed appearance of the proposed self-feeding robot. 
 

 
Fig. 8. The definition of grasping volume in containers 

In order to use a conventional food container, we decided that the length of links of the 
grab-arm should cover the whole area of a food container. A grab-arm is located behind a 
container or on the left-hand side of a container. A grab-arm can chiefly be located behind a 
food container on a standard table, as shown in Fig. 10. The lap board of a bed does not 
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provide enough space behind a food container; therefore, the grab-arm should be located on 
the left-hand side of a food container. 
 

 
 

    
Fig. 9. The design of a novel feeding robot for Korean food. A spoon-arm (lower left-hand-
side figure) for transferring food and a grab-arm (lower right-hand-side figure) for picking 
up and releasing food 

The spoon-arm has two additional variables, namely the motorized prismatic motion 
toward a user’s mouth, and the manual change of the link length between the first axis and 
the second axis of the grab-arm. Fig. 11 shows the overall workspace of the spoon of a grab-
arm. In accordance with the position of a user’s mouth, the predefined location in front of 
the mouth is adjusted when the system is installed. 
The height of the spoon on the spoon-arm is 250–381 mm with respect to the surface of a 
table. The height of the spoon-arm depends on the table height. We assume that the height 
of a table is 730–750 mm. The spoon could be located at a height of 980–1131 mm with 
respect to the ground. According to the statistics of the Korean disabled, the height of a 
user’s mouth could be 1018 mm (female) and 1087 mm (male), as shown in Table 1. Thus, 
the height of the spoon corresponds with the height of the user’s mouth. 
 

Item Sitting height on a 
wheelchair 

The distance from a 
crown to a mouth 

Mouse height on a 
wheelchair 

Male 1261 174 1087 
Female 1187 169 1018 

Table 1. Statistics of wheelchair users (unit: mm) 
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Fig. 10. The configuration of a grab-arm 

 

 
Fig. 11. The work space of a spoon-arm 

3. Basic operation of the self-feeding robot 
We built two arm configurations of the developed self-feeding robot: a dual-arm 
configuration and a single-arm configuration. A dual-arm configuration follows an original 
design concept using both a spoon-arm and a grab-arm. A single-arm configuration uses 
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only the spoon-arm, and a caregiver takes the role of the grab-arm. We explain the two arm 
configurations of the feeding robot in the following sections. 

3.1 Dual-arm configuration 
A dual-arm robotic system is applied in accordance with an original design concept. If a 
caregiver prepares food, users can eat the food on the basis of their intentions. A grab-arm 
picks up the desired food on a food container, and the arm releases the food on the spoon of 
a spoon-arm. The spoon-arm moves the spoon to the user’s mouth. Then the user can eat the 
food on the spoon. 
 

 
Fig. 12. The sequential motions of the self-feeding robot in dual-arm configuration. From the 
top left-hand side, the robot puts a gripper into a bowl of water and then grasps rice 

The self-feeding robots have three operation modes: an automatic mode, a semiautomatic 
mode, and a manual mode. The automatic mode has a fixed serving sequence of dishes; 
users only push a start button when they want to eat the next food on a spoon. In a 
semiautomatic mode, a user can choose the dishes on the basis of their intention. In this 
mode, a user can have the dishes that they want to eat. In a manual mode, the user can 
choose food and control the posture of the robot. In all three modes, the user can select the 
feeding timing when they want eat.  
In experiments on handling boiled rice, we observed that releasing rice is as important as 
picking up rice. The stickiness of the boiled rice can change depending on its temperature. 
Slightly cool rice is difficult to release from the gripper. In order to solve this problem, the 
feeding robot automatically puts the gripper of the grab-arm in water before grasping the 
food. The water is located in a bowl next to the rice. When this is done, the gripper can 
release the rice on the spoon because the stickiness of the rice has decreased. Fig. 12 shows 
the whole operation of the self-feeding robot. 
The amount of rice picked up is adjusted on the basis of actual experiments on rice grasping. 
A gripper’s mechanism is the simple opening/closing of gripper fingers via a linear 
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actuator. The weight of the rice corresponding to one grasping motion increases depending 
on the open/close width (Fig. 13) of the fingers of the gripper when grasping begins, as 
shown in Fig. 13. The default open/close width of the gripper is 32 mm in order to grasp an 
average of 10 g rice. The close width of the gripper makes the grasping force to food. Thus, 
we can grasp various foods by adjusting the open/close width of the gripper. 
 

     
Fig. 13. Amount of rice in a single grasp 

3.2 Single-arm configuration 
A spoon-arm could be used independently without a grab-arm, as shown in Fig. 14. The 
caregiver manually picks up the food on a tray and puts the food on the spoon of a spoon-  
 

 
Fig. 14. The motions of the self-feeding robot in single-arm configuration. The caregiver 
picks food up on the spoon of the self-feeding robot, and then the user presses the button to 
receive the food 

Open/Close Width of 
a Gripper Fingers
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arm. The next step is similar to that of the dual-arm robotic arm. A caregiver only provides a 
user with food when the spoon is empty in the home position. From the perspective of the 
caregiver, he or she can reduce the amount of time needed to check or wait while the user is 
chewing. From the perspective of the user, the food can be eaten when he or she wants to 
eat. Although a user may have difficulty choosing food in an automatic manner, he or she 
can chew the food sufficiently without considering the next spoon serving from a caregiver. 
From an economical point of view, the single-arm configuration has a lower cost in 
comparison with the dual-arm configuration. Applying a spoon-arm has advantages in 
facilities such as hospitals or nursing homes. One caregiver supports more than one 
consumer. That means one caregiver can serve food on the spoons of multiple users’ spoon-
arms in turn. This configuration is especially useful if the labor cost of a caregiver is not 
high, as in developing countries.  

4. User test 
At first, we designed the self-feeding robot on the basis of users’ opinions in order to 
develop a practical system. After constructing the prototype of the self-feeding robot, we 
performed a user test using seven people with disabilities via the developed self-feeding 
robot. Participants used the self-feeding robot to eat Korean food, and we collected 
feedback.  

4.1 Users’ overall feedback on the self-feeding robot 
In the users’ opinions, a self-feeding robot could be useful when a user stays at home alone. 
The self-feeding robot can be used in two situations: one is solitary eating and the other is 
eating together. The most important role is in supporting self-feeding without a caregiver 
when people with disabilities stay in their homes alone and caregivers prepare the food in 
advance. 
Some users prefer using a large spoon. For example, a spoon could be a Chinese-style spoon. 
If a spoon is large, then it can be used to feed wet food. However, a female user could prefer 
to use a small-sized spoon. The size of the spoon should be customized according to the user 
preferences. We will consider several spoons with various sizes as well as various depths. 
Users sometimes request quick motion of the robotic arm. A user wants to be able to adjust 
the motion speed of the self-feeding robot. The adjusting speed should be customized to the 
user. 
The spoon should tilt to the user’s mouth in order to unload the food on a spoon easily 
when the spoon arm is positioned in the user’s mouth. Technically, the spoon should tilt to a 
user with cerebral palsy because such a user can move his/her head to a limited extent. If 
the self-feeding robot does not have a tilting function, then the user will struggle to eat the 
food on the spoon. Specifically, if the robot has a range detection sensor around the spoon, 
then the robot could move more intelligently in front of the user’s mouth. That means a 
spoon automatically tilts in front of a user’s mouth. If a user’s mouth moves, the 
preprogrammed motion is not suitable. If a spoon tilts in the wrong position, food could 
drop down on the floor. Some people with cerebral palsy or muscular disease have trouble 
moving their neck, and thus the tilting function of a spoon should be an option. 
Users and experts want to eat food comfortably using a spoon. For instance, the proposed 
system moves the spoon in front of the user’s face. At that time, the spoon moves to the 
user’s mouth along the sagittal plane, as shown in Figs. 15 (a) and (b). Some users complain 
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about a threatening feeling when the spoon moves on the sagittal plane. If the spoon 
approaches a user’s mouth from the side, then a user can feel safer. Those motions are 
similar to most people’s motions when they eat food. In addition, a user wants to touch the 
side surface of a spoon. As a remedy, we will consider how the spoon approaches, as shown 
in Figs. 15 (c), (d), and (e). However, the sideways approach may require a large installation 
area for the self-feeding robot. 
 

 
Fig. 15. Spoon approaching modes. (a) The sagittal plane on which a spoon moves. (b), (c), 
(d), and (e) represent the top view of a spoon when a robot approaches a user’s mouth. The 
red object means a spoon. (c), (d) and (e) are more comfortable then (b) 

A spoon should have a safety function because the spoon frequently comes in contact with a 
user’s mouth. A spoon can be fixed at the tip of an arm with a spring as a component to 
guarantee safety. The spoon can be connected to magnets. When a large force acts on the 
spoon, the magnet’s connection with the spoon could be detached for the user’s safety. A 
user who has spasticity needs the compliance of a spoon. 
Users request a smoother motion of a spoon when it contains food. In addition, the vibration 
of a spoon should be reduced at that time. 
Users want a small-sized self-feeding robot for easy installation on a desk. In addition, a 
user wants to be able to adjust the spoon level of the self-feeding robot. For example, a user 
who uses a power wheelchair has various height levels from a table. When users first use 
the self-feeding robot, the level of the spoon on the robotic arm should be adjustable. 
As a basic function, food rarely drops on a table when a user fails to eat the round-shaped 
food. When a user eats food that is too stiff, grasping failure occurs. Therefore, we consider 
the motion, i.e., the speed, of a spoon as well as the shape of a spoon. 
Some users want to eat rice with a side dish simultaneously. In general, the disabled person 
who lives alone and receives a caregiving service usually eats rice and a side dish on one 
spoon at the same time. Some people eat rice mixed with side dishes. The self-feeding robot 
should mimic that task. The self-feeding robot optionally puts two kinds of food, i.e., rice 
and a side dish, on a large spoon simultaneously. 
The spoon should be returned to the home position after a predefined time interval. The 
robot has two ways to return to the home position of a spoon: one is by making an input 
signal, and the other is determining a time interval. 
Sometimes a robot should regrasp food in order to avoid grabbing too much of a side dish. 
When a robot tries to grab some curry rice, the gripper shape should be changed. The 
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gripper should be cleaned frequently. The amount of grabbed food could be adjustable. A 
stop or pause function is required. 
Other comments are as follows: the robots should be less noisy, have a small-sized input 
device, serve water, and enable users to eat Korean soup. Users who do not have experience 
eating food by themselves have a hard time using a self-feeding robot for the first time. Such 
a person needs to be trained on how to use it. Some users want to eat noodles, such as 
spaghetti. Most users wish to use a low-cost feeding robot. 
The filtering of an involuntary input signal of a user should be considered. For instance, in 
order to reduce malfunctions, a user’s input could be ignored immediately after a previous 
input. One user who can push a button by himself prefers to use buttons rather than 
joysticks. One user prefers using a small-sized joystick. Two joysticks are better than one 
joystick with buttons. The length of a joystick should be adjustable. Buttons should be large 
sized. The operation without a PC is required. A user who has limited head motion likes to 
use the long joystick because that user cannot make a fine motion. The unification of an 
input device of a wheelchair and a self-feeding robot should be considered. Wireless input 
devices are preferred. 

4.2 Discussion of a single-arm configuration 
In the single-arm configuration, the caregiver picks food up instead of the grab-arm and 
then loads food on a spoon. The user makes an input signal to move the spoon to the user’s 
mouth. After the user eats food on a spoon, it returns to the home position upon receiving a 
command or some time interval, as with a dual-arm configuration. 
The single-arm configuration is useful to a caregiver as well as a user. From the 
perspective of a user, the feeding timing could be changed freely on the basis of a user’s 
intention. The user can chew food sufficiently. When a user watches television, she 
leisurely eats food. Some users complain about a single-arm configuration. That means a 
caregiver must stay with a user even though the single arm is used. The single-arm 
configuration is useful for a caregiver when a user has a meal with his family because the 
caregiver does not need to move food to the user’s mouth. Thus, a caregiver likes to use 
the single-arm configuration. 
The users and caregivers are satisfied even though picking up food should be performed 
manually. Food frequently drops down on the floor when a caregiver serves food to the 
user’s mouth. However, a user can reduce the instances of dropping food in the case of a 
single-arm configuration because the spoon is fixed on the spoon-arm and thus the user can 
estimate the spoon posture correctly.  

4.3 Input devices 
A system should be easy to control for people with disabilities and the elderly. Many users 
have only head motion, and thus the importance of input devices was mentioned. 
In this study, we analyzed the self-feeding robot on the basis of two input devices, namely 
buttons and joysticks, as shown in Fig. 16. Most input devices are developed for hand 
manipulation. If a user has hand function, then the easiest way is to use the system is with 
his or her hands. That means the simplest input device is a set of buttons. However, when a 
user only uses neck motion to make a control input, he or she has difficulty handling input 
devices with dexterity. Table 2 shows the properties of the input devices. 
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 (a) (b) 

Fig. 16. Input devices of a self-feeding robot. (a) Buttons, (b) Joysticks 

 
Input Device Buttons Dual Shock Type Joypad 

# of Used Buttons 7 N/A 
# of Used Joysticks N/A 2 

Length of Joystick (mm) N/A 53 
Gap between Joysticks (mm) N/A 44 
Angles of Joystick (degrees) N/A ±25 

Connection Wire USB 

Table 2. Input devices for the self-feeding robot 

4.3.1 Buttons 
The self-feeding robot has a basic input device consisting of a set of buttons. We usually use 
six buttons that correspond with start, return, and four directions. The buttons were 
originally developed to check the basic operations of the self-feeding robot. However, 
quadriplegics who can only move their neck and head would have difficulty pushing the 
button with their chin. Because the buttons are out of the field of view, the user has a hard 
time knowing where the buttons are and whether or not they are pushed. Additionally, 
pushing these buttons requires excessive force and can result in muscle fatigue in a user’s 
neck. Thus, a user who uses his or her neck would have difficulty pushing the buttons. 
Users prefer to use joysticks rather than buttons. On the basis of users’ opinions, we tested 
input devices that have joysticks. 

4.3.2 Joysticks 
Two joysticks are employed. Originally, it was determined that a user wants to use two 
joysticks rather than one joystick and buttons. The length of the joystick is modified from 10 
to 53 mm according to users’ opinions. Because of the gap between the two joysticks, a user 
can easily manipulate one of the joysticks without any resulting malfunction of the other 
joystick. 
The length of the joystick depends on user preference. Some users prefer a long joystick 
while others like a short one. Most users prefer the wide gap between the two joysticks 
because a short gap can result in the malfunction of the unused joystick. The moving angles 
of a joystick are ±25°. Users express satisfaction with the flexibility of the joystick and its 
silicon cover, which can be connected to the user’s skin. 

After modification
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4.4 Satisfaction evaluation of the self-feeding robot 
We carried out the user tests with user candidates, including people with spinal cord 
injuries. After they actually ate food using the developed self-feeding robot, we collected 
their feedback to determine their satisfaction score in accordance with input devices. The 
users ate food using the self-feeding robot with each of the input devices. The results of the 
users’ feedback pertained to the self-feeding robot as well as the input devices. The users 
rated their satisfaction with the input device activity on a scale of 1 to 10, as with the 
Canadian Occupational Performance Measure (Pendleton, 2001). A score of 10 indicates the 
highest level of satisfaction. Most users were satisfied with the self-feeding system that had 
a dual joystick, as shown in Table 3. This indicates that the use of joysticks is more 
comfortable than that of buttons. In addition, the self-feeding system operates well. Based 
on the analysis of users’ feedback, the key factors affecting the handling of joysticks with 
regard to a user’s neck motion are as follows: the distance between the joysticks, the moving 
angle of the joysticks, and the length of the joysticks. We will perform a comparison study 
between commercialized feeding systems and the developed system. 
 

Input Device Buttons Joysticks 
SCI #1 6 8 
SCI #2 8 8 
SCI #3 1 8 
SCI #4 1 8 
SCI #5 1 6 
SCI #6 1 7 
SCI #7 1 8 

Average Score 2.7 7.6 

Table 3. Satisfaction score of input devices when users eat food via a self-feeding robot  
(max = 10) 

5. Concluding remarks 
We have developed a novel assistive robot for self-feeding that is capable of handling 
Korean food, including sticky rice. This paper presents the overall operation of the self-
feeding robot. The proposed robot has three distinguishing points: handling sticky rice, 
using an ordinary meal tray, and a modular design that can be divided into two arms. Users 
are people with physical disabilities who have limited arm function. During the 
development of the robot, we considered the feedback provided by several users and 
experts. In addition, the user candidates tested the actual the self-feeding robot. It was 
determined that the input device has the most important role. Many users prefer a dual 
joystick for self-feeding. Most of the users who participated in the experiments gave us 
positive feedback. Some users were impressed that they were able to eat their desired food 
when they wanted to eat it. In future work, we will add several functions to the robot, 
including improving the reliability of basic operations and adding a safety feature. We will 
also simplify the system components and perform user evaluations. 
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1. Introduction 
In cloth making industry, the need for high flexibility in automation is really imperative due 
to the extensive style and material variation of the products and the fast fashion changes. 
The automated handling of fabric materials is one of the most challenging problems in the 
field of robotics, since it contains a vast potential for high productivity and cost reduction. 
The main difficulty to get full use of this potential is the fact that it is rather impossible to 
predict the behaviour of fabrics towards handling due to their low bending rigidity. 
Moreover, it is difficult to be modelled due to their unpredictable, non-linear and complex 
mechanical behaviour.  
Sewing is the most important joining technology in garments and textiles manufacturing. The 
fact that sewing fabrics is a “sensitive” operation due to the erratic behaviour of fabrics poses 
barriers in the development of automated sewing systems. A solution to manipulation tasks 
that are afflicted with uncertainty, subjectivity, ambiguity and vagueness is an intelligent 
control approach. The development of intelligent control systems with vision feedback enables 
robots to perform skilful tasks in more realistic environments and make the research efforts for 
flexibility and automation really promising. Thus, industrial robots supported by machine 
vision and sensors can contribute towards advanced automation in apparel manufacturing.  
On the other hand, sewing fabrics with the exclusive use of robots, without human 
intervention, is a complicated task. The stitching process is special in the sense that the error 
cannot be corrected after a part of the cloth has been stitched, implying that the stitching 
process is not reversible. This limitation implies that clothes that do not conform to the 
specifications are defective and should be withdrawn from the production. This imposes a 
great demand on precision during the sewing process. In practice, there is a predefined 
tolerance considered to be acceptable, as errors resulting from robot accuracy and camera 
resolution cannot be eliminated. 
The main focus of this work lies on the design of an innovative intelligent robot controller 
based on visual servoing that aims to enable robots to handle flexible fabric sheets towards 
sewing. A great challenge is the design of a robot controller showing robustness against 
deformations that are likely to appear on the fabric towards robot handling. Special 
emphasis is given on robot handling fabrics comprised of curved edges with arbitrary 
curvature. This task is even harder, because up-todate industrial robots present limitations 
in their movement, owing to the fact that they can only be programmed to make straight or 
circular motions. 
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2. Literature review on automated sewing systems 
To the best of my knowledge, the published research work on robot handling fabrics with 
curved edges towards sewing is limited to few papers. A first approach to automating fabric 
manipulation was introduced by (Torgerson & Paul, 1988) including robotic motion control 
of various fabric shapes. The determination of robot motion paths is based on visual 
information defining the location of the fabric edges in world coordinates. However, no 
visual feedback was employed during the robot motion, making the method less accurate. 
The vision system detects the workpiece edge, extracts the boundary points, determines the 
parameters defining the geometry of the interior points, and computes the coordinates of 
the robot path points along subsequent linear and circular path segments. The error 
deviations between the desired seam line and the actual path line ranged between 3 and 5 mm. 
However, the flexibility of the method is limited owing to the fact that the path determination 
algorithms require a geometrical relationship between the robot end-effector and the 
workpiece to extract the edge parameters that are necessary for determining the robot motion. 
The FIGARO system (Gershon and Porat, 1988, 1986) performed handling and assembling 
operations using two superimposed servo control systems. The first system maintains a 
small tension moving the robot forward with the cloth and the second one rotates the cloth 
about the sewing needle to produce a seam parallel to the edges. The system performed best 
with shirting and worsted woven fabrics, which have a reasonable resistance in buckling. 
Robotic manipulation strategies have been investigated (Gershon, 1993) for handling limp 
materials proposing a parallel process decomposition of the robot sewing task (Gershon, 
1990). A robot arm manipulates the fabric, modeled as a mass-spring-damper system, to 
modify its orientation and control the fabric tension during the sewing process, which was 
decomposed into four concurrent processes within a superposition parallel architecture. 
After FIGARO system, an automated sewing system including two robots handling the 
fabric on the table was developed (Kudo et al., 2000). The nominal trajectories for both 
robots are defined through the definition of the points and are necessary for the 
programming of the robots. Visual information was used to improve tracking accuracy. 
Sewing along a curved line is achieved by translating the fabric in the sewing direction 
using the internal command for straight-line motion and simultaneously rotating about the 
needle according to the visual feedback information. The rotation angle is computed making 
use of the tangent of the cloth panel based on the method in reference (Gershon & Porat, 
1988). The trajectory error was within the range of ±0.5mm. 
A position-based visual servoing system for edge trimming of fabric embroideries by laser 
was proposed by (Amin-Nejad et al.). A tracking controller, decomposed into a feedforward 
controller in the tangential direction of the seam and a feedback controller in the normal 
direction, was implemented. The aim of the controller is to move the cutting beam along the 
seam with constant velocity and with a constant offset from it as a cutting tolerance. In the 
experimental results, three types of seam pattern, straight line, sinusoidal, and circular, were 
chosen for edge trimming. The accuracy achieved with this method was within ±0.5mm. 

3. Sewing fabrics with straight edges 
The present work is part of a project for the development of a robotic workcell for sewing 
fabrics. The project includes handling tasks (ply separation, translation, placement, folding, 
feeding and orientation), tension control and quality control of fabrics and stitches 
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(Koustoumpardis & Aspragathos, 2003; Koustoumpardis et al., 2006; Moulianitis et al., 1999; 
Zoumponos & Aspragathos, 2008). After the fabric has been placed at a random location on 
the working table, a number of sub-tasks should be performed before the sewing process 
starts. These preliminary sub-tasks are: the recognition of the fabric’s shape, the extraction of 
the ‘seam line’, the detection of the edges targeted for sewing, planning of the stitching 
process and the location of the end-effector on the fabric (Koustoumparis et al., 2007). After 
the preprocess planning, the robot sewing process is considered and divided into three sub-
tasks: the manipulation of the fabric towards the needle, the sewing of the seam segment 
and the rotation around the needle.  
Concerning visual servoing, the developed vision system is a combination of image-based 
and position-based control system. The image-based analysis is used for the identification of 
the fabric’s shape. After the image acquisition of the fabric, the features (vertices of the 
edges), the needle-point and the sewing line’s orientation are derived from the image 
analysis. Besides, the position of the needle is also known in the robot coordinate system. 
The end-effector’s position is unknown in the image coordinate system; however, the robot 
system gives feedback to the control system of the current end-effector’s position in the 
robot base coordinate system. Moreover, the relation between the robot- and the image- 
coordinate system is known from the calibration of the camera. This approach makes the 
system more flexible and limits the calibration errors.  

3.1 The sewing process 
Initially, the fabric lies free of wrinkles at a random location on the work table. The camera 
captures the image of the fabric without the gripper on it in order to obtain the shape of the 
fabric and use it as the reference shape towards handling. The stitching process is performed 
on the seam line situated parallel to the specified fabric edges. The distance between the 
outer edge and the seam line, called seam allowance, depends on the cloth part and is defined 
by the apparel manufacturer. In practice, it usually ranges between 1/4 inch and 5/8 inch. 
After the seam edges of the fabric (dashed-line in Fig. 1) have been determined, the sewing 
process is ready to start. The sewing line is determined by the feeding mechanism. The 
sewing process can be decomposed in three separate tasks: transfer, stitching and rotation.  
The movement towards the needle. After the robot touches the fabric at a proper location, 
the features, namely the vertices of the fabric, are extracted from the image taken from the 
camera. After the starting seam edge is identified, the vision system captures the distance (r) 
between the starting seam vertex and the sewing needle and the orientation angle (θ) 
formed by the starting seam segment and the sewing line (Fig. 1 (a)). The linear (u) and 
angular velocity (ω) of the robot end-effector are derived through the designed fuzzy 
decision system, described in Section 3.2. Given the time step dt and the angle φ, i.e. the 
orientation of r in the image coordinate system, the new position and orientation of the end-
effector is computed by: 

 

( )
( )

′

′

′

x = x + u×cos φ ×dt

y = y + u×sin φ ×dt
θ = θ -ω×dt

 (1) 

Therefore, the robot end-effector moves along the direction of r (defined by φ) and 
simultaneously rotates around the end-effector’s z-axis, which is vertical to the table, until 
the angle becomes ′θ  (Zacharia et al., 2005). The fabric is transferred to a new position with 
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new orientation as a result of the movement and rotation of the end-effector, which is stuck 
on the fabric to avoid slipping between the gripper and the fabric. This motion stops when 
the seam segment reaches the needle with the desired orientation within an acceptable 
tolerance. 
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Fig. 1. Scene of the fabric lying on the work table (a) without deformations (b) with 
deformations 

The stitching process. During sewing, the fabric is guided along the sewing line with a 
constant velocity, which should be the same with the velocity of the sewing machine, so that 
good seam quality is ensured. When the end-effector’s velocity is higher than the sewing 
velocity, puckering will appear, whereas in the case where it is lower, low seam quality will 
be produced due to the tension increase. At each time step, the current image of the fabric is 
captured in order that the orientation error is determined. The orientation error is fed back 
to be corrected by rotating the fabric around the needle, while simultaneously the robot 
moves the fabric towards the direction of the sewing line. To circumvent the problem of 
uncertainty due to the distortions of the fabric’s shape, fuzzy logic control is necessary. The 
inputs are the orientation error and its rate and the output is the rotation angle around the 
needle.  
The rotation around the needle. When the seam segment coincides with the sewing line, the 
robot rotates the fabric around the needle until the next seam segment is aligned to the 
sewing line. It is worth noting that the end-effector is enforced to make a circular motion 
around the needle, since it has penetrated into the fabric. The orientation error (eθ) of the 
next seam segment in relation to the sewing line and its time rate are the inputs to the fuzzy 
system that controls the rotation of the fabric around the needle, whereas the output is the 
angular velocity (ω) of the end-effector’s motion around an axis perpendicular to the table at 
the needle-point.  

3.2 The fuzzy robot control system 
Since modeling the mechanical behavior of fabrics for real-time applications is rather 
difficult due to their low bending rigidity, an approach based on a fuzzy logic controller 
(FLC) is developed (Zacharia et al., 2009) considering the robustness and the fast response 
requirements. The block diagram for the control system is shown in Fig. 2, where the 
symbols in parentheses stand for the fuzzy system that controls the orientation of the end-
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effector. The controller inputs are the position error (er) and the orientation error (eθ), which 
are computed on the image, and their time rates ( ′re ) and ( ′θe ). The linear (u) and angular 
velocity (ω) of the end-effector around z-axis are the outputs. 
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Fig. 2. The block diagram of the fuzzy logic control 

The membership functions for the two inputs (Fig. 3 (a) and (b)) and the output of the 
system that controls the translation of the fabric towards the needle (Fig. 3 (c)) are 
experimentally tuned with various fabrics. Expert knowledge, often afflicted with 
uncertainty, is summarized in the proposition: The larger the distance/angle and the smaller its 
change rate is, the faster the fabric should move/rotate. The fuzzy associative memory (FAM) of 
the system that controls the translation of the fabric (Table 1) is derived after studying the 
behavior of the human workers towards sewing. For the rule evaluation, the “min” operator 
is used and for the aggregation mechanism the “max” operation is used. The centroid 
defuzzification method is used to determine the linear and angular velocity. Owing to space 
limitation, only the study for the system that controls the translation is presented. 
 

position error 
rate

position error 

SMALL MEDIUM LARGE 

SMALL Very Small Medium Very Large

MEDIUM Very Small Medium Very Large

LARGE Very Small Small Large 

Table 1. Fuzzy Associative Memory (FAM) of the sewing system 

An analytical model of the robot and the fabric is not necessary, since no geometrical 
characteristics are taken into account and there is no need for special mathematical 
computations for different fabrics. The proposed technique is feature-based, since only the 
features, r and u, are necessary for handling the fabric and can cope with the uncertainties 
that arise due to deformations. The proposed controller can handle possible deformations 
without changes in its structure achieving the desired accuracy on condition that the seam 
segment targeted for sewing is undistorted. Fig. 1 (b) shows the fabric of Fig. 1 (a), which 
has been deformed except for the seam segment targeted for sewing. It is clear from Fig. 1 
(b) that the presence of deformations does not affect the control system, despite the fact that 
the shape of the fabric has significantly changed.  
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(a) (b) 

(c) 

Fig. 3. The membership functions of (a) the position error (b) the position error rate (c) the 
linear velocity after manual tuning  

4. Sewing fabrics with curved edges through a Genetic-based approach 
Real fabric pieces used for cloth making consist of edges with arbitrary curvature. This fact 
gave an impetus to tackle the problem of robot-handling fabrics with curved edges. To 
robot-sew fabrics of different shapes and materials is a rather difficult task that requires 
system flexibility and good quality of the final product. To compensate for ensuing high 
machine-hour rates, a high throughput is vital if product costs are to be kept low. To 
enhance system flexibility and its efficiency to handle various fabrics, fuzzy logic and visual 
servoing control has been employed.  
Curved edges pose additional difficulties in robot handling compared to straight edges, 
owing to the fact that up-to-date robots present limitations in their movements. The current 
industrial robots can only be programmed to perform straight or circular motions using 
internal commands. Sewing a fabric with arbitrary curvatures is a complicated task and can 
only be performed by approximating the curve with movements along straight-line 
segments (Zacharia et al., 2006). The robot makes a straight-line motion along the sewing 
line and a rotation around the needle-point simultaneously. This motion results in a smooth 
stitch that resembles the stitch produced by human operators. 
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4.1 Related work 
In the field of pattern recognition, considerable research work has been done on the 
polygonal approximation of digital contours. Two main families of technique concerning the 
polygonal approximation of digital curves have been published: those that try to obtain an 
error-bounded polygonal approximation and those that search for a set of dominant points 
as vertices of the approximating polygon.  
In the first family of methods, the main idea is to approximate a given curve with a minimal 
number of line segments such that the approximation error between the original curve and 
the corresponding line segments is less than a pre-specified tolerance. Several methods have 
been used for polygonal approximation, but most of them have the disadvantage that the 
results are dependent on the selection of the initial points and the arbitrary initial solution. 
To circumvent these drawbacks, nature-inspired algorithms have been proposed for 
polygonal approximation. 
In the genetic algorithm presented in reference (Zhang & Guo, 2001), each chromosome is a 
binary string of fixed length. The chromosome represents a subset of the curve points, 
Where the i-th bit denoting the ith original curve point is ‘1’ if the corresponding curve point 
is taken as a vertex of the approximation polygon and ‘0’ otherwise. The algorithm is 
improved based on Pareto optimal solution, and the results show that it is efficient and 
achieves less processing time compared to dynamic programming algorithms.  
In reference (Yin, 2003), an ant colony search (ACS) algorithm for optimal polygonal 
approximation is developed. To apply the ACS, the underlying problem should be 
represented in terms of a graph. Apparently, for the polygonal approximation problem, each 
point on the curve should be represented as a node of the graph. A number of artificial ants are 
distributed on the graph and communicate with one another through the pheromone trails 
that are a form of the long-term memory guiding the future exploration of the graph. The 
authors compared the performance of the proposed method to those of genetic-based and 
tabu-search-based methods, and concluded that the numerical results are very encouraging.  
A polygonal approximation approach of digital curves based on the particle swarm 
optimization (PSO) algorithm was presented by (Yin, 2004). In PSO – which belongs to the 
class of natural algorithms – each particle is presented as a binary vector corresponding to a 
candidate solution to the polygonal approximation problem. A swarm of particles are initiated 
and fly through the solution space for targeting the optimal solution. The experimental results 
manifest that their devised PSO algorithm is comparable to the genetic algorithm (GA), and it 
also outperforms other PSO versions in the literature for polygonal approximation. 
In the second family of methods, the approximation does not depend on the starting point 
and is insensitive to changes of orientation and scale. A representative technique is the 
dominant point approach (Teh & Chin, 1989). This method focused on the determination of 
the region of support of every point of the curve, which is the region used in the calculation 
of each point’s curvature. Thus, the method overcomes the problem of various scales in the 
curve’s features. However, the Teh–Chin approach is not robust in the presence of noise. For 
the noise compensation, Wu proposed a modification of the method based on a dynamic 
determination of the region of support (Wu, 2002).  

4.2 Sewing using polygonal approximation 
The apparel manufacturer’s requirements focus on time minimization for the 
accomplishment of the sewing process and satisfactory quality of seam, which is mainly 
based on stitch accuracy and smoothness. To fulfil these requirements, an algorithm based 
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on the polygonal approximation of the curved edges of the fabric is developed for robot 
handling fabrics towards the sewing process.  
During the stitching process the robot’s end-effector is commanded to make two motions 
simultaneously: a straight motion with constant speed (equal to the sewing machine’s speed 
to ensure good seam quality) in the direction of the sewing line, and a rotation around the 
needle-point. Therefore, the final stitch is not a straight line, but a line that is yielded as a 
result of the combined end-effector’s motion. After all the straight-line segments have been 
stitched, the deviation error is computed. Then, a new image is taken and the process is 
iterated. The stitching process stops when the whole curve has been sewn, i.e. when the last 
point reaches the needle. 
The problem is formulated as follows: The curve section of the fabric is defined by N data 
points acquired by the vision system in the form of pixel coordinates in clockwise order, and 
can be described by a sequence of these points: G={p1, p2, . . ., pN}. Given the N data-points, 
find the optimal polygon that approximates the curve satisfying two criteria: the criterion 
for sewing time minimization and the criterion for acceptable accuracy. In this case, the time 
minimization is translated to the requirement for minimal length of the approximating 
polygon. Initially, a local search technique is developed to extract the dominant points and 
then a global search technique is applied taking the dominant points as inputs (Zacharia et 
al., 2008). The idea behind this is to filter out the initial curve points in an attempt to speed 
up the convergence of the algorithm. The proposed approach combines two algorithms to 
benefit from the advantages of each one. 
The contribution of the work addressed in this Section is twofold. Firstly, a strategy for 
handling fabrics with curved edges towards the sewing process using a visual servoing 
controller is developed based on polygonal approximation. Secondly, the algorithms are 
further extended based on polygonal approximation that exhibited superiority in many 
other applications, and a new algorithm is proposed based on the dominant point detection 
approach and the genetic algorithm. 

4.3 The proposed genetic-based approach 
Genetic algorithms (GAs) (Michalewitz, 1996) have attracted attention in solving 
combinatorial optimization problems of high complexity because of their intrinsic 
parallelism and their effectiveness. The contribution of the proposed GA is a variable-length 
chromosome encoding scheme to reduce the computational time and memory requirement 
and the use of micro-GAs (Krishnakumar, 1989) as an approach for shortening the 
computational time. The traditional fixed length chromosomes could also be used to solve 
this problem, but it would lead to computational time increase, as the length of the 
chromosome would be too large to incorporate all the points comprising the curve. On the 
other hand, micro-GAs are ideally suited to optimization problems, where the emphasis is 
on quickly identifying a near-optimal region. In contrast to the traditional GA, the 
population size is small, yielding a much quicker convergence. Moreover, the micro-GA 
uses elitism and convergence checking with re-initialization to obtain the near-optimal 
solution. As a consequence, the proposed micro-GA with variable-length chromosomes can 
be used in a real-time application. 
The evaluation mechanism: Given a maximum acceptable error ε0, find the polygonal 
approximation with the minimal number of vertices (corresponding to the minimum total 
length of the polygon), such that the polygon is distant from the curve by no more than ε0. It 
is worth noting that the algorithm searches in a set of Ns points that are the dominant points 
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defined by the dominant point detection approach. Consequently, the input for the micro-
GA is the output of the dominant point detection approach. 
Let  G**={P1, P2,…, Pm} be a subset of G*={P1, P2,…, PNs }, G**⊆ G*, where ( )sm m < N  is the 
number of the vertices Pi=(xi, yi) of the polygon that approximate the curve section captured 
in the current image. The function expressing the total length of a polygon with m vertices 
can be written as: 

 m-1
total ii=1

L = L  (2) 

and iL  is the length of the thi  edge of the polygon given by: 

 2
i i+1 iL = P - P  (3) 

The constraint that should be satisfied is expressed as the maximum deviation between the 
curve section and the approximating polygon section. For two points ( )i i iP = x , y  and 

( )i+1 i+1 i+1P = x , y  defining an edge of the polygon and a data point ( )j j jp = x ,y  between iP  
and i+1P , the perpendicular distance of the arc point jp  to the chord i i+1P P  is computed by  

 
( ) ( )i+1 i i j

j
i+1 i

P - P × P - p
ε =

P - P
 (4) 

Consequently, the maximum deviation ε is found by: 

 ( )1 2 j qε = max ε ,ε ,...,ε ,...,ε  (5) 

where q  is the number of the data points between iP  and i+1P . 
The fitness function is given by: 

 0
total

1 ,   if ε ε  
Lfitness =

   0    ,   otherwise

 ≤




 (6) 

where totalL  is given by Eq.(2). 
The representation mechanism: In this algorithm, variable-length chromosomes are defined 
to represent a polygon with m  vertices approximating the curve. The maximum number of 
polygon vertices, defined by the user, is equal to  , which is the maximum possible length 
of the chromosome. The encoding mechanism maps each approximating polygon to a string 
composed of integers is in the following form: 

s

m numbers

1  10  24  49  67  92  104 ... i ... N  

where s1 i N≤ ≤ , sN  is the number of the integer-coordinate data-points of curve section 
captured by the camera and m , where m ≤  , is the length of the chromosome representing 
the number of vertices of the approximated polygon. The integers i represent the rows of the 
matrix consisting of all the points Pi=(xi, yi) in ascending order. Consequently, the genes of 



 
Robotic Systems – Applications, Control and Programming 

 

70

the chromosome represent the curve data-points used to construct the polygon, i.e. the 
vertices of the polygon. It should also be mentioned that the first (1) and the last (m) row of 
the matrix are fixed for each chromosome. 
Crossover: Crossover is a recombination operator and follows the reproduction. The 
individuals are randomly selected according to a predefined probability (crossover rate). 
The one-point crossover is modified, so that the produced offspring are feasible 
chromosomes. The cut-point lies between the first and the last gene of the parent 
chromosome with the minimum length. Next, the numbers at each string are reordered in 
order to appear in ascending order, so that the polygonal section is created by joining the 
successive points.  
Population size: The population size depends on the nature and the complexity of the 
current problem. In this work, the proposed algorithm was tested for various small 
population sizes, so that both quick convergence and near-optimum solution are achieved. 
Finally, the selected population size is equal to 20. 

5. Sewing fabrics with curved edges through ANFIS 
One of the difficulties when applying the fuzzy approach of Section 4 is to obtain the fuzzy 
rules and the membership functions. In this Section, a neuro-fuzzy approach is introduced 
with the purpose of extracting fuzzy rules and the membership functions automatically. The 
proposed neuro-fuzzy approach combines the main components of soft computing (fuzzy 
logic, neural networks and genetic algorithms) that have shown great ability in solving 
complex control problems to benefit from the advantages of each one. 

5.1 ANFIS framework 
Fuzzy systems have the capability of translating the expert knowledge into linguistic rules 
inside a robust mathematical framework in order to draw conclusions and generate 
responses. However, a fuzzy model consisting of large number of if-then rules to map 
inputs to outputs is not desired due to the phenomenon of overfitting. Thus, the Takagi–
Sugeno–Kang type fuzzy models (Sugeno & Kang, 1988; Takagi & Sugeno, 1985), known as 
TSK models, are widely used for control and modeling because of their high accuracy and 
relatively small models (Delgado et al., 2001; Männle, 2001).  
When the system complexity is high, fuzzy modeling from input/output data is a useful 
way of creating FIS models. Because it is a more compact and computationally efficient 
representation than a Mamdani system, the Sugeno system using cluster information lends 
itself to the use of adaptive techniques for constructing fuzzy models with a minimum 
number of rules. Thus, data clustering algorithms were elaborated in order to construct FIS 
models from data, since they partition a collection of data into clusters based on similarity 
between data. 
An adaptive neuro-fuzzy inference system, ANFIS, has been proposed in (Jang, 1993) to 
effectively deal with multivariable complex systems. ANFIS uses techniques like least 
squares or back propagation algorithms to determine the membership functions for a given 
input/output data set. These adaptive techniques can be used to customize the membership 
functions so that the fuzzy system best models the data. The effectiveness of using ANFIS 
for control and modeling has been pointed in (Jang et al., 1997; Rizzi et al., 1999). 
This Section proposes an innovative approach for robot handling pieces of fabrics with 
curved edges towards sewing, which is based on learning. The fact that adaptive neuro-
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fuzzy approaches have been successfully used for other applications in robotics (Marichal et 
al., 2001; Rusu et al., 2003; Hui et al., 2006) gave rise to the idea of using it for robot sewing 
fabrics of curved edges. The main purpose is to overcome difficulties arising from the fact 
that the fabric pieces have curved edges with arbitrary curvatures; thus, a learning 
technique is used. The proposed ANFIS based on genetic-oriented clustering combines the 
concepts of fuzzy logic and neural networks to form a hybrid intelligent system that 
enhances the ability to automatically learn and adapt. The system learns from the 
information obtained from the fabrics used for training and is able to respond to new 
fabrics, which had not been included in the training process. 

5.2 Sewing tracking approach 
The main scope of this Section is to provide a control system capable of dealing with 
different curvatures and thus, flexible to changes in fabrics’ shape. To enhance system’s 
flexibility and its efficiency to handle fabric edges with various curvatures, Artificial 
Intelligent techniques and visual servoing control are employed. Since there is no 
standardization for curved edges, a method is necessary for estimating the curve. However, 
searching for the equation that approximates the curve is a time-consuming procedure. In 
addition, such an approach would require curve estimation for each one curved edge for 
different fabrics.  
The proposed system does not need any geometrical computations for estimating the 
curves, which would lead to computational burden and would, therefore, be prohibitive for 
using it in an on-line process. The developed control scheme is able to learn from the existed 
knowledge and respond to new curved edges.  
Now, assume a piece of fabric with a curved edge of arbitrary curvature, as the one depicted 
in Fig. 4, which is guided for sewing. The camera captures an image that covers a small area 
in the vicinity of the sewing needle. The curved section captured in the image is 
approximated by an edge (AB) that joins the two endings of the curved section. Then, the 
distance d and the angle φ are extracted from the image. The feature d is the minimum 
distance between the needle-point and the straight edge that approximates the curved 
section. If the seam allowance is α, then the distance D, where D=d-α, is the minimum 
distance between the seam line and the needle. The angle φ is defined by the straight edge 
that approximates the curve section and the sewing line (Zacharia, 2010).  
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Fig. 4. Features extracted from the camera image 



 
Robotic Systems – Applications, Control and Programming 

 

72

The position error is defined as eD=D-D0, where the desired distance is D0=0 and the 
orientation error is defined as eφ=φ-φ0, where the desired angle is φ0=0. To compensate for 
the seam errors (eD and eφ), the robot should be assigned to rotate around the needle with an 
angular velocity (ω) around z-axis. The angular velocity (ω) of the robot’s end-effector is 
derived through a Sugeno-type fuzzy decision system, which takes as inputs the position 
error eD and the orientation error eφ. 
The end-effector guides the fabric towards the sewing direction and the camera monitors the 
fabric to compensate for the seam error. The fuzzy controller, which is tuned through 
ANFIS, inputs the position and orientation error (eD and eφ) of the new fabric piece and 
outputs the predicted angular velocity (ω) of the robot’s end-effector. Next, the robot is 
commanded to make a circular motion around the sewing needle by an angle θ and a 
translational motion in the sewing direction. The angle θ is derived by the relationship 
θ≈ω·Δt, where Δt is the sampling period.  

5.3 Training using the modified ANFIS 
The basic idea behind using neuro-adaptive learning techniques is that it is very simple and 
allows implementation of multi-input–single-output first order Sugeno-type FIS. This 
technique provides a method for the fuzzy modeling procedure to learn information about a 
data set, in order to compute the membership function parameters that best allow the 
associated fuzzy inference system to track the given input/output data. This learning 
approach takes place prior to the operation of the control system. The ANFIS methodology 
can be decomposed into four steps: 
Data acquisition (Step 1): A number of different fabric pieces of various arbitrary 
curvatures are selected for experimental tests. During the sewing process, the position and 
orientation error in the image, as well as the end-effector’s angular velocity are measured. 
As a result, a number of data sets, each one consisting of 3 attributes (eD, eφ and ω) obtained 
from the robot sewing process. These data sets are divided into training and checking data 
sets. It is worth noting that the position error (eD), which is derived from the image, is 
computed in pixels and not in millimetres. 
Genetic-oriented Clustering (Step 2): Clustering is used to generate a Sugeno-type fuzzy 
inference system that best models the data behavior using a minimum number of rules. The 
rules partition themselves according to the fuzzy qualities associated with each of the data 
clusters. The initial Sugeno-type FIS models are built by means of a genetic-oriented 
clustering approach using the training data set. In this approach, a Genetic Algorithm using 
variable-length chromosomes is applied to find the optimum number of cluster centers as 
well as the partitioning of the data. A comprehensive description of this algorithm can be 
found in (Zacharia & Aspragathos, 2008). This technique has the advantage over other 
clustering algorithms that the selection of the cluster centers is not limited to the data points 
and that it is able to escape from local optima, which is an inherent ability of Genetic 
Algorithms (GAs). Another advantage is the ability of automatically evolving the number of 
clusters due to the use of variable-length chromosomes in GA’s structure. After applying the 
genetic-oriented clustering approach, the training data is partitioned into groups, called 
clusters, and as a result, simpler optimized FIS models with the minimum number of rules 
are obtained. 
ANFIS architecture (Step 3): The purpose of this step is to optimize the initial FIS created by 
using the genetic-oriented clustering technique. A network-type structure similar to that of a 
neural network, which maps inputs through input membership functions and associated 



 
Robot Handling Fabrics Towards Sewing Using Computational Intelligence Methods 

 

73 

parameters, and then through output membership functions and associated parameters to 
outputs can be used to interpret the input–output map. Considering a first-order Sugeno 
fuzzy model with two inputs x and y and one output f, a typical rule set with two fuzzy if–
then rules can be expressed as 
 
• Rule 1: If (x is A1) and (y is B1) then (f1 = p1x + q1y + r1) 
• Rule 2: If (x is A2) and (y is B2) then (f2 = p2x + q2y + r2) 
 

where x, y are inputs, Ai, Bi are membership functions and pi, qi, ri are consequent 
parameters and i is the node number. The entire system architecture consists of five layers, 
namely, the fuzzy layer (Layer 1), product layer (Layer 2), normalized layer (Layer 3), 
consequence layer (Layer 4) and total output layer (Layer 5).  
Model Validation (Step 4): The validation process is used to evaluate the model 
generalization capability. One problem with model validation is selecting a data set that is 
both representative of the data the trained model is intended to emulate, yet sufficiently 
distinct from the training data set so as not to render the validation process trivial. 
Especially in noisy measurements, it is possible that the training data set does not include all 
the representative features needed for the model. The idea behind using a checking data set 
for model validation is that after a certain point in the training, the model begins overfitting 
the training data set. Overfitting can be detected when the checking error starts increasing 
while the training error is still decreasing. In practice, the experimental data is divided into 
training data and checking data. The training data is used in both genetic-oriented 
clustering process and ANFIS training. The checking data is only used in ANFIS training to 
prevent the model from overfitting. 

6. Experimental results 
The experiments were carried out using a robotic manipulator with 6 rotational degrees of 
freedom (RV4A) and controlled by a PC. The robot is programmed in Melfa-Basic language 
in Cosirop environment, while the analysis of the visual information is performed with 
Matlab 7.1. The vision system consists of a Pulnix analog video camera at 768×576 pixels 
resolution RGB and a analog camera of the same resolution, which are fixed above the 
working table in a vertical position (Fig. 5). The vision is transferred to the second camera 
when the position error becomes less than 10 pixels (≈ 12.3 mm) and the orientation error is 
less than 5°. Using the second camera, the accepted position and orientation error are set 
equal to 10 pixels (≈ 1.389 mm) and 1°, respectively. A simple gripper has been designed, so 
that the arm of the robot is distant from the fabric, as shown in Fig. 5. The fabric is stuck on 
the gripper to avoid slipping; however, the placement of the gripper onto the fabric is out of 
the reach of this work. 
In this work, buckling modes during robot handling are supportable on the condition that it 
does not appear in the segment to be sewed. However, it still remains a problem that should 
be avoided. Thus, the position where the gripper touches the fabric is estimated in terms of 
reducing the possibilities for deformation appearance, taking into account the properties of 
the fabric (Koustoumpardis & Aspragathos, 2003). It is worth noting that the intent of this 
work deals with buckling in context of achieving a successful seam tracking and not the 
correction strategy against folding or wrinkling problems. The experimental tests also 
showed that deformations are likely to appear close to the gripper position on the fabric, 
and not on the edge. 
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Fig. 5. The experimental stage 

Since there is no standardization for deformations, it is difficult to be quantified. However, 
the greater deformation observed in buckling is about 30 mm, which is the height between 
the highest and the lowest point of the fabric. In some cases, fabrics were ‘partially folded’. 
In other cases, the wrinkles induced the fabric to fold due to its own weight forming a loop 
at one side of the fabric. In some experiments, the fabric presented simultaneously both 
wrinkles, and folds.  
 

  
 (a)  (b) 

Fig. 6. Fabric A with curved edge of small curvature (a) Fabric B with curved edge of large 
curvature  

In the experiments, a considerable number of fabric pieces of different materials, shape and 
colour have been used. Both simulation and experimental tests are conducted to verify the 
efficiency of the proposed approach. A fabric piece is indicatively presented to show the 
results for both simulation and experimental tests. The shape of this fabric consists of two 



 
Robot Handling Fabrics Towards Sewing Using Computational Intelligence Methods 

 

75 

straight-line segments and an arbitrary curve, its colour is red and it has medium bending 
rigidity (Fig. 6 (a)). 
Initially, simulation tests were carried out in order to approve the effectiveness of the 
proposed polygonal approximation based on a micro-Genetic Algorithm (micro-GA). A 
number of points along a section of the curved edge are captured by the camera that focuses 
on the area of the needle-point. The array that contains the curve data-points has 
dimensions 185×2 and is the input to the micro-GA. The maximum length of the 
chromosomes is set to 6 and the maximum acceptable deviation is arbitrarily set to 8 pixels 
(≈1 mm).  
Fig. 7 (a) shows the optimum polygon section resulted from the micro-GA, which 
approximates the given data-points of the curved edge. The curve section is approximated 
by a polygon section consisted of three sides and each of them deviates from the 
corresponding arc section 6.87, 5.55 and 7.07 pixels. Increasing the maximum acceptable 
deviation from 8 pixels to 12 pixels, the arc section is approximated by a polygon section 
with three sides, as shown in Fig. 7 (b), where the maximum deviation errors between the 
curve and each polygon side are 4.48, 5.88 and 10.37 pixels, respectively. Decreasing the 
maximum acceptable deviation to 4 pixels, the arc is approximated by a polygon section 
with six sides, as shown in Fig. 7 (c), where the maximum deviation errors are 3.37, 2.52, 
2.32, 0.88, 3.15 and 3.08 pixels. Fig. 7 (d) zooms in the first two sides of the polygon shown in 
Fig. 7 (c). 
 

   
                                   (a)                     (b) 

   
                                   (c)                     (d)  

Fig. 7. Polygonal approximation with (a) ε=8 pixels (b) ε=12 pixels (c) ε=4 pixels (d) detail of 
the approximation with ε=4 pixels 
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These simulation tests demonstrate that the polygon approximation of the curve serves as a 
trade-off between rapidity and smoothness affected by the tolerance for imprecision. The 
results show that the approximation leads to a satisfactory seam approximation, while 
simultaneously the time for the entire process is minimized. 
In practice, the sewing process is repeated many times and the deviation errors are collected 
and processed. The maximum acceptable deviation error for all tested cases is set to 8 pixels 
(≈1 mm). Fig. 8 (a) shows the deviation errors for Fabric A, a fabric piece with small 
curvature (Fig. 6 (a)) and Fig. 8 (b) shows the deviation errors for Fabric B, a fabric piece 
with small curvature (Fig. 6 (b)).  
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(a)      (b)  

Fig. 8. Deviation between real and desired path using the micro-GA for (a) fabric A (b) fabric B 

Fabric A: The proposed micro-GA is experimentally tested using the dominant points as 
input. The maximum deviation (in pixels) between the needle-point and polygon 
approximation is computed from the image captured. The sewing process for the curved 
edge is accomplished after 15 steps and the results are shown in Fig. 8 (a). The maximum 
deviation is 6.63 pixels (≈0.83 mm) and is lower than the maximum acceptable limit of 8 
pixels. The average value for the deviation is 2.75 pixels (≈0.34 mm), which is really 
satisfactory. The steps 6-10 correspond to the part of the curve with high curvature. 
Fabric B: Using the dominant points as input, the micro-GA terminates with 9 steps and the 
average value for the deviation is 4.14 pixels (≈0.52 mm). The maximum deviation for each 
method is depicted in Fig. 8 (b). The deviation error for this fabric piece is greater compared 
to the previous one, which is reasonable, since the curvature is higher.  
More fabric pieces are used to test the proposed approach, but detailed results are not 
presented due to the space limit. Table 2 shows indicatively the total steps, as well as the 
average and maximum deviations for some of the tested fabrics. The task is accomplished in 
less steps (corresponding to lower total time) when the micro Genetic-based approach that 
uses the dominant points as input is applied, satisfying the predefined the boundary of 1 mm.  
In apparel industry, the maximum allowable deviation, which is empirically evaluated, lies 
in the range between 0.5-5 mm. For all tested cases, the proposed algorithm is proved to be 
quite robust and efficient, since the achieved deviation, which is the maximum predefined 
deviation set by the user, is less than 1 mm. Bearing in mind that the robot accuracy is 
within ± 0.03 mm, the deviations resulting from the vision- and the robot position errors are 
very satisfactory. 
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Fabric type/color Steps Maximum deviation (mm) Average deviation (mm) 
fleece/red 15 0.83 0.34 

cotton/green 9 1.00 0.52 
jeans/blue 10 0.99 0.65 

baize/green 10 0.79 0.34 
tweed 10 0.96 0.58 

Table 2. Experimental results for the tested fabrics 

 

 
           (a)               (b)  

Fig. 9. (a) Robot-camera-sewing machine system (b) zoom in the camera 

 

 
Fig. 10. Identification of a curved section 

To test the ANFIS system, the robot-camera-sewing system is restructured to achieve even 
better accuracy (Fig. 9). Now, the vision system consists of a web camera at 480×640 pixels 
resolution RGB, which is mounted on the sewing machine, so that the area in the vicinity of 
the sewing needle is in the field of view of the web camera. The area captured by the web 
camera is about 40×55 mm, but the seam errors (eD and eφ) are computed in a smaller area 
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40×25 mm for a better approximation. Fig. 10 presents indicatively a curved section of a 
fabric, which is identified and approximated by a straight edge. 
The proposed seam control strategy is tested using real fabric pieces of different materials, 
shapes and colours. Fig. 11 shows four fabric pieces with curved edges that were used for 
training and Fig. 12 shows three fabric pieces that were used for testing. Several 
experimental tests are conducted to verify the efficiency and approve the effectiveness of the 
proposed adaptive neuro-fuzzy approach for robot sewing fabrics of curved edges.  
 

 
  (a)    (b)   (c)  (d) 

Fig. 11. (a) jacket’s sleeve (b) shirt’s sleeve (c) trouser’s leg (d) short sleeve 

 

 
   (a)   (b)   (c)  
Fig. 12. (a) skirt’s piece (b) pocket (c) hood 

Using the fabric pieces shown in Fig. 11, a total of 350 data sets are obtained. A total of 300 
data sets are selected for the purpose of training in ANFIS and the rest 50 data sets are 
selected for testing purposes after the training is completed in order to verify the accuracy of 
the predicted values.  
Next, the genetic-oriented clustering method is applied to the training data set. Fig. 13 
shows the training data sets and the resulting cluster centers obtained after applying the 
genetic-oriented clustering method. The cluster centers determine the number of the fuzzy 
sets and the parameters (mean values) μ of the Gaussian membership functions of the 
antecedent part, as well as the number of fuzzy rules of the Sugeno-type FIS. The number of 
the resulted clusters for ra=0.4  is seven. As a result, each input variable is characterized by 
seven fuzzy sets with the linguistic values {Extremely Small (ES), Very Small (VS), Small (S), 
Medium (M), Large (L), Very Large (VL), Extremely Large (EL)}. The consequent parameters 
of each rule of the Sugeno-type FIS are determined by using the linear least-squares 
algorithm. The membership functions for the two inputs resulting from these cluster centers 
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are shown in Fig. 14 (a). The rule base obtained through the genetic-oriented clustering 
approach consists of 7 rules, shown in Table 3. 
 

1. If (eD is Small) and (eφ is Extremely Small) then (ω is Extremely Small) (1) 
2. If (eD is Very Small) and (eφ is Small) then (ω is Very Small) (1) 
3. If (eD is Extremely Small) and (eφ is Extremely Large) then (ω is Small) (1) 
4. If (eD is Large) and (eφ is Very Small) then (ω is Medium) (1) 
5. If (eD is Medium) and (eφ is Large) then (ω is Large) (1) 
6. If (eD is Very Large) and (eφ is Medium) then (ω is Very Large) (1) 
7. If (eD is Extremely Large) and (eφ is Very Large) then (ω is Extremely Large) (1) 

Table 3. Fuzzy rule base 

 

 
Fig. 13. Cluster centers resulting from the genetic-oriented clustering method 

 

  
 (a)   (b) 
Fig. 14. The membership functions for inputs using (a) genetic-based clustering (b) ANFIS 
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The next step is the training process that aims at tuning the fuzzy inference system. Fig. 14 
(b) shows the final Gaussian membership functions derived after training the system. In 
contrast to the first input, there is a considerable change in the final membership functions 
concerning the second input, since the supports of all fuzzy sets are broadened. The root 
mean squared errors of the output over 100 training epochs, which are obtained by using 
300 training datasets and 50 checking data sets, are plotted in Fig. 15. It is obvious that both 
training and checking error gradually decrease versus the number of epochs.  
 

 
Fig. 15. ANFIS training process 

 

 
Fig. 16. Comparisons between measured & predicted angular velocity 

After 50 checking data sets are entered in ANFIS, an output value can be obtained from the 
calculation results. This output value is the predicted value for the angular velocity of the 
end-effector. Fig. 16 shows measured and predicted angular velocity for the checking data, 
as well as the prediction error expressed as the absolute value of the percentage error 
between the measured and predicted angular velocity. These two diagrams demonstrate 
that the predicted values are close to the experimentally measured values, as many of the 
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data points fall very close to the predicted points, indicating good correlation. The average 
error of the prediction of the angular velocity is around 2.57%, which means that the 
accuracy is as high as 97.43%. 
An interesting and important conclusion established from the results is that the proposed 
approach is capable of well estimating data points outside the training space using the 
advantages of fuzzy logic, neural networks and genetic algorithms. This conclusion reflects 
the model’s ability to predict the output based on the input data used for training. In 
practice, this implies that the method is effective in robot handling fabrics with curved 
edges, which have not been used in the training process. 
The strategy for robot-sewing fabrics with curved edges described above has the advantage 
of performing well regardless of the fabric’s deformations. This advantage is of major 
importance, as fabrics are limp materials that have a tendency to distort and change their 
shape when handled on a work table. The fact that this approach is based on the 
information taken from the image that captures the fabric in the neighbourhood of the 
needle amplifies the system’s robustness against deformations. Therefore, deformations that 
may appear on the fabric during robot handling do not affect the effectiveness of the 
stitching process.  

7. Conclusion 
The main focus of this work lies on the design of an innovative visual servoing manipulator 
controller based on Fuzzy Logic that aims to enable robots to handle flexible fabric sheets 
lying on a work table. Visual servoing and fuzzy logic are used in robot motion control 
increases the intelligence of robots and the flexibility of the system. The designed visual 
servoing control system can deal with a variety of fabrics that are likely to deform and can 
cope with possible deformations due to buckling (wrinkling, folding) towards handling 
without degrading its performance, on condition that the seam segment to be sewed is 
undistorted. The desired accuracy is achieved in approaching the needle even in cases 
where deformations appeared.  
This work focuses on the difficult case, where fabrics consist of edges with arbitrary 
curvatures. The need for approximating the curved edges through straight lines arises from 
the fact that current industrial robots can only be programmed to make straight or circular 
motions. From the standpoint of apparel industry manufacturing, it is important to assure 
that the fabric is sewn in the minimum time, while simultaneously satisfactory accuracy and 
smoothness are achieved.  
In our approach, the curve is approximated through small straight segments applying a 
micro-GA approach that uses the dominant point detection method as input. The proposed 
approach aims at the minimization of the execution time satisfying a predefined maximum 
tolerance. Based on the results, some consideration is made concerning the trade-offs 
between running times and the quality of the final approximation. 
To alleviate the computational burden of geometrical computations, an innovative method 
for robot handling fabrics with curved edges towards sewing has been proposed, which is 
based on a novel genetic-oriented clustering method and an adaptive neuro-fuzzy inference 
system. This work presents the design and tune of an ANFIS network with the minimum 
number of fuzzy rules for modelling the complex process of robot sewing fabrics.  The 
proposed adaptive neuro-fuzzy inference system benefits from the advantages of fuzzy 
logic, neural networks and genetic algorithms. This feature makes this approach a powerful 
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tool to deal with uncertainty embedded in the curved edges of real cloth parts and to cope 
with new fabric pieces that have not been used for the training process. 
The experimental results show that the proposed  control scheme is effective and efficient in 
guiding the fabric towards the sewing needle, sewing it and rotating it around the needle. 
After extensive experimentation, it has been proved to be rather simple, flexible and robust 
due to its capability to respond to any position and orientation error for a variety of fabrics 
that are likely to present deformations. The experimental data were obtained using the 
robot-camera-sewing machine system and real parts of cloths. The proposed method 
presented good results when applied to fabrics with curved edges of unknown curvatures, 
which manifest the validity of proposed approach. This method is applicable to any piece of 
fabric with edges of arbitrary curvature, since it has been proved to be efficient in estimating 
the appropriate angular velocity of fabrics that were not included in the training process. 
Although no direct comparison with human stitching is possible, as the equipment 
deployed attained differ, the achieved accuracy is really promising for future use in 
industrial applications. 
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1. Introduction 
Medical robotics is an exciting and relatively new field. Robotics plays an important role in 
medical engineering.  Medical robots were initially used in the 1980s, in the field of urology. 
Robotic arms were developed and used for prostate resection. They can also be highly 
specialized and assist in diagnosing and treating patients. While there is still much more 
work to be done, using robots can enhance medical treatments in terms of both the quality 
and accessibility of care. Using robots can help reduce human error and bring highly 
specialized information to remote areas without requiring physicians’ direct intervention. 
In radiation therapy, high-energy radiation from x-rays, gamma rays, neutrons, and other 
sources has been used to kill cancer cells and shrink tumors. Radiation may come from a 
machine outside the body (external-beam radiation therapy), or it may come from 
radioactive materials placed in the body near cancer cells (internal radiation therapy, 
implant radiation, or brachytherapy).  
The usage of robotic systems to improve the cancer treatment outcome is a new field. This 
field overlaps with electronics, computer science, artificial intelligence, mechatronics, 
nanotechnology, and bioengineering.  For this purpose, robots can be used in medical 
facilities to perform different tasks such as delivering radiation sources, real-time tumor 
tracking during radiation delivery or external beam delivery.  
The only product in the market for robotic radiotherapy is CyberKnife Robotic Radiosurgery 
System. The robotic system has provision for so-called real-time tracking during beam 
delivery. The device itself is a 6MV linear accelerator mounted on a six degree-of-freedom 
(DOF) Keller und Knappich Augsburg (KUKA) industrial robot. This system has real-time 
image-guided control. Consequently, there is a significantly long time delay (about 200 ms) 
between the acquisition of tumor coordinates and repositioning to the linear accelerator. The 
CyberKnife-KUKA robot with linear accelerator end-effector is suited for radiation therapy 
to any body sites.  Its field size is restricted to the limited geometry of 12 discrete circular 
fields ranging from 5mm to 60mm in diameter. Therefore, the workspace is confined and the 
radiation therapy community has not fully embraced the idea of using an industrial 
articulated robotic manipulator yet.  
The details about CyberKnife robotic system are not included in this chapter. Consequently, 
the basic idea is to present the novel research results in the field of robotic radiation therapy 
and its applications. 



 
Robotic Systems – Applications, Control and Programming 

 

86

2. Brachytherapy robotics 
Brachytherapy is a method of treatment in which sealed radioactive sources are used to 
deliver radiation at a short distance by interstitial, intracavitary, or surface application. With 
this mode of therapy, a high radiation dose can be delivered locally to the tumor with rapid 
dose falloff in the surrounding normal tissue. 
Recently, several research groups have reported the investigation and development of the 
robotic systems for the prostate seeds implants, (Stoianovici et al., 2003), (Wei et al., 2004), 
(Fichtinger et al., 2006), (Yu et al., 2007), (Meltsner, 2007), (Meltsner et al., 2007), (Stoianovici 
et al., 2007), (Podder et al., 2007), (Salcudean et al., 2008), (Lin et al., 2008), (Moerland et al., 
2008). The potential advantages of the robotic seed implants include improving the accuracy 
of the needle placement and seed delivery, as well as improving the consistency of the seed 
implant. In medical, especially prostate brachytherapy, applications of robots, precise end-
effector position, steady state and positioning accuracy is required. In such applications, 
even small positioning errors at the manipulator end-effector can have dangerous and costly 
consequences, (Mavrodis et al., 1997). To achieve the enhancements of the robotic seed 
delivery, the robots need to be calibrated. Properly calibrated robotic systems have higher 
absolute positioning accuracy and the deposited seeds positions correspond better to the 
ones calculated in the planning systems. The brachytherapy robots are usually ultrasound 
(US) or magnetic resonance imaging (MRI) guided. Generally, to improve needle placement 
and seed deposition in brachytherapy procedure several methods have been presented in 
the literature, such as parameter optimization, different needle rotation techniques, robotic 
insertion, force modeling, and needle steering techniques.  Robot assisted therapeutic 
delivery systems are attractive for several reasons. The potential advantages are increased 
accuracy, reduced human variability, reduction of clinician’s fatigue and reduction of 
operation time.  
There can be two methods for robotic needle insertion and seed deposition: single-channel 
approach and multi-channel approach. In single-channel approach one needle can be 
inserted at a time and typically 2-5 seeds along the needle track are deposited in the prostate 
according to dosimetry plan. On the other hand, multi-channel system is capable of placing 
several needles at the time. Thereby, seed delivery can be faster. Since prostate is not rigidly 
mounted, it can move and rotate as well as unpredictably deform. When several needles are 
inserted concurrently, prostate will be uniformly pushed back symmetrically to more stable 
position and deformation of the tissue can be better estimated for precise delivery.  
In the following sections two brachytherapy robotic systems has been presented. Both 
robotic systems: single-channel and multi-channel systems have been designed, developed 
and manufactured in our research laboratories. 

2.1 Single-channel brachytherapy robotic system 
We have designed and developed a robotic system, named Endo-Uro Computer Lattice for 
Intratumoral Delivery, Implantation, and Ablation with Nanosensing (EUCLIDIAN).  The 
system consists of a surgical module, a positioning module and a electronic housing, as in Fig. 
1.a. Kinematic Denavit-Hartenberg (DH) parameters of the system are presented in Fig.1.b. 
The platform connects the surgical module to the cart. The platform has provision for both 
translational and rotational motion. The vertical lift of the surgery module is motorized for 
ease of operation against gravitational effect. The supporting platform connects the surgical 
module to the cart. The surgical module consists of two robotic manipulators, i.e., two open 
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kinematic chains called needling mechanism and an ultrasound probe driver with five and 
two DOF, respectively. 
 

a)  b)  

Fig. 1. a) EUCLIDIAN – image-guided brachytherapy robotic system; b) Kinematic DH 
schema with reference frames 

2.1.1 System description 
The three main subsystems of the surgical module, Fig. 2, are: 1) Two DOF transrectal 
ultrasound (TRUS) probe driver, three DOF robotic gantry, and two DOF needle inserter 
(denote by needling mechanism in Fig. 21.) with seed holder and seed pusher.  
A brief description of these subsystems is provided in the following sections. The TRUS 
probe, which contains two transducers, transverse and sagittal planes can be translated and 
rotated separately by two motors fitted with high-resolution optical encoders. This enables 
imaging the prostate in transverse as well as in sagittal planes with variable slice thicknesses 
or intervals, as thin as 0.1 mm.  
Working ranges of motion of the TRUS probe are 0–185 mm and -91° to +91° in translation 
and rotation, respectively. The TRUS probe can also be operated manually using the knobs; 
during this mode, the motors are disengaged automatically by electric clutches. There is a 
provision for a template holder at the end of the TRUS probe driver, enabling manual 
takeover if required. A pair of prostate stabilization needles can be placed with angulation 
in both sagittal and coronal planes to prevent the obstruction of robotic needle insertion. 
This approach has also been shown to produce significant improvement in prostate 
immobilization.  
This subsystem, which features two translational motions, x and y direction, and one 
rotational motion (pitch, i.e., the rotation upward or downward about the x-axis), connects 
the needle driving module to the positioning platform. The motions are achieved by motors 
and optical encoders fitted with the motors, Figs. 1 and 2.  
The range of motion is 62 mm - 67 mm in the x-y direction. The rotational range for 
angulating the needle is -5° to +5° to avoid pubic arch interference and to reach the target 
region close to the TRUS probe. The TRUS probe motion and the rest of the surgery module 
(gantry and needle driver) is decoupled, as they are two separate open kinematic chains, 
which allow independent motions of the TRUS probe and the needle.  
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Fig. 2. Surgical module of EUCLIDIAN  

 

 
Fig. 3. Needle driver and seed depositor of EUCLIDIAN robot 

The needle driver is the most complex subsystem of the EUCLIDIAN, Fig. 3, as the degree of 
complexity is increased with the introduction of three force-torque sensors, stylet sensor, 
cannula sensor, and whole needle sensor for cannula rotation and autonomous seed 
delivery system. The main components of this subsystem are: 1) stylet driver, 2) cannula 
driver, 3) seed-cartridge holder, and 4) force-torque sensors. The cannula and the stylet are 
driven separately by two motors. The travel ranges of both the cannula and the stylet are 0–
312 mm. During the surgical procedure, the motions of the cannula as well as of the stylet 
are autonomous in accordance with the treatment plan; however, the clinician must approve 
the movements at critical points. Our custom-designed seed cartridge can hold 35 
radioactive seeds. Accommodation of additional seeds posed some challenges for smooth 
functioning of the seed cartridge due to spring nonlinearity. However, after careful 
investigation and adjustments, the seed cartridge is working satisfactorily.  
The seed pusher, a flat ended stylet, is deployed to expel the seed out of the cartridge and to 
deposit it at the planned location. Every motion during the sequence of seed delivery is fully 
automatic; however, the clinician is able to interrupt and/or manipulate the movements at 
any time using a hand pendant. By monitoring the force data from the sensor installed at the 
proximal end of the stylet, Fig. 4, the seed removal from the cartridge to the cannula can be 
verified. A ten-button hand pendant provides the clinician with the authority and freedom 
to assert control of the surgery module at any desired time. That is, the clinician can 
command each of the motors for manipulating the motion of various components of the 
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surgical module, such as needle insertion, needle rotation, seed deposition, x-y movement of 
the gantry, and system abort.  
The three DOF cart (two translations and a rotation about the vertical axis) provides gross 
movement of the robotic system to align with the patient, while the six DOF platform 
enables finer movement for desired positioning and orientation of the robot in three-
dimensional (3D) space.  
The computer, system electronics, and cable junctions are housed in the electronics housing, 
Fig. 1.  The EUCLIDIAN’s surgery module is fully autonomous; all the motors are fitted 
with high-resolution optical encoders and precision gear boxes. The robot is controlled by 
an industrial computer, which is proven to be robust and reliable for working in harsh 
industrial environments and military applications. It has a special metallic casing for 
minimizing electromagnetic interferences.  
Two Galil control cards, Model DMC- 1842; Galil Motion Control, Inc., Rocklin, CA, are 
used: One card to control the TRUS probe driver and gantry motions and the other card to 
control the needle driver and the seed pusher. A robust and stable proportional, integral 
and derivative (PID) controller has been developed for controlling the motorized surgical 
module. We have tuned the PID gains in such a manner so that the system’s stability is 
maintained when the needle changes its states from merely position control in the air to 
both position and force control mode in the patient’s body. The needle can be driven at a 
maximum velocity of approximately 100 mm/s; however, a lower velocity, 60 mm/s, setting 
is used as the default. A frame grabber, FlashBus, Integrated Technologies, Indianapolis, IN, 
is used for TRUS image capturing. Three force-torque sensors , Nano17, ATI Industrial 
Automation, Apex, NC and M13, Honeywell, Morristown, NJ, are used for needle insertion 
force monitoring and robot control feedback. Each of the motors is fitted with an optical 
encoder, MicroMo Electronics, Inc., Faulhaber Group, Clearwater, FL, which can provide 
final motion resolutions, considering gear ratios and screw leads,  of 0.0007 mm for gantry x-
y translations, 0.004 mm for stylet and cannula motions, and 0.005 mm and 0.06° for TRUS 
probe translation and rotation, respectively. 

2.1.2 Advanced control techniques 
In the previous studies, it was concluded that the proper selection of the translational and 
rotational velocities may reduce tissue deformation and target movements by reducing 
insertion force, (Buzurovic et al., 2008.a). Therefore, it can be concluded that the insertion 
force has a dominant influence on the needle insertion, seed deposition precision, and 
dosimetry distribution in brachytherapy procedure. In our initial work, (Buzurovic et al., 
2008.b) we have investigated tracking problem for the same robotic system using neural 
network approach. The force prediction model was introduced as well. In this article we 
have introduced novel methods to control the brachytherapy robot with the lowest tissue 
deformation and highest seed precision delivery as the ultimate goals. In order to achieve 
the desired dynamic behavior of the robotic system, the control strategies that we 
implemented in the robotic system have a force prediction module. For the first one we have 
used an artificial neural network (ANN) and neural network predictive control (NNPC), 
(Buzurovic et al., 2010.a). 
In the following part the use of a feedforward model predictive control (MPC) was 
described. The purpose of this approach is to control the reactive force which is responsible 
for tissue displacement. Also, as the second control task was to predict and compensate the 
impact of the measured and unmeasured disturbances rather than waiting until the effect 
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appears at the output of the system on the other side. When the reactive force is minimized, 
tissue displacement decreases. The force prediction control was also used to minimize the 
effect of system time-delay. Because of the fact that this procedure required an accurate 
robot system model, it was necessary to obtain a more precise model. That is a reason for 
adopting the robotic system model as a singular system of differential equations.  
Fig. 4 represents the contact surface where reactive force appears during surgery. A 
mathematical equation of contact surface is calculated using EUCLIDIAN robotic system 
software. 
 

 
Fig. 4. a) 3D representation of the contact surface (prostate gland) during insertion. b) 5DOF 
surgical module. Absolute and local coordinate systems together with generalized 
coordinates qi 

Assume that the contact surface is a scalar functionΦ: Rm→R1, Fig. 4a.  

0=Φ(p)   (1)

The contact force vector is:  

= Tf D (p)λ (2)

λ is a scalar multiplier for the constraint function and D(p) is the gradient of the constraint 
function, described as in (3),  

( ) ∂
=

∂
Φ(p)

D p
p

(3)

In the previous equation p∈ℜ3 is a position vector from the fixed reference frame to the 
constrained surface. Additional constraint is p=Φ(q) at the contact point. The matrix function 
J(q) is defined  as the Jacobian matrix function.  

( ) ∂
=

∂
(q)

J q
q

Φ (4)

The influence of the contact force to the system can be described as 

, ( )+ = +  TM(q)q G(q q) τ J q f (5)

Φ(p)=0 
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where M(q) denotes the inertia matrix function and G is the vector function which describes 
coriolis, centrifugal and gravitational effects. q is a vector of the generalized coordinates and 
τ is the torque vector. Influence of the external contact forces is described by factor f.  
Combining equations (1)-(5) the mathematical model of the system is 

, ( ) ( ( )) ( , , )+ = +  T TM(q)q G(q q) τ J q D M q q qλ τ (6)

After an appropriate transformation, equation (6) is transformed to its matrix form 

0 0 0 0 0 0
0 ( ) 0 0 0 ( , ) ( )
0 0 0 0 0 0 ( ) 0

          
          = + − − +          
                    


  


T T

I q I q
M q q J D q G q q M q I

p
τ

λ λ Φ
(7)

System (7) is linearized at the surrounding point where the needle is inserted into the 
patient.  The linearized mathematical model of the system is obtained, as follows 

( ) ( ) ( )= + +Ex t Ax t Bu t d (8) 

with singular matrix E∈ℜn×n, and vector d which represents the unmeasured disturbances 
such as needle deflection, tissue deformation and displacement, A∈ℜn×n, B∈ℜm×r. x and u 
represent the system state-space vector and control vector, respectively, x∈ℜn, u∈ℜr.  
The system defined by (8) is known as a singular system, descriptor system, semi-state 
system, system of differential-algebraic equations or generalized state space system.  
They arise naturally in many physical applications, such as electrical networks, aircraft 
and robotic systems, neutral delay and large-scale systems, economics, optimization 
problem and constrained mechanics. The matrices of linearized system (8) are defined as 
follows 

0 0 0

0

0 0 0 0
( )| 0 | , 0 ( ) 0 ,

0 0 0
| 0 0

0 0
,         ,         

0 0

 
  ∂   = − =   ∂     

  
   
   = = = Δ   
      

T T T T

I
I

A G J D J D E M q
q

DJ

B I u d

λ

δτ τ

(9)

Now it is possible to find subspaces S and F, as in (Buzurovic et al., 2010.a), having in mind 
that for state space X  the system equation (8) can be represented as the direct sum of S and 
F,  X= S ⊕ F. As a result of the matrix transformation M applied to system (8), the slow and 
fast subsystems can be described by a mathematical formulation  

= + +
= + +




s s s s s

f f f f f

x L x B u d
L x x B u d

(10) 

with Ls = MA|S, Lf  =MA|F, Bs=PMB, Bf=QMB, ds=PMd and df=QMd for some linear 
transformations Q and P represented by matrices Q and P, respectively. For that case, the 
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initial conditions are chosen to satisfy x0s=P x0 and x0f=Q x0. The solution of system (10) is 
x=xs+ xf  

1

0
00 0

( ) ( ) ,
−

=
= + + = − 

t t v
i

s s s f f
i

x e x e u d e d d x uτ ττ τ τ τB L Bs s sL t L (t - ) L (t - ) i
f (11) 

Now it is possible to apply the MPC control, Fig. 5, and to investigate dynamical behavior of 
the system. Disturbance d is given to MPC and its effect is predicted and compensated 
before the effect appears at the system output. 
 

 
φ(p) 

fqq ,,   τ z 

λ 
D

robot 
dynamic 

d ynamic model 

κ

 C 

f ref

000 ,, λqq   + 

-

+ 

+ 

y  
x 

φ(p) λ,,qq 

0τ̂  

η 

 
Fig. 5. Insertion force control scheme for the slow subsystem 

In (Mills, 1988) is shown that the impulsive behavior of the system can be avoided using 
appropriate initial conditions, defined by x0s=P x0 and x0f=Q x0. By using the described 
approach the fast subsystem will not induce impulsive behavior. Moreover, it can be 
concluded as stated previously and from equation (11) that there is little need to find fast 
feedback to eliminate the impulsive behavior. The necessary task was to find an appropriate 
feedback for the slow subsystem. The control scheme for the slow subsystem is represented 
in Fig. 5, as suggested in (Cobb, 1983).   
Furthermore, when the MPC controller is applied, the main objective is to hold the insertion 
force at the predefined acceptable reference value, by adjusting the control signal from 
actuators in order to minimize the prostate displacement, i.e. the reactive force which acts 
upon the tissue. Using this approach it is possible to decrease the insertion force during 
insertion trajectory. The needle displacement is an unmeasured disturbance and the 
controller provides feedback compensation for such disturbances. For the insertion force the 
controller provides feedforward compensation. Various noise effects can corrupt the 
measurements. The noise could vary randomly with a zero mean, or could exhibit a non-
zero, drifting bias. The MPC uses a filtering method for removing estimated noise 
component. At the beginning of each sampling instant, the controller estimates the current 
system state. Accurate knowledge of the state improves prediction accuracy which improves 
controller performances.  
During the insertion passive force control becomes active and keeps passive insertion force 
close to the predefined minimal value. When the MPC control approach was implemented it 
is possible to decrease the insertion force, as it is shown in Fig. 6. Also, peaks during the 
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insertion are minimized. These conclusions give us a reason to believe that tissue 
deformation can be decreased better than using the traditional PID control. 
 

 
Fig. 6. Controlled force with MPC (red) and insertion force with PID controller (blue) 

2.2 Multi-channel brachytherapy robotic system 
Multi-channel system is capable of placing several needles or even all needles at a time and 
thereby, it can be faster in delivering the seeds required for the treatment. A multi-channel 
delivery system can effectively avoid the problem of gradual prostate swelling (i.e., edema) 
and deformation, which occurs while depositing the seeds by single needle. Since the 
prostate is not rigidly mounted, the prostate can move and rotate as well as deform quite 
unpredictably, at every time a needle is inserted. But, when several needles are inserted 
concurrently, the prostate will be uniformly pushed back symmetrically to a more stable 
position and the deformation can better be estimated for precise delivery of seeds. Thus, 
the multi-channel system can overcome some of the drawbacks that may be encountered 
by the single-channel robotic systems. In this part, we present our Multichannel Image-
guided Robotic Assistant for Brachytherapy (MIRAB), which is designed and fabricated 
for prostate seed implantation. Currently, MIRAB can simultaneously rotate and insert 16 
needles. The MIRAB is capable of inserting more needles concurrently, if needle rotation 
is excluded. 

2.2.1 System description 
The MIRAB system shown in Fig. 7 consisted of five modules: (1) Rotary Needle Adapter, 
(2) Surgical x-y Carrier, 3) Mounting and Driving Mechanism, (4) Seed Applicator, and (5) 
Transrectal Ultrasound (TRUS) Driver, (Podder et al., 2010). 
Rotary Needle Adapter can hold 16 needles with rotational capability. However, additional 
needles can be installed without provision for rotation. Two direct current (DC) motors 
rotate the needle using a spur- gear train. It is known that provision of needle rotation 
reduces the insertion force as well as organ (or target) deflection and deformation. For guiding 
the extended needles (brachytherapy needles are about 200mm in length and 1.27mm or 
1.47mm in diameter) a regular brachytherapy template is installed at the distal end.  
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Fig. 7. MIRAB robotic system 

The needles can be simultaneously inserted using one of the DC motors on the Mounting 
and Driving Module. Surgical x-y Carrier is 3-DOF module carries the Seed Applicator 
which delivers seeds and withdraws needle. Two DC servo motors on the x-y carrier 
provide motions to the Seed Applicator in x- and y-direction, while another DC servo motor 
on the Mounting and Driving module provide motion in the z-direction, i.e. the depth. 
Mounting and Driving Mechanism is driven my two DC servo motors to impart 
translational motion (along z-direction) to the Needle Adapter and Surgical x-y Carrier. 
Seed Applicator is a module which is attached to the Surgical x-y Carrier. A DC servo motor 
is employed to expel the seed from the seed cartridge. Transrectal Ultrasound (TRUS) 
Driver is a module was originally developed for EUCLIDIAN system, Fig. 2). However, the 
MIRAB is designed in a way so that it can be installed on the EUCLIDIAN by taking the 
needling module away from the EUCLIDIAN away. This interchangeability is of MIRAB 
and EUCLIDIAN will be very convenient to switch from a single-channel system to a 
multichannel system. TRUS can image the prostate and the relevant anatomies in transverse 
as well as sagittal planes.  
All the DC servo motors are fitted with high-resolution (up to about 0.0007mm) optical 
encoder, MicroMo Electronics, Inc., Faulhaber Group, Clearwater, FL. An industrial 
computer, Plans, San Diego, CA, is used for controlling the whole system. Two Galil 
control cards, Model DMC-1842; Galil Motion Control, Inc., Rocklin, CA, are used. All the 
desired motions are achieved by deploying a Proportional, Derivative and Integral (PID) 
controller.  

2.2.2 Experimental results 
The purpose of the following experiments is to evaluate performances of multichannel 
robotic brachytherapy system designed for prostate seed implantation. 
The developed multichannel robotic system is capable of inserting large number of needles 
concurrently and depositing seeds automatically.  
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Fig. 8. MIRAB robotic system, experimental setup 

The experimental procedure, Fig. 8, is described in the following part. For cannula, we used 
18ga x 20cm Stainless steel BARD needle and for stylet Rev. A4, 304 Stainless steel needle 
Vita Needle Company. Phantom was prepared from polyvinylchloride (PVC) plastic and 
PVC+ hardener in the ratio 80% to 20%, respectively, MF Manufacturing, TX. Force 
measurements were performed using single-axis force sensor, Model 13, Honeywell 
Sensotech, Columbus, OH, installed on proximal end of the cannula. Deposited seeds were 
rounded stainless steel dummy seeds, BARD. Position of the tip of the needle and 
consequently depth of the deposition into the phantom was measured using optical 
encoders FAULHABER MicroMo HEDM5500J series 5500, attached to the template stage 
and seed applicator motors. The MIRAB was evaluated for insertion speed of  5mm/s, 
10mm/s, 20mm/s, 40mm/s, 60mm/s and 80mm/s and stylet speed in the range of 20-60 
mm/s. For each insertion speed we recorded force for 1, 2, 4, 8 and 16 needles installed 
together on the template stage.  
Absolute seed placement error was 0.10mm (SD=0.11mm) in X and Y direction and 0.15mm 
(SD=0.12mm) in Z direction for plan with 16 needles and 64 seeds. Relative position error 
between seeds were 0.07mm (SD=0.05mm). It can be seen in Fig. 9.a that maximum insertion 
force for insertion speed of 40mm/s was in the case when 16 needles were inserted together. 
For that case, maximum force value was 43N. Fig. 9.b represents the insertion force for the 
insertion speed of 80mm/s. Maximum insertion force for 16 needles was 52N. It can be 
concluded that more needles were inserted in one insertion the force value was higher. But 
when 8 needles were inserted in the same time maximum insertion force did not change. For 
insertion speed of 40mm/s and 80mm/s the insertion force was around 35N.  In Fig. 9.c and 
Fig. 9.d  insertion force for whole range of the insertion speed were represented. In the 
former case 8 needles were inserted together while in the latter 16 needles were inserted. 
The insertion force for the latter case was about 7N higher due to bigger number of the 
inserted needles. However, it can be noticed that force does not significantly change in the 
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range of insertion speed higher that 40mm/s (60mm/s or 80mm/s). The conclusion based 
on this fact is that insertion speed can be divided into two regions with different insertion 
parameters. 
It can be concluded that the average maximum insertion force was less then 45N for 
moderate speed range (insertion speed 40mm/s and stylet speed 30mm/s, 16 needles in the 
stage) and 52N for high speed range (insertion speed greater then 40mm/s and stylet speed 
50mm/s, 16 needles in the stage). Insertion time per seed was 5-8 seconds. Plan delivery 
time for high speed range was 8min and 12min for moderate speed range.  
The summary of conclusion is as follows. It was observed that more needles were inserted 
together force value was higher. However, when 8 and 16 needles were inserted in the same 
time maximum insertion force did not change. Furthermore, force did not change 
significantly in the range of insertion speed higher than 40mm/s. Consequently, insertion 
speed range can be divided into two regions with different insertion parameters. 
Preliminary results reveal that MIRAB is efficacious for delivering seed accurately. MIRAB 
can potentially be used for image-guided robotic brachytherapy.  
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Fig. 9. a) Insertion force for different number of needles installed on the template stage, for 
insertion speed of 40mm/s. b) Insertion force for different number of needles installed on 
the template stage, for insertion speed of 80mm/s. c) Insertion force for different insertion 
speed;8 needles inserted in the same time. d) Insertion force for different insertion speed; 16 
needles inserted in the same time 
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3. Robotic systems for real-time tumor tracking 
Respiratory and cardiac motions induce displacement and deformation of the tumor-
volumes in various internal organs. To accommodate this undesired movement and other 
errors, physicians incorporate a large margin around the tumor to delineate the Planning 
Target Volume (PTV), so that the Clinical Target Volume (CTV) receives the prescribed 
radiation dose under any scenario. Consequently, a large volume of healthy tissue is 
irradiated and sometimes it is difficult to spare critical organs adjacent to the tumor, 
(Buzurovic et al., 2010.b,c).  
In this section we described a novel approach to the 4D Active Tracking and Dynamic 
Delivery (ATDD) incorporating tumor motion prediction technique. The proposed 
algorithm can predict the tumor position and the robotic systems are able to continuously 
track the tumor during radiation dose delivery. Therefore a precise dose is given to a 
moving target while the dose to nearby critical organs is reduced to improve patient 
treatment outcome. The efficacy of the proposed method has been investigated by extensive 
computer simulation, (Buzurovic et al., 2010.d, 2011.a). 
Recently, several research groups are investigating various aspects of tumor tracking and 
developing tools to deliver precise dose to moving target-volumes, (Ozhasoglu & Murphy, 
2001), (Keall et al., 2006.a), (Benchetrit, 2000), (Vedam et al., 2004), (Sharp et al., 2004), 
(Schweikard et al., 2000), (Kamino et al., 2006), (D’Souza & McAvoy, 2006), (Keall et al., 
2006.b), (D’Souza et al., 2005), (Chung et al., 2006), (Podder et al., 2007, 2008), (Buzurovic et 
al., 2010.d, 2011.a). Generally, commonly practiced methods for compensating target/tumor 
motion can be structured as: (i) breath-hold techniques, (ii) gating techniques, and (iii) 
ATDD. The ATDD is the most effective technique, but it is the most challenging one. The 
ATDD can be accomplished in three different ways: (1) using the multi-leaf collimator 
(MLC), (2) using the treatment couch, and (3) using the MLC and the couch simultaneously. 
However, each of them has its own unique limitations.  
For instance, MLC gating technique using internal fiducials requires kilovoltage x-ray which 
delivers unwanted radiation dose to the patient, and additionally gating suffers from 
severely low duty-cycle (only 30%-50%) and intensity modulated radiation therapy (IMRT) 
efficiency (only 20%-50%); all these lead to a 4- to 15-fold increase in delivery time over 
conventional treatment, (Keall et al., 2006.a). Therefore, it is of tremendous clinical interest, 
if the radiation beam can be delivered with higher duty-cycle (or almost continuously) while 
compensating for the target movement without exposing the patient to kilovoltage x-ray. 
Robotic systems can help in a great deal solving this problem.  
In the following part we present developed dynamic equations of motion HexaPOD 
robotic couch. We applied the similar approach to one standard 3DOF robotic couch for 
radiation treatment (Buzurovic et al., 2010.d). In addition, we presented the control 
approach and prediction module which is capable of compensating time delay of the 
mechanical system.  
For system dynamics, we used energy based Lagrangian formulation. The Lagrangian 
function of dynamic systems can be expressed as:   

L = Kinetic energy (K) – Potential energy (P) (12) 

Thus, the general form of dynamic equations is 
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  (13) 

where, q∈Rn is the vector of generalized coordinates, and τ is the generalized force (or 
torque) applied to the system through the actuators. 
The dynamical behavior of a 6DOF robotic couch, has been investigated. Proposed approach 
is explained below. 

3.1 Parallel robotic platform 
The HexaPOD is a special type of Stewart Platform, i.e., a parallel robotic manipulator. The 
parallel robotic mechanism consists of a rigid body top plate, or mobile plate, connected to a 
fixed base plate and is defined by at least three stationary points on the grounded base 
connected to six independent kinematic legs. Typically, the six legs are connected to both 
the base plate and the top plate by universal joints in parallel located at both ends of each 
leg. The legs are designed with an upper body and lower body that can be adjusted, 
allowing each leg to be varied in length as in Fig. 10.  
 

 

 
 

Fig. 10. HexaPOD robotic couch, a) External isometric view with moving coordinate system, 
b) External schematic view with fixed coordinate system, c) Schematic of the leg 

In this study, we have used the following notations for modeling the HexaPOD, i.e. the 
Stewart platform. Referring figure 2 we have assigned an inertial frame (X,Y,Z) at the center 
O of the lower platform, i.e. the BASE,  and assigned another moving coordinate system 
(x,y,z) at the center of the top platform, i.e. the TOP. The BASE frame is assigned and called 
as fixed frame and the TOP frame is moving and is called as moving frame. 
To specify the configuration of the 6DOF Stewart Platform, six independent position-
orientation variables are needed.  Denote the position of the origin of the TOP frame with 
respect to the BASE frame[ ]T

x y z
p p p . The orientation is not defined by the standard 

Euler angles, but by rotating the TOP frame first about the fixed X-axis by α, then about 
fixed Y-axis by β and finally about Z-axis by γ. We denote RX(α), RY(β) and RZ(γ) as the three 
matrices that represent three basic rotations as follows:  
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where C(.) =cos(.), and S(.) = sin(.). This definition of the orientation not only provides us 
with a clear physical meaning but also avoids violating the one-to-one relationship between 
the system configuration and the values of Xp-0, which may cause the Jacobian matrix to lose 
its rank, even if the system is not in a singular configuration. Thus, the position and 
orientation of the upper platform is specified by the Cartesian coordinate system 
as T

ZYxop pppX ],,,,[ , γβα=−
. 

Now, the dynamic equations in Cartesian-space (or task-space) are expressed as:   

tdop
T

opopopopmopop FXJXGXXXVXXM )()(),()( −−−−−−− =++  (15)

where, ),,,,,( 654321 ffffffFtd =  is the vector of forces applied by the actuators of the legs, J 
is the full system Jacobian matrix. For convenience, we divide the HexaPOD robotic couch 
into two subsystems: the upper platform (TOP) and the six legs, Fig. 10. We compute the 
kinetic energy and potential energy of these subsystems and then derive the global dynamic 
equations.  

2 2 2
( ) ( ) ( ) ( )

1 1( )
2 2

= + = + + + Ω Ω   T
up up trans up rot u X Y Z up mf up mfK K K m p p p I (16)

is a expression for kinetic energy of the upper platform. Potential energy of the upper 
platform:  

=up u ZP m g p (17) 

Kinetic energy of the legs:  
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where, Li is the length of the leg at the current configuration, (m1+m2)is the mass of the leg, 
VTj is the velocity of the leg, and :   
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Potential energy of the legs:  
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where, ( )[0 0 1][ ( ) ( ) ( ) ]=
j

T T T
T Z X Y j mfZ R R R GTγ α β ; ( )j mfGT  is obtained from the geometry 

of the platform. Substituting the expression from equation (15)-(20) into equations (12), and 
(13), we can obtain the dynamic equations for the HexaPOD (leg plus top platform). 
Recalling equation (15), more precisely it can be written,  

Legsupop MMXM +=− )( ,
Legsup mmopopm VVXXV +=−− ),( 

Legsupop GGXG +=− )( (21)
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The dynamic equations of motion for HexaPOD robotic couch have been discussed above. 
These equations are essential in developing our proposed dynamics-based coordinated 
control system. In the following part it can be seen that the speeds for tracking are slow. 
However, it was necessary to use dynamical model approach to fulfill strong requirements 
regarding the tracking accuracy. Since the tracking is impaired with a real-time radiation 
delivery, it was of the significant importance to have accurate model and to decrease 
possibilities for inaccurate radiation delivery during tracking. 

3.2 Control and prediction 
To track the tumor trajectory for optimal dose delivery to the CTV while sparing normal 
tissue, we propose PID control for HexaPOD parallel robotic platform.  The basic goal of the 
controller was to specify the desired trajectory of the couch for all tumor positions.  Block 
diagram of the decentralized coordinated dynamics-based closed-loop control strategy for 
HexaPOD robotic couch using prediction module PM, controller C and robotic couch T, is 
presented in Fig.11.  
 

 Xmot XdPM C T_
ε Xξηs τξηs 

 
Fig. 11. Control schema for parallel robotic platform 

By taking this approach it is possible to compare the dynamical behavior of the one of the 
most suitable system for 4D tracking.  In the proposed approach, the trajectories of the 
tumor motion in the x, y and z directions were obtained from the 4D Computer 
Tomography (CT) data of real patients. These task-space trajectories were used to generate 
joint-space motion trajectories for the robotic systems. 
Referring Fig. 11, we have denoted the following parameters:  Xmot is raw data of the tumor 
motion. Xmot is the input into the prediction module (PM). Output of the PM is predicted 
value of the tumor motion Xd. Dynamic-based controller is denoted by C. Robotic couch is 
denoted by T. Input to the T module are desired forces values and output is the motion of 
the robotic table , denoted by Xξηs, which compensate tumor motion. 

3.2.1 Dynamic-based controller 
To implement the proposed algorithms, we have used a PID control scheme. Dropping the 
subscripts, we can rewrite equation (21) as 

( ) ( , )+ = ℑ M X X X Xξ , (22) 

where, ( , ) ( , ) ( )= +  X X V X X X G Xξ , and ( )−ℑ = T
p o tdJ X F . Now, the computed torque can be 

written as follows:  
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ˆ ˆ[ ( ) ( )]+ − + − + = ℑ  
d V d P dM X K X X K X X ξ , (23) 

where,  M̂ and ξ̂  are the estimates of the system’s model parameters, KV is the derivative 
gain matrix and KP  is the proportional gain matrix. For HexaPOD 

1 2 3 4 5 6( )=V v v v v v vK diag k k k k k k  and 1 2 3 4 5 6( )=P p p p p p pK diag k k k k k k . If the estimates of the 
model parameters are close approximation of the actual system’s parameter, from equations 
(22) and (23) it can be written,  

( ) ( )= + − + −   
d V d P dX X K X X K X X (24) 

Now, denoting the position, velocity, and acceleration errors as = −dX Xε , = −  dX Xε , 
= −  dX Xε , we can rewrite equation (24) as 

0+ + = V PK Kε ε ε (25) 

Equation (25) guarantees asymptotic reduction of the tumor tracking errors or at least keeps 
error in the acceptable margins. However, to reduce any steady-state errors, an integral 
control part was also incorporated into equation (26). Thus the final control equation 
becomes,  

0

0+ + + = 
t

V P IK K K dtε ε ε ε , (26)

where, KI is the integral gain. Thus, equation (26) ensures asymptotic decay of the transient 
errors as well as reduction of steady-state errors. 

3.2.2 Prediction module 
Prediction module PM is developed to predict tumor motion and to compensate errors due 
to delay in the system response. Prediction module algorithm uses Xmot to calculate 
predicted value Xd. The system output Xξηs is used for accuracy checking and fine tuning 
purposes. 
Normalized Least Mean Square (nLMS) algorithm is adapted for the dynamic system to 
predict the position in three dimensions.  System delay td is a parameter in the developed 
algorithm.  
The nLMS algorithm belongs to the family of Least Mean Square LMS algorithms. The LMS 
algorithm is an adaptive algorithm presented by Widrow and Hoff as in (Widrow & 
Walach, 1994) and (Chen, 1993). The LMS algorithm use iterative procedures to make 
successive corrections to the weight vector towards the negative direction of the gradient 
vector. As a result minimal mean square error will be minimized. The LMS algorithm can be 
summarized as follows:  
Input vector is X(n) = [x(n), x(n-1),…, x(n-t+1)]T, where n is the current algorithm iteration 
and t is the tap number. Desired vector is D(n) = [d(n), d(n-1),…, d(n-t+1)]T. Consequently, 
predicted vector is Y(n) = [y(n), y(n-1),…, y(n-t+1)] T. Error vector is E(n) = [e(n), e(n-1),…, 
e(n-t+1)]T. Filter vector W(n) is used to calculate predicted value y(n). It is of the form W(n) =  
[w(n), w(n-1),…, w(n-t+1)] T. Predicted value is  
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( ) ( 1) ( )= − Hy n W n X n (27)

where W(n-1)H is the hermitian transpose of W(n-1). Thus, algorithm error is  

e1(n) =  d(n) – y(n). (28)

Now, filter vector becomes W(n) =  W(n-1)+μ X(n)e(n), where μ is the learning rate.  In order 
to ensure the stability of the algorithm it is necessary to adjust LMS to its normalized form 
nLMS. For the nLMS algorithm the filter vector is:  

( ) ( )( ) ( 1)
( ) ( )

= − + H

X n e n
W n W n

X n X n
μ

(29) 

Furthermore, to ensure accuracy of the prediction process, algorithm checks difference 
between predicted value y(t) and system output Xξηs. We defined 

e2(n) =  d(n) – Xξηs(n). (30) 

Finally, prediction module calculates next position of the tumor, based on algorithm which 
incorporates nLMS error e1(n) and physical error e2(n). Therefore, the resultant error is sum 
of the prediction and tracking error. 

3.3 Simulation 
The computer simulation results for HexaPOD robotic couch have been presented in the Fig. 
12 through Fig. 13 below.  Fig. 12 shows position of the each HexaPOD leg during tracking 
task. Combined motion of the robotic legs results in tracking the desired trajectory. This 
means that the robotic couch will start moving the legs according to the desired trajectory, 
obtained from 4D-CT. Combined motion of the HexaPOD legs will result in patient motion 
which has opposite direction of the tumor. Consequently, tumor will appear steady and the 
beam will irradiate smaller PTV which does not include all possible tumor position during 
the respiratory cycle.  
 

 

 
 

Fig. 12. HexaPOD legs positions during tracking 
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Fig. 13. Overall system errors; a) εX, εY,εZ  in X, Y and Z directions for HexaPOD couch.  
b) The error amplitudes for steady states 

An average system error after the transient time was εXH=εYH =εZH= ±0.2mm and 0.4mm for 
irregular motion pattern, Fig.13. The tracking error cannot be zero, but it can be kept within 
the tolerable limit.  
From the simulation results it appeared that proposed methods could yield superior 
prediction and tracking of the tumor motion induced by respiratory motion.  
Analyzing the simulation results it can be concluded that the robotic system show the same 
maximum tracking error which was 1mm. Based on dosimetric studies, (Buzurovic et al., 
2010.b,c) it was noticed that implementation of real-time tracking techniques can minimize 
irradiation to healthy tissues and improve sparing of critical organs. It was shown in the 
studies that the dosimetric effect on PTV and CTV coverage, caused by the prediction error 
in tumor tracking procedure, is insignificant. Consequently, tumor tracking error for the 
described proposed method will not compromise patient treatment outcome. 
Implementation of the proposed technique can potentially improve real-time tracking of the 
tumor-volume to deliver highly conformal precise radiation dose at almost 100% duty cycle 
while minimizing irradiation to health tissues and sparing critical organs. This, in turn, will 
potentially improve the quality of patient treatment by lowering the toxicity level and 
increasing survival.  
In this study, we have deployed a closed-loop PID control. Adaptive control can be a good 
choice because of the variability in the payload on the system, i.e., the weight of the patient. 
Results of the adaptive control applied to the proposed system can be found in (Buzurovic 
et al., 2011.b). 

4. Conclusion 
In this chapter the use of the robotic systems in radiation therapy has been presented. It was 
shown that robotic systems can greatly influence to the current method of radiation therapy 
in both delivering radioactive material inside the cancerous tissue and in compensation of 
moving tumors during the external beam radiation therapy. The presented systems are 
novel and the clinical applications of such systems will be near future in modern cancer 
treatments. It was shown many times that modern robotics can improve many aspects of 
human work. The presented robotics systems are the example of the previous statement. 
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1. Introduction 
Minimally invasive surgery has gained popularity over the last decade by offering shorter 
convalescences, improved peri-opertive outcomes as well as enhanced cosmesis. 
Community urologists have typically performed standard laparoscopic nephrectomies 
secondary to its short learning curve, low complication rate, and limited requirement for 
sophisticated laparoscopic skills. However, advanced minimally invasive operations such as 
partial nephrectomies, pyeloplasties and prostatectomies necessitate advanced laparoscopic 
adeptness. The emergence of robotics, with 3D vision and articulated instruments, has 
allowed wider applications of minimally invasive techniques for more complex urological 
procedures.  
Though robotics has overcome some shortcomings of laparoscopic surgery, there remains a 
limitation with its assertion as a standard amongst the urological community. The lack of 
tactile feedback, displacement of the surgeon from the bedside, fixed-port system, longer 
operating room times and cost remain barriers to widespread acceptance of robotics. In 
addition, the deficiencies within the robotic platform have propagated an evolution in the 
field with micro and nano-robotics. This chapter highlights the history of robotic surgery 
along with current and future applications. 

2. The Da Vinci surgical system and urology 
The da Vinci robot (Intuitive Surgical, Sunnyvale, CA, USA) (Figure 1) remains the only 
commercially available robotic surgical system since the fusion of computer motion and 
intuitive surgical system (Table 1). It is a master–slave system in which the surgeon operates 
the robot from a remote console. The articulating laparoscopic instruments in the da Vinci 
robot offer six degrees of freedom simulating the human wrist movement during open 
surgery. This facilitates intra-corporeal suturing especially in reconstructive surgery 
(Yohannes et al., 2002). 
Robotic-assisted laparoscopic radical prostatectomy was first reported in 2000 using the da 
Vinci robot system. Since then, the robotic platform has been applied for a variety of 
minimally invasive procedures, such as partial nephrectomy, pyeloplasty, cyctectomy and 
adrenalectomy. 
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Fig. 1. Da Vinci robot 

 
1985 First surgical robot utilization (Neurosurgery) 
1989 First urologic robot (Probot) 
1993 First commercially available robot approved by the FDA (AESOP) 
1998 Zeus system commercially available 
2000 First robotic radical prostatectomy 
2001 FDA clearance for Da Vinci system 
2003 The Zeus system and Intuitive Surgical fusion 

Table 1. Robotic surgery timeline 

2.1 Prostatectomy 
Robotic-assisted laparoscopic radical prostatectomy (RARP) was first reported in 2000 
(Abbou et al., 2000). Since then the number of patients undergoing RARP for prostate cancer 
has steadily increased. Early comparisons between radical retropubic prostatectomy (RRP) 
and RARP show encouraging results. Menon et al. in a prospective nonrandomized study, 
compared results of 30 consecutive patients undergoing (RRP) and 30 initial patients 
undergoing (RARP). Estimated blood loss (EBL), blood transfusions, pain score, hospital 
stay, and mean duration of postoperative catheterization were improved in the RARP 
group. However, the mean operating time increased for RARP (Menon et al. 2002). 
In a recent review, Ficcara et al. found that the mean OR time for RARP ranged between 127 
and 288 minutes, corroborating a longer operative time with robotics versus open. 
Nevertheless, transfusion rates and hospital stay were lower with RARP then open RRP. In 
addition there were comparable complication rates between the RARP and open RRP 
patients (Ficarra et al., 2009). 
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Positive surgical margins are a surrogate for oncological outcomes reported for RARP. A 
significant advantage in positive margin rates was demonstrated for RALP over RRP. This 
same difference amongst the robotic and open groups does not exist when comparing 
laparoscopic radical prostatectomy (LRP). The positive surgical margin rates ranged from 
11% to 37% after RRP, from 11% to 30% after LRP, and from 9.6% to 26% after RALP (Ficarra 
et al., 2009).  
Recently, survival outcomes have been reported after RARP. Barocas et al. compared 491 
open RRP with 1,413 patients undergoing RARP, over a median follow-up of 10 months 
(Barocas et al., 2010). Robotic group had lower pathological stage (80.5% pT2 vs 69.6% pT2, 
p <0.01). The 3-year biochemical recurrence-free survival rate was similar between the 2 
groups, even after adjusting for pathological stage, grade and margin status. More recently, 
comparisons of 522 consecutive RARP were matched to patients who underwent LRP and 
RRP evaluating oncological outcomes (Magheli et al., 2011). Positive surgical margin rates 
were higher in the robotic group (19%), compared to LRP (13%) and RRP (14%). This 
difference was not significant for pT2 disease. The mean follow-up was 2.5, 1.4 and 1.3 years 
for RRP, LRP and RARP respectively, with no statistically significant difference in 
biochemical-free survival between groups. 
Erectile function and continence are major outcomes evaluated after prostatectomy. In a 
matched cohort, comparing 294 RARP for clinically localized prostate cancer with 588 RRP, 
showed no difference in continence between the 2 approaches at the 1-year follow-up 
(Krambeck et al. 2009). Furthermore, Roco et al showed 1year continence rates of 97% vs 
88% after RARP and RRP, respectively (P = 0.014). The 1 year overall potency recovery rate 
was 61% vs 41%, after RARP and RRP, respectively (P = 0.003). Overall, RRP seems to be a 
faster procedure. However, EBL, hospitalization time, and functional outcomes were 
superior with RARP. Early oncological outcome seemed to be equivalent in the two groups 
(Rocco et al., 2009).  
The drawback of RARP is the cost related to purchasing and maintaining the instruments of 
the robotic system. Bolenz et al. compared the cost of 262 RALP, 220 LRP, and 161 RRP 
performed at the same institution. The direct cost was higher for the robotic approach than 
laparoscopic or open. The median direct cost was US$ 6752, US$ 5687, and US$ 4437 for 
RALP, LRP, and RRP respectively. The most important difference was due to surgical 
supply and operating room cost (Bolenz et al., 2010). However, the surgical volume may 
reduce this difference. Scales et al. showed that the cost of RALP is volume dependent, and 
cost equivalence is achievable with RRP at a surgical volume of 10 cases weekly (Scales et 
al., 2005). Even the cost of robotic surgery is a difficult question to assess; the cost-
effectiveness of robotics will probably continue to improve with time (Wilson & Torrey, 
2011). 
The available data demonstrates improvements in blood loss, hospital stay, and pain control 
with RALP. However the lack of long term cancer specific mortality limits robust 
oncological comparisons of RARP to RRP. 

2.2 Radical nephrectomy 
Robotic radical and simple nephrectomy is a feasible and safe procedure. A comparison of 
46 laparoscopic nephrectomies, 20 hand-assisted laparoscopic nephrectomy, and 13 robotic 
nephrectomies showed no significant advantage of robotics over traditional laparoscopy or 
hand-assisted approaches. However, cost analysis illustrated far more cost with robotics 
among the three groups (Boger et al., 2010). 
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Platforms where robotics may be applied to radical nephrectomies are complex tumors with 
caval thrombosis. Abaza reported five patients with a renal tumor and inferior vena cava 
(IVC) thrombus who underwent robotic nephrectomy. The robotic system allowed for 
venotomy into the vena cava with suture of the defect and no complications. (Abaza, 2011) 
Robotic-assisted nephrectomy was also applied for live kidney donor. A series of 35 first 
cases was reported with a mean warm ischemia time of 5.9 minutes. (Louis et al., 2009). 
However, the cost of the robotic approach may limit its applicability for radical 
nephrectomies except in complex renal cases with caval thromsis.  

2.3 Partial nephrectomy  
The da Vinci Surgical System provides advantages during robotic partial nephrectomy 
(RPN) such as 3-D vision, articulating instruments, scaling of movement, tremor filtration, 
fourth robotic arm assistance, and the TilePro™ software (Intuitive surgical, Sunnyvale, 
CA), a live intra-operative ultrasound platform. All these tools are helpful during partial 
nephrectomy and may overcome the technical challenges of laparoscopic partial 
nephrectomy (LPN). 
Since the first report by Gettman et al. showing the feasibility of robotic assisted partial 
nephrectomy (RPN) (Gettman et al., 2004), a steadily increasing number of series have been 
reported. 
Forty consecutive RPN and 62 LPN were retrospectively compared in a study by wang and 
colleagues showing no significant difference in EBL, collecting system repair (56% for each 
group), or positive margin rate (1 case in each group). Furthermore, the mean operative 
time, warm ischemia time (19 vs 25 minutes, for RPN and LPN respectively), and length of 
stay decreased significantly in the robotic group (Wang & Bhayani, 2009). 
Haber et al. compared results of 150 consecutive patients who underwent RPN (n = 75) or 
LPN (n = 75) by a single surgeon. There was no significant difference between the 2 groups 
in the mean operative time (200 and 197 minutes) (P = .75)), warm ischemia time (18.2 
minutes vs 20.3 minutes, P = .27), length of hospital stay (P = .84), change in renal function, 
or adverse events in the RPN and LPN groups respectively. The mean EBL was higher in the 
RPN group (323 vs 222 mL); surprisingly fewer patients required a blood transfusion in 
either group. The higher EBL with RPN may be explained by the surgeons learning curve 
for RPN compared with LPN. Overall these findings demonstrated comparable outcomes to 
LPN, regardless of the vast experience the primary laparoscopic surgeon possessed (Haber 
et al., 2010a). 
The safety and effectiveness of RPN regarding functional and oncologic outcomes were 
evaluated in a multi-institutional review with 183 patients who underwent RPN (Benway et 
al., 2010). The means of peri-operative demographics and outcomes were analyzed 
illustrating a tumor size 2.87 cm, total operative time 210 min, warm ischemic time 23.9 min, 
and EBL of 131.5 ml. Sixty-nine percent of excised tumors were malignant, of which 2.7% 
had positive surgical margins. The incidence of major complications was 8.2%. At up to 26 
months follow-up, there have been no recurrences and no significant change in renal 
function. 
Additionally, indications for RPN have significantly expanded to include RPN for complex 
renal tumors (Rogers et al., 2008a; White et al., 2011). White et al. reviewed 67 patients who 
underwent RPN for a moderately or highly complex renal mass according to the R.E.N.A.L. 
nephrometry score (≥7). The median tumor size was 3.7 cm, median operative time was 180 
minutes, median EBL was 200 mL, and the warm ischemia time was 19.0 minutes (range 15-
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26). After a mean follow-up of 10 months, no recurrences had occurred indicating that RPN 
is a safe and feasible option for highly complex renal masses (White et al., 2011). 
RPN seems to be as an effective and safe alternative to LPN. Surgical technique for RPN has 
improved and indications have been expanded to more challenging tumors. Currently 
available comparative studies are retrospective and with a limited follow-up. Future trials 
are expected to confirm encouraging findings from early reported series. 

2.4 Adrenalectomy 
Robotic-assisted adrenalectomy (RAA) was first reported in 1999 and 2001 using the Aesop 
(Hubens et al., 1999) and Da Vinci systems, respectively (Horgan & Vanuno, 2001). Since 
then, the few studies published were about RAA using Da Vinci system. 
Brunaud et al. prospectively evaluated 100 consecutive patients who underwent RAA. The 
mean operative time was 95 minutes with a conversion rate 5%. Complication and mortality 
rates were 10% and 0%, respectively. The mean operative time decreased by 1 minute every 
10 cases. Operative time improved more for junior surgeons than for senior surgeons after 
the first 50 cases.  Surgeon’s experience, first assistant level and tumor size were 
independent predictors of operative time. The robotic procedure was 2.3 times more costly 
than laparoscopic adrenalectomy (Brunaud et al., 2008a). 
The same authors, compared prospectivly perioperative data of 50 patients who underwent 
RAA with 59 patients who underwent laparoscopic adrenalectomy (LA). RAA was 
associated with lower blood loss but longer operative times. However, the difference in 
operative time was not significant after the learning curve of 20 cases. Operative time 
increased, only in the LA group for obese patients (body mass index >30 kg/m2) and 
patients with large tumors (>55mm). Length of hospital stay, complication and conversion 
rates were equivalent in the groups (Brunaud et al., 2008b). 
Recently, Giulianotti et al. examined 42 patients who underwent RAA by a single surgeon. 
Median hospital stay was 4 days with postoperative complication rate of 2.4% and mortality 
rate of 2.4% (Giulianotti et al., 2011). 
Suggestions have been made that robot assistance may be beneficial for obese patients with 
large tumors (Brunaud et al., 2008a; Giulianotti et al., 2011), as well as for surgeons with 
limited laparoscopic experience. Regardless of its feasibility, Prospective studies must focus 
on potential improve in learning curve with robotic utilization along with a cost analysis 
evaluating RAA compared to current standards. (Brunaud et al., 2008a) 

2.5 Pyeloplasty 
The first clinical experience of robot-assisted pyeloplasty (RAP) was reported in 2002 
(Gettman et al., 2002a). Since then, numerous studies have evaluated the efficiency of RAP. 
Gupta et al. prospectively evaluated results of 85 consecutive patients who had 
transperitoneal RAP, using four or five ports. Based on anatomic considerations, different 
types of pyeloplasty were completed. The mean operative time was 121 min, 47 min of 
which was for the anastomosis. Mean EBL was 45 mL, with hospital stay of 2.5 days. Three 
patients had stent migrations, and delayed drainage. Mean follow-up was 13.6 months with 
an overall success rate of 97%, based on imaging assessment (Gupta et al., 2010). 
In a comparative non-randomized study, 98 RAP were compared with 74 LP with a mean 
operative time of 189.3 and 186.6 minutes for RAP and LP respectively. Complication rate 
was similar with 5.1% and 2.7% for RAP and LP respectively. The suturing time was shorter 



 
Robotic Systems – Applications, Control and Programming 

 

112 

for the RAP but without statistical significance (48.3 and 60 minutes (P =0.30) for RAP and 
LP respectively). RAP had a success rate of 93.4% versus 95% for LP based on renal 
scintigraphy (Bird et al., 2011). 
Hemal and colleagues illustrated successful application of robotics to pyeoplasty surgery. A 
nonrandomized study, comparing results of 30 RAP with 30 LP, performed in a 
transperitoneal approach by a single surgeon. The mean total operating times were 98 
minutes and 145 minutes, the mean EBL were 40 mL and 101 mL, and the mean hospital 
stay of the patients were 2 days and 3.5 days, for RAP and LP, respectively. At follow up, 
one patient in LP group had obstruction managed by balloon dilation (Hemal et al., 2010).   
Insufficent evidence exists for the retroperitoneal approach to RAP. Kaouk et al. reported 
results of 10 patients who underwent retroperitoneal RAP. Four ports were placed for the 
robot and a successful operation was accomplished. Operative time was 175 mins with 
minimal complications.  The advantage to the retroperitoneal approach was the direct access 
to the UPJ; however, retroperitoneal surgery has limited working space with unfamiliar 
anatomy to most urologist (Kaouk et al., 2008).  
Cestari et al. compared 36 patients who underwent retroperitoneal RAP and 19 
transperitoneal RAP for UPJO. Median operative time and hospital stay were similar. 
Complication rates were comparable. (Cestari et al, 2010). 
Studies of RAP demonstrate feasibility, efficacy and safety. However, the cost of robotic 
surgery continues to limit the widespread application of this platform.  

2.6 Cystectomy 
Radical cystectomy with pelvic lymphadectomy (PLND) remains the gold-standard 
treatment for patients with muscle-invasive blader cancer. However, morbidity related to 
open radical cystectomy (ORC) presents a real challenge. Thus, robotic-assisted radical 
cystectomy (RRC) represents a potentiel alltenative to the open approach. Similar to other 
robotic procedures, the potential advantages of RRC over ORC are decrease in blood loss, 
pain, and hospital stay. On the other hand, the oncologic outcomes of the RRC remain 
largely unknown. 
In a series of 100 consecutive patients who underwent RRC for clinically localized bladder 
cancer, the mean operative time was 4.6 hours and an EBL 271 ml.  Mean hospital stay was 
4.9 days with 36 patients experiencing postoperative complications; 8% major complications. 
Urinary diversion included, ileal conduits 61 % of the time (Pruthi et al., 2010). 
Kauffman et al. presented results of 85 consecutive patients treated with RRC for bladder 
cancer. The median age was 73.5 years with high proportion of patients having 
comorbidities (46% of ASA class ≥3). Extended pelvic lymphadenectomy was performed in 
almost all patients (98%). Extravesical disease was found in 36.5% cases and positive 
surgical margins were present in 6% of patients. At a mean follow-up of 18 months, 20 (24%) 
patients had presented recurrence; three of them (4%) only had a local recurrence. The 
overall survival and disease-specific survival rates for the cohort at 2 years were 79% and 
85%, respectively. Extravesical disease, positive lymph node, and lymphovascular invasion 
were associated with worse prognosis (Kauffman et al., 2011). Even with the encouraging 
results of this study, comparative analysis and long term outcomes are still needed. 
Josephson et al., in his report of 58 RRC, found different results, with a overall survival rate 
of 54% and disease specific survival rates of 76% at 2-year (Josephson et al., 2010). However, 
stratification of survival outcomes by patholoical stage was not reported, making 
comparasions with other studies futile. 
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In an others series of 100 patients with a mean follow up of 21 months, 15 patients had 
disease recurrence and 6 died of bladder cancer (Pruthi et al., 2010). Comparisons between 
open and robotic cystectomy are lacking because of the heterogenity in disease burden and 
patient selection. 
In a multi-institutional study, of the 527 patients who underwent RRC, 437 (82.9%) had a 
lymphadenectomy. Surgeons experience on the robot influenced whether a 
lymphadenectomy was performed  (Hellenthal, 2010a). In the same data base, the Positive 
surgical margin was 6.5% (Hellenthal, 2010b). In a study of 100 consecutive patients with 
RRC, no positive margin was found (Pruthi et al., 2010). However in this series only 13% 
cases were pT3/T4 at the final pathology, which may explain this result. 
RRC offers the potential for improving peri-operative outcomes with the advantages of 
minimally invasive surgery. It may offer shorter hospital stay, decrease blood loss and pain, 
and offer a smaller incision, with equal complication rates and oncological outcomes to the 
current gold standard, ORC. Future studies with longer follow up are essential to have 
robust data on the comparability of RRC to ORC 

3. Robotic laparoendoscopic single-site surgery and natural orifice 
translumenal endoscopic surgery: Current status 
Laparoendoscopic single-site surgery (LESS) (Figure. 2) and natural orifice translumenal 
endoscopic surgery (NOTES) exploit the use of a single incision or natural entry points into 
the body cavity. A trend towards scareless surgery with the advantages of laparoscopy has 
fueled the development of a novel surgical technique, LESS and NOTES.  
The first laparoscopic transvaginal nephrectomy (NOTES) in a porcine model was described 
in 2002, introducing another achievable surgical approach (Gettman et al, 2002b). Moreover, 
the continued dynamism for workable new approaches sprung the inception of the first 
reported hybrid NOTES nephrectomy in a porcine model utilizing the da Vinci surgical 
system (Box et al., 2008).  
Robotic technologies offer a potential improvement over the current flexible instruments 
and endoscopes. Other limitations include the indirect transmission of forces and space 
constraints for the operating surgeon (Table 2). 
In 2008, 30 urologic robotic NOTES procedures on 10 porcine models were performed using 
the current da Vinci robotic system (Haber et al., 2008a). A 12 and an 8-mm port were placed 
through a single transumbilical incision to introduce the robotic camera along with a robotic 
arm using a single port (Uni-X (TM) P-navel Systems, Morganville, NJ). A flexible 12-mm 
cannula 20cm long (US Endoscopy, Mentor, Ohio, USA) served as a transvaginal port, 
through which the second robotic arm was docked.  All interventions were conducted 
without complications or conversion. However, problems encountered included the 
inadequate length of transvaginal instruments, essentially prolonging surgical time. In order 
for widespread use of newer approaches, development of appropriate instruments should 
simultaneously occur. 
The Da Vinci® S robotic system using a LESS approach has also been applied to prostate 
surgery. A transvesical robotic radical prostatectomy was performed in a cadaver model 
(Desai et al., 2008a) (Figure. 3). Articulated instruments and 3D vision facilitated the 
dissection of the prostate through the single-port. Moreover, architectural advances with the 
robotic system will allow accessibility to a wider range of surgeons interested in LESS and 
NOTES approaches. An example of robotic modifications helping the growth of LESS came 
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with the advent of the novel robotic platform (VeSPA, Intuitive Surgical, California, USA) 
(Figures. 4 & 5). These curved cannulae and semi-rigid instruments have been designed to 
compensate for the limitations encountered with conventional LESS surgery. The VeSPA 
curved cannulae and semirigid instrument design allow the cannulae and instruments to 
be inserted in close proximity while allowing approximate triangulation intra-
abdominally. The VESPA platform was successfully applied in a porcine model without 
conversions or addition of ports (Haber et al., 2010b). However, it is recognized that 
Robotic-LESS for the kidney is technically more challenging in humans compared to 
animal model. Therefore, further clinical research is required to confirm these early 
experimental results. 
 

 Standard LESS Da Vinci robotic LESS 

Scope Two-dimensional vision, 
high resolution, unstable 
vision 

Three-dimensional vision, 
high definition, stable vision 

Instruments Straight and 
articulating/flexible 
instruments 
 

Articulating instruments 

Triangulation Lacking (crossed hand 
surgery) 
 

Lacking (chopstick surgery) 

Instrument collision Significant Significant (due to bulky 
robotic arms) 

Range of motion Limited Enhanced surgeon dexterity 
because of the Endowrist 
technology 

Tissue dissection Challenging 
 

Limited at steep angles 

Suturing  Extremely challenging 
 

Accurate 

Ergonomics Reduced 
 

Enhanced (surgeon sitting at 
console) 

Main assistant’s role Camera manoeuvring Managing collisions 

Steepness of learning 
curve 

Very high Medium high 

Table 2. From laparoendoscopic single-site surgery to robotic laparoendoscopic single-site 
surgery: technical advances with da Vinci system 
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Fig. 2. The robot scope and two arms are inserted through a 2.5-cm incision in the umbilicus 
 

 
Fig. 3. Single-port and robot instruments through the bladder 

The initial clinical experience with robotic single-port transumbilical surgery was reported 
in 2009 (Kaouk et al, 2009a). A multichannel single port (R-port; Advanced Surgical 
Concepts, Dublin, Ireland) was inserted through a 2-cm umbilical incision into the 
abdomen. Three procedures were performed, including radical prostatectomy, 
dismembered pyeloplasty, and right sided radical nephrectomy. All procedures were 
completed without intraoperative complications. The radical prostatectomy was completed 
in 5 h, with 45 min required for the anastomosis. The pathology reported negative margins. 
The pyeloplasty was completed in 4.5 h, and the radical nephrectomy was completed in 2.5 
h. R-LESS procedures were accomplished without additional ports or significant differences 
in peri-operative outcomes compared to standard robotic approaches.  
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Fig. 4. Da Vinci® robotic with VeSPA instruments 
 

 
Fig. 5. VeSPA instruments and accessories. (A) Curved cannulae; (B) multichannel single-
port, 8.5-mm robotic scope, flexible instruments passed through the cannulae 

We recently reported our initial experience with single port robotic partial nephrectomy in 
two patients without conversions or complications (Kaouk et al. 2009b). A multichannel port 
(Triport; Advanced Surgical Concepts, Bray, Co Wicklow, Ireland) was utilized. Pediatric 5-
mm robotic instruments were used. A 30° robotic lens placed in the upward configuration 
minimized clashing between the scope and instruments. A 2.8 cm left lower pole tumor and 
a 1.1 cm right lower pole tumor were excised without renal hilar clamping using the 
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harmonic scalpel. EBL was 100 ml, operative time was 170 min, length of stay was 3.5 days, 
and visual analog pain scale at discharge was 1.0/10. 
Stein et al. reported robotic LESS using a gel port (Applied Medical, Rancho Santa 
Margarita, California, USA) as the access platform (Stein et al., 2010). Four clinical 
procedures were performed, including two pyeloplasties, one radical nephrectomy, and one 
partial nephrectomy. The gel port system was used to allow for a larger working platform. 
The partial nephrectomy was completed in 180 min. The mass was excised without hilar 
clamping, using the harmonic scalpel and Hem-o-lok clips (Weck Closure Systems, Research 
Triangle Park, North Carolina, USA). A radical nephrectomy was performed for a 5-cm left-
sided lower pole mass. The renal vein and artery were secured with an endoscopic stapler, 
and the remainder of the dissection was completed with hook cautery. The specimen was 
retrieved with an entrapment sac and removed via the umbilical incision extended to 4 cm. 
EBL was 250 ml, operative time was 200 min, and the hospital stay was 2 days.  
The Da Vinci system has several advantages over conventional laparoscopy allowing an 
increasing number of urologist adopt this method. Preliminary results of these minimal 
invasive approaches are encouraging in LESS and NOTES techniques. Further refinement in 
instrumentation, improved triangulation and development of robotic systems specific to 
LESS and NOTES may define the new horizons in single site surgery. 

4. Flexible robots 
The development of robotic technologies has also flourished in endocopic surgeries. A 
flexible robotic catheter manipulator (Sensei, Hansen Medical, Mountain View, CA, USA) 
thought to allow enhanced ergonomics with improved efficiency over standard flexible 
ureteroscopy was developed by Sensei, Hansen medical. Initial experience in the porcine 
model showed promising outcomes.  
 

 
Fig. 6. Pictorial depiction of components of flexible robotic catheter control system. Surgeon 
console (workstation) showing three LCD screens, one touch screen, and MID 
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Fig. 7. Robotic arm and steerable catheter 

The novel robotic catheter system comprises the following components (Figure. 6 & 7), (a) 
surgeon console, including the LCD display and master input device, (b) steerable catheter 
system, (c) remote catheter manipulator, and (d) electronic rack. The master input device 
(MID) is a three-dimensional joystick the surgeon uses to remotely maneuver the catheter 
tip. The real-time image of ureteroscopy, fluoroscopy and representation in space of the 
catheter position is projected simultaneous on the screens. Furthermore, images from the CT 
scan or an ultrasound probe images display. 
The steerable catheter system contains an outer catheter sheath (14F/12F) and an inner 
catheter guide (12F/10F). The movement of the MID intuitively controls the tip of the 
catheter guide. The robotic arm, steerable catheter, is attached to the edge of the table.  The 
catheter can be controlled either by fluoroscopy mode, direct vision from the ureteroscope 
or by a combination of both. In addition, a 3D reconstruction of the extremity the catheter is 
displayed on the screen, assisting in the identifying the location. Moreover, manoeuvrability 
is not diminished when the use of fiber laser 200 to 365 microns. 
The technical feasibility of the robotic catheter system was evaluated in retrograde 
renoscopy in the porcine model. Authors concluded that the robotic catheter system could 
easily manoeuvre the ureteroscope into 83 (98%) of the 85 calices tested in a reproducible 
manner. The ease and reproducibility of intra-renal navigation was rated at a mean of 10 of 
10 on the VAS (Desai et al., 2008b). Clinical investigation for flexible robotic system in 
ureteroscopy was performed in 18 patients who had renal calculi. Mean stone size was 11.9 
mm. All procedures were done unilaterally and all patients had ureteral stents placed for 2 
weeks. The robotic catheter system was introduced into the renal collecting system 
manually using fluoroscopic control along a guide wire. All intra-renal manoeuvres were 
performed completely by the surgeon from the robotic console. All procedures were 
technically successful, and all calculi were fragmented to the surgeon’s satisfaction, without 
conversion to standard ureteroscopy. Mean operative time was 91 minutes, including a 
robot docking time of 7 minutes, and stone localization time of 9 minutes. The mean visual 
analog scale rating (from 1, worst, to 10, best) for ease of stone localization was 8.3, ease of 
maneuvering was 8.5, and ease of fragmentation was 9.2. Complete fragment clearance was 
achieved in 56% of patients at 2 months, and in 89% of patients at 3 months. One patient 
required secondary ureteroscopy for a residual stone (Desai et al, 2008c) 
Improvements in flexible instrumentation have brought a revolution with retrograde intra-
renal surgery. Advancements in flexible ureteroscopes, laser lithotripsy, and ureteroscope 
accessories are contributors to the metamorphosis with robotics in endo-urology. 
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Miniaturization has been the key advancement for the progression of robotics in endoscope. 
Further studies are needed to corroborate these early clinical results. 

5. Robotic prostate biopsy 
Incorporation of real-time radiographic imaging for biopsy or ablative treatment of 
urological cancer is currently in development. A robotic arm Vicky® (Endo-Control, 
Grenoble, France) and an ultra-sound probe (B-K Medical, Denmark), were utilized to 
perform tranrectal prostate biopsies. The software was modified to save up to 24 spatial 
coordinates and answer the constraints of transrectal ultrasound. Tests on phantom and 
human cadaver prostates demonstrated the feasibility of robotic transrectal ultrasound, with 
precision biopsies performed on a target tumor ranging from (0.1 to 0.9 mm) on the prostate 
and (0.2 to 0.9 mm) on the phantom (Figure. 8). Initial results are encouraging with clinical 
trials forthcoming (Haber et al., 2008b). 
Moreover, a robotic positioning system with a biplane ultrasound probe on a mobile 
horizontal platform was used to perform prostate biopsies in a phantom model. . The 
integrated software acquires ultrasound images for three-dimensional modeling, 
coordinates target planning and directs the robotic positioning system. A repeatable 
accuracy of <1 mm was obtained (Ho et al., 2009). This robotic prostate biopsy system can 
theoretically biopsy targets from MRI images after merging the ultrasound images, allowing 
treatment of positive areas found on biopsies. 
Presently, a fully automated robot system, the MrBot, has been developed for transperineal 
prostate access. (Patriciu et al., 2007). It is mounted alongside the patient in the MR imager 
and is operated from the control room under image feedback. The robot presents 6 degrees 
of freedom: 5 for positioning and orienting the injector and 1 for setting the depth of needle 
insertion. The first driver was developed for fully automated low-dose (seed) 
brachytherapy. Compared with classic templates for needle guides, the robot enables 
additional freedom of motion for better targeting. As such, multiple needle insertions can be 
performed through the same skin entry point. In addition, angulations reduce the pubic 
arch interference, allowing better prostate access for sampling. The MrBot robot was 
constructed to be ubiquitous with medical imaging equipment such as ultrasound and MRI. 
An accuracy of 0.72 ± 0.36 mm was described for seed placement. Furthermore, multiple 
clinical interventions are possible with the MrBot system, such as biopsy, therapy injections, 
and radiofrequency ablations. Preclinical testing in cadaver and animal models has shown 
favorable results (Mozer et al., 2009). 

6. Future trends in the design and application of surgical robots 
Advances in robotic systems accompanied by trends toward miniature devices, microrobots 
and eventually nanorobots, are realistic near future advancements.  
Prototypes of the Microrobot cameras (15 mm /3 inches) were placed inside the abdomen of 
a canine model during laparoscopic prostatectomy and nephrectomy allowing for additional 
views (360-degree) of the surgical field The microrobot was mobile, controlled remotely to 
desired locations, further aiding the laparoscopic procedures (Joseph et al., 2008). 
More recently, Lehman et al. showed the feasibility of LESS cholecystectomy in a porcine 
model, using a miniature robot platform (Lehman et al., 2011). The robot platform 
incorporated a dexterous in-vivo robot and a remote surgeon interface console. In addition, 
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multiple robots could be inserted through a single incision rather than the traditional use of 
multiple port sites. Capabilities such as tissue retraction, single incision surgery, 
supplementary visualization, or lighting can be delivered by these micro-robots.  
A well-known limitation of the current robotic platform is the lack of tactile feedback. 
However, the improved visualization and accuracy of robotic instrumentation may 
overcome this limitation. Furthermore, newer technologies with multiple compact robots, 
tracking tools, and tactile feedback apparatus may further expand the application of robotic 
surgery.  
 

 
Fig. 8. Robot installation for tranrectal prostate biopsies 
 

 
Fig. 9. The combination of multiple compact robots 
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7. Conclusion 
Robotic applications in urology are effective and safe technologies. Surgical technique have 
evolved and indications have been expanded to more challenging scenarios. New 
technologies are constantly reshaping the urological sphere especially robotics. Further 
refinements in robotic systems along with a reduction in cost are key components for rapid 
assimilation amongst the urological community. 
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1. Introduction  
In the highly competitive food market, a wide variety of cartons is used for packaging with 
attractive forms, eye-catching shapes and various structures from a logistical and a 
marketing point of view. These frequent changes require innovative packaging. Hence, for 
some complex styles like origami cartons and cartons for small batch products, most 
confectionery companies have to resort to using manual efforts, a more expensive process 
adding cost to the final products, particularly when an expensive seasonal labor supply is 
required. This manual operating line must go through an expensive induction and training 
program to teach employees how to erect a carton.  
Current machines are only used for the same general style or are specifically designed for a 
fixed type of cartons and all new cartons require development and manufacture of new 
tooling for this machinery. New tooling is also required for each different pack size and 
format. The development and manufacture of this tooling can be very expensive and 
increases the manufacturer’s lead time for introducing new products to market, therefore 
reducing the manufacturer’s ability to match changes in consumer demands. Tooling 
changeovers, when changing production from one packaging format to another, also adds 
cost to the manufacturer. It is uneconomical to produce a dedicated machine for a small 
batch production. Hence, in this high seasonal and competitive market, manufacturer needs 
a dexterous and reconfigurable machine for their variety and complexity in attracting 
customers.  
The machines are expected to reconfigure themselves to adapt to different types of cartons 
and to follow different instructions for various closing methods. Rapid expansion of robotics 
and automation technology in recent years has led to development of robots in packaging 
industry. Though pick and place robots were extensively used, complex tasks for erecting 
and closing origami-type cartons still resort to manual operations. This presents a challenge 
to robotics. 
Some related areas with carton folding on the problem of creating 3-D sheet metal parts 
from sheet metal blanks by bending are explored by some researchers to provide a starting 
point for exploration in this field when discussing folding sequences based on their objective 
function, consisting of a high-level planner that determines the sequence of bends, and a 
number of low level planners for individual actions. deVin (de Vin et al.,1994) described a 
computer-aided process planning system to determine bending sequences for sheet-metal 
manufacturing. Shpitalni and Saddan (Shpitalni & Saddan., 1994) described a system to 
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automatically generate bending sequences. The domain-specific costs for example the 
number of tool changes and part reorientations were used to guide the A* search algorithm. 
Radin et al., (Radin et al., 1997) presented a two-stage algorithm. This method generates a 
bending sequence using collision avoidance heuristics and then searches for lower cost 
solutions without violating time constrains. Inui et al. (Inui et al., 1987) developed a method 
to plan sheet metal parts and give a bending simulation. Gupta et al. (Gupta et al., 1997) 
described a fully automated process planning system with a state-space search approach. 
Wang and Bourne (Wang & Bourne, 1997) explored a way to shape symmetry to reduce 
planning complexity for sheet metal layout planning, bend planning, part stacking, and 
assembly, the geometric constraints in carton folding parallel those in assembly planning. 
Wang (Wang, 1997) developed methods to unfold 3-D products into 2-D patterns, and 
identified unfolding bend sequences that avoided collisions with tools. 
In computational biology, protein folding is one of the most important outstanding 
problems that fold a one-dimensional amino acid chain into a three-dimensional protein 
structure. Song and Amato (Song & Amato, 2001a, 2001b) introduced a new method by 
modeling these foldable objects as tree-like multi-link objects to apply a motion planning 
technique to a folding problem. This motion planning approach is based on the successful 
probabilistic roadmap (PRM) method (Kavraki et al., 2001a, 2001b) which has been used to 
study the related problem of ligands binding (Singh et al., 1999, Bayazit et al., 2001). 
Advantages of the PRM approach are that it efficiently covers a large portion of the 
planning space and it also provides an effective way to incorporate and study various initial 
conformations, which has been of interest in drug design. Molecular dynamics simulations 
are the other methods (Levitt et al, 1983, Duan. et al., 1993) which tried to simulate the true 
dynamics of the folding process using the classic Newton’s equations of motion. They 
provided a means to study the underlying folding mechanism, to investigate folding 
pathways, and provided intermediate folding states. 
Rapid expansion of robotics and automation technology in recent years has led to 
development of robots in packaging industry. Automation of the carton folding process 
involves several subtasks including automatic folding sequence generation, motion 
planning of carton folding, and development of robotic manipulators for reconfigurability. 
Though pick and place robots have been extensively used, complex tasks for erecting and 
closing origami-type cartons still resort to manual operations. This presents a challenge to 
robotics. 
Investigating origami naturally leads to the study of folding machinery. This evolves to 
folding a carton. Lu and Akella (Lu & Akella, 1999, 2000) in 1999 by exploring a fixture 
technique to describe carton folding based on a conventional cubical carton using a SCARA-
type robot and on the similarity between carton motion sequences with robot operation 
sequences. This approach uses the motion planner to aid the design of minimal complexity 
hardware by a human designer. But the technology only focused on rectangular cartons not 
on origami-type cartons which include spherical close chains on vertexes. Balkcom and 
Mason (Balkcom & Mason, 2004, Balkcom et al., 2004) investigated closed chain folding of 
origami and developed a machine designed to allow a 4DOF Adept SCARA robot arm to 
make simple folds. However for complex cartons including multi-closed chains the 
flexibility and reconfigurability of this method are limited. This requires a quantitative 
description of a carton, its folding motion and operations. Dai (Dai & Rees Jones, 2001, 2002, 
2005, Liu & Dai, 2002, 2003, Dubey &Dai, 2006) and Yao (Yao & Dai, 2008, 2010, 2011) at 
King’s College London developed a multi-fingered robotic system for carton folding. 
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2. Equivalent mechanism of an origami carton 
A carton is formed with crease lines and various geometric shapes of panels. Folding and 
manipulating a carton is a process of changing the position of panels and their relationship. 
Taking creases as revolute joints and cardboard panels as links, a carton can be modeled as a 
mechanism. The kinematic model of this equivalent mechanism provides motion of carton 
folding. 
Carton folding starts from a flat cardboard consisting of a set of panels with creases 
connecting adjacent panels. All the required motions involve carton panels folding about a 
crease-line through an angle. There are many ways to fold the carton box into its final state, 
which are based on the location and orientation of the folding. For the simple cartons the 
manipulation can be assumed to be at one joint between adjacent boards and each joint 
moves to its goal configuration. The motion path and sequence can be easily calculated by 
the joint angles of the carton. Folding sequence can be checked by following steps, including 
checking the reduced graph, which is checking the equivalent mechanism structures of 
cartons, to see if they are symmetric or have any other geometric characteristics; identifying 
independent branches which result in independent operations; searching folding layers in 
turn; and manipulating from the layer which is closest to the base, from the symmetric 
panels and from the node which is present in the shortest branch. 
 

 
Fig. 1. A Carton Folding Sequence for an Origami Carton 

During the process of the Origami carton folding the guiding joint can be identified. Four 
closed loops with four folding sub-mechanisms are found. For the sub-mechanism of a 
guiding joint, the mechanism can be described as a 5-Bar mechanism that the panels are 
described linkage and the creases are revolute joints. It is means that the reaction forces at 
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the joint of the box paper do not produce unexpected deformation. Five revolute joints axes 
that intersect in the point that is the intersection of the creases define the spherical linkage 
and their movement is defined. 
Figure 2 gives a half-erected origami carton which consists of four sections at vertexes 
located at four corners of the carton labeled as O1, O2, O3, and O4Folding manipulation of the 
carton is dominated by these sections. The rectangular base of the carton is fixed on the 
ground. Four creases along the rectangular base are given by four vectors b1, b2, b3 and b4 
Four centrally movable creases are given as s, s’’, s’’ and s’’’ each of which is active in a gusset 
corner. The carton is symmetric along line AA’. 
 

 
Fig. 2. A half-erected origami 

Thus an equivalent mechanism is modeled in figure 3.4. The five bar mechanism’s centres 
are located at four corners of the carton base O1, O2, O3, and O4.From the equivalent 
mechanism and folding process, the five-bar spherical mechanism can determine the 
configuration of the carton. 
 

 
Fig. 3. The equivalent mechanism of the base of a double wall tray 
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One of the corners located at O1 formed one spherical mechanism. When its folding joint s 
moves and controls the configuration of the mechanism and drives joints t, and p. When the 
two joints attached the mobility of the mechanism reduces from 2 to 1 and the mechanism 
gets its singularity. The joint s is active and called control joint. During the manually folding 
of this origami carton human fingers attaches the control joints and drives them into goal 
positions. 

3.Geometry analysis of the mechanism  
The geometric arrangement is defined in figure 4. 

 
Fig. 4. Geometry of spherical five-bar mechanism 

Among joint axes t, s, p and fixed axes b1 and b2 configuration control vector s provides the 
guiding joint axis that controls the carton section configuration. The spherical links between 
joint axes are labeled as AB, BC, CD, DE, and EA. Since angles ρi between revolute joints are 
constant throughout the movement of the linkage, the coordinates of the joint axes t, s, and 
p can be obtained by matrix operation from original joint axis b1 which is a unit vector. This 
relationship of the axes can be given in terms of geometric constraints as, 
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4 arccos( )ρ = ⋅p d  

 5 arccos( )ρ = ⋅d b    (1)  

Further, the configuration control vector s can be determined as, 

 

1 0 1
1

0 0

0 0

R( ,90 )R( , )

c(90 0 s(90 ) 1 0 0 0 c c
  0 1 0 0 c s  0 s

s(90 ) 0 c(90 ) 0 s c 1 s c
 

s φ ξ

φ φ φ ξ
ξ ξ ξ

φ φ ξ ξ φ ξ

′= − + − =

 + − + −     
       = =       
       + + − −      

y x b
  (2) 

The side elevation vector t is given as,          

 

1 1
1 1

1 1 1

1

1 1 1

R( , )R( , )

c s 0 c 0 s 0 c s
  s c 0 0 1 0 0 s s

0 0 1 s 0 c 1 c

σ ρ

σ σ ρ ρ σ ρ
σ σ σ ρ

ρ ρ ρ

′= − − =

− −       
       = − =       
              

t z y b
   (3) 

Further the geometric constraint gives,   

 2c ρ⋅ =t s     (4)  

Substituting t of equation (2) and s of equation (3) into above yields 

  2 1 1 1c        c c c s s s s s c cρ φ ξ σ ρ ξ σ ρ φ ρ ξ= + −     (5) 

Collecting the same terms with cσ  and sσ , the above equation can be rewritten as, 

 ( , )c ( , )s ( , ) 0,A B Cφ ξ σ φ ξ σ φ ξ+ − =    (6) 

Where   

 
1

1

1 2

( , )   c ,
( , )  ,
( , )   c .

A s c
B s s
C s c c

φ ξ ρ ξ φ
φ ξ ξ ρ
φ ξ φ ρ ξ ρ

=
=
= − −

   (7) 

The side elevation angle σ  varying with the transmission angles φ  and ξ  can hence be 
given:    

 1 1
2 2

( , ) tan ( ) cos ( )A C
B A B

σ φ ξ − −= ±
+

    (8) 

Further, the main elevation vector p can be obtain as,                              

 1 1 1
5 4 1R( , )R( , )R( , )ρ ς ρ′ ′=p y z y b    (9) 

Hence, 
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5 5 4 4

5 5 4 4
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−       
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       − −       
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Since 4 5 / 2ρ ρ π= = , the above becomes, 

 
0
s
c
ς
ς

 
 =  
 − 

p    (11) 

Substituting p of equation (4.15) and s of equation (4.6) into equation (4.3) gives, 

 3c c  s  c s  sρ ς φ ξ ς ξ= +     (12) 

Assembling the same terms of cς  and sς , the above can be rearranged as, 

 ( , )c ( , )s 0D E Fσ ξ ς σ ξ ς+ + =    (13) 

Where, 

 
3
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ρ
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=
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   (14) 

The main elevation angle ς  varying with the transmission angles φ  and ξ  can hence be 
obtained, 

 1 1
2 2

( , ) tan ( ) cos ( )D F
E D E

ς φ ξ − −= ±
+

    (15) 

The control vector s also can be gotten from the transformation: 

 1 1 1 1
1 2 1( , ) ( , ) ( , ) ( , )s z y z y bσ ρ μ ρ′ ′ ′ ′= R R R R   (16) 

The vector can be expressed, 
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Two columns are equal and can be easily got, 
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Hence, the elevation angles are related to the transmission angles that control the 
configuration vector s. Both sets of angles feature the carton configuration. The following 
Figure 5 shows the end-point trajectories of four configuration control vector. 
 

 
Fig. 5. End-point trajectories of four configuration control vectors 

4. Velocity-control formulation of the single-vertex on the origami carton  
The kinematic representation of the spherical mechanism is showed an above figure which 
is in the Cartesian space 
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Fig. 6. Screw of the spherical five-bar mechanism 

Since the system is spherical the fixed point o can be selected as represent point and the 
system only have 3 rotation parts in Plücker coordinates the infinitesimal screw are given 
by, 51 (0,0,1;0)=$


, 12 1 1 1( c s ,s s ,c ;0)σ ρ σ ρ ρ= −$


, 45 (1,0,0;0)=$


, 34 (0,s , c ;0)ς ς= −$


, 

23 ( ;0)s=$
 . 23 ( ;0)s=$

 . 



 
Reconfigurable Automation of Carton Packaging with Robotic Technology 

 

133 

Where, s is control vector that got from last section 
Assume that a velocity of control vector v is, 

  45 34 15 21 32sς κ σ μ ω= + = + +v $ $ $ $ $
   

   (20) 

Thus after canceling the dual parts of the infinitesimal screw the joint speeds can be 
computed as, 

     [ ]34 21 32 45 15  
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μ ς σ
ω

 
 
 

− = − + 
 
 
 

$ $ $ $ $



  
     (21) 

With the application of Cramer’s rule, 
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For the coefficients can be gotten, 
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then, 
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So, the velocity of the control joint s can be obtained, 

   2 1 2G G= ς + ς + σ
  

v b       (25) 

Where, 
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where, the matrix 
1
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1
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c 0 1 c

− σ ρ 
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 ρ − ς 

 is the Jacobean matrix for the control of the system. 
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5. Simulation of automatically folding origami carton using a multi-fingered 
robotic system 
The robot has been designed based on the analysis of common motion and manipulation, 
which has four fingers in the following figure 7, two with three degrees of freedom noted 
finger 1 and finger 2, and two noted with finger 3 and finger4 with two degrees of freedom 
each. These fingers design are able to offer required folding trajectories by changing the 
control programs of the fingers’ motors.  Two horizontal jaws are arranged with the pushing 
direction parallel to the fingers’ horizontal tracks. The joints of the fingers are actuated 
directly by motors and the whole system requires 14 controlled axes. This design is 
considered specifically based on providing high degree of reconfigurability with minimum 
number of motors to be controlled. 
 

 
Fig. 7. A Multi-fingered robot for origami carton folding 

To determine the control setting and speeds of the actuated joints for the multi-finger 
robotic system when fingertips are in special location and twists the Jacobian [ J ] need to be 
identified as. 

   [ ] [ ][ ]= ωs i$ J   (27) 

For corner1 which located in O1 in configuration space the main parts of the screw is shown 
in equation 25. 
Expanding to the four fingers robotic system, each finger related one Conner manipulation 
which their velocities is got from four five bar’s control joints twist. 
While , 

Finger2 

Finger1

Finger3

Finger4 
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  [ ]1 2 3 4ν ν ν ν   (28) 

Then the Jacobean matrix of the robotic system is determined as   ij$ , where i for finger’s 
number and  j  for motors number. 

 [ ] [ ]1− ω = ν ij iJ    (29) 

Then every motor’s speeds and control can be set. 
The whole folding process can be simulated by the multi-fingered robotic system in the 
following figure 8. 
This methodology of multi-robotic manipulations using configuration space transformation 
in interactive configuration space is the theoretical base for the further development of 
multi-finger reconfigurable systems. This test rig has given experimental knowledge and 
information for further reconfigurable systems in packaging industry. In this robotic system, 
all motors of the robotic fingers and the two horizontal jaws are controlled by a computer. 
For different types of cartons, the system just need be changed the programs based on their 
folding trajectories without readjusting the hardwires of the system. 
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Fig. 8. Simulation of a multi-fingered manipulation on an origami carton 

 
Fig. 9. A multi-fingered robotic system 
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6. Conclusion  
This paper has presented new approaches to carton modelling and carton folding analysis. 
By investigating carton examples, with an analysis of the equivalent mechanism, the gusset 
vertexes of the cartons - being a common structure of cartons - were extracted and analyzed 
based on their equivalent spherical linkages and were identified as guiding linkages that 
determine folding. 
A reconfigurable robotic system was designed based on the algorithms for multi-fingered 
manipulation and the principle of reconfigurability was demonstrated. The simulation 
results for the folding of an origami carton were given to prove the theory of the multi-
fingered manipulation strategy and the concept of reconfigurable robotic systems. Test rigs 
were developed to demonstrate the principles of the reconfigurable packaging technology.  
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1. Introduction 
An autonomous anthropomorphic robotic arm has been designed and fabricated to 
automatically monitor plant tissue growth in a modified clonal micro-propagation system 
which is being developed for the New Zealand Institute for Plant & Food Research Limited. 
The custom-fabricated robotic arm uses a vertical linear ball shaft and high speed stepper 
motors to provide the movements of the various joints, with the arm able to swivel 180 
degrees horizontally. Sensors located at the end of the arm monitor plant growth and the 
ambient growing environment. These include a compact colour zoom camera mounted on a 
pan and tilt mechanism to capture high resolution images, RGB (red, green and blue) colour 
sensors to monitor leaf colour as well as sensors to measure ambient atmospheric 
temperature, relative humidity and carbon dioxide.  The robotic arm can reach anywhere 
over multiple trays (600mm x 600mm) of plantlets. Captured plant tissue images are 
processed using innovative algorithms to determine tissue, or whole plant, growth rates 
over specified time periods. Leaf colour sensors provide information on the health status of 
tissue by comparing the output with predetermined optimum values. Custom software has 
been developed to fully automate the operation of the robotic arm and capture data, 
allowing the arm to return to specified sites (i.e. individual plantlets) at set time intervals to 
identify subtle changes in growth rates and leaf colour. This will allow plant nutrient levels 
and the immediate environment to be routinely adjusted in response to this continuous 
sensing, resulting in optimised rapid growth of the plant with minimal human input.  
These low cost colour sensors can be incorporated into a continuous automated system for 
monitoring leaf colour of growing plants. Subtle colour changes can be an early indication of 
stress from less than optimum nutrient concentrations. In this chapter we also detail the 
calibration technique for a RGB sensor and compare it with a high end spectrophotometer. 

2. Robotic systems in agriculture 
Robotic and automated systems are becoming increasingly common in all economic sectors. 
In the past decade there has been a push towards more automation in the horticulture 
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industry, and it is only now, as robots become more sophisticated and reliable, that we are 
beginning to see them used to undertake routine, often repetitive tasks, which are expensive 
to do using a highly paid labour force. With rapid strides in technological advancement, 
more and more applications have become possible. These include the development of a 
robotic system for weed control (Slaughter, et al., 2008), a system for automatic harvesting of 
numerous agri-science products such as cutting flowers grown in greenhouses (Kawollek & 
Rath, 2008) and automating cucumber harvesting in greenhouses (van Henten, et al., 2002). 
Advances in electronics have empowered engineers to build robots that are capable of 
operating in unstructured environments (Garcia, et al., 2009). Camera-in-hand robotic 
systems are becoming increasingly popular, wherein a camera is mounted on the robot, 
usually at the hand, to provide an image of the objects located in the robot’s workspace 
(Kelly, et al., 2000). Increasingly, robots are being used to sort, grade, pack and even pick 
fruits. Fruits can be identified and classified on a continuously moving conveyer belt (Reyes 
& Chiang, 2009). An autonomous wheeled robot has been developed to pick kiwifruit from 
orchard vines (Scarfe, et al., 2009). Robotic techniques for production of seedlings have been 
developed, identifying a need to add a machine vision system to detect irregularities in seed 
trays and to provide supplementary sowing using a 5-arm robot (HonYong, et al., 1999).  
Automation of micro propagation for the rapid multiplication of plants has been described 
for the micro propagation of a grass species that replaces the costly and tedious manual 
process (Otte, et al., 1996). A system has also been developed that combines plant 
recognition and chemical micro-dosing using autonomous robotics (Sogaard & Lund, 2007). 
Colour as a means of assessing quality is also gaining popularity amongst researchers. These 
include evaluating bakery products using colour-based machine vision (Abdullah, et al., 
2000), monitoring tea during fermentation (Borah & Bhuyan, 2005), grading specific fruits 
and vegetables (Kang & Sabarez, 2009; Miranda, et al., 2007; Omar & MatJafri, 2009) and in 
the health sector to determine blood glucose concentrations (Raja & Sankaranarayanan, 
2006). Near infrared (NIR) sensors are also gaining popularity as non-destructive means of 
assessing fruit and plant material, including the measurements of plant nutrient status 
(Menesatti, et al., 2010) as well as testing of fruit quality (Hu, et al., 2005; Nicola¨ı, et al., 
2007; Paz, et al., 2009). 
Investigation into non-destructive methods to measure the health status of plants is a 
relatively new area of research. Subtle leaf colour changes can be used as a measure of plant 
health. Although limited work has been carried out in real time, a recent micro-propagation 
based system used potato tissue images captured via a digital camera, to identify the colour 
of selected pixels (Yadav, et al., 2010). Spectral reflectance, using a range of spectral bands, 
has been used as a non-destructive measure of leaf chlorophyll content in a range of species 
(Gitelson, et al., 2003).  Alternative methods make use of spectroscopic systems using a fixed 
light source to record colour reflectance of multiple samples (Yam & Papadakis, 2004). 
The introduction of machine vision as a means of investigating the environment allows for 
very complex systems to be developed. Over the years the conventional “robotic design 
types” have remained more or less the same; however modified designs are increasingly 
being employed for specific tasks. Designs of robotic arms have made huge progress in 
recent years, as motor controllers, sensors and computers have become more sophisticated. 
It is envisaged that as more sensors, such as NIR (near infra-red) and colour sensors, become 
readily available, these will be integrated in the robotic arm. One such integrated system, 
which is unique and different from off-the-shelf robots, is detailed in this chapter. 



Autonomous Anthropomorphic Robotic System  
with Low-Cost Colour Sensors to Monitor Plant Growth in a Laboratory 

 

141 

3. Overview of the robotic system 
The reported robotic system has been developed to work in a specific environment using 
specific sensors – it is meant to monitor growth of plant tissues in a laboratory. The plantlets 
are growing in multiple trays (600mm x 600mm) which are arranged contiguously on a shelf 
and there are multiple shelves one above the other. The robot should thus be able to extend 
its reach vertically and monitor plants in each shelf and be capable of reaching each tray. 
The robotic system designed is based on a SCARA (Selective Compliant 
Assembly/Articulated Robot Arm) robot. However, SCARA robots are rigid in the Z-axis 
and pliable in the XY-axes only. This rigidity in the Z-axis is a serious limitation of a SCARA 
robot for the given scenario. In the proposed system the entire arm is able to move in the Z-
axis, as opposed to just the end-effector. 
Another point of difference between the proposed system and conventional off-the-shelf 
industrial robot is the mechanism to house the sensors. To monitor the growth of plants, 
colour camera and RGB sensors are used. To enable the robot to position itself at a desired 
distance from the plant surface, proximity sensors are also required. The sensors need to be 
housed in an enclosure at the end of the robotic arm. In order to capture images and take RGB 
sensor readings from any angle it should be possible to pan and tilt the sensor housing 
structure. Such a mechanism is not a standard part of a conventional off-the-shelf industrial 
robot. In general, the costs of industrial robotic systems are far greater than the proposed 
system, often a lot more bulky and it is hard to integrate additional components (i.e. Sensors). 
Two prototypes of the camera-in-hand robotic system were designed and built. The initial 
prototype made use of servo motors, designed as a simple experiment to test the viability of 
the system and its control mechanism. The colour camera was incorporated in this 
prototype and its control was implemented. The captured images were stored in a database 
for subsequent retrieval and processing. The prototype also helped to experiment with the 
wireless remote control of the robotic arm and the remote setting of camera features such as 
zoom, gain and exposure. Having established the ‘proof-of-concept’, the second prototype was 
designed and built to industrial specifications. This version of the prototype made use of high-
torque stepper motors and greatly improved the performance of the robotic arm. Additionally, 
this prototype incorporated low-cost RGB colour sensors for monitoring plant health together 
with a proximity sensor. Sensors to monitor the ambient atmosphere were also incorporated to 
measure temperature, humidity and CO2 levels. Section 3.1 gives a concise overview of the 
first prototype and section 3.2 details the second prototype in greater depth. 

3.1 Robotic arm using servo motors 
The basic concept of this robotic system, from human input to the control of the arm and 
camera, is outlined in the functional block diagram shown in figure 1. A system engineering 
approach was employed to take the robotic arm from concept to reality, making use of 
standard components and integrating them together to make the final product. The robotic 
arm was designed using 5 servo motors and implemented a pan and tilt mechanism for the 
camera. 
The operator uses a joystick to control the movement of the robotic arm. This joystick 
connects to the PC via a USB interface. Movements of the joystick, made by the operator, 
vary the slide bars on the Graphical User Interface (GUI) running on the PC and at the same 
time control the movement of the joints of the arm. Serial data is then sent via the USB to the 
wireless transmitter (Zigbee Pro) module which transmits the data to the wireless receiver 
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module. The received data is then sent to the camera and the servo controller board. The 
user interface is shown in figure 2 and the completed robotic system, with plant trays, is 
shown in figure 3. 
 

 
Fig. 1. Functional block diagram of the camera-in-hand robotic system 
 

 
Fig. 2. The Graphical User Interface (GUI) of the robot control system 
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Fig. 3. The completed robotic arm with camera, joystick and plant trays 

3.1.1 Control of servo motor based robotic arm 
Using a modular approach the system was built and tested in parts. The sub-systems that 
had to be programmed, such as the servo-controller, joystick and camera, were tested 
separately. The testing setup and procedures are explained in this section. The servo 
controller board can take two types of serial mode signals – USB and 5V TTL UART. The 
controller board, together with the joystick, was tested using the connection diagram shown 
in figure 4. 
 

 
Fig. 4. Block diagram showing connection between PC, servo controller board and joystick 

In the first instance a simple program was written in Visual Basic, allowing each servo 
motor to be controlled separately by clicking buttons. The motor parameters such as 
stepping rate and acceleration interval could be entered through the program’s user 
interface. The user interface of the test program is shown in figure 5. This program sent the 
corresponding commands to the servo motor controller board. The next step was to control 
the servo motor by implementing a slide bar (figure 2). This allowed the operator to slide 
the bar, which incremented or decremented the position value, allowing simple movements 
based on the position byte. On successfully implementing controls for one servo motor, 
multiple servo motors could then be controlled in the same manner.  
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Fig. 5. User interface of the test program to control individual motors 

3.2 Robotic arm using stepper motors 
The second design of the robot was extensively influenced by the knowledge and insight 
gained from the servo motor based design of the robotic arm. The robotic arm was designed 
to move the end-effector over trays of plant material located on different levels of shelving 
units to capture images and the colour of the plant material and to use this information as a 
non-destructive measurement of plant health. To achieve this, a compact colour camera 
("Sony Professional," 2010), proximity and colour sensor ("Parallax Home," 2010) are housed 
in the end-effector. Each tray measures approximately 600mm x 600mm, with each shelf 
located approximately 300mm above the previous shelf, with the top shelf approximately 
1000mm high. The system is designed to move the arm into the trays, capture the required 
information and then move up to the next shelf and repeat the process on the next tray.  

3.2.1 Mechanical design of the robotic arm 
To allow the robotic arm to move vertically, a ball screw and shaft assembly is incorporated, 
converting rotational motion into vertical movement. The conceptual design is shown in figure 
6. The arm contains a pan and tilt system at its distal end, which houses the camera, colour and 
proximity sensors. The operation of the arm is completely automated, continually gathering 
information from the sensors and capturing images for assessment and analysis. 
The design is based on a modified SCARA robotic arm. Designed in the 3D CAD package, 
Solidworks, all components where machined in-house using a CNC machine. The arm itself 
has been through a number of design iterations to overcome unforeseen problems and to 
improve the efficiency of operation.  
The robotic arm went through a number of design phases, with each design an 
improvement over the previous design iteration. In the initial concept it was intended to  
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Fig. 6. SolidWorks rendered design of the robotic arm 
 

     
Fig. 7. The system in various stages of development and integration 
 

   
Fig. 8. (a) Completed robotic arm using stepper motors (b) Camera housing and RGB colour 
Sensors 
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make the links of the robotic arm extendable so that the robot can be flexible and adapted to 
operate in various workspaces. To ensure the motor torque ratings were not exceeded, a 
gearing system was investigated, which made use of spur gears to increase torque ratios. 
However, once constructed, a number of issues arose, including excessive weight (with the 
links extended) and slippage between gears. To overcome these issues a rethink of the arm 
design removed the ability to extend the link lengths, and a belt and pulley system was 
integrated to alleviate slippage within the gears. However, each design iteration maintained 
the overall original design concept. Figure 7 shows an initial version of the robotic arm in 
various stages of assembly and figure 8 shows the final design, with the various aluminium 
parts anodized. The completed robotic arm is shown in figure 8 (a). The close up view of the 
camera housing mechanism and the RGB colour sensors is shown in figure 8(b). 

3.2.2 Actuation and control of the robotic arm joints using stepper motors 
To allow the various joints to move, the arm uses bipolar, high torque stepper motors, which 
have varying amounts of torque, depending on the joint. The robotic arm uses five stepper 
motors that are controlled through a motor controller (KTA-190) and micro-step driver 
(M542) ("OceanControls," 2010). All the five motors have a step angle of 1.8 degrees and 
make use of a micro step driver that allows the user to select an even finer resolution (i.e. 
increasing the number of steps per revolution). Both a pulse signal and a direction signal are 
required for connecting a 4-wire stepper motor to the driver, with speed and torque 
depending on the winding inductance. 
The KTA-190 motor controllers provide an interface between the computer and up to 4 
stepper motors as well as the ability to control each motor independently or collectively. 
Utilizing a RS-232 9600, 8N1 ASCII serial communication protocol, up to 4 controller boards 
can be linked, giving control of up to 16 stepper motors (figure 9). A motor is controlled by a 
simple address, followed by the appropriate ASCII commands. The controller has as 
interface to allow limit switches to be used to prevent the motors from travelling out of 
range. With a total of 17 commands it is possible to tailor the operation and move the 
motors. Commands include: setting the position of the motors, returning the current 
positions of the motors, moving the motors by a relative or absolute amount and 
acceleration settings. A status command returns a 12-bit binary representation on the status 
of the controller board at any given time, providing information on the movement, direction 
and status of the limit switch respectively. 
 

 
Fig. 9. Block diagram showing control of the 5 stepper motors 

The angle each motor is required to move is calculated via an inverse kinematic algorithm. 
The user simply enters the desired tray that is required to be monitored, along with the 
number (and frequency) of readings within the tray. The software then calculates the 
required motor positions to enable the camera and sensors to capture the required 
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information. A proximity sensor has been integrated into the system to ensure that the 
colour readings are taken at a fixed height of 20mm above the plant material. 

4. Sensors 
Sensors provide information on the surroundings, which vary depending on their intended 
applications. A number of sensors have been integrated into the system to provide 
information in a non-destructive method on plant growth, with the intention of using low 
cost sensors which are easily amendable into the system. The use of a camera provides 
information on how fast the plant is growing, by identifying the quantity of plant material 
from a 2D view. Colour sensors provide information on the colour of an object. When colour 
sensors are used to monitor plant leaves, subtle changes can be detected before the human 
eye can identify them. This allows for media and nutrient levels to be adjusted accordingly. 
A proximity sensor ensures colour readings are taken at a fixed height, while temperature, 
humidity and CO2 sensors provide information on the ambient environment. 
We detail the camera control and testing in section 4.1. Colour sensor selection, along with 
calibration techniques and results, are presented in detail in section 4.2. 

4.1 Camera 
A Sony colour camera (model: FCB-IX11AP) was used. It features a ¼″ CCD (charge coupled 
device) image sensor using PAL (Phase Alternating Line) encoding system. The camera has 
a 40x zoom ratio (10x optical, 4x digital) that is controllable from a PC via Sony’s VISCA 
(Video System Control Architecture) command protocol. Over 38,000 different command 
combinations are possible for controlling the cameras features. The camera’s macro 
capability allows it to capture images as close as 10mm from the subject and it can operate in 
light conditions as low as 1.5 Lux. The electronic shutter speed is controllable from 1/10 to 
1/10000 of a second allowing for clarity in photographs. In order for the camera’s functions 
to be controlled, hexadecimal commands (as serial data) are sent to the camera. These serial 
commands require 8 data bits, 1 start bit, 1 (or 2) stop bit and no parity. They have a 
communication speed of 9.6, 19.2 or 38.4 kbps. The camera can be programmed and 
controlled using a TTL or RS232C signal level serial interface. To test the camera features, it 
was directly wired to the PC using the RS232C interface via a USB-to-RS232 converter as 
shown in figure 10. The video output signal from the camera was fed to a frame 
grabber/digitizer which is interfaced to the PC using USB. The image captured is displayed 
on the application’s GUI (figure 12). 
 

 
Fig. 10. Block diagram showing wired connection of PC to camera’s RS232 inputs 
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To familiarize with the VISCA command structure and to test the various camera functions, 
especially the programming commands for controlling the zoom, a standard communication 
program (Terminal v1.9b) was used to send commands to the camera. To test the TTL 
interface, the system shown in figure 11 was employed. IC ST232 was used to convert the 
RS232 level signals to 5V TTL. 
 

 
Fig. 11. Block diagram showing wired connection of PC to camera’s TTL inputs 

In the final design of the robotic system the camera was connected using the original RS-232 
interface, with custom software created to control the features of the camera. Figure 12 
shows the user interface which allows camera zoom, iris, gain, exposure settings and shutter 
features to be manually controlled. It also displays the image captured by the camera. Figure 
13 shows the test program depicting the magnified image of the object under observation, 
with the camera set to 8x zoom. 
Each of the controllable settings for the camera is controlled by sending arrays of 
hexadecimal commands to the camera, making use of Sony’s VISCA protocol. Custom 
created software allows the user to control a number of settings to customize the camera to 
the user’s desire.  
 

 
Fig. 12. User interface of the camera control program 
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Fig. 13. Graphical User Interface (GUI) of the remote control application (camera zoom 8x) 

4.2 RGB colour sensors 
Currently there are a number of colour sensors on the market, with prices ranging from low 
cost light-to-frequency chips to sophisticated and very expensive spectrophotometers. 
Parallax (Parallax Inc, CA, USA) has two colour sensors that integrate seamlessly with their 
Basic Stamp microcontroller. Both the ColorPAL and TCS 3200 colour sensors are provided 
with some source code, making them amenable to integrating with our customised system.  
 

 
Fig. 14. Parallax ColorPAL colour sensor 

The ColorPAL sensor (figure 14) illuminates a sample using in-built red, green and blue 
LED light sources (one colour at a time) and records the quantity of light reflected back from 
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the object. The ColorPAL makes use of a TAOS (Texas Advanced Optoelectronic Solutions) 
light-to-voltage chip. When light is reflected, the voltage, which is proportional to the light 
reflected, is used to determine the sample’s R, G and B colour contents. The ColorPAL 
requires the sample to be illuminated using each of the red, green and blue LEDs, with a 
‘snorkel’ to shield possible interference from external light sources. This requires the 
ColorPAL to be in direct contact with the object for an optimum reading without 
interference. 
 

 
Fig. 15. Parallax TCS3200 colour sensor 

The TCS3200 Colour sensor (figure 15) makes use of a TAOS TCS3200 RGB light-to-
frequency chip. The TCS3200 colour sensor operates by illuminating the object with two 
white LEDs, while an array of photo detectors (each with a red, green, blue and clear filter) 
interpret the colour being reflected by means of a square wave output whose frequency is 
proportional to the light reflected. The TSC3200 Colour sensor has a 5.6-mm lens, which is 
positioned to allow an area of 3.5 mm2 to be viewed. 
A USB4000 spectrometer (Ocean Optics Inc., FL, USA) was used to find the height at which 
the greatest intensity of light occurred when the RGB sensor was placed above a sample. As 
the two white LEDs are directed down at an angle, there is a point where the light intensity 
is the greatest. This position was 20 mm above the surface of the sample, as shown in figure 
16. 
 

 
Fig. 16. Light absorbed from TCS3200 across the white LED light spectrum when the sensor 
is positioned at 6 different heights 
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Since the TCS3200 is mounted 20 mm above the sample, and therefore not in direct contact 
with the sample, it was more suited for our application than the full contact required by the 
ColorPAL sensor. A Konica Minolta CM-700D Spectrophotometer (Konica Minolta Sensing 
Americas, Inc., NJ, USA) was used to validate and calibrate the RGB sensors. For accurate 
measurements, the CM-700D was calibrated by taking both white and black readings by 
sampling a supplied white and black object respectively.  
The CM-700D gives colour in the XYZ colour space, as well as L*a*b*, L*C*h, Hunter Lab, 
Yxy and Munsell. A linear transformation matrix was required to transform data from the 
XYZ colour space to the RGB colour space to enable comparisons and calibrations to the 
Parallax sensor.  The linear transformation equation to be solved (Juckett, 2010) is: 
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Equations (2 – 4) combined with the standard 1931 xy chromaticity diagram provided the 
foundation for the linear transformation (Eq. 1). This transformation converted the XYZ data 
initially to sRGB colour. The chromaticity values of x, y and z are shown in Table 1 
(Lindbloom, 2010). 
 

Colour x y z 

Red 0.64 0.33 0.212656 
Green 0.30 0.60 0.715158 
Blue 0.15 0.06 0.072186 

Table 1. x, y,  and z chromaticity values of red, green and blue converting xyz to sRGB  

From the x, y and z chromaticity values (Table 1), the transformation matrix, M, is calculated 
(Eq. 5) 

 
0.721144 0.063298 0.166008
0.303556 0.643443 0.052999
0.000076 0.064689 1.024294

M
 
 ≈  
 
 

 (5) 

To calculate the R, G and B values the inverse is taken (Eq. 6 - 7). 

 1
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G M Y
B Z

−
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 1

1.436603 -0.118534 -0.226698
-0.681279 1.618476 0.026671
0.042919 -0.102206 0.974614

M−

 
 ≈  
 
 

 (7) 

 
Colour x y z 

Red 0.7350 0.2650 0.176204 
Green 0.2740 0.7170 0.812985 
Blue 0.1670 0.0090 0.010811 

Table 2. x, y,  and z chromaticity values of red, green and blue converting xyz to CIE RGB  

The x, y and z chromaticity values shown in Table 2, are again used to solve the 
transformation matrix, M (Eq. 8) 
Testing showed that the TCS3200 produced light in the CIE RGB colour space, and although 
results would later show the colour sensor could be calibrated to the sRGB colour space, 
results from the calibration would be incorrect. Therefore a colour transformation to a CIE 
RGB colour space was more appropriate than the sRGB colour space; consequently a new 
linear transformation was required.  

 
0.4887180 0.3106803 0.2006017
0.1762044 0.8129847 0.0108109
0.0000000 0.0102048 0.9897952

M
 
 ≈  
 
 

 (8) 

Again calculating the R, G and B values the inverse is taken (Eq. 6). 

 1

2.3706743 0.9000405 0.4706338
0.5138850 1.4253036 0.0885814

0.0052982 0.0052982 1.0093968
M−

− − 
 ≈ − 
 
 

 (9) 

4.2.1 Colour sensor calibration and results 
In order to validate the TCS3200 colour sensor, it was necessary to calibrate and test it using 
the CM-700D Spectrophotometer. This involved taking 200 RGB readings with the TCS3200 
using fifteen different coloured samples from the Royal Horticulture Society (RHS) colour 
charts and averaging them. The same samples were measured, each 20 times, with the CM-
700D and again averaged. These tests were all completed in a constant temperature dark 
room. As the CM-700D uses the XYZ colour space, the linear transformation matrix was 
used to convert the XYZ values to a CIE RGB colour space (Eq. 9). 
The TCS3200 was firstly calibrated through software by modifying the integration time, to 
allow the white object (used to calibrate the CMD-700) to have a RGB value as close as 
possible to 255,255,255 followed by scaling each of the RGB values, to ensure the white 
reading was that of the CMD-700. 
In order to calculate a calibration factor the following equation was used: 

 '
N NR R γ=  (10) 
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where:  '
NR  = CM-700D (desired RGB value) 

    NR  = TCS3200 RGB (Un-calibrated sensor data) 
             γ  = Gamma (required calibration factor) 
First the TCS3200 sensor data were scaled to ensure all values are offset, thus ensuring that 
the white reading is that of the CMD-700 for each of R, G and B reading (Eq. 11)  

 
' ' '

max max max

, ,N N N
N N N

R G B
R R G G B B

R G B
= × = × = ×  (11) 

where max max max, ,R G B  represent the maximum R, G and B value of a white object from the 
TCS3200. 
 

ID 

TCS-3200 CMD-700 Output 
Calibrated Gain Adjusted White Adjusted RGB Equivalent (CIE) 

RGB) R G B R G B R G B R G B 
123A 99 148 167 88 152 144 62 155 152 85 158 143 
127C 38 79 75 34 81 65 17 89 69 31 89 64 
129C 99 152 137 88 156 118 71 166 123 85 162 117 
131C 25 41 35 22 42 30 10 43 27 20 49 29 
133C 62 88 85 55 90 73 47 93 80 52 98 72 
135C 42 51 35 37 52 30 36 78 39 35 60 29 
137C 42 51 35 37 52 30 40 54 30 35 60 29 
139C 68 82 58 61 84 50 63 88 48 57 92 49 
141C 57 80 45 51 82 39 55 87 35 48 90 38 
143C 71 88 48 63 90 41 72 91 32 60 98 41 
145C 171 168 122 152 172 105 169 185 101 149 178 104 
147C 84 86 62 75 88 53 84 91 51 71 96 53 
149C 174 183 114 155 187 98 170 206 86 152 192 97 
155D 255 249 258 227 255 222 227 255 222 226 255 222 
202A 17 17 20 15 17 17 10 13 13 14 22 17 

Table 3. Results obtained comparing the TCS3200 colour sensor (calibrated and un-
calibrated) with the CM-700D spectrophotometer over a range of 15 RHS colours 

Table 3 shows the data recorded from the colour sensors along with the equivalent results 
from the CMD-700 (using the CIE RGB transformation matrix) and the calibrated TCS3200 
results. Table 4, shows the errors associated with the Table 3. 
The calibration factors (γ) for each colour were calculated using normalized data. (Eq. 12) 

 
' ' 'log( / 255) log( / 255) log( / 255), ,

log( / 255) log( / 255) log( / 255)
N N N

R G B
N N N

R G B
R G B

γ γ γ= = =  (12) 

For each colour sample measured, the calibration factor was calculated and averaged using 
a geometric mean (as opposed to the more general arithmetic mean function (Fleming & 
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Wallace, 1986), thus providing the γ factor for R, G and B individually. The (desired) 
calibrated values were then obtained using equation 13.  

 '
( ) ( / 255) 255N calibrated NR R γ= ×  (13) 

For a range of fifteen colours, measurements were taken using the TCS3200 RGB sensor and 
the CM-700D Spectrophotometer (Table 3). The gamma calibration factors calculated were: 

 ( ) ( ) ( )R G BRed  1.05,  Green  0.92,  Blue  1.00λ λ λ= = =  (14) 

 

 TCS3200 (un-calibrated) TCS3200 (calibrated) 
Colour R G B R G B 
Error 9.691 6.806 5.107 10.161 6.162 4.966 

Error % 3.8 2.669 2.003 3.985 2.416 1.947 
S.D 7.423 7.298 3.485 6.631 4.757 3.699 

Table 4. Average Error (0-255), percentage error and standard deviation for red, green and 
blue measurements of the TCS3200 colour sensor, calibrated and un-calibrated, compared 
with CM-700D spectrophotometer results across a range of colours 
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Fig. 17. TCS3200 sensor RGB readings, calibrated and un-calibrated, compared with the CM-
700D readings of: Red (A); Green (B); Blue (C) using a CIE RGB colour transformation. 
(Colour samples are as given in Table 3)  

An example of a green colour interpreted by the CM-700D and TCS3200 colour sensor 
before and after calibration is shown in figure 18. 
 

TCS3200 (un-calibrated) TCS3200 (calibrated) CM-700D 
Spectrophotometer 

RGB = 63,90,41 RGB = 60,98,41 RGB = 72,91,32 

   

Fig. 18. Graphical representation of the colour differences between, calibrated and un-
calibrated TCS3200 colour sensor 

Results showed when calibrating the CM-700D XYZ values to CIE RGB instead of sRGB, the 
calibration results improved, as shown in Table 5, to have a much smaller error for R, G and 
B. A colour representation can be seen in Figure 19. 
 

 CIE RGB sRGB 

Colour R G B R G B 

Error 10.289 6.117 5.683 14.777 7.055 9.564 

Error % 4.035 2.399 2.229 5.795 2.767 3.751 

S.D 6.562 4.739 3.357 12.314 7.54 5.772 

Table 5. Comparisons between CIE RGB and sRGB transformation matrix, showing the CIE 
RGB results to be more accurate than the sRGB 
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TCS3200 (raw reading) CM-700D 
Spectrophotometer 

(sRGB) 

CM-700D  
Spectrophotometer 

(CIE RGB) 

RGB 71,88,48 RGB = 149,166,81 RGB = 72,91,31 

  
 

 

Fig. 19. An example of a green colour interpreted by the TCS3200 colour sensor with no 
calibration compared with the CM-700D with both a sRGB and CIE RGB 

5. Conclusion 
An anthropomorphic robotic arm has been designed, fabricated and fully tested to meet 
the requirements set out by The New Zealand Institute for Plant & Food Research 
Limited. The robotic system is able to reach and monitor plantlets growing in trays on a 
multi-level shelving unit. Custom software has been developed to fully automate the 
control of the robotic arm. The position of the robotic arm can be controlled with great 
precision using the microstepper controller to allow micro-motion of the stepper motors. 
The robot can be programmed to autonomously position itself and take readings at 
regular intervals. 
Several sensors have been integrated in the robotic system, namely a high-end colour 
camera for capturing high resolution images of plantlets; proximity sensor to position the 
arm at a predetermined distance from the plant surface for taking measurements; 
temperature, humidity and CO2 sensors to monitor the ambient atmospheric conditions and 
a low-cost RGB sensor to measure the colour of plant leaves.  
Two different RGB sensors have been evaluated. Experimental results show that the 
Parallax TCS3200 RGB sensor is a useful low cost colour sensor, which when calibrated to an 
industry standard spectrophotometer, can provide accurate RGB readings. It is therefore a 
useful component for integrating into an automated system such as a robotic arm, with 
various other sensors, for monitoring plants growing in a modified plant micro-propagation 
system. 
The system has the potential for not only monitoring plant material in a laboratory 
environment but other applications as well where non-destructive measurements of colour 
are required. 
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1. Introduction

The ability to efficiently move in a complex environment is a key property of animals. It
is central to their survival, i.e. to avoid predators, to look for food, and to find mates for
reproduction (Ijspeert, 2008). Nature has found different solutions for the problem of legged
locomotion. For example, the vertebrate animals have a spinal column and one or two pairs
of limbs that are used for walking. Arthropoda animals are characterized by a segmented
body that is covered by a jointed external skeleton (exoskeleton), with paired jointed
limbs on each segment and they can have a high number of limbs (Carbone & Ceccarelli,
2005). The biological mechanisms underlaying locomotion have therefore been extensively
studied by neurobiologists, and in recent years there has been an increase in the use of
computer simulations for testing and investigating models of locomotor circuits based on
neurobiological observations (Ijspeert, 2001). However, the mechanisms generating the
complex motion patterns performed by animals are still not well understood (Manoonpong,
2007).
Animal locomotion, for instance, requires multi-dimensional coordinated rhythmic patterns
that need to be correctly tuned so as to satisfy multiple constraints: the capacity to generate
forward motion, with low energy, without falling over, while adapting to possibly complex
terrain (uneven ground, obstacles), and while allowing the modulation of speed and direction
(Ijspeert & Crespi, 2007). In vertebrate animals, an essential building block of the locomotion
controller is the Central Pattern Generator (CPG) located in the spinal cord. The CPG is a
neural circuit capable of producing coordinated patterns of rhythmic activity in open loop,
i.e. without any rhythmic inputs from sensory feedback or from higher control centers
(Delcomyn, 1980; Grillner, 1985). Interestingly, very simple input signals are sufficient to
modulate the produced patterns. Furthermore, CPG can adapt to various environments by
changing the periodic rhythmic patterns. For instance, the cats and horses are able to change
their locomotor patterns depending on the situation.
This relevance of locomotion both for biology and for robotics has led to multiple interesting
interactions between the two fields. The interactions have mainly been in one direction, with
robotics taking inspiration from biology in terms of morphologies, modes of locomotion,
and/or control mechanisms. In particular, many robot structures are directly inspired
by animal morphologies, from snake robots, quadruped robots, to humanoid robots.
Increasingly, robotics is now providing something back to biology, with robots being used
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as scientific tools to test biological hypotheses (Ijspeert, 2008). Researchers have studied the
CPGs for decades and some principles have been derived to model their functionality and
structure. CPGs have been proposed as a mechanism to generate an efficient control strategy
for legged robots based on biological locomotion principles. Locomotion in legged robots is
much more complex than wheeled robots, since the formers have between twelve or twenty
degrees of freedom, which must be rhythmically coordinated to produce specific gaits. The
design of locomotion control systems of legged robots is a challenge that has been partially
solved. To develop bio-inspired solutions, detailed analyses of candidate biological neural
systems are essential as in the case of legged locomotion.
Models of CPGs have been used to control a variety of different types of robots and different
modes of locomotion. For instance, CPG models have been used with hexapod and octopod
robots inspired by insect locomotion, quadruped robots inspired by vertebrates, such as horse,
biped robots inspired by humans and other kind of robots inspired by reptiles, such as snakes,
as it will be discussed in the section 2. CPGs could been modeled with different levels of
abstraction, these aspects will be presented in section 3. Additionally, CPGs present several
interesting properties including distributed control, the ability to deal with redundancies,
fast control loops, and allowing modulation of locomotion by simple control signals. These
properties, when transferred to mathematical models, make CPGs interesting building blocks
for locomotion controllers in robots (Fujii et al., 2002; Ijspeert, 2008), as shown in section 4.
In spite of its importance, the CPG-approach presents several disadvantages. One of the
main drawbacks of CPGs is related with the learning methodologies to generate the rhythmic
signals (Zielinska, 1996). For that purpose, a method to tune a CPG using genetic algorithms
(GA) is proposed, whose details are provided in section 5. Moreover, a methodology for
designing CPGs to solve a particular locomotor problem is yet missing. Other problem is that
animals rarely perform steady-state locomotion for long time, and tend to superpose, and
switch between, multiple motor behaviors. A remaining open challenge is therefore to design
control architectures capable of exhibiting such richness motor skills.
Engineering CPG-based control systems has been difficult since the simulation of even
rather simple neural network models requires a significant computational power that
exceeds the capacity of general embedded microprocessors. As a result, CPG dedicated
hardware implementations, both analog and digital, have received more attention (Nakada,
2003). On one hand, analog circuits have been already proposed, being computation
and power efficient but they usually lack flexibility and dynamics and they involve large
design cycles. On the other hand, Field-Programmable Gate Array (FPGA) substrate might
provide real-time response, low power consumption and concurrent processing solutions for
low-level locomotion issues (Barron-Zambrano et al., 2010b). So, a brief analysis of CPG
implementations is presented in section 6. Also, the integration of environment information
might allow to produce behaviors by means of selection and adaption of lower substrates.
Under this scenario, legged robots may reconfigure their locomotion control strategies on-line
according to sensory information so as to effectively handle dynamic changes in the real
world. Yet, the FPGA-based approach fits well since it could handle efficiently higher
perception functions for CPG parameter adaptation, and to provide the neural processing and
coordination of a custom and adaptive CPG hardware module. For those reasons, section 7
presents a hardware implementation for quadruped locomotion control based on FPGA. The
experimental results of hardware implementation and the future work are shown in sections
8 and 9, respectively. Finally, the conclusions of this work are presented in section 10.
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2. Locomotion solution methods

In the literature, there are different approaches to the design of locomotion control systems
such as: trajectory based methods, heuristic based methods and biologically inspired
methods.

2.1 Trajectory based methods
In trajectory based methods, to move a leg in a desired trajectory, the joint angles between
limbs are calculated in advance, by using a mathematical model that incorporates both robot
and environment parameters, to produce a sequence of actions specifically scheduled. But
these methods are not providing any methodology to design a controller. It is only a method
to prove the stability of the motion. Therefore, the trajectories have to be designed by
trial-and-error or from animal locomotion recording data (Jalal et al., 2009). The most popular
stabilization criteria are the Center of Mass (CoM), Center of Pressure (CoP) and Zero Moment
Point (ZMP). The gait is stable when one of these criteria remains inside the support polygon
(the convex hull formed by the contact points of the feet with the ground).
These methods can generate either static or dynamic stability. The first one prevents the robot
from falling down by keeping the CoM inside the support polygon by adjusting the body
posture very slowly. Thus minimizing the dynamic effects and allowing the robot to pause
at any moment of the gait without falling down. Using this criterion will generally lead to
more power consumption since the robot has to adjust its posture so that the CoM is always
inside the support polygon. The second one relies on keeping the ZMP or CoP inside the
support polygon and this is a necessary and sufficient condition to achieve stability. Dynamic
balance is particularly relevant during the single support phase, which means that the robot
is standing in only one foot. This generally leads to more fast and reliable walking gaits
(Picado et al., 2008).

2.2 Heuristic based methods
The major problem with the ZMP or CoP methods are the complexity of the equations used
to compute the robot dynamic. With such a level of complexity directly exposed to the robot
programmer, it becomes very difficult to have a global view over the robot behavior. This is
because heuristics methods were developed to hide the complexity of the problem and make
it more accessible.
Heuristic methods have strong similarities with the trajectory based approach. Joint
trajectories are also pre-computed from an external optimization process, only the generation
strategy differs. This time, heuristic or evolutionary based techniques are used (e.g. genetic
algorithms) to design the desired trajectories (Lathion, 2006).
The most successful approach of this methods is called Virtual Model Control (VMC)
(Picado et al., 2008). It is a motion control framework that uses simulations of virtual
components to generate desired joint torques. These joint torques create the same effect that
the virtual components would have created, thereby creating the illusion that the simulated
components are connected to the real robot. Such components can include simple springs,
dampers, dash pots, masses, latches, bearings, non-linear potential and dissipative fields, or
any other imaginable component. The generated joint torques create the same effect that the
virtual components would create if they were in fact connected to the real robot (Pratt et al.,
2001). This heuristic makes the design of the controller much easier. First, it is necessary to
place some virtual components to maintain an upright posture and ensure stability. Virtual
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model control has been used to control dynamic walking bipedal robots (Pratt et al., 2001) and
an agile 3D hexapod in simulation (Torres, 1996).

2.3 Biologically inspired methods
This approach uses CPGs which are supposed to take an important role in animal locomotion.
By coupling the neural oscillators signals when they are stimulated through some input, they
are able to synchronize their frequencies. In the field of artificial intelligence and robotics,
it is possible to build structures that are similar to the neural oscillators found in animals
by the definition of a mathematical model (Picado et al., 2008). The term central indicates
that sensory feedback (from the peripheral nervous system) is not needed for generating
the rhythms. In other words, the CPG has the ability to produce a periodic output from
a non-periodic input signal. CPG is a proven fact which exists in animals and its task is
to generate the rhythmic movements almost independent of central nervous system. There
are a lot of CPG methods and different robotic application have been proposed by different
authors (Lee et al., 2007; Loeb, 2001; Nakada, 2003). However, most of the time these CPGs
are designed for a specific application and there are very few methodologies to modulate
the shape of the rhythmic signals, in particular for on-line trajectory generation and the CPG
internal parameters are usually tuned by trial and error methods.

2.4 Approaches analysis
Many different solutions have been experimented to achieve stable robot locomotion,
from trajectory based methods to biologically inspired approaches. Each method presents
different advantages as well as disadvantages. Next, a features summary of each approach
under different requirements such as: robot knowledge, perturbation problems, design
methodology, physical implementation and control scheme is presented.

• Robot knowledge: the major drawback of the trajectory based and heuristic based methods
is that they both required an exact knowledge of the robot model. The CPG approach does
not require an exact knowledge of the robot model.

• Perturbation problems: the CPG will recover smoothly and quickly after a perturbation,
the ZMP needs external on-line control to deal with perturbations and the VMC is robust
against small perturbation.

• Design methodology: the ZMP and VMC have well defined methodology to prove stability
and intuitive ways of describing the controller. In the CPG approach, the number of
parameters needed to describe the CPG is usually large and the stability is not guaranteed
as in trajectory and heuristic based methods.

• Physical implementation: the ZMP is easy to implement in real robots. In the VMC, the
control is fast and can be efficiently done on-line. Meanwhile, the CPG is able to generate
new trajectories for various speeds, without the necessity to be trained again.

• Control scheme: In the ZMP and VMC, the control is more centralized in a black box
connected to the robot. But the CPG will be distributed over the whole robot body, as
a virtual spinal cord, this property allows to the robot to continue with the gait generation
if some part of the control is missing.

The review shown that the CPG approach presents advantages, over the ZMP and VMC
approaches, in the requirements of robot knowledge, perturbation problems, physical
implementation and control scheme. For that reasons, more locomotion controllers for legged
robots based on CPG are using currently.
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3. Locomotion modeling based on CPG

The activity of the locomotor organs (legs, wings, etc.) generates a propulsive force that leads
to locomotion. Each piece of a locomotor organ is rhythmically controlled by a CPG generating
the rhythm. These neural networks, controlling each individual organ, interact with others so
as to coordinate, in a distributed manner, the locomotor action of a complete specie. Moreover,
they also adopt their activity to the surrounding environment through sensory feedback and
higher level signals from the central nervous system.
CPGs are often modeled as neurons that have mutually coupled excitatory and inhibitory
neurons, following regular interconnection structures. CPGs automatically generate
complex control signals for the coordination of muscles during rhythmic movements,
such as walking, running, swimming and flying (Delcomyn, 1980; Hooper, 2000;
Kimura, Shimoyama & Miura, 2003).
The locomotion patterns can usually be modulated by some parameters, which offers the
possibility to smoothly modify the gait (e.g. increase frequency and/or amplitude) or even to
induce gait transitions. In CPG design, there are some common assumptions: the nonlinear
oscillators are often assumed to be identical, the stepping movements of each limb are
controlled by a single oscillator, while interlimb coordination is provided by the connections
between the oscillators (Arena et al., 2004). Moreover, the sensory inputs from lower-level
central nervous system and signals from higher-level central nervous system can modulate
the activity of CPGs. The lower level signals are used for slow movements (low frequency
response). Higher level signals are use to produce intelligent behavior and faster movements
(higher frequency response). A comprehensive review of utilizing CPGs in robotics can be
found in (Ijspeert, 2008), and an interesting overview of the different oscillators utilized for
robotics purposes is given in (Buchli et al., 2006).
The vertebrate locomotor system is organized hierarchically where the CPGs are responsible
for producing the basic rhythmic patterns, and that higher-level centers (the motor cortex,
cerebellum, and basal ganglia) are responsible for modulating these patterns according
to environmental conditions. Such a distributed organization presents several interesting
features: (i) It reduces time delays in the motor control loop (rhythms are coordinated
with mechanical movements using short feedback loops through the spinal cord). (ii) It
dramatically reduces the dimensionality of the descending control signals. Indeed the control
signals in general do not need to specify muscle activity but only modulate CPG activity. (iii)
It therefore significantly reduces the necessary bandwidth between the higher-level centers
and the spinal cord (Ijspeert, 2008; Loeb, 2001).
CPG have been modeled with several levels of abstraction as for example: biophysical
models, connectionist models, abstract systems of coupled oscillators. In some cases, the
CPG models have been coupled to biomechanical simulation of a body, in such case they
are called neuromechanical models. Detailed biophysical models are constructed based on
the Hodgkin-Huxley type of neuron models. That is, neuron models that compute how
ion pumps and ion channels influence membrane potentials and the generation of action
potentials. In particular, the cells excite themselves via fast feedback signals while they
inhibit themselves and other populations via slower feedback signals. In some cases, the
pacemaker properties of single neurons are investigated. While most models concentrate
on the detailed dynamics of small circuits, some models address the dynamics of larger
populations of neurons, for instance the generation of traveling waves in the complete
lamprey swimming CPG (Arena, 2001). Connectionist models use simplified neuron models
such as leaky-integrator neurons or integrate-and-fire neurons. This connectionist model has
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shown that connectivity alone is sufficient to produce an oscillatory output. The goal of these
models is on how rhythmic activity is generated by network properties and how different
oscillatory neural circuits get synchronized via interneuron connections (Ijspeert, 2008).
Other extensively used oscillators include phase oscillators (Buchli & Ijspeert, 2004;
Matsuoka, 1987). Most of the oscillators have a fixed waveform for a given frequency. In
some cases, closed-form solutions or specific regimes, as for example phase-locked regimes,
can be analytically derived but most systems are solved using numerical integration. Several
neuromechanical models have been developed. The addition of a biomechanical model of
the body and its interaction with the environment offers the possibility to study the effect of
sensory feedback on the CPG activity.
Finally, oscillator models are based on mathematical models of coupled nonlinear oscillators
to study population dynamics. In this case, an oscillator represents the activity of a complete
oscillatory center (instead of a single neuron or a small circuit). The purpose of these models is
not to explain rhythmogenesis (oscillatory mechanisms are assumed to exist) but to study how
inter-oscillator couplings and differences of intrinsic frequencies affect the synchronization
and the phase lags within a population of oscillatory centers. The motivation for this type of
modeling comes from the fact that the dynamics of populations of oscillatory centers depend
mainly on the type and topology of couplings rather than on the local mechanisms of rhythm
generation, something that is well established in dynamical systems theory (Ijspeert & Crespi,
2007).

4. CPG-based locomotion design for quadruped robots

The locomotion control research field has been pretty active and has produced different
approaches for legged robots. But the ability for robots to walk in an unknown environment
is still much reduced at the time. Experiments and research work have addressed the
feasibility of the design of locomotion control systems of legged robots taking inspiration
from locomotion mechanisms in humans and animals. Legged locomotion is performed in
rhythmic synchronized manner where a large number of degrees of freedom is involved so as
to produce well-coordinated movements.
As described previously, one of the main drawbacks of CPGs is that there are few learning
methodologies to generate the rhythmic signals and their parameters are usually tuned by
trial and error methods. Learning and optimization algorithms can be used in different ways.
The approaches can be divided into two categories: supervised learning and unsupervised
learning. Supervised learning techniques can be applied when the desired rhythmic pattern
that the CPG should produce is known. The desired pattern can then be used to define an
explicit error function to be minimized. Such techniques can sometimes be used for designing
CPGs, but they are restricted to situations where suitable patterns are available (e.g. they
are obtained from kinematic measurements of animals). Some examples of these techniques
are learning for vectors fields (Okada et al., 2002), gradient descent learning algorithms
(Pribe et al., n.d.) and statistical learning algorithms (Nakanishi et al., 2004). Unsupervised
learning techniques are used when the desired behavior of the CPG is not defined by a specific
desired pattern (as in supervised learning), but by a high-level performance criterion, for
instance, moving as fast as possible. Among unsupervised learning techniques, stochastic
population-based optimization algorithms such as evolutionary algorithms have extensively
been used to design CPG-like models (Ijspeert, 2008). The parameters that are optimized are
usually the synaptic weights in fixed neural network architectures and coupling weights in
systems of coupled oscillators.
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Fig. 1. Configurations of typical gait patterns in quadruped locomotion and their relative
phases among the limbs.

4.1 Van Der Pol oscillator model
There are several models for neural oscillators to model the basic CPG to control a limb, such
as the Amari-Hopfield model (Amari, 1988), Matsuoka model (Billard & Ijspeert, 2000) and
Van Der Pol model (Van Der Pol B, 1928). For this work, the basic cell is modeled by a Van Der
Pol (VDP) oscillator which is a relaxation oscillator governed by a second-order differential
equation (equation 1):

ẍ− α(p2 − x2)ẋ + ω2x = 0 (1)

where x is the output signal from the oscillator, α, p and ω are the parameters that tune the
properties of oscillators. In general, α affects the shape of the waveform, the amplitude of x
depends largely on the parameter p. When the amplitude parameter p is fixed, the output
frequency is highly dependent on the parameter ω. However, a variation of parameter p can
slightly change the frequency of the signal, and α also can influence the output frequency.

4.2 Quadruped gaits
A simplified mathematical model of CPG-based locomotion consists of using one cell per
limb and replacing each cell by a nonlinear oscillator. Thus, quadruped gaits are modeled
by coupling four nonlinear oscillators, and by changing the connections among them, it is
possible to reproduce rhythmic locomotion patterns. In rhythmic movements of animals,
transition between these movements is often observed. As a typical example, horses choose
different locomotive patterns in accordance with their needs, locomotive speeds or the rate of
energy consumption. In addition, each gait pattern is characterized by relative phase among
the limbs (Dagg, 1973). Figure 1 shows the typical horse gait pattern configurations and
theirs relatives phases between the limbs. Here, LF, LH, RF, and RH stand for left forelimb,
left hindlimb, right forelimb, and right hindlimb. In the rest of this work, LF, RF, RH and LH
will be refer as X1, X2, X3 and X4 , respectively.
The mutual interaction among the VDP oscillators in the network produces a gait. By
changing the coupling weights, it is possible to generate different gaits. The dynamics of
the ith coupled oscillator in the network is given by:

ẍi + α(p2
i − x2

ai)ẋi −ω2xai = 0 (2)

For i = 1, 2, 3, 4 , where xi is the output signal from oscillator i, xai denotes the coupling
contribution of its neighbors given by the equation 3:

xai = ∑
j

wijxj (3)
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where wij is the coupling weight that represents the strength of ith oscillator over the jth
oscillator. The generation of the respective gaits depends on the values of the oscillators
parameters and the connection wights among oscillators.
The analysis of the behavior reported in (Barron-Zambrano & Torres-Huitzil, 2011) shows
that the sign of the coupling weight determines the phase difference. For inhibitory connections, the
phase lag is around of 360/n to particular values of wij, where n is the number of coupled oscillators.
For excitatory connections, the phase difference is equal to zero. Finally, the matrix built for the
connection weights, wij, might be symmetrical and regular.

5. GA-based approach for gait learning

To efficiently search for CPG parameters a genetic algorithm for oscillator parameters
estimation was used. A genetic algorithm is a powerful optimization approach that can
work in large-dimensional, nonlinear, and, often, largely unknown parameter spaces. In the
simplest form of gait evolution, functional forward locomotion is the only goal and no sensor
inputs are used. Gait learning is a form of locomotion learning, but it might be considered
a somewhat more difficult problem in legged robots. The search space is represented by the
genome defining the controller representation (or controller and morphology representation).
Each evolvable parameter of the genome defines a dimension of the search space, and the
fitness landscape is then given by the manifold defined by the fitness of each point in the
search space.
The tuned method is divided into two stages and the robot controller was represented by a
string of real numbers that describe oscillators and their connectivity. The first one estimates
the oscillator parameters and the second one calculates the values of wij to produce the
locomotion pattern. The two stages work in sequential way.
The first stage estimates the parameters [α, p, ω] to generate a specific wave in frequency
and amplitude. Here, the oscillators parameters correspond to the gene and represent the
organization of an individual n in a group of population N. The individual, n, is represented
by the concatenation of parameters in order shown in equation 4, where each parameter was
represented by real numbers of 32-bit:

n = [αpω] (4)

Each individual n is evaluated according to the next fitness function which is minimized by
the GA:

f itnessp = abs((Ad − Ap) ∗ ( fd − DFT(So))) (5)

where Ad is the desired amplitude of the signal, fd is the desired frequency, Ap is the
amplitude of the generated pattern, So is the pattern generated by the oscillator with the
individual n and DFT is the Discrete Fourier Transform. Simulation of So is generated by
around of 50 seconds by each individual, n, and only the last 5 seconds are considered for the
DFT computation. This is to ensure a stable signal, in frequency and amplitude, and to reduce
the amount of data to be processed. Figure 2 shows a block diagram of this stage.
The GA ranks the individuals according the fitness function. As result of ranking, the
best individuals remain in the next generation without modification. For this stage, 2
individuals remain without modification and go to the next generation. By using the
crossover operation, other individuals in the next generation are created by combining two
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Fig. 2. Block diagram of first stage. It estimates the oscillator parameter values, [α, p, ω], to
produce a signal with specific frequency and amplitude.

individuals. Furthermore, the remaining individuals are randomly modified by mutation.
The probabilities of crossover and mutation are set to be 0.8 and 0.2, respectively.
The second stage performs the synchronization among the oscillator outputs. The generation
of different gaits needs patterns with specific phase amount the output signals, see figure 1.
The stage computes the value of wij. To produce a desired phase is not enough only with
connection weights, it is necessary to calculate the initial conditions of each oscillator, x1..4,
too. For that purpose, in the second stage each individual, n, has five values in order to
generate a specific phase in the network. The values in the gene are organized from the right
to left. The first four values are the initial values for each oscillator, x1..4. And the fifth value
codes the connection weight, w. The equation 6 shows the presentation of n in this stage.

n = [wx4x3x2x1] (6)

where the initial values and connection weight were represented by real numbers.
The GA only needs estimate one value of w for one gait and by changing the algebraic sign it
is possible to generate the rest of the gaits. The fitness function is based on the phase among
the patterns. To estimate the phase among the signals, the correlation was used. The oscillator
labeled as LF (X1) is the reference signal, phase equal to zero, and the other signals are shifted
with respect to this signal. The fitness function to evaluate the individual is given by equation
7. Here, the GA minimizes the value of the fitness function.

f itnessω = abs(90− phase(x1, x3)) + abs(90− phase(x3, x2)) + abs(90− phase(x2, x4)) (7)

where phase(xi, xj) is the phase between the ith and jth oscillator. The simulation of x1..4 is
generated by around of 50 seconds by each n and only the last 10 seconds are considered for
the phase estimation. Figure 2 shows a block diagram of the second stage.

6. Related work of hardware implementations

Nowadays, many works have aimed to develop robust legged locomotion controllers
(Fujii et al., 2002; Fukuoka et al., 2003; Susanne & Tilden, 1998). The design CPG-based control
systems has been difficult given that the simulation of even rather simple neural network
models requires a computational power that exceeds the capacity of general processors.
For that reason, CPG dedicated hardware implementations, both analog and digital, have
received more attention (Nakada, 2003). On one hand, CPGs have been implemented using
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Fig. 3. Block diagram of second stage. It finds the values of coupling, wij and the initial
values of x1..4.

microprocessors providing high accuracy and flexibility but those systems consume high
power and occupy a large area restricting their utility in embedded applications. On the other
hand, analog circuits have been already proposed, being computation and power efficient but
they usually lack flexibility and dynamics and they involve large design cycles.
Relatively few works have focused on adopting the hardware technology to fully practical
embedded implementations. Examples of this adaptation using analog circuit are presented
by (Kier et al., 2006; Lee et al., 2007; Lewis et al., 2001; Nakada, 2003). In the first one,
Nakada et al present a neuromorphic analog CMOS controller for interlimb coordination in
quadruped locomotion. Authors propose a CPG controller with analog CMOS circuits. It
is capable of producing various rhythmic patterns and changing these patterns promptly.
Lewis at al constructed an adaptive CPG in an analog VLSI (Very Large Scale Integration)
chip, and have used the chip to control a running robot leg. They show that adaptation
based on sensory feedback permits a stable gait even in an under actuated condition: the
leg can be driven using a hip actuator alone while the knee is purely passive. Their chip
has short-term on board memory devices that allow the continuous, real-time adaptation of
both center-of-stride and stride amplitude. In addition, they make use of integrate-and-fire
neurons for the output motor neurons. Finally, the authors report that their abstraction is
at a higher level than other reported work, which lends itself to easier implementation of
on-chip learning. Kier et al present a new implementation of an artificial CPG that can be
switched between multiple output patterns via brief transient inputs. The CPG is based
on continuous-time recurrent neural networks (CTRNNs) that contain multiple embedded
limit cycles. The authors designed and tested a four-neuron CPG chip in AMI’s 1.5 μm
CMOS process, where each neuron on the chip implements the CTRNN model and is
fully programmable. The authors report the measured results from the chip agree well
with simulation results, making it possible to develop multi-pattern CPGs using off-line
simulations without being concerned with implementation details. Lee at al report a feasibility
study of a central pattern generator-based analog controller for an autonomous robot. The
operation of a neuronal circuit formed of electronic neurons based on Hindmarsh-Rose neuron
dynamics and first order chemical synapses modeled. The controller is based on a standard
CMOS process with 2V supply voltage. Simulated results show that the CPG circuit with
coordinate controller and command neuron is viable to build adaptive analog controller
for autonomous biomimetic underwater robots. Finally, a biologically inspired swimming
machine is presented by Arena in (Arena, 2001). The system used to generate locomotion is
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an analog array of nonlinear systems known as Cellular Neural Networks (CNN). The CNN
is defined as a two-dimensional array of M× N identical cells arranged in a rectangular grid,
where each cell was defined as the nonlinear first order circuit. The author reports that the
application to service robot further underlines that CNNs can be used as powerful devices to
implement biologically inspired locomotion and swimming.
Another solution to implement the CPG is using FPGAs as the hardware platform. The
CPG is programmed in either VHDL or Verilog and download it onto the FPGA. This
approach provide the hardware efficiency with software flexibility. In (Torres-Huitzil, 2008),
Torres and Girau present an implementation of a CPG module based on the Amari-Hopfield
structure into pure FPGA hardware. In their work, they have chosen to attached the CPG
implementation to a Microblaze soft-core processor running uclinux. By doing this, they
achieve the computation speed from having the CPG running the mathematical operations
in the FPGA hardware making it possible to achieve some degree of parallelization in
the calculations and then having the soft-core CPU free to handle other high level control
algorithms and this could change the control parameters on the CPG implementation. Barron
et al in (Barron-Zambrano et al., 2010b) present a FPGA implementation of a controller,
based on CPG, to generate adaptive gait patterns for quadruped robots. The proposed
implementation is based on an specific digital module for CPGs attached to a soft-core
processor so as to provide an integrated and flexible embedded system. Experimental results
show that the proposed implementation is able to generate suitable gait patterns, such as
walking, trotting, and galloping.
Other CPGs implementations are using microprocessor. It gives the designer more freedom,
because it is not constrained by the difficulty of designing e.g. a differential analog circuits.
These implementations using a scheme where the control is distributed trough the robot
body. The first implementation example of these is presented by (Inagaki et al., 2006).
In that work, Inagaki et al proposed a method to control gait generation and walking
speed control for an autonomous decentralized multi-legged robot using CPGs. The robot
locomotion control is composed by subsystems. Each subsystem controls a leg and has
a microcomputer. The subsystems are connected mechanically and communicate with
neighbors. Each microcomputer calculates the dynamics of two oscillators, sends and receives
the dynamic results from neighbor subsystems. The gait generation and the walking speed
control are achieved by controlling the virtual energy of the oscillators (Hamiltonian). A real
robot experiment showed the relationship to the Hamiltonian, the actual energy consumption
and the walking speed. The effectiveness of the proposed method was verified. The
proposed controller can be generalized as a wave pattern controller, especially for robots
that have homogeneous components. In (Crespi & Ijspeert, 2006), Crespi and Ijspeert
proposed an amphibious snake robot designed for both serpentine locomotion (crawling)
and swimming. It is controlled by an on-board CPG inspired by those found in vertebrates.
The AmphiBot II robot is designed to be modular: it is constructed out of several identical
segments, named elements. Each element contains three printed circuits (a power board, a
proportional-derivative motor controller and a small water detector) connected with a flat
cable, a DC motor with an integrated incremental encoder, a set of gears. The elements are
connected (both mechanically and electrically) using a compliant connection piece fixed to the
output axis. The main contribution of this article is a detailed characterization of how the CPG
parameters (i.e., amplitude, frequency and wavelength) influence the locomotion speed of the
robot.
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The related works present control schemes for robot locomotion based on biological systems
under different implementation platforms. The schemes compute the walk pattern in a
parallel way through the specialized either systems or coupled subsystems. The CPG control
can be implemented by different approaches (analog circuits, reconfigurable hardware and
digital processors). The analog circuit implementations present a good performance between
power and energy consumption, but they have a large design cycle. For that, these approaches
are useful in robots with either limited storage of energy or data processing with real time
constraints. In the second approach is possible to implement CPG control with real time
constraint sacrificing the energy performance. These implementations have smaller design
cycle than the analog circuit implementations. The approach is ideal to be used in the
early robot design stages. The last approach presents a high flexibility because it is not
constrained by the difficulty of designing. The design cycle is shorter but it has the worst
energy performance. Furthermore, those systems occupy a large area restricting their utility
in embedded applications.
The analyzed implementations shown several common features. The first one is that they are
reconfigurable. The second one, they are capable to adapt oneself to different environments.
The most of the implementations presents a scheme where the control is distributed trough the
robot body or they are implemented through the interaction of basic elements. These similar
features are seen in animal locomotion tasks.

7. CPG hardware implementation for a quadruped robot

In this section, we describe the architecture of the CPG controller for interlimb coordination in
quadruped locomotion. First, the design considerations for the implementation are presented.
Next, the basic Van Der Pol Oscillator that constitute a part of the CPG network is given.
Finally, the architecture of the complete system is described.

7.1 Design considerations
The Van Der Pol oscillator is suitable for CPG implementation as a digital circuit but
two main factors for an efficient and flexible FPGA-based implementation should be
taken into account: a) arithmetic representation, CPG computations when implemented in
general microprocessor-based systems use floating point arithmetic. An approach for
embedded implementations is the use of 2s complement fixed point representation with a
dedicated wordlength that better matches the FPGA computational resources and that saves
further silicon area at the cost of precision, and b) efficiency and flexibility, embedded hard
processor cores or configurable soft processors developed by FPGA vendors add the software
programmability of optimized processors to the fine grain parallelism of custom logic on
a single chip (Torres-Huitzil, 2008). In the field of neural processing, several applications
mix real-time or low-power constraints with a need for flexibility, so that FPGAs appear as a
well-fitted implementation solution.
Most of the previous hardware implementation of CPGs are capable of generating sustained
oscillations similar to the biological CPGs, however, quite a few have addressed the problem
of embedding several gaits and performing transitions between them. One important design
consideration in this work, is that the FPGA-based implementation should be a platform well
suited to explore reconfigurable behavior and dynamics, i.e., the platform can be switched between
multiple output patterns through the application of external inputs.

172 Robotic Systems – Applications, Control and Programming



CPG Implementations for Robot Locomotion: Analysis and Design 13

(a) (b)

Fig. 4. (a) Digital hardware architecture for the Van Der Pol oscillator and (b) average error as
a function of the bit precision used in the basic blocks.

7.2 Module of Van Der Pol oscillator
From the analysis of Van Der Pol equation, Eq. 2, three basic operations were identified:
addition, subtraction and multiplication. Thus, one block for each operation was implemented
with 2’s complement fixed-point arithmetic representation. Figure 4(a) shows a block
diagram for the hardware implementation of the discretized VDP equation. In the first stage,
the value of xai (equation 3) is calculated: this value depends on the xi-neighbors and the
coupling weight values. This stage uses four multipliers and one adder. The square values of
p, xai and ω are calculated in the second stage, it uses three multipliers. In the third stage, the
values of α ∗ yi and p2− xai are calculated, one multiplier and a subtracter are used. The fourth
stage computes the values of α ∗ yi ∗ (p2 − xai) and w2 ∗ xai. This stage uses two multipliers.
For the integration stage, the numerical method of Euler was implemented by using two shift
registers and two adders. The integration factor is implemented by a shift register, which shifts
six positions the values of ẏi and ẋi to provide an integration factor of 1/64. The block labeled
as Reg stands for accumulators that hold the internal state of the VPD oscillators. Finally, the
values yi and xi are obtained.
The size word for each block was 18-bit fixed point representation with 11-bit for the integer
part and 7-bit for the fractional part. Figure 4(b) shows the amplitude average error using
different precisions for the fractional part. The errors were obtained from the hardware
implementation. Plot shows that the average error decreases as the resolution of the input
variables is incremented. This reduction is not linear, and the graphic shows a point where
such reduction is not significant. Seven bits were chosen as a good compromise between the
fractional part representation and its average error.

7.3 Quadruped gait network architecture
In the CPG model for quadruped locomotion all basic VDP oscillators are interconnected
through the connection weights (wij). In order to overcome the partial lack of flexibility
of the CPG digital architecture, it has been attached as a specialized coprocessor to a
microblaze processor following an embedded system design approach so as to provide a high
level interface layer for application development. A bank of registers is used to provide
communication channels to an embedded processor. The bank has twenty-three registers
and it receives the input parameters from microblaze, α, p2, ω2, wij and the initial values
of each oscillator. The architecture sends output data to specific FPGA pins. Figure 5 shows
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Fig. 5. Complete architecture for embedded implementation of a CPG-based quadruped
locomotion controller.

a simplified block diagram of the VPD network interfacing scheme to the bank registers and
microblaze processor.

8. Experimental results

8.1 GA-based method results
The proposed GA-based method was implemented in Matlab and its results were tested
through hardware implementation reported in (Barron-Zambrano et al., 2010b). For the
implementation of the GA, the specialized toolbox of Matlab was used. The parameters
used to estimate the variables of the oscillator were: a population of 30 individuals and 200
generations. The probabilities of crossover and mutation are set to be 0.8 and 0.2 respectively.
The method has an average error with the desired frequency of±0.03 Hz and with the desired
amplitude of±0.15. Simulations show the state of the parameters in different generations, the
first plot shows the simulations in the 2nd population generation. The generated signal in the
early generations is periodic but it has low value of frequency and amplitude respect to the
actual desired value. The second plot shows a signal with periodic behavior, 7th generation,
but with a different frequency with respect to the desired frequency. Finally, the last plot
shows the pattern with the desired frequency, 1 Hz, and amplitude, 2.5. The final parameters
[α, p, ω] estimated for the method are [0.705, 0.956, 4.531].
Figure 6 shows the behavior of the fitness values at each generation for the oscillator
parameters, plot 6(a), and for the network weights and initial conditions of x1..4, plot 6(b). In
both cases, the fitness function values decrease suddenly in the early stages of tuning. Also,
plots show that the method needs a reduced number of generations to tune the oscillator and
the network.
In a second step, the estimation of wih and the initial values of x1..4 is computed. The
parameters used for this step were: a population of 40 individuals and 300 generations. The
probabilities of crossover and mutation are set to be 0.5 and 0.2 respectively. In the test, the
desired pattern is a walk gait. This pattern has a phase of 90 degrees among the signal in
fixed order, X1 − X3 − X2 − X4. Only, the walk matrix was estimated by the method. It
is possible to generate the trot and gallop gait with the walk matrix and only changing the
initial condition of x1..4, but it is impossible to switch from one gait to another when the gait
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Fig. 6. (a) Fitness convergence plots for the first stage, oscillator parameters and (b) for the
second stage, network weights and initial conditions of x1..4.

Gait Walk Trot Gallop

Matrix

⎛
⎜⎜⎝

1.0 −0.26 −0.26 −0.26
−0.26 1.0 −0.26 −0.26
−0.26 −0.26 1.0 −0.26
−0.26 −0.26 −0.26 1.0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1.0 −0.26 0.26 −0.26
−0.26 1.0 −0.26 0.26
0.26 −0.26 1.0 −0.26
−0.26 0.26 −0.26 1.0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1.0 0.26 −0.26 −0.26
−0.26 1.0 0.26 −0.26
−0.26 −0.26 1.0 0.26
0.26 −0.26 −0.26 1.0

⎞
⎟⎟⎠

Table 1. Weight matrix to configure the CPG network

is stable. Then, the remaining matrices, trot and gallop, were calculated using the behavior
analysis presented in (Barron-Zambrano & Torres-Huitzil, 2011). The analysis shows that the
combination of inhibitory and excitatory connections is able to modify the phase among the
oscillators. Thus, it is possible to generate different gaits from walk matrix. To change the
connections from inhibitory to excitatory type, and vice-versa, is only necessary to change the
algebraic sign of the values in the gait matrix.
In the trot gait, the front limbs have the reverse phase and the limbs on a diagonal line move
synchronously. From that, to generate the trot gait is necessary to change the algebraic sign
in the matrix of weights for limbs on a diagonal line. The gallop has similarities with the
walk gait, the phase is equal to 90 degrees but the order is different, X1 − X2 − X3 − X4.
Therefore, the design of a new matrix for this gait is necessary. The gallop matrix is obtained
only by changing the algebraic sign in the one connections off-diagonal, this produces a phase
equal to 90 degrees among the limbs. Table 1 shows the matrix weights for the three basic
gaits, walk, trot and gallop with parameters α, p and ω equal to [1.12, 1.05, 4.59] and initial
conditions x1..4 = [2.44, 4.28,−1.84, 2.71].
Figure 7 shows the evolution of network weights and the initials condition of x. The plot 7(a)
shows the pattern generated when the second stage starts. It shows a synchronized pattern
where all signals have the same phase. The evolution of population shows how the signals
start to have different phases, figure 7(b). Figure 7(c) shows that the method found the correct
weight and the initial values of x1..4 to generate the walk gait pattern. Finally, figure 7(d) and
7(e) show the pattern generated by the trot and gallop gaits with matrices estimated from the
walk gait matrix.
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Fig. 7. (a)-(c)Evolution of pattern, in different generations, generated by the walk gait. (d)-(e)
Pattern generated by the trot and gallop gait with matrices estimated from the walk gait
matrix.

8.2 Physical implementation
The CPG digital architecture has been modeled using the Very High Speed Integrated Circuits
Hardware Description Language (VHDL), and synthesized using the ISE Foundation and
EDK tools from Xilinx targeted to the Virtex-4 FPGA device. In the hardware implementation
test, a C-based application was developed on the microblaze embedded processor to set the
values of the parameters in the CPG module. The implementation was validated in two ways.
The first one, the results were sent to the host computer through serial connection to visualize
the waveforms generated by the module. Then, the hardware waveforms were compared
with the software waveforms. In the second way, results were sent to digital-analog converter
(DAC) and the output signal from DAC was visualized on a oscilloscope. Figure 8 shows,
the periodic rhythmic patterns corresponding to the gaits (walk, trot, gallop) generated by
hardware implementation. The values of the weight matrix to configure the CPG network are
shown in table 1. The initial value, x1..4, the parameter values, [α, p, ω], and the weight value,
wij, were calculated automatically with a GA implementation.
The last CPG-hardware test was done through Webots robot simulator software. In this
simulation the network with 8 VPD modules was used. Figure 9 shows, the walking
locomotion pattern, in the bioloid robot simulator, and the periodic oscillations for the
different joints, limbs and knees, produced by the hardware implementation. Figures
9(a)- 9(h) show the specific bioloid joint positions corresponding to the time labels shown
in the walk time graph. Figures 9(i)- 9(k) show the phase relationship between the knee and
limb joints in the right forelimb and hindlimb during walking. Finally, in figure 9(l) a time
graph to show transition between walking and trotting is presented. Locomotions patterns
for trot and gallop, and the transitions between them, were also tested.
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Fig. 8. (a)-(c) Three basic gaits for quadruped locomotion

9. Future work

In general, the discussion of future work will be focused in three goals: (a) to scale up
the present approach to legged robots with several degrees of freedom to generate complex
rhythmic movements and behavior, (b) integrate visual perception information to adapt the
locomotion control in unknown environment, (c) incorporate the feedback from the robot
body to improve the generation of patterns.

9.1 Network scalability
Nowadays, in robotics, the decentralization of control is an approach increasingly used in the
design stage. In this approach, the robot control consists of group of modules where each
module process the information in a local way. Then, the information of each module is sent
to neighbor modules to produce a global result. One of the remarkable features of modular
robots control is its scalability. This ability is important to achieve the best configuration
required for doing the task, it is also useful in self-repair by separating faulty modules
and replacing them with other modules (Murata & Kurokawa, 2007). Self-organization
and distributed intelligence characterized by distribution of processing, decentralization of
control and sensing tasks and modularization of components, have become essential control
paradigms (Mutambara & Durrant-Whyte, 1994).
In the hardware architecture context, the scalability can be defined as the ability to increase the
architecture throughput without a complete re-design, using additional hardware, in order to
meet a user need. In other words, the architecture must be able to adapt oneself to robots with
more degrees of freedom only adding the necessary modules. The first example of hardware
scalability is presented in (Barron-Zambrano et al., 2010a). In this work, the scalability of a
CPG, which control a quadruped robot with 1 DOF per limb, was the necessity to control a
quadruped robot with two degrees of freedom per limb. In this case, the locomotion control
system will be scalable a network with eight VDP oscillators as suggested in most works
reported in the literature (Fujii et al., 2002; Kimura, Fukuoka, Hada & Takase, 2003).

9.2 Visual perception information
Locomotion and perception have been treated as separate problems in the field of robotics.
Under this paradigm, one first solves the vision problem of recovering the three-dimensional
geometry of the scene. This information is then passed to a planning system that has access to
an explicit model of the robot (Lewis & Simo, 1999). This solution is computationally intense
and too slow for real-time control using moderate power CPUs. Furthermore, this approach
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Fig. 9. (a)-(h) Walking locomotion patter snapshots for the bioloid robot simulator. (i) Walk
time graph for different joints. (j)-(k) Oscillation patterns for the right forelimbs, hindlimbs
and knees. (l) Waveforms during transition between walking and trotting.
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does not exploit the fact that the walking machine will be presented with a similar situation
again and again.
Recently, approaches consider to eliminate the intermediate explicit model and consider
creating a direct coupling of perception to action, with the mapping being adaptive and
based on experience. Also, continuous visual input is not necessary for accurate stepping.
Not all visual samples have the same potential for control limb movements. Samples taken
when the foot to be controlled is in stance are by far more effective in modulating gait.
It has been suggested that during stepping visual information is used during the stance
phase in a feed forward manner to plan and initiate changes in the swing limb trajectory
(Hollands & Marple-Horvat, 1996; Patla et al., 1996).
Taken together, this may indicate that gait is modulated at discrete intervals. This modulation
may be a program that depends on a brief sampling of the visual environment to instantiate
it (c.f. (Patla Aftab E., 1991) ). This hypothesis is intriguing because it implies that after a
brief sample it is not necessary to store an internal representation of the world that needs to
be shifted and updated during movement. This shifting and updating is problematic for both
neural and traditional robotics models (Lewis & Simo, 1999).

9.3 Feedback from the robot body
Studies of mechanisms of adaptive behavior generally focus on neurons and circuits. But
adaptive behavior also depends on interactions among the nervous system, body and
environment: sensory preprocessing and motor post-processing filter inputs to and outputs
from the nervous system; co-evolution and co-development of nervous system and periphery
create matching and complementarity between them; body structure creates constraints and
opportunities for neural control; and continuous feedback between nervous system, body
and environment are essential for normal behavior. This broader view of adaptive behavior
has been a major underpinning of ecological psychology and has influenced behavior-based
robotics. (Chiel & Beer, 1997).
Recent work in the field of autonomous robotics has emphasized that intelligent behavior is an
emergent property of an agent embedded in an environment with which it must continuously
interact. The goal is to integrate information of the robot status with the CPG. The robot will
be equipped with different sensors such as bumpers and accelerometers. These sensor signals
could be added as coupling terms in the differential equation in the oscillator model. This can
be able to simplify the control, allowing them to traverse irregular terrain and making them
robust to failures.

10. Conclusions

The quadruped locomotion principles were studied and analyzed. It is feasible to generate
locomotion patterns by coupling the neural oscillators signals that are similar to the neural
oscillators found in animals by the definition of a mathematical model. The GA based
approach takes advantage that the fitness function works directly with the oscillator and
the network. It makes possible consider other restriction as the power consumption and
it does not need knowledge of the robot dynamic to generate the pattern gait. The GA
based approach uses small population, some tens individuals, and limited generations, some
hundreds generations, ideal to be processed on computers with reduced resources. The
applications only estimate the matrix for walk gait. Furthermore, it is possible to build the
matrix for gallop and trot gaits using the walk gait matrix. This reduces the number of
operations necessary to estimate the matrix for each gait
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The hardware implementation exploits the distributed processing able to carry out in FPGA
devices. The presented examples show that the measured waveforms from the FPGA-based
implementation agree with the numerical simulations. The architecture of the elemental
Van Der Pol oscillator was designed and attached as a co-processor to microblaze processor.
The implementation provides flexibility to generate different rhythmic patterns, at runtime,
suitable for adaptable locomotion and the implementation is scalable to larger networks. The
microblaze allows to propose an strategy for both generation and control of the gaits, and it
is suitable to explore the design with dynamic reconfiguration in the FPGA. The coordination
of joint of a legged robot could be accomplished by a simple CPG-based network extremely
small suitable for special-purpose digital implementation. Also, the implementation takes
advantage of its scalability and reconfigurability and it can be used in robots with different
numbers of limbs.
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1. Introduction  
The Exoskeleton is classified inside of a wider technology known as Wearable Robots, that 
group describes a robotic field who studies the interaction between the human body and the 
robotics. In those systems, a mechatronics structure is attached to different members of the 
human body, and while the wearer commands the mechanical system using physical 
signals, like the electronic stimulation produced by the orders of the brain, or the 
movements of the body generated by the muscles; the mechanical system do the hard work, 
like carrying heavier objects or helping the movement of handicaps members of the body. 
Since its conception in the sixties (Croshaw, 1969) the bibliography speaks about two models 
of wearable robots: the prosthetics and the orthotics systems (Fig. 1). The first group 
replaces the lost body members, while the second one assists to the body movements or, in 
other cases, extends the body capabilities.  
 

 
Fig. 1. (Left), orthotic robot of upper parts (Perry et al., 2007). (Right), prosthetic robot of 
upper parts (Rehabilitation Institute of Chicago, 2006) 

The exoskeleton take part of the orthotics wearable robots field, it’s a robotic structure 
(actually could be considered a mechatronics structure due to the integration of different 
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electronics equipments like sensors, actuators and an intelligent controller that are 
integrated into the mechanical system) fixed to the human body that follows along the 
movements of the wearer. At the present time are presented several models of exoskeletons:  
those that are attached to the legs was called lower part exoskeletons (Kazerooni, 2006) and 
also exists those that are attached to the arms, that are denominated upper part exoskeletons 
(Perry et al., 2007). In both structures, its applications goes from the medical camp to 
military applications; with functions like help handicap patients assisting on the body 
member’s movement recuperation (Gopura & Kiguchi, 2007) or helping to the soldiers to 
carry heavier loads (Kazerooni, 2005). Also, exists prototypes that integrates both systems 
(Sankai, 2006), those mechanisms like Kazerooni’s structure, used to help the wearer to 
extends his body capabilities in order to carry weights that are beyond his normal 
possibilities, or help to patients to made normal movements that a sane body could develop. 
Our work are focussed into the study of the upper arm exoskeleton and a application of 
differential flatness in order to control the system that moves in a determinate path (in this 
case a path generated by a polynomial). This document will describe its consecution, 
initiating with a morphological analysis that leads to a mathematical model and posterior to 
a cinematic simulation. This model is useful to the consecution of the dynamic model, this 
study was based on the mechanical structure and the arm movements that were selected to 
made. This dynamic model will be applied into the problem of trajectory tracking, in this 
part, the arm is controlled using differential flatness, this part was considered our 
contribution, therefore, we will discuss about its applications, benefits and problems 
founded. All the analysis was supported by a code made in Matlab® and gives the 
necessaries simulation to this work, in this way, graphics of the model behaviours was 
characterized and captured in order to detail the different parts of this work. 

2. Forward kinematics 
The first problem to solve is the characterization of a human arm model than could be 
implemented for an exoskeleton design. In this part, forward kinematics plays an important 
role; offering a mathematical model that allows the prediction of the system’s behaviour, 
giving the necessary preliminary information about the structure and movement 
capabilities. Case of modelling the human arm for the study of the human motion (Maurel & 
Thalman, 1999), (Klopčar & Lenarčič, 2005),  or in a implementation study of a rehabilitation 
system in an arm (Culmer et al., 2005), or the design of a master arm for a man-machine 
interface (Lee et al., 1999),  All needs of the forward kinematical analysis in order to initiate a 
system’s modelling.  
The forward kinematic study initiate with a morphological analysis in the part of the body 
that will be attached to the mechanical structure. At is says, the exoskeleton is a system that 
accompany the arm on their movements; therefore the design of the structure must not had 
interference with it. In order to do this, the morphological analysis gives the information 
about movements, lengths of the members, number of segments and its respective masses.  
Another justification is that the biological inspirations permits the creation of mechanical 
systems that are more compacted and reliable and also, more energy-efficient (Kazerooni, 
2006).  
In the nature, the biological designs of the living organisms allows the adaptation with the 
environment; the evolution mechanisms have made transformation into the body as the 
circumstances rules, for this reason the diversity of organic designs and also, the extinction 
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of those species that didn’t could adapt to its environment. In conclusion is possibly to say 
that exist optimizations mechanisms that transforms our structure in function of a goal: 
survival.  
The human arm is a result of this optimization, following the bones that conforms it (Fig. 2) 
its seen that the member are divided into three segments: the arm, the forearm and the 
hand, united among them by three joints: the shoulder that unites the upper limb to the rest 
of the body, the elbow that unites the arm with the forearm and finally the wrist that unites 
the forearm with the hand. The mechanical model of the exoskeleton responds to this 
configuration, conserving the systems general characteristics, this process of make a copy of 
the nature design, is called bioimitation (Pons, 2008). 
 

 
Fig. 2. Human arm structure (Pons, 2008) 

Initially, for this study the hand and fingers movements will not be considered, so, it could 
be reduced to a single segment (Pons, 2008), in this way the kinematics is constructed with 
three segments, the arm, the forearm and the hand, also exists other considerations  that 
could help into the study of the system (Rocon & Pons, 2005): 
1. The mechanical behaviour of the arm is independent of the rest of the body. 
2. All the components of each segment, including the bones and the soft parts (muscles, 

skin, etc.) take part of the same rigid body. 
3. The deformations of the soft part will not affect significantly the mechanical properties 

of the entire segment. 
The lengths of the segments are considered constants and depend of the height of the 
individual (H), this numerical relationship are detailed into Table 1, who also related 
another parameters of the human arm, like the position of the centre of mass of each 
segment. 
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Body Segment Length, L Centre of Mass (% of L) 

  Proximal Distal 
Upper Arm 0.186 H 0.436 0.564 
Forearm 0.146 H 0.43 057 
Hand 0.108 H 0.506 0.494 

Table 1. Human arm Anthropometric data (Pons, 2008) 

Each joint has its proper movements, which depending of the movement could it be: uni, bi 
or multiaxial (Gowitzke & Milner, 2000), it means that the joints allows movements in one, 
two or three degrees of freedom and planes generated by the rotation of the segments. For 
this study all the joints could be considered ideals (Rocon & Pons, 2005). 
The movements of the arm are showed into Fig. 3. The first joint, the elbow, is compared 
with a spherical joint that allows movements in three degrees of freedom (multiaxial), its 
movements are defined as: flexion-extension, abduction-adduction, and rotation. The 
second joint, the elbow is an uniaxial joint, its movement is compared with a hinge, 
nevertheless, the bone of the forearm generates a movement of rotation around its own axis, 
that not affects the position of the three spatial coordinates, but if it rotation. This rotation 
could be located on the elbow joint or into the wrist joint. On early studies this rotation was 
considered on the elbow but later in order to make a simplification in the numerical 
operations it was transported to the wrist  (Veslin, 2010). 
Some research studies the movement of the arm in the plane (Gerald et al., 1997); others 
articles analyse the movement of the forearm for applications of trembling reduction (Rocon 
& Pons, 2007).  The kinematic analysis on this work will be focused on the movement of the 
three joints of the elbow, and specifically to the posterior control of the hand position using 
a mechanical structure supported by the arm, for this reason is necessary to know its 
capabilities based in an analysis of the workspace. 
Knowing the structure of the arm, the distance of the segments and the degrees of freedom 
of its joints, the mathematical model could be developed, in this part the concepts of 
morphology previously studied are combined with the classical robotic concepts, in this case 
using the model of homogenous transformation matrix (Siciliano et al., 2009).   Equations (1-
3) descript the rotations R around the three axis X, Y and Z, while (4) descript the 
translations T in whatever axis.  
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In (4) is necessary to define in which, or what axis the translation movement will be 
effectuated. The cinematic model obeys to a kinematics open chain, because only exists one 
sequence of joints together, connecting the two endings of the chain (Siciliano et al., 2009). 
Fig. 3 shows the arm structure from the shoulder to the hand, each movement is associated 
to a Latin symbol and an orientation respects to the inertial axis. In this way, all the 
movements of flexion-extension occur into the Y axis, the rotation movements on the bone 
into the Z axis, and the others into the X axis. Its seen that in the shoulder exists a special 
case where three rotations intercepts in of one point without the existence of any translation, 
this kind of configuration it’s called spherical wrist. All the translations referents to the 
segments lengths (l1,l2 and l3) happens in the Z axis.  
 

 
Fig. 3. Description of arm transformations 

The four reference Points P0, P1, P2 and P3 will define the path a across the system. The set 
of equations (5) describes the number and kind of transformations given from the origin in 
the shoulder (P0) to the each reference point. In this way, the matrix result T will define the 
position en XYZ and the orientation respects to the origin in each final of segment, being T01 
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the path from the origin to the point P1, T02 the path from P0 to P2 and T03 the path from 
P0 to P3. 
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The order of multiplication of each matrix is given according to an observation analysis; the 
orientation due to the consecutive operations on the rotation matrix could make variations 
into the final response, affecting both the visualization and the position of a point of the 
system. It’s important to be clear in what will be the order of the final equation (5), this gives 
an analysis of what happened into the arm with the variation of each joint. This analysis is 
compatible to both arms, only changes the direction of the rotation, remembering that 
according to the established parameters of the homogeneous transformation, every rotation 
made counter the clock is considered positive.   
 

 
 

 
Fig. 4. Different positions of the arm 
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This mathematical model was implemented in MATLAB®, and the results graphics Fig. 4, 
describes different positions of the arm structure, as the anatomical position with all the 
rotations in 0°. The three segments represent the arm divisions, the triangle the body and 
the sphere the human head. All the graphics was made for an individual of 1.75 m of 
height. 
The model obtained of the kinematical analysis give to the researcher a map of the system 
behaviour, the restrictions on the joint movements and the extensions of the segments of the 
arm can detail the workspace (Fig. 5), a graphical analysis that gives an understanding of 
the system capabilities. Analysing the workspace of the human arm, is possible to obtain 
information for the design and control of the mechanism, and also, gives an understanding 
of the movement properties. In the case of the human arm, this study allows the planning 
and programming of rehabilitation process comparing the workspace of a normal patient, 
with a person with pathology deficient, this differences could be used for the diagnosis 
study (Lenarčič & Umek, 1994). 
 

 
Fig. 5. Arm Workspace 

In an exoskeleton analysis, exist two workspaces in interaction: the human arm movement 
and the mechanical system movement (Pons, 2008), both generates a range of positions in 
the space that intercepts, this interception will be the plausible movement generated by the 
wearer of the exoskeleton. In the case of the human arm, the graphics was obtained using 
the three movements of the shoulder and the flections of the elbow. The arm was moved 
with movements of flexion-extension and, finally, the rotation of the elbow. The Fig. 5 
shows the path made by the right arm around the shoulder, the figure describes a form like 
a circumference with radio equal to the distance of the arm (l1) and forearm (l2), all the dots 
points the wrist position for each movement. Exists a space that the arm cannot reach, this 
space correspond to the sector near to the back, where is impossible to reach due to the 
physics restrictions for the body. Is important to say that in ideal conditions, the workspace 
in both arms is  the same. 
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The workspace is defined by the mobility of the articulations, these being from the human 
arm or the mechanical system that support the arm. Therefore, the workspace of a wearer 
that carries an exoskeleton could be affected by the mechanical restrictions that the system 
imposes, for this reason, better mechanical designs allows the performance of movements 
more obedient and  with a wider rank. 

3. Dynamics 
While the kinematics analysis gives an approach of the system, the dynamic model 
generates the necessary information about the forces needed to umbalnce the segments an 
initiate the movement,  and posteriorly the behavior of the system across the differents 
possible positions that the arm could reach. 
Refers to other autors (Rosen et al. 2005), the conception of upper arm exoskeleton approach 
to the behavior of an human arm due to the morphologycal design of the mechanism. In 
some designs, the weight of the sytems doesn’t influentiate in the dynamical analysis, and 
all the intertial forces are related to the human arm physiollogy (Carignan et al., 2005), in 
this case the center of mass is realted to the extenstion of the arm, and its mass depends of 
the organical structure (Table 1 and Table 2). In other cases, the mechanical system is more 
heavier than the human arm (Croshaw, 1969), in these models the structure must be 
included into the analysis, this cause that parameters like intertial center and estructure 
change drastically. Nevertheless, with a adecuate code this changes could be easilly 
modifcated, because this information could be parametrized or previouslly changed to the 
simulation code.  
Figure 6 illustrated the model of the arm, C1 and C2 are the possition of the center of mass 
on the arm segments,  the rotations consdired into the study are the shoulder movements 
and the flexion-extension of the foream. The hand movements doesn´t be considered into 
this part of the study. 
The initial evaluation are focused into the minimal forces necessaries to move an human 
arm, in order to do that, is necessary to known its composition . In this way, parameters like 
mass, length and position of the inertial center that depends of the wearer stature, are 
introduced into the model and simulated to obtain a further analysis.   
 

Body Segment Percent respect to the body weight m(%) 

Upper Arm 2.70 
Forearm 1.60 

Hand 0.66 

Table 2. Mass of the segments  body (Tözerem 2000) 

To obtain the body mass, exists a relation with its height, this relation is called Body Mass 
Index (BMI) established by Adolphe Quelet in the XIX century, that evaluates the health 
conditions of the person using a number, a discussion of its validation it’s not an interest in 
this work, but this model gives a mathematical relation (6) that is useful to introduce into 
the code of the model, high values of BMI evidences complication in the health, a BDI of 24 
considerate that the person have good health conditions, and this number will be used to 
obtain the body mass that finally gives the segments mass due to Table 2. 
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 BMI= mass/weight2 (6) 

To do the simulation, the arm is modeled using a Lagrangian conception, where the human 
arm is considered   a robotic manipulator. With the kinematics model, the information of the 
position of the ends of segments and inertial centers could be added into the model. The 
final result is a nonlinear mechanical model that simulates the arm behavior in different 
movements.  
 

 
Fig. 6. Human arm model 

For the evaluation of the forces that involves the movement of the system, a PD controller is 
use to move the arm from an initial position to a desired position. Movements like lift the 
arm while the forearm is static or move only the forearm could be simulated. Initiating in 
different positions and with various wearer statures, the code, gives the necessary 
information about the maximal and minimal forces involved, the influence of the Coriollis 
and centrifugal forces and the gravitational forces into the arm, and also plausible 
reductions into the model to reduce the computational time in the simulation. 
In previously works (Veslin 2010), the dynamical model was obtained and finally condensed 
into a form described in (7), in this equation, the joints are considered ideals so the 
mathematical model ignore the friction forces, also, the perturbations that could exist into 
the movement doesn’t be introduced because we don´t have a way to quantify it, and finally 
is considered that the system is fully actuated, its means that each movement have its proper 
force actuating into it. 

 ( ) ( ) ( ),M q q C q q K q τ+ + =   (7) 
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The mass of the segments was concentrated in its geometrical center, the form of the arm 
was approximated into a cylinder (Admiral et al. 2004, Soechting et al., 1995) this gives a 
mathematical relationship and evades the use of tables or interpolations to find the inertial 
center of the arm. Was demonstrated (Veslin, 2010) that the presence of the inertial tensor 
doesn´t influence significantly the system behaviour, this consideration gives a reduction of 
the model equation and converts the tensor on a single equation. 
Each movement was controlled using a feedback rule (8), it gives to the system the force 
needed to move the segments to de desired position, given by qnd, its equivalent to a PD 
controller, its applications are seen in industrial robots and lower parts exoskeletons 
(Carignan, et al. 2005).  

 ( ) ( )n n n nd n nq q q W qτ β γ= − − − +  (8) 

The Gain β involve the arm velocities and the energy dissipation, in oscillatory movements 
it controls its amplitude and the duration of the movement, γ gives a force that depends of 
the distance between the actual position of the segment qn and the desired position, in this 
way the equation reduce the force while the arm is reaching the goal. Wn are the forces that 
the actuators have to support when the segments are in static equilibrium. The 
implementation of these controllers adds a problem called overshoot (a high input that 
occurs in a small portion of time) into the beginning of the simulation (Figure 6).  
 

 
Fig. 7. Presence of overshoots at the beginning of the simulation 

In order to resolve this problem, a trajectory generator is added to the system control, this 
generator increments the position of the segment considering the initial an finally positions, 
in this way is possible to create trajectory that descript a desired behavior applying 
interpolation methods, like cubical, quadratic or another  equation. Considering that the 
model initiate and finish with zero speed, the form that could be implemented into the 
model is a cubical equation (Figure 7), which is implemented into (8) replacing the term qnd. 
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Fig. 8. Variation of the angular position in a cubical way 

The movement is generated around the movement determined by the trajectory equation, 
the Figures 8 and 9, shows a common displacement between two points in the shoulder and 
elbow respectively, this movement is called plane movement because only  actuate in one 
degree of freedom of the shoulder. The dot line represents the movement interpolated by 
the cubic equation, and the solid line is the movement generated by the degrees of freedom 
of the system that are actuated, moving according by the path and controlled by equation 8. 
 

 
Fig. 9. Comparison between the movement generated by the controller into the shoulder and 
the elbow respects the desired path 
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The absolute error (Fig. 10) between the movements executed and the path is evaluated, the 
mayor displacement happens in the middle of the movement around the 8 seconds, being 
major in the shoulder, presenting a displacement of 2.5 degrees and 1.4 degrees into the 
elbow. The final position also shows a displacement, the error in this position is near to 0,5 
degrees in both movements. 
 

 
Fig. 10. Difference between the shoulder and elbow movement with the desired path 

To evaluate the controller, different movements were generated and the result is showed in 
Fig. 11, the forearm final position is evaluated because it gives the location of the wrist, 
which is the object of control. The graphic evaluates the final position of the forearm 
initiating its movement from 0° to 140° during a elevation movement of the arm (that moves 
from 0° to 180°), the mayor displacements happens when the final position of the forearm is  
90°. The internal forces between the segments cause this variations, the forearm in this 
position generates the biggest moment to the arm in movement. The controller assure that 
them doesn’t influencing moving the arm to another position, the moments caused by the 
mass segments and the energy induced by the velocity  is controlled by the model 
proposed, with a minimal error as is illustrated that doesn’t overcome the 0.3° in the 
worst case. 
Therefore, this error could be reduced according with the variation of the parameter γ in the 
controller, Fig. 12 and 13 evaluates different errors in the final position with different values 
in γ in a  range of 100 Nm/rad to 600 Nm/rad, into ascending (Fig. 12) and descending (Fig. 
13) movements. Bigger values into the constants reduces the difference in the displacement 
generated by the internal forces of the arm, the controller supplies the necessary force and 
consecutively the error of displacements change according to the variation of the constant. 



 
Tracking Control in an Upper Arm Exoskeleton with Differential Flatness 

 

195 

For this graphics the forearm was conserved into a position of 0° while the arm was moving 
in a range of 0° to 180°. 
The maximal forces generated by the controller are illustrated in Fig. 14.  In this graphics 
two movements are compared, in the red line the movements begins from the 0° and 
moves into different positions in a range of 0° to 180° with increments of 10°, always 
executed in a time of 20 seconds. The blue line effectuates the same movement in a time 
that is proportional with the space travelled, in other words, faster than the first move. 
This movement generates bigger forces because effectuate the same movement with less 
time, the augmentation of the velocities into the generalized coordinate generates an 
augmentation of the Coriollis forces between the segments, generating in the controller a 
bigger force to counteract the impulse generated by the movement and the mass of the 
arm. 
 

 
Fig. 11. Deviation of the final position of the wrist depending of the position of the forearm 
while the arm is rotating into flexion movement 

Also this forces changes depending of the height in the individual, as is show in (6) and 
Table 2, the mass on the arms differ depending of the stature of the individual and his BMI, 
in this case, the maximal forces in the arm (which actuator have to support the weight of the 
complete system) are illustrated in Fig 16, where in a range of heights from 1.5 m to 2m, the 
forces necessaries to arise the arm increases in almost 10 Nm.  
Movements out of the plane, with a rotation of two degrees of freedom in the shoulder are 
illustrated in Fig 16, the shoulder was commanded to move the arm in flexion and 
abduction, while the forearm rotates from the rest position to 90°, (1) illustrates the 
movement according with the generalized coordinates, while (2), (3) y (4) illustrates the 
behaviour on the system in the space. 
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Fig. 12. Reduction of the error according to different values of γ into the controller in a 
ascending movement 

 

 
Fig. 13. Reduction of the error according to different values of γ into the controller in a 
descending movement 
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Fig. 14. Variation into the maximal forces for movements in the arm with different velocities 

 

 
Fig. 15. Variation into the maximal forces for movements in the forearm arm with different 
velocities 
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Fig. 16a. Variation into the maximal forces with different individual heights 

 

 

 
(1) 

 
(2) 

 
(4) 

 
(3) 

Fig. 16b. Movement in the generalized coordinates generated by the controller (1), trajectory 
in the space described by the arm (2), projection in the transversal plane (3) and the sagittal 
plane (4) 
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The influence of the gravitational forces in the arm model was evident when was founded 
an increase in the maximal forces effectuated by each generalized coordinate, this is caused 
by the increasing of the mass in the segments and also to the position of the forearm respects 
to the arm, meanwhile and augmentation on the velocities also increase the value on the 
applied forces to effectuate the movement. The implementation of the PD controller with a 
compensation of the gravitational forces in the arm position allows to made the previously 
forces analysis, the constants have an important role in the system behaviour, adding 
stabilities and reducing the error in the positioning of the arm wrist. 

4. Differential flatness 
Introduced by Fliess (Fliess et al., 1994), the differential flatness is a concept of the dynamic 
control, where a system is assumed to be flat, if it have a number of outputs known as flat 
outputs (9), such that them and its derivatives, could describe the system inputs (that have 
the same number of outputs) and the states of the system (10-11).  ݕ = ℎሺݔ, ,ݑ ሶݑ , … , ሻݑ ݔ(9) = ݂ ቀݕ, ,ݕ … , ሺሻሶݑ ቁ ݑ(10) = ݃ ቀݕ, ,ݕ … , ሺሻሶݑ ቁ (11)

This property called is called by Fliess diffeomorphism, and is very useful in the control of 
systems that are needed to achieve a desired behaviour. In order to do that, the flat outputs 
are parameterized into functions, and posterior introduced into the system; the result is a 
non linear equation system that is transformed into a polynomial, so, the solution of the 
problem is reduced significantly because is not necessary the use of integration or numerical 
solutions. 
The focus of this analysis is to assume than a system is differential flat, work that isn’t easy 
to achieve, in fact, not all the systems have this property, and is considered that be flat it’s a 
characteristic of the system itself . Many systems are defined as flat and some authors have 
studied its implications (Murray et al., 1995).  Like Murray´s text, these works are focused 
into the demonstration of the flat property and its application, in systems like mobile robots 
and cars with n trailers. 
The manipulator trajectory tracking, consist in determinate the necessary inputs (forces) in 
each system’s generalized coordinate, in order to accomplish that the model moves between 
one point to another across a defined path. In this kind of problems the first step consist in 
the specification of a sequel of points in the manipulator space work, this points will become 
desires positions across the path, and posterior are integrated using an interpolation 
function (which is typically in a polynomial form). Actually, different techniques exist for 
the trajectory planning: (i) when is given each final and ending position, talk about a point 
to point motion, (ii) when is working with a finite point sequence, talk about motion 
through a sequence of points. Both techniques give a time function that describes the 
desired behavior (Siciliano, 2009, van Nieuwstadt, 1997a). 
The second step is the implementation of this function into the system’s dynamical model 
and verifies that effectively is given a trajectory tracking. In this part, is necessary to take a 
decision, if the problem is going to be worked into the operational space, or in each joint. 
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Due to his generality, the first solution, could give singularity problems and redundancy 
caused by the number of degrees of freedom in each joint, and the nonlinear effects could 
made it difficult to predict, meanwhile, a joint position path parameterization shows to be 
furthermore suitable, because this study allows to work in each element, considering factors 
like the restrictions movements and degrees of freedom on each joint. 
Everything joint parameterized trajectory is defined by a function q(t). This function is the 
source of a joint desired position collections for the manipulators movement across the time. 
Then, using different control techniques: like the PD control with gravity compensation, IDC 
(Inverse Dynamic Control) or adaptive control, is possible accomplish a manipulator 
movement on the defined path with the minimal deviation (Marguitu, 2009,  Spong, 1992, 
Wang, 2009). 
It was demonstrated that all robotic manipulator (if the upper arm exoskeleton is asumed of 
this form) could be flat if the system is fully actuated (Lévine, 2009); it means, that all its 
generalized coordinates have an actuator. In this case, from the model of the system (7), 
assuming that all the outputs are the position of the generalized coordinates q, and the 
inputs are the  forces that moves each coordinate τ, the systems is differential flat if the 
position of each generalized coordinate and its derivatives (the velocity and the acceleration) 
are the flat outputs. It must be realized that all the systems outputs  didn’t are flat, so it’s 
important that those be differentiated from the normal ones by the letter Z (Van 
Nieuwstadt, 1997b). Thus the equation (7), remembering that the joints are considered 
ideals, can be represented as: ܯሺݖሻݖሷ + ,ݖሺܥ ሶሻݖ = ߬ (12)

The tracking trajectories problem doesn’t present complications in a flat system; as the 
inputs and its states are defined in function of the flat outputs, is possible to create paths 
that vary in the time in order to define an behavior on its outputs, and through them and its 
respective derivatives, determine which are the inputs needed by the system to generate an 
answer that approach to the desired one by the path. This path could be polynomial or  a 
function of C∞ type as the trigonometric or the exponentials (Rotella & Zambettakis, 2008). 
The application of the flat theories allows the transformation of the differential equation 
system (12) into a polynomial of order n, making a simplification into the problem solution 
and transforming it to a completely algebraic system. 
The next step is to applying the differential flat theories into the model; the general 
objective is control the behavior of the system in function of a desired action. This 
behavior will be parameterized into a trajectory. With knowledge of the flat outputs of the 
system, these trajectories could be easily implemented. The model in (12) shows that is 
possible to interpret the systems inputs knowing its flat outputs behaviors until the 
second derivative, therefore, is necessary add this functions and its derivatives into the 
model. By example, if is desired that the arm that is working in a plane movement rise 
starting from the origin, with a gradual variation of the positioning, it could be 
commanded a behavior using a cubic function in the generalized coordinates of the 
shoulder and the elbow, this is: ݖଵሺݐሻ = ଶݐ0,0094 − ଷݐ0,0006 ሻݐସሺݖ(13) = ଶݐ0,0157 − ଷݐ0,001 (14)
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The equation (13) leads the arm from the origin positioned in 0° to a position of 18°, on 
equation (14) the forearm moves from 0° to 30° (Fig. 4), both segments presents null 
velocities at the beginning and at the end,  executing the translation in a time of 10 seconds. 
The equations (13) and (14) and its respective derivatives are introduced in the dynamic 
model (12). To determine the inputs τ only is necessary to solve the system in a given time. 
The response provided by the Fig. 17  is a set of outputs that are applied into the system and 
must allow to displace it according to the behavior implemented in equations (13) and (14), 
for each segment.   
This response is evaluated into the dynamic model (8), the system response is verified in 
Fig. 18, where the trajectory made by the generalized coordinates is superposed on the 
desired path define by the cubic equations. Due to the proximity in each equation, Fig. 19 
evaluates the error between them, showing an oscillatory trend of error variation, the 
maximum difference is the order of 10-2. 
 

 
Fig. 17a. Set of forces obtained through equation (8) in each segment 

 

 
Fig. 17b. Response of the system according of the forces 

The obtained response Fig. 17. is desirable, but for another positions tests following the 
same cubic behavior, was founded stability problems represents in a leak of the desired path 
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system, this is evidenced in Fig. 19, where is tried to move both segments from 0° to 90° 
position.  
 

 
Fig. 18. Tracking error in each generalized coordinate 
 

 
Fig. 19. Trajectory deviation for each generalized coordinate  in higher movements 

This doesn’t mean that the flat systems theories doesn’t can be applied to certain positions, 
only that, for these solutions , flatness not guarantee the tracking and the necessary stability 
if applied in open loop, case of the examples seen before. It is necessary then, to change the 
focus, in order to take advantage of the benefits that flatness offers. This scheme 
implementing a controller that feedback information from real estate and compare it with 
the desired output, generated from this difference a control action that finally allows the 
system track the trajectory desired with a minimum error, this is made with the 
implementation of a controller into the system. 
Called two degrees of freedom control (Fig. 20), any closed loop system contains a 
controller and a trajectories generator. The controller modifies the output in function of 
existing error between the actual output and nominated desired output (Van Nieuwstadt, 
1997b). 
This system had actually three degrees of freedom, such system contains a higher level that 
generate the output depending of the desired paths (output trajectory). An intermediate 
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level generates inputs based on these outputs, and finally the lower level stabilizes the 
system around the nominal trajectory. The uncertainties were variations caused by the 
gravitational, friction forces, and nonlinear in the models. 
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Fig. 20. Two degree of Freedom Control System (Van Nieuswtadt, 1997b) 

The solution gives an input trajectory that could be used into the real model. This 
assumption works in theory, however some interferences, could separate the real behaviour 
of the desired, thus, is necessary to apply a PD feedback control into each generalized 
coordinate, with this, is possibly to enforce the manipulator to describe a desired 
performance.   
For the controller in Fig. 20 is established a feedback law (Franch & Agrawal, 2003): 

 ߬ = 	߬ + ݇ሺݖ − ሻݔ + ݇ௗሺݖሶ − ሶݔ ሻ (15) 

Equation (15) ensures that the nominal state Xn follow the desired path Zn over a correct 
choice of kp and kd constants.  kp generates an action that modifies the inputs from the 
flatness system control in a proportional form. The derivative constant kd, removes variations 
(oscillations) caused by the corrections in the proportional part. In Fig. 19 are visible the  
jumps in the position ranging from 100° to 800° in a small period of time, so hopefully 
abrupt change in the action of proportional control and consequently oscillations in the 
model. If each segment has its own control loop, with the constant kp=25 and kd=0,5 for the 
segment of the arm and kp=2,5 and kd=0,5 to the forearm. The results of the implementation 
of these values can be seen in Fig. 21 Obtained paths follow very near to the desired paths. 
Fig. 22 shows the performance of the arm according the inputs. 
With this control, is easier to move the system using others trajectories, any position that is 
within the manipulator workspace, can be parameterized by a polynomial for then of 
differentially flatness systems theory, appropriate requirements. For example, is required 
that the arm  makes a movement oscillating from a cosine function  while the forearm 
elevate to 90° position following the same methodology of the previous path behavior, is 
obtained the behavior described in Fig 23. 
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Fig. 21.Trajectory tracking using the controller 

 

 
Fig. 22. System behavior using the inputs defined by flatness 

 

 
Fig. 23. Force behaviour obtained according with the cosine function implemented in the 
arm 
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Fig. 24. System behaviour using the desired trajectories 
 

 
Fig. 25. System behaviour using the entries defined by differential flatness 

The concept is also applicable to systems with more degrees of freedom, although the fact that 
the equations of motion are more complex it is possible to obtain path tracking and behaviors.  
But this implementation presents difficulties, inputs equations in function of four outputs are 
extensive and prevent the possibility of achieving an acceptable result for extensive times. 
Precisely this error, forced to resort to the use of a controller. Open loop system presented 
difficulties during the follow-up. The controller makes modifications imperceptibles on the 
inputs, but enough so that there is a stable trajectory. Fig. 26 visualize the behavior of one of 
these desired trajectories for a system that controls the four generalized coordinates. 
The ability to follow-up on trajectories using differential flatness systems on robotics 
manipulators depends on the quality of input values. Was founded that small changes in 
these settings offer better performance, proving that the resolution of inputs is an important 
part of the results. 
The tests carried out previously, the models were analyzed over a time period in increments 
of 0.01 seconds. But testing with greater increases do not provide appropriate behavior, as it 
may be identified in Fig. 27, this makes it difficult to determine the values of the constants of 
the controller or even worse, that do not exist. This restriction to use short times make it 
difficult for the calculation of inputs due to the high consumption of computing resources, 
therefore, in to reconfigure a strategy for solution of this situation. 
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Fig. 26. Behavior of system for each trajectory, the dash line describes the actual movement 
while continuous line describes the desired trajectory 
 

 
Fig. 27. Behavior model with higher time period, are evidence a difficulty in the follow-up to 
the desired output 

5. Conclusions 
This study gives to us the initial phases into the consecution of a trajectory control for an 
upper arm exoskeleton. Whit the forward kinematics study is possibly to generate a fist 
view on the system, this mathematical model achieved by means of a morphological study 
of the human arm gives a first view of the system behaviour, being this workspace a tool to 
predict the system capabilities in function of the mechanical restrictions and also the human 
movements. This one is an important implementation of the code made. 
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Therefore, the dynamical analysis provides the information about the system requirements 
in function of the stature of the wearer, the influences of the mechanical model was not 
considered into the dynamics,  the movements was made considered the human arm as the 
objective to make an actuation, and the prototype as the element that actuated on the arm. 
Every consideration on the physical model of the system must be considered in the 
dynamical design. This dynamical analysis generates a mathematical model that is 
implementing into the problem of the trajectory tracking on the system. It was demonstrated 
that the arm is differential flat, and with this assumption, was possibly to generate any 
behaviour to be implemented into the system, it means a path in each generalized 
coordinate. In order to ensure a correct tracking, a PD controller was added into each 
generalized coordinate, the simulations shows that the model of the upper arm get a closely 
approach to the desired path, and with that is possibly the imposition of behaviours more 
specific, only defined by polynomial functions. 
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1. Introduction

Robotic systems are beginning to interact with humans and are increasing in dimensionality,
control complexity, task difficulty, and dynamic capability. It is therefore becoming
increasingly imperative that control be performed in real-time (i.e. on or faster than the
timescale of the system dynamics), intelligently making decisions on demand, and then
executing them in a dependable fashion. In addition, high-dimensional bio-inspired systems
are becoming more common (Butterfab & et al., 2001; Movellan et al., 2005; Simpkins
et al., 2011; Todorov et al., 2010; Vandeweghe et al., 2004; Wilkinson et al., 2003), and
are based upon a different strategy for control (and therefore control system design) than
traditional engineered systems - coordinated, compliant, and often coupled control rather
than orthogonal, stiff, and independent control of joints. As a result, issues related to
real-time capability, more critical now than ever, must be addressed with a coherent, measured
approach.
In order to deal with this challenge appropriately, a number of sub-problems must be
addressed and will be discussed in this chapter. These are timing, dimensionality,
computational capabilities, system bandwidth, and safety. There are fields devoted to each
problem independently, and the background of each will be given as each one is discussed.
Rarely does a researcher or practitioner in one field work in any of the other fields, let alone
all of them. However, ignoring any of these sub-problems will likely lead to a failure of a
complex real-time system. Therefore, familiarization with these issues and methods will help
the researcher and practitioner design, implement, and troubleshoot a real-time system most
effectively. This chapter will present current solution methods for each component of the
problem and show how they can be integrated together effectively.

1.1 Key points and contributions
• A rare integrative approach between real-time control theory and practical hardware issues

which are closely linked with the functionality of these theories.

• A novel means of semi-redundant integrated systems to provide improved safety
measures for human-robot interaction.

• Strategies which effectively deal with high dimensional systems and complex control
strategies in real-time.

• The concept of real-time is different in different fields. Here we discuss a variety, how they
relate to each other, and how each can enhance and integrate with the others.
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• This unifies and expands upon approaches in the fields of real-time control systems,
control engineering, mechatronics, dynamics, robotics, embedded systems, and computer
science to address new design challenges.

1.2 Chapter organization
The rest of this chapter is organized as follows. Section 2 breaks down the real-time problem
into sub-problems, and Section 3 presents how each problem is addressed. Each sub-problem
is discussed in a way which exposes how they are all related, why it is important to address all
aspects of the real-time problem, and how this can be done. Section 5 presents a set of results
for a real-time system which has been designed with the methods presented in this chapter,
demonstrating its effectiveness. Section 6 closes the chapter with a review, discussion of the
problem and approach, and suggests further directions in research.

2. The sub-problems

By defining the sub-problems we can begin to address the overall issue of real-time control
in robotic systems. The timing problem is centered around what is defined as real-time for
a particular application. For example, an energy-producing chemical process may occur
on the order of several hours, or the coordination of joints required for locomotion may
occur on the order of milliseconds. Microprocessors are digital devices, and commands
to the actuators are updated periodically. Thus timing issues become guaranteeing that
sample time is short enough, that delays in the system are minimal (or properly addressed),
that samples are not missed (or if sample time is variable, this is accounted for), and that
information bottlenecks are avoided or part of the control strategy. Timing leads to issues of
computational capability required versus what is available. This defines what dimensionality
and control complexity is possible, and limits the overall system bandwidth. Traditionally
designers have considered processing power versus requirements as an afterthought, with
little concern over the criticality. This is due to the fact that, for simple problems, most
modern processors are more than powerful enough. In complex systems, however, this
quickly becomes a poor assumption. When one considers the actual realities of controlling
a fifty degree of freedom (DOF) system, for example, where each DOF possesses multiple
sensors and actuators, the required information flow bandwidth becomes large quickly. A
system with such limitations can effectively lose control of some or all DOFs under dynamic
load, though it may be guaranteed to be controllable in theory from a dynamical systems
perspective. When considering these issues, and that in the future robots will be interacting
directly with humans more often in everyday activities, safety becomes a major consideration.
A robot which can exert large forces, is not back-drivable, and/or possesses significant mass is
inherently unsafe for human interaction. Making the robot small and weak is not the only or
best solution as this still does not guarantee that the system will not be dangerous. There are
ways to minimize risk of human injury in the case of loss of control, even during a catastrophic
failure of the entire primary control system.

3. The solution approach

Though there are a number of sub-goals for approaching real-time control in robotic systems,
an overall and most significant approach is that the various design aspects of the system must
be constrained such that each solution does not violate another’s constraints. For example,
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when setting sample rate for the control algorithm, one possible constraint could be that this
must not cause a need to communicate data more rapidly than the data bandwidth allows.

3.1 Timing issues
Timing problems can be mitigated by ensuring that traditional real-time control issues as
well as new issues arising in complex robotics are addressed. If sample time is unavoidably
significantly variable, some mathematical assumptions in discrete control do not hold
(Nilsson, 1998; Wittenmark et al., 1995), and various equations in the dynamics will have
variation over ones with the precise sample time assumption. However, a constant delay can
be modeled, following (Wittenmark et al., 1995), as a standard state-space system,

dx(t)
dt

= Ax(t) + Bu(t− τ) (1)

y(t) = Cx(t) (2)

then the sampled-data system becomes

x(kh + h) = Φx(kh) + Γ0u(kh) + Γ1u(kh− h) (3)

y(kh) = Cx(kh) (4)

where
Φ(h) = eAh (5)

Γ0(h, τ) =
∫ h−τ

0
eAsdsB (6)

Γ1(h, τ) = eA(h−τ)
∫ τ

0
eAsdsB, (7)

and delays larger than a sample h can be dealt with fairly simply, by adding the relation

τ = (d− 1)h + τ′, 0 < τ′ ≤ h (8)

with an integer d. Now our system becomes, after replacing τ by τ′ in Γ0 and Γ1,

x(kh + h) = Φx(kh) + Γ0u(kh− dh + h) + Γ1u(kh− dh). (9)

Variable delays can be dealt with by simply computing time varying system matrices. Then
the model described in Equation 3 is still valid. As long as the variation in sampling is less
than a delay in duration, the model described is still valid, as the control signal does not
vary with the delay. If the delay varies longer than a sample period, then a different model
may be derived which causes the control signal to not be held constant, but rather to vary
along with the delay. This allows the control signal to be scaled appropriately, and mitigates
instabilities. Excessively large variations in sampling period can lead to unavoidable (or rather
’very difficult to avoid’) instability due to violation of controllability guarantees. In other
words, when the system finally processes the delayed sample, too much time may have passed
to react properly, and a large error may already have been incurred from the previous control
action. In the case that this type of problem is likely, it is possible to create robust controls,
which guarantee certain bounded behaviors even in the event of large errors due to sample
time variability, which may be lumped into disturbances. Another way to effectively alter
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Fig. 1. For complex control systems, it is effective to split time-critical aspects of control from
non-critical aspects. In this way a complex algorithm can be computed in near real-time, but
may not be guaranteed, while the critical aspects which require such guarantees can be
designed at the low level to handle variable updates to its reference. L stands for ’Low level’
while H stands for ’High level.’ y represents output, and u represents control input.

control parameters to match the delay is to include the delay as a parameter of the control
equation (Åström & Wittenmark, 1990).
Thus we can attempt to model delays by measurement, and then compute an appropriate
control, but that does not tell us everything that might happen, and how do we, in the context
of complex systems, measure for every possible permutation? Additionally, it may not be
trivial to make measurements of some features needing to be measured! That leads us to the
next section regarding computational capabilities.

3.2 Computational capability issues
Computational capabilities required depend on required overall update rates, complexity
of the control algorithm, number of peripherals involved and dimensionality of the system
(thus the size of data passed around during code execution). There are a number of ways to
ensure code will be processed on time and that computational requirements and capability
are matched. With highly complex control algorithms required for artificial intelligence and
complex coordinated movements, a very effective approach to ensuring real-time capability
is to split the time-critical aspects of control from the computationally intensive aspects, as
in Figure 1. Then a hierarchical but highly interconnected framework is formulated. This
parallels the human brain’s sensorimotor system structure, which can be thought of, most
definitely, as the most intricate and advanced control system on the planet. Biological systems
are also excellent at solving the types of control problems now beginning to be addressed
by roboticists. The high level would consist of powerful personal computers or clusters of
computers which are excellent for massive floating point computations but are limited for
time-critical applications, while the low level would consist of embedded systems which are
excellent at time-critical applications but less adept at complex calculations. This design
approach has been applied and is detailed in (Simpkins et al., 2011). The challenge then
becomes communication between the levels. There are a number of communication strategies
and protocols which address this issue well. Additionally, the high level operating system
must be carefully selected. Most common operating systems are not real-time.
GPU parallel processing is a powerful tool which is significantly under-applied in control
applications at this time. It is possible to perform complex algorithms rapidly on thousands
of processors in parallel on such devices, and the current state-of-the-art simulators are
beginning to take advantage of such capabilities (such as introduced in the appendix of (Erez
et al., 2011), which takes advantage of such an engine for speed). They are low cost (especially
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compared to cluster computing) and highly effective. This approach is useful not only to run
single-thread algorithms, but also to run multiple model predictive algorithms in parallel. In
this way, several potential control decisions or trajectories can be explored very rapidly, and
the one with the best outcome selected.
Measuring execution time for all the computations required, including communication delays,
and delays from peripherals is an important ability to have. This is not a trivial problem,
however.

3.2.1 Worst case execution time
Worst Case Execution Time (WCET) is the time it takes to execute the longest branch of code,
not including hardware peripherals. This is important to at least have a reliable estimate of,
since a designer needs to know whether a task can finish in a set amount of time for real-time
systems. Traditionally, with fixed code and no caches, this was not as difficult a problem
as it is in the context of more advanced (often multicore) processors, infinite loops, complex
pipelines, and dynamic code length.
The traditional methods of measuring WCET comprise an entire field and will be mentioned
here fairly briefly, as the main contribution is when and how to use these tools in conjunction
with all the other subproblems that need to be addressed (The interested reader is referred to
(Ermedahl, 2003; Hansen et al., 2009; Wilhelm et al., 2008). This field is moderately mature,
though advances continue steadily. Timing analysis is the process of determining estimates
or bounds on execution times. (Wilhelm et al., 2008) provides an excellent overview of timing
analysis and the WCET problem in general, as well as tools which are available.
There essentially are two approaches for WCET prediction. These are static and dynamic
(Grob, 2001) approaches. Static prediction approaches measure small pieces of code which do
not change, do not have recursion, and are otherwise limited (Puschner & Nossal, 1998), while
dynamic approaches (sometimes called measurement-based methods) measure an entire
execution pathway, running on a simulator or the actual hardware for a set of (probably
limited) inputs.
The static method may not provide realistic estimates when code snippets are combined
together, and scheduling complex algorithms which combine many snippets together may
break down the estimates. In addition, some processors have speculative components, where
the processor determines an expected path, begins to load items in memory, and performs
some processing ahead of time in anticipation. However, these speculations can of course
be mistaken, and then all the predicted data must be deleted and the proper execution
performed, which is actually slower than just waiting then branching when the call happens,
without prediction.
Modern processors provide means of measuring code performance in a variety of ways via
peripherals built into the chip, but some of these methods are imprecise at best. They do
give a measure of how many cycles a task takes, however performing the measurement itself
takes some computation. This violates the basic principle of measurement - that the action of
performing the measurement should have such a small effect on the system measured that no
significant change occurs in the process, but it does give a great deal of information, and the
effect is fairly small. These measures can be used to create an estimate of best and worst case
execution times. In practice this is very helpful, though difficult or impossible to provide hard
guarantees in all cases.
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Two effective approaches which can be used on complex real-time robotic control systems, of
the techniques discussed are either to split the time-critical components from the non-critical
components, or to use a measurement technique which will not necessarily guarantee perfect
timing, but may provide fairly good estimates on bounds of timing. In safety-critical
applications it is suggested that having a low level which has timing guarantees is more
appropriate than bounded estimates, in combination with a watchdog (discussed in Section
3.5). In some experimental robotic systems it may be sufficient to simply design controllers
which deal with temporal variability without instability, but write code which minimizes
delays. This latter method may be effective for rapid prototyping of new designs and testing
experimental theories, while the hierarchical structure with some components real-time may
be a more effective general strategy, as long as communication between levels is designed
carefully, such as in (Simpkins et al., 2011). Standard timing analysis tools should be used at
the programming stage to test algorithms and ensure their real-time performance. Even in the
best cases, there are always limitations, and in complex high dimensional systems we must
consider carefully what is the maximum capability available, and how much is required.

3.3 Dimensionality and bandwidth
The dimensionality of a system may technically be very high, but can be reduced in practice
depending on the task. Or alternatively, simple coordination can be performed at a low level
(akin to reflexes in biological systems, which are thought to be processed in the brain stem or
lower levels, depending), leaving higher levels free to coordinate a few degrees of freedom
(DOF) in more complex patterns. This reduces and efficiently distributes the processing load.
For example, though human beings have over twenty-two DOFs in their hands, during the
majority of grasping and manipulation tasks, they tend to use as few as two DOFs for a variety
of common tasks. The individual DOFs are coupled together into movement ’synergies,’
which makes the computational task significantly simpler.

3.3.1 Advantages of synergies and evidence to support their uses
Biological systems are almost unilaterally agreed to be capable of superior complex
manipulation tasks in terms of complexity and variety of skills. Interestingly enough,
several studies have been performed of humans undergoing complex manipulation tasks, and
dimensionality of the movements have been explored using principle components analysis
and canonical correlations analysis. See (Anderson, 2003) and (Mardia et al., 1992) for good
discussions of these techniques. The results essentially state that biological systems use
synergistic movements to achieve goals. It is likely that there are a number of reasons for
this, but one advantage of synergistic control is that the number of individual dimensions
controlled is reduced significantly over the total state space. Of the many DOFs available,
many manipulation tasks require less than three (Santello et al., 1998). This has led some
researchers to claim that this is a maximum for control but it appears that there is a sliding
dimensionality. However dynamic complex movements require more training than lower
dimensional, less dynamic ones. One theory is that when learning a new skill, humans go
through stages of learning, where initially many dimensions are frozen, then gradually are
unfrozen as learning takes place(Bernstein, 1967). One possible explanation for this strategy
is that, in order to free bandwidth as much as possible, coordinated movement is encoded
at as low a level as possible, freeing up the high level to devote bandwidth to complexity of
the strategy, rather than simply giving individual joint commands. In fact, the manifold of
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Fig. 2. First four principle components of postural movement data for humans undergoing a
’variability maximizing experiment,’ scaled appropriately for joint angles and applied such
that the size of the component for a joint determines its deviation from a neutral posture. It is
interesting to note that the components, which represent the dimensions that were most
significant in terms of accounting for the variability in the data, and the direction of
variability, comprise certain basic components of manipulation - gripping with all fingers,
using a wavelike pattern of all fingers or using the first few primary fingers and thumb,
precision manipulation with all fingers in fine patterns, and finally the thumb dominating
the movement. This may suggest that combining these synergies, or using subsets of fingers,
many manipulations can be performed.

the subspace is quite dynamic, and changes depending on the task. In other words, joints
are coupled together in a fairly optimal fashion for each task(Todorov & Ghahramani, 2003;
2004). In fact, the author has performed a series of studies attempting to maximize the
dimensionality of hand movement control, and there is still a notion of synergies(Simpkins,
2009). The maximum dimensionality is approximately ten DOFs. The obvious advantage
is that the less individual trajectories that must be computed, or more generally, control
decisions to be individually made, the faster those decisions can happen, and the more
complexity can go into computing what exactly those decisions will be. So couple joints
together when possible into synergies such as Figure 2 and compute a global trajectory for
them to follow, such as open vs. closed hand (See Figure 3), and this can be done quite
quickly and efficiently computationally. A number of approaches can be taken to build control
systems upon this general methodology, but optimal control has been found to effectively
model much biological movement control data, and provides an intuitive means of building
control systems. Optimal control (Stengel, 1986) is a methodology which makes decisions
based upon a notion of optimality for a task. This notion comes in the form of a cost (or
reward, hereafter referred to only as cost for simplicity) function. Behaviors are created by
specifying the dynamics of the system as constraints, then actions are chosen which minimize
the cost computed by the cost function. There is evidence that the sensorimotor system ignores
task-irrelevant deviations (Todorov, 2004; Todorov & Jordan, 2003), which tends to reduce
dynamic load and uses less system bandwidth to compute controls than actively controlling
everything individually.
Bandwidth is a term which is used in many fields for different purposes. In control theory it
relates the ability to track a reference signal (Franklin & et al., 1994); in communications and

215Real-Time Control in Robotic Systems



8 TBD

Fig. 3. Images of a hand gripping an object. Though there are many degrees of freedom in the
hand, it is clear that there is a low dimensional synergy in this case. We can control the entire
hand from this synergy for this task (open-close). In that way, more complex algorithms can
be computed in real-time if needed. A sliding complexity (in terms of dimensionality and
dynamics) can be used to guarantee real-time control even for a complex system.
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Fig. 4. The bandwidth cutoff for a system tracking a sinusoidal input is considered to be the
point at which the amplitude of the output drops below -3dB, along with a corresponding
phase shift. This is the bode plot for G(s) = 1/(s + 1).

networking it refers to how much data throughput is possible. However, the general concept
is very similar in all instances. We will use as the following as the definition of bandwidth:
Definition: Bandwidth shall be defined as the rate at which a system, open-loop or closed-loop, may
successfully track a reference. The boundary between successful tracking and unsuccessful tracking is
the point at which the amplitude of the output drops below -3 Decibels (dB) relative to the input signal
in the frequency domain, such as Figure 4.
The bandwidth requirement for a system is also reduced by synergistic movement control. It
is also significant that a designer consider not what the maximum possible bandwidth of the
overall system can be, but more what the maximum bandwidth should be. In other words,
what is required (along with a factor of safety) to succeed at all tasks the system is designed
to accomplish? Too high of a (dynamic) mechanical bandwidth may lead to instability, high
forces, and other problems affecting system safety. Too high of a data bandwidth leads to
higher probabilities of lost samples, delays, and related issues. It is also possible to have
a sliding bandwidth which varies depending on computational complexity versus dynamic
timing of a particular task. In fact, this appears to be closer to what biological systems do -
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Fig. 5. Block diagram of hierarchical control scheme. This approach breaks a single complex
problem into several smaller and more tractable problems.

use some subset of features of the complex system for any given task, but have the capability
for a variety of tasks (Todorov & Jordan, 2002).

3.4 Control complexity
As more intelligent control is applied, the computations required to carry out these algorithms
tend to increase. For example, the number of mathematical operations per second to run
model-predictive nonlinear stochastic optimal control is far higher than proportional integral
derivative control.
An approach which is promising is to break the one complex problem down into simpler
components with a hierarchical control approach (See Figure 5). Then different components
of the hierarchy, as discussed in Section 3.2, can address either time-critical or computationally
intensive aspects of the controller. This will be explored through results from a system
developed by the author (in collaboration with Michael S. Kelley and Emanuel Todorov) for
complex manipulation and locomotion (Figure 6(a)).
Finally, some aspects of the control can be computed or adapted offline or on a slow timescale.
This is parallel to some learning processes in humans. The resulting solutions (such as
pre-computed trajectories) can be accessed from memory rapidly when required.

3.4.1 Model and approach
The basis for this approach is presented in (Simpkins & Todorov, 2011) for the robot in
(Simpkins et al., 2011).
The goal of these robotic fingers was to develop a robotic system which parallels certain key
aspects of biological systems for manipulation (and similarly for locomotion). The reason to
do so is that most robots are not designed to behave in a similar fashion to biological systems.
They are often solving different problems, such as how to follow a trajectory in order to weld
two parts together or to cut away material in a prescribed pattern with a milling bit. In these
standard cases it is very important for the robot to track a specific trajectory regardless of
outside disturbances from the world. Biological systems such as a human being walking
across a room, or selecting a key from a keychain full of keys in his or her pocket are solving
a completely different problem. They require a bidirectional information flow with the world
at an actuator level - many movements are more like a dance with the outside world as one
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(a) (b)

Fig. 6. (a) A modular bio-mimetic robotic system developed by the author at the University
of California, San Diego and the University of Washington in the Movement Control
Laboratory. (b) A simplified 2-dimensional representation of the robot and object, used in the
algorithm described in this section.

partner, and the human being as the other. The human acts on the keys by applying forces
to the keychain, the keychain changes state, and by nature of the contacts with the human’s
hand, alters the state of the human, who gains information about the state of the keys. This
also helps simplify the control problem in various ways, as the human hand conforms to the
shape of the key, rather than the hand attempting to move in spite of the key.
Creating a robot which interacts with the world in this fashion involves solving a number
of new design challenges without compromising on any one specification. For example, in
order to dynamically manipulate objects, a robotic finger must be able to move rapidly, be
completely compliant and back-drivable, communicate at a high rate with a host processor,
be capable of implementing complex control in real-time, be sensitive, measure appropriate
variables (such as force, velocity, and position), and it must be sufficiently robust. This is to
the author’s knowledge the first design which solves all these constraints and incorporates
modularity (each finger is completely self-contained and has wireless capabilities, with
provisions to be attached to any base with the appropriate hole pattern). Controlling such
a device to perform dynamic manipulation in the way previously described is a new type of
control problem, and requires a significantly new approach.
The goal is to apply forces to an object to cause it to behave in a desired fashion. This can be
tracking a trajectory, or any other goal of control. An important note is that the two problems
(manipulation and locomotion) are related in that we either have a small object relative to
manipulators such as a hand, or the ground, an object of infinite size (in either case, it is often
that one side of the problem is significantly larger than the other side - manipulators or object
manipulated), as in Figure 7.
Forces are applied to the object by manipulators, described as linkages, as shown in Figure
6(b), which are a simplified model of the physical robots developed by the author, shown in
Figure 6(a) and described in detail in (Simpkins et al., 2011). Torques (τi) are applied to either
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Fig. 7. Image sequences showing manipulation of an object (top) and locomotion (bottom).
Note the parallels between the two. In fact, the two can be thought of as essentially the same
problem - this is a significant insight.

of the two links shown for a particular manipulator in order to generate an output force at
the endpoint. This is similar to human joints in terms of the way tendons pull on joints to
cause an output force. However, here for design simplicity and robustness, the complex inner
musculoskeletal structure is reduced to a four bar linkage model. The motors which produce
the torque are coupled to the joints through a cable drive system which has ultra-low friction
and little if any backlash - essential components for back-drivability. The cables act as the
tendons would in biological systems in the sense of a pull-pull system, as well as providing
some spring characteristics. As much mass as possible is kept at the base, and decoupled
from the output, which is another reason for the linkage design. This helps keep inertia small
relative to the objects being manipulated, and relative to the output force capabilities of the
finger. This is significant because the finger needs to be capable of dynamic movement (rapid
accelerations and decelerations), and must avoid wasting most of the force output capability
of the motors in overcoming the structure’s inertia (imagine going through your day with an
extra 10kg of weight strapped to your wrists; it would indeed be very difficult to perform
simple tasks because nearly all of your strength would be used to overcome the weight and
inertia of the additional mass). Large inertia also is very detrimental to back-drivability.
The concept of these devices is not to attempt to duplicate the structure of a biological
system. Rather, the concept is to capture the capabilities which are significant for developing
controllers that solve the problems of manipulation and locomotion similarly to biological
systems. Each finger is capable of producing a few Newtons of peak output force in each
axis, and requires a fraction of that to be backdriven (frictional and inertial loads are small),
enough for fine dynamic manipulation. Each can perform closed loop control at over 1kHz,
communicating between all fingers and a higher level processor (such as a personal computer)
all relevant data (position, velocity, force, actuator states, etc).
Consider for simplicity the manipulation or locomotion problem within a 2D context. Objects
are represented by center of mass, position and angle, mass (m), inertia (J), and a boundary
(d()), which may be described by splines, allowing any shape to be represented, convex or
concave. The sum of forces on the object (Fx, Fy, and M) are given by
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Where fi representing the force applied by manipulator i at the surface location relative to the
object center of mass as a function of angle (θ) relative to horizontal in the global coordinate
system (d(θ)), g representing gravitational acceleration, a representing acceleration of either
manipulator i’s endpoint or the manipulated object, depending on the subscript, and ()o
representing ’with respect to the object being manipulated.’ Time derivatives are represented
by an over-dot, for example, the time derivative of x has the notation ẋ.
Contact dynamics can be complex to simulate accurately, and can bring about bottlenecks for
otherwise lightning fast algorithms (important in real-time contexts). Though with the rigid
body assumption it is true that accurate contact dynamics appear difficult to ’get right,’ real
objects are not infinitely rigid. This provides a means by which contacts are smooth, soft,
and damped. The reader is encouraged to consider his or her hands as an example- note the
flexibility of the tissue. In general we, as human beings, do very little manipulation of rigid
objects with rigid objects. When was the last time you attempted to pick up and manipulate
a coffee cup or other fairly rigid body while wearing rigid steel armor which has no padding
over your hand? It is unlikely that you ever have, or ever will. In fact, it is important to have
damped interactions to avoid damaging the manipulators and objects - consider shoes, which
prevent joint and limb damage due to shocks over time. This makes the problem significantly
simpler, and we can make strong assumptions which do not necessarily reproduce contact
dynamics of rigid bodies perfectly, but instead assume that objects interacting with each other
do so with damping. In addition, the concepts we are presenting here do not necessarily
depend upon the contact algorithm, being a modular method, and so the physics and contact
model can easily be switched for others, even on the fly. And it makes sense to have a more
flexible strategy for simulating dynamic interactions than making one assumption and basing
the entire methodology upon this such that the algorithm becomes ’brittle’ to simple changes,
or becomes computationally infeasible due to complexity.
Given this discussion we create a constraint for the form of the algorithm presented here
(Simpkins & Todorov, 2011). We assume that there is no slip during contacts, effectively
creating a sticky contact algorithm. The advantage here is that it allows a constraint on
acceleration of the manipulators relative to the object,

{
ax,i
ay,i

}
=

[
1 0 dx(θi)
0 1 dy(θi)

]⎧⎨
⎩

ax,o
ay,o
θ̈o

⎫⎬
⎭ (11)

where a represents the acceleration of the object o or point mass i, and θ̈o is the angular
acceleration of the object. This does create an instantaneous change of velocity when a contact
occurs, which can be modeled as an impulsive force that causes the change in velocity which
is required. There is also an assumption that the point masses are small enough in mass
relative to the object that their contribution to the momentum of the system when in contact
is insignificant.
When not in contact, the point masses experience accelerations due to a force which is applied
by the robot fingers. The entire robot finger assembly is modeled as a point mass with external
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forces applied to the point mass in order to cause accelerations. This assumption is made
because the rotor inertias of the motors dominate the overall finger inertia. It is also makes
the system more simple to model and control than one with complex nonlinear dynamics, but
this would be possible as well and is a trivial extension. The affine point mass dynamics for
mass i are given by ⎧⎨

⎩
ax,i
ay,i
1
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⎭ =
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⎢⎣
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mi
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0 1
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and the object dynamics, after rearranging the terms in Equation 10 are given by
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and the end effector dynamics when in contact with the object can be similarly derived to give
{

fx,i
fy,i

}
+ mi

{
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}
+ mi

{
θ̈odx(θi)
θ̈ody(θi)

}
=

{
bx,i
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}
. (14)

We combine the object and end effector dynamics into a single equation, which allows us to
solve for the unknown forces and accelerations in one operation

Aw = b, (15)

where A is given by

A =

⎡
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w is given by,

w =
{

f(x,i), f(y,i), a(x,o), a(y,o), θ̈o

}T
(17)

and b is given by

b =
{

0, g, 0, b(x,i), b(y,i) + mig
}T

. (18)

Then, we can compute a solution, or an approximation to the solution quite quickly using the
solution method of choice. One method that works well is simply to use the pseudoinverse of
A, which will yield the forces the point masses apply on the object and thus the forces on the
point masses in response, and the acceleration of the object.

w = A+b (19)

The A matrix changes dimensions as needed depending on which manipulator is in contact,
on the fly. This is how we can easily compute an approximation to the contact forces and
resulting acceleration.
The overall problem, now that the physics are laid out, can be presented as the following:

221Real-Time Control in Robotic Systems



14 TBD

Compute the optimal forces and contact locations to track the reference if in contact, and if not, compute
the trajectories for those manipulators not in contact in order to move them to new contact points, or
into a useful position (if, for example, the object moves out of the particular manipulator’s workspace).
These two trajectory classes form a pattern, which could be referred to as a gait for
manipulation or locomotion.
There are several sub-problems to consider in order to not only solve the above overall
problem, but to do so in a useful way - for example, manipulate objects without dropping
them, make a robot walk without falling over. Additionally, it should be noted that most
manipulation problems involve redundancy - usually one has more fingers than one needs
to for any given task, so how does one decide what to do with each finger? There are many
solutions (Simpkins & Todorov, 2011). Here we will state that this can be formulated within
the optimal control framework, and solved using the method described below. In that way
the solution which ’best’ solves the problem at hand is selected from the set. It remains to
further describe what ’best’ means, and how the set of possible actions is generated.
It is possible to formulate this problem within the optimal control framework as a single
level problem, however it is nonlinear, high dimensional, and stochastic. We are interested
in real-time solutions, and it is difficult to solve these problems with an unprescribed length
of time and computational capabilities, let alone limited resources and time. There is also
support for the notion that the human brain solves such problems in a hierarchical but
interconnected fashion. Thus we draw from nature to address this problem - break the
one complex problem down into several more simple and tractable problems, organizing
challenging aspects of the problems into groups which sum to the solution of the more difficult
problem.
The three levels are the high level, which assumes one can apply an ideal force to the object
directly at its center of mass, a mid-level, which takes as input the requirement for the
ideal force, and decides how to break the force up into individual forces to apply with the
manipulators, and where these forces should be applied, and finally a low level which deals
with mapping endpoint forces to apply with manipulators to joint torques. The mid-level
also, in computing optimal configurations, weighs out the difference between remaining in
the same contact posture and breaking contact to create a new grip.

3.4.2 High-level
Another advantage of this approach is that the high level can employ more complex
algorithms, as it will be lower dimensional overall. In fact, predicting individual trajectories of
the manipulators would be prohibitively computationally expensive, however implemented
in this way it is not.
To implement this high level controller, one can implement any desired strategy: optimal
(Stengel, 1986), robust (Zhou & Doyle, 1998), risk-sensitive, model-predictive (Erez et al., 2011;
Li & Todorov, 2004), classical (Franklin & et al., 1994), and adaptive (Krstic et al., 1995), to list
a small subset of possibilities.
In an opposing notion, it is simpler to implement classical control using ideal forces, and the
lower level controls may be implemented similarly as, for example, Proportional Derivative
(PD) control which, in its discrete form, is given by, with ΔT the time increment, k the current
time-step, Kd the differential gain and Kp the proportional gain, e the error, y the output state
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feedback signal, and finally r the reference,

uPD
k = Kp(ek) +

Kd
ΔT

(ek − ek−1) (20)

where the error is given by
ek = rk − yk (21)

3.4.3 Mid-level
Given the required force to apply to the object, the mid-level splits this force into (given
the number of manipulators) what forces each manipulator should apply and where they
should apply them. This level deals also with workspace limitations, what to do if the object
moves outside the manipulator workspace, and contact breaking is handled as well, all in one
equation.
This is done differently, depending on which of the manipulators are in contact and which
are not. Given a particular contact grouping, the overall ideal force is distributed among the
in-contact fingers with a fast quadratic constrained optimization (forces constrained to only
have a negative surface normal component).
The forces ( fx) acting upon the object (at location specified by d(θ)) are in the x, y, and angle θ
coordinates, and are linear forces and the resulting moments, given in matrix form (at timestep
k) , for manipulator i acting on the object as

fti ,k =

[
fxi fyi dx(θi)− fxi dy(θi)

fyi dx(θi)− fxi dy(θi) fyi

]
(22)

The objective J( fi)k is to minimize the error between the ideal force and the sum of total forces
acting on the object, which tends to keep any force from being excessively large,

J( fi)k =
[[

fr,k −∑
i

fti ,k
]2

+ ∑
(x,y),i

f 2
i,k

]
(23)

We can pose this as a constrained optimization problem by stating (with n representing the
normal to the surface of the object at the point of contact),

(
f opt
i = argmin

fi

[
J( fi)k

]
, s.t.

[
f • n < 0,

])
(24)

So given the manipulators in contact, we can extremely quickly determine a set of forces which
sum (as closely as possible) to an equivalent of the ideal desired force.
The behavior of the fingers that are not in contact (and the contact breaking behavior) can be
encoded in a field equation which combines several different elements to create a pattern of
action. This is easier to build from scratch or data than a cost function, since it is more direct
and actions can be easily shaped. This is similar to directly constructing a policy - imagine
a virtual force acting on a finger, so when you hold a coffee cup in your hand and rotate it
continuously in one direction, there is a moment where you feel an increasing urge to change
your grip (in such a way that you do not drop your cup). A virtual force field translates
well to constructing these types of behaviors from observations. In the case presented here it
is desirable to change grip when a manipulator is nearing the boundary of its workspace (i.e.
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Fig. 8. Virtual force field rendering. Here one sees the forces acting on the manipulator
endpoint. Note how the object (white) affects the field as it enters the workspace - the further
the object is from the center of the workspace, the narrower the contact region becomes. This
is a fast way of generating trajectories for the endpoint, and is very flexible for a variety of
behaviors or adapting behaviors, as it is simply a matter of altering parameters of an
equation.

apply a force which pulls the finger away from the object near the boundary of the workspace),
and find a new contact which is closer to the middle of the workspace, in order to maximize
potential for varied actions. This force should fall off near the line between the center of the
workspace and the center of the object.

Fe = Ke
(x− xc)

1 + ||x− xw||2 (25)

Equation 25 pulls the manipulator toward the object, but falls off the further the object is from
the center of the workspace - in other words if the object is too far away, the term which
pulls the manipulator towards the center of the workspace (Equation 26, the spring element,
dominates (here xw represents the center of the workspace, xc represents the center of the
object, x the endpoint of the manipulator, Ke and Ks gains, and a is a constant determining the
fall-off of equation 26 as a function of distance from the object, surface normal n,

Fs = Ksn||x− xw||e−a(x−xc)2
(26)

and finally Ft the total virtual force field equation.

Ft = Fe + Fs (27)

Outside of the workspace, biological system tendons and joint assemblies act as springs,
pulling toward the center of the workspace, as in Equation 28.

Ft = Kk(x− xw) (28)

These equations can be visualized as in Figure 8. Here it is clear that as the object enters the
workspace, the virtual force field acting on the manipulator endpoint correspondingly alters.
In the case just described we use (for clarity) circular objects and workspaces, but different
shapes can be used by replacing the simple subtraction by a function of any shape.
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3.4.4 Low-level
There are advantages to working in endpoint coordinates (Simpkins & Todorov, 2011), one of
the most notable being the flexibility in actual structures the control is solving the problem
for. In addition, the more challenging parts of the problem are solved for dynamics which are
linear.
We here implement a bounded Newton’s method (Ferziger, 1998) to compute the optimal
feasible torques to apply which map as closely as possible to the desired forces at the
endpoints. Each state is initialized with the current state rather than randomly in order to be
near the goal initially, and this is quite effective and efficient in practice. When implemented
on a physical system, accuracy is further improved by implementing a low level PD controller
to track these joint torques more closely, and deal with issues of friction and un-modeled
dynamics of the structure or system.

3.5 Safety and real-time control
Human and robot interaction can pose a number of dangers. This is especially true when
the humans are interacting with dynamic or powerful robots. Not only do the robots present
danger to humans directly, but the unpredictable nature of human behavior is such that they
can introduce disturbances into the system which are difficult to account for ahead of time.
There are a number of ways to mitigate hazards. One approach is to make the entire robotic
system passive - based on inertia, back-drivability, and brakes. Then the human applies all
the energy to the system. Though this is powerful, the human-robot system can still create
accelerations which can cause injury to themselves or others, and the system is no longer
autonomous. The human must be in the loop for the system to act. Making the entire robot
small and weak, or to mechanically decouple the motors from the human is another approach.
This may be effective in some cases, but has limitations as then the robot cannot perform many
tasks. In the mechanical coupling case it may be difficult to keep disconnected components
from moving unsafely.
In all cases it is beneficial to have a secondary monitoring system which is connected
with all the necessary sensors and can control either braking or power to actuators. This
’watchdog’ system performs checks on the control system to make sure it does not exceed
safety specifications, that all components operate properly, and that the high level control
has not crashed. If anything does fail checks, the watchdog can disable the power and
stop the system safely. A small processor is all that is required to perform these duties,
requiring minimal space and power. The overall architecture for this watchdog approach
will be discussed, along with demonstrations of a robot with such a system integrated into
the design.

3.5.1 Failure modes of a standard system
Consider a standard engineered control system, as shown in Figure 9(a). The system consists
of a mechanical system, sensors, actuators, power input/supply, and some sort of computer
system.
Case 1: Sensor failure
Assume this is a feedback system, such as a robotic arm used for high energy haptics. The
robot is aware of its current position by a series of position sensors coupled to key joints. This
allows the robot to follow a reference trajectory, as in the image sequence in Figure 12. Now
consider what happens if one sensor suddenly discontinues to function (Figure 9(b)), or begins

225Real-Time Control in Robotic Systems



18 TBD

(a) (b) (c)

(d) (e)

Fig. 9. (a) A typical engineered control system. It consists of a mechanical structure, sensors,
actuators, power input/supply, and some computer system. (b)-(e) Some examples of
failures of the typical system, and how they can be classified into one of the four cases (power
supply omitted for clarity). (b) Case 1 : sensor failure - a sensor stops functioning properly.
(c) Case 2 : actuator failure - in this case an actuator breaks, but it could be that it has an
internal electrical failure. (d) Case 3 : mechanical failure - here we see that a main mechanical
component has dislocated completely. (e) Case 4 : Computer failure - here it seems that the
computer has been destroyed, but this type of failure also can be a software crash.

to function abnormally (a wire breaks, it wears out, shock destroys it, a bad ground, etc). The
robot control algorithm assumes it is still being fed sensor information, and acts accordingly.
This will likely cause a disastrous acceleration until a boundary is struck with maximum force,
and the user may be injured.
In the case of a haptic system, it is better to have a motor turn off rather than accelerate
uncontrollably, however how does one integrate available information to react properly?
There actually is information available to tell us that there is a hardware failure, even if the
sensor failure itself is literally undetectable.
Case 2: Actuator failure
There are a number of ways an actuator can fail (Figure 9(c)). An electrical actuator may
fail such that it becomes passive, unresponsive, sluggish, or lacking in power output. It may
also lock or jam due to some component failure. The internal circuit of the actuator may fail
such that it shorts (which tends to make the actuator act as a viscous brake) or has an open
circuit, which leads to a non-responsive, passive actuator. A hydraulic actuator may lock, or it
may leak fluid which leads to pressure loss and either stiffness or loss of power, depending on
where the leak occurs. It may also suffer a compressor failure (which may lead to a total failure
of the actuator) or component wear (which may lead to inefficiency or lack of functionality as
well). Pneumatic actuators may experience a lock-up, but due to gas compressibility this
is less common. Often the failure of pneumatics lead to rapid functionality loss as the gas
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Fig. 10. One possible safety configuration for a watchdog system. In this system there is a
simple microprocessor overseeing all safety-critical functions of the main device - sensors,
actuators, and boundaries. If anything is incorrect, it can disable the motors and enable a
brake directly.

pressure loss may be more rapid than for a fluid-based system. Many pneumatic, electrical,
and hydraulic systems include integrated sensors which may fail, as previously discussed in
Case 1.
Case 3: Mechanical failure
A mechanical failure is defined by the author as a failure in one or more mechanical aspects
of the system. This can be a component breaking or yielding (deforming such that it does
not return to its original shape), a mechanical jam, or a physical disconnection which is
undesirable, as in Figure 9(d).
Case 4: Computer or electronic failure
A computer failure may occur through a software crash, electrical short or disconnection, a
software bug or error, memory corruption, or computational insufficiency, as in Figure 9(e).
Any of these can lead to the control system not acting as designed.
Achieving the goal regardless
Ultimately, many failures can be detected and ’handled’ in such a way that potentially
devastating effects are mitigated. It may be convenient to include as a safety device a
redundant low level microprocessor-based ’watchdog’ which is independent of the standard
system, as in Figure 10. It is connected to all the sensor information and actuators, and has
a programmed set of boundaries to maintain. Its job is to oversee all the components of the
system and ensure they are functioning. The watchdog and main computer system ping each
other frequently in a simple way such as with a pulse train. If there is a failure in either system
component (main or watchdog) the system, depending on its function, may be shut down. The
watchdog may be connected to the actuators such that it may disable the power output and
engage some braking action if desired. It is also generally a high bandwidth system (since it
is not performing many computations). If the system is mission-critical, such as in a military
application or in a flight control or other situation where it may be dangerous for the system to
be suddenly disabled entirely, it may be more effective to determine the safest course of action
which still achieves the objective. In the case of a walking robot, where a Case 1-4 failure
has occurred in the leg, it may still be possible to walk. Consider humans with an injured
joint - they can often offload much of the dynamic load to anther leg or joint. It is simply a
matter of an adaptive control algorithm which recomputes a solution for a different system
configuration. Consider sending a robot into a situation where it will be gradually melting - a
radioactive disaster or extreme conditions. The robot needs to be capable of adapting to loss
of actuators, sensors, and some computational capabilities. An algorithm such as discussed
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Fig. 11. Suggested flowchart for real-time system design. Note that safety is to be part of each
stage of the design process. In addition, bandwidth, dimensionality, and timing are
somewhat interdependent, which is the reason that feedback is incorporated in this chart.
The first thing to start with as a question is ’what are the dynamics of interest?’ This leads to
the computations outlined in Section 3.1. Second, one must determine just how many
degrees of freedom the system needs to perform all its tasks (Section 3.3), and how complex
the control algorithms need to be (and can be, depending upon hardware available). This
determines dimensionality, which affects the timing. Bandwidth limitations impose
constraints on both dimensionality and timing (slower timing allows for higher
dimensionality, and vice versa for faster timing).

in Section 3.4.1 can easily handle these sorts of challenges. Identification of the failure is a
challenge. This can be achieved through the integration of the watchdog. A watchdog can
be used to compare the measurements with expected outputs - for example a sensor with
a zero voltage output which measures velocity of a motor normally, while a motor is being
commanded to a high velocity, and is currently not drawing very much current (meaning
it probably is not stalled), and has significant back-emf being generated can be a flag for a
sensor or actuator failure. All the components of a system work together in unison, and the
dynamics of a system express themselves through all the sensors and actuators. Expected
values can be integrated into the watchdog in the form of a classifier which can output error
states very quickly and efficiently, if well-trained and carefully coded. The watchdog and
computer compare error signals, and can eliminate (from the control algorithm), freeze, or
otherwise remove from or adjust the dynamics as much as possible to minimize failure impact.
Then the control algorithm is simply updated with a new number of actuators or in the case
of something similar to locking an injured joint, a new number of degrees of freedom, and it
continues to solve the problem in the optimal fashion given the new system. Since everything
is solved online this is possible.

4. Putting it all together

Methods have been presented which, when combined, effectively deal with the real-time
control problem for complex robotic systems. Since some of the components of the design
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Fig. 12. Animation sequence of three manipulators tracking a rotating stationary trajectory
(Frames advance starting from top-left in sequence to the right in the same fashion as normal
english text). Note the multiple contact breaks in order to allow the object to be continuously
rotated.

depend upon others, Figure 11 suggests a sequence which is typically effective. Each
component is interdependent with each other component, however an effective starting point
is to define the problem, or class of problems first. This gives a sense of the requirements
for timing. Then the designer can compute required bandwidth and dimensionality of the
system (as well as constraining the design by the available computational power), or generate
something like the sensorimotor system of a human, with a high mechanical dimensionality,
but limitations on overall bandwidth and dimensionality of control, leading to optimal actions
for a particular task. At each stage of the process, safety engineers or the primary designer
can design checks such as a secondary safety system and impose safety-based constraints.
Real-time control itself, in order to be most effective, should not be decoupled from the
design of the actual system. Otherwise the system may be unnecessarily limited due to
designed-in bottlenecks. However, being aware of the concepts presented in this chapter, a
control engineer can effectively maximize the capabilities of a system which already exists
and must merely be controlled.

5. Results and application

We begin with a description of the problem, originally described in (Simpkins et al., 2011),
and discussed previously in Section 3.4.1. In order to study biological systems, and how
they interact with their environment through manipulation and locomotion, it is useful to
have a robotic device which mimics certain key aspects of biology (those systems capable
of manipulation and dextrous locomotion), such as output-to-actuator backdrivability1, low
endpoint inertia, high dynamic capabilities, and sensitivity. After carefully determining the
requirements for manipulation and locomotion, the author and collaborators drew upon
biological systems in terms of timing and dynamic capability to define requirements. In
addition, there was a desire to create a modular system which could ultimately be assembled
quickly into a variety of configurations. There are a variety of requirements determined,

1 Application of force at the output can about a change of state at the input of a back-drivable system.
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Fig. 13. (a) The robot, controlled hierarchically from a PC running matlab and
communicating over bluetooth, with a local low level PID controller, is capable of tracking a
cyclical motion very rapidly. The timing of the loop for this plot is approximately 1msec,
with some variability in timing. (b) In this plot, the loop (which here includes contact
dynamics and a more complex simulation) was deliberately executed in a non-optimal
fashion in order to vary the timing of the sampling and updates, for demonstration purposes.
When such variability is handled properly, as described in this chapter, the system can be
built to remain stable.

and a summary is a 1kHz maximum bandwidth for the control of five fingers through one
bluetooth or USB connection, ability to apply approximately 1N of endpoint force, minimal
friction and endpoint inertia, resolution above one-tenth of a degree, and measures of force in
addition to position. These requirements pose a challenge as communicating position, force,
and current for each joint of each finger for five fingers at 1kHz becomes 9000 variables per
second, and at 12-bits of resolution, for five fingers, this becomes 540kbps. If the robot is
receiving, for example, no more than three variables for command of either position, velocity,
or force output, then the most data must be sent from the low to the higher levels, as the serial
interface used can simultaneously send and receive data.
There have been a few biologically-based robots recently developed, however they all suffer
from some limitation imposed by a lack of an integrative real-time approach such as discussed
in this chapter. It is not unusual for a well-designed hand mechanism to have a maximum
bandwidth of one-tenth of a Hz to move from open-to-closed. Consider attempting most daily
tasks where every motion could be performed in no shorter time than ten seconds. Dynamic
manipulation would indeed be impossible! We omit the discussion of the design itself here,
shown in Figure 6(a), instead focusing on how to maximize the real-time capabilities.
Figure 12 demonstrates a simulation based upon the real-time concepts discussed in previous
sections. This is an implementation of a real-time hierarchical optimal control of a number
of manipulators tracking a reference trajectory, and can be applied to the physical robots.
In this case the high level is a simple proportional-derivative controller tracking a ’rotate
continuously’ command. It is clear that the algorithm is capable of multiple contact breaks
required in order to allow continuous rotation.2

2 Further results and animations can be found at the author’s home page,
http://casimpkinsjr.radiantdolphinpress.com/pages/papersv2.html. In addition, this is the location
for all the author’s publications, with most available for download.
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Fig. 14. Image sequence of a bio-mimetic robotic finger designed by the author undergoing
real-time control as described in this chapter. The finger is tracking a cyclical shape in
3-Dimensional space at approximately a 10Hz frequency. The robot is controlled wirelessly,
through bluetooth, and is communicating 9x12bit values for position, velocity, and coil
current at 1kHz, and assuming it is receiving the same amount of data as it is sending (as a
worst-case), required bandwidth is 9x12x1000x2 = 216,000 bits per second, or 216kbps. The
bandwidth of the connection is 2e6bps, or 2Mbps, which is nearly 10 times greater. In this
case the algorithm controlling the finger is not computing any contacts, and so executes in an
average of less than 1msec at the PC side.

This simulation runs entirely in real-time, with no offline components. With code executing
in Matlab R2008b for Macintosh upon an Intel Core 2 Duo processor at 2.33GHz with 2GB of
RAM, each loop takes on average 30msec, as measured from within Matlab (See Matlab help
on tic-toc), which is fast enough for real-time manipulation. Human beings have an update
rate perceptually of approximately 30Hz, and dynamically of only a few Hz (Nigg & Herzog,
1994). Additionally, it would be straightforward to optimize this code to execute far faster by
implementing it in C, for example.
The fully implemented control algorithm including hardware executes in approximately the
same time, as the hardware is provided the command computed by the simulation, and
the actual object states are fed back into the system to adjust for the difference between
simulation and reality. Essentially including the hardware in the loop in parallel with the
model adds a model reference control element to the hierarchical optimal control strategy. The
majority of the processor time is spent on the contact dynamics computations, and could be
further improved to minimize some calculations without changing the algorithm significantly.
Therefore when some manipulators are not in contact (as in Figure 14), computation time
is reduced dramatically. The 30Hz or even a 200Hz sample rate are well within the 1kHz
bandwidth of the robot manipulator and wireless communication system. It is notable that,
in Figure 13(b), the variability in timing is less than one sample, and so the state space
representations described in Section 3.1 hold. In the case that the manipulator is tracking a
trajectory, as in Figure 13(a), we see that this hierarchical strategy is capable of smooth rapid
control of the manipulator. If the current Matlab implementation were to be used, and the
system were required to perform manipulation at a faster rate than 30Hz, the concepts in
Section 3.3 could be more explicitly included in the control strategy of Section 3.4.1 by adding
a cost on the number of simultaneous manipulator control inputs. A lower dimensionality
means the algorithm will execute faster and be capable of a higher bandwidth, while still
being able to increase dimensionality on demand.
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6. Conclusion

Modern robotic systems are becoming more and more complex, and requiring far more
sophisticated controllers to be designed and implemented than ever before in order to deal
with the demand for them to perform more complex tasks. These changes have raised a
new challenge for engineers and roboticists. This chapter has presented a first step toward
a unifying theory which combines and expands upon modern real-time design control
techniques. It broke the problem down into sub-problems which each have a significant
body of literature, while describing the fact that these seemingly separate fields are in fact
intertwined, are part of a whole, and complement each other. By being at least aware
of this method of organizing the problem, and the potential pitfalls associated with the
sub-problems, it is possible to improve the end result of a design by making revisions and
requirements which are more appropriate far earlier in the process than otherwise possible.
A number of results were presented for the control strategy discussed, as well as an
implementation on a real dynamic bio-mimetic robot. Currently, many of the Matlab functions
associated with this robot are being implemented in C and made available as MEX files which
Matlab can still make use of. This should improve the execution time significantly of the
simulation, as well as all other aspects of the computations. These techniques will be part
of the development of new skills for these dynamic manipulators. The two dimensional
representation has been extended to three dimensions, and will be part of a series of papers to
be released soon by the author.
These new challenges require a different overall strategy for problem solving than ever before
in engineered systems, but have the potential to truly revolutionize all aspects of human
experience. By developing and refining methodologies, we will transition from individual
designs which take years of iterative slow improvements with many dead ends to clear paths
with fewer roadblocks, and new tools to illuminate the way.
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1. Introduction

In this chapter, the prediction algorithm Predictive Sequence Learning (PSL) is presented and
evaluated in a robot Learning from Demonstration (LFD) setting. PSL generates hypotheses from
a sequence of sensory-motor events. Generated hypotheses can be used as a semi-reactive
controller for robots. PSL has previously been used as a method for LFD (Billing et al., 2010;
2011) but suffered from combinatorial explosion when applied to data with many dimensions,
such as high dimensional sensor and motor data. A new version of PSL, referred to as
Fuzzy Predictive Sequence Learning (FPSL), is presented and evaluated in this chapter. FPSL
is implemented as a Fuzzy Logic rule base and works on a continuous state space, in contrast
to the discrete state space used in the original design of PSL. The evaluation of FPSL shows a
significant performance improvement in comparison to the discrete version of the algorithm.
Applied to an LFD task in a simulated apartment environment, the robot is able to learn to
navigate to a specific location, starting from an unknown position in the apartment.
Learning from Demonstration is a well-established technique for teaching robots new
behaviors. One of the greatest challenges in LFD is to implement a learning algorithm
that allows the robot pupil to generalize a sequence of actions demonstrated by the teacher
such that the robot is able to perform the desired behavior in a dynamic environment. A
behavior may be any complex sequence of actions executed in relation to sensor data (Billing
& Hellström, 2010).
The LFD problem is often formulated as four questions, what-to-imitate, how-to-imitate,
when-to-imitate and who-to-imitate which leads up to the larger problem of how to evaluate
an imitation (Alissandrakis et al., 2002). Large parts of the literature approach the learning
problem by trying to find the common features within a set of demonstrations of the same
behavior. A skill is generalized by exploiting statistical regularities among the demonstrations
(e.g. Calinon, 2009). This is reflected in the what-to-imitate question, originally introduced in a
classical work by Nehaniv & Dautenhahn (2000) and is in a longer form described as:

An action or sequence of actions is a successful component of imitation of a
particular action if it achieves the same subgoal as that action. An entire sequence
of actions is successful if it successively achieves each of a sequence of abstracted
subgoals.

The problem is difficult since a certain behavior can be imitated on many different abstraction
levels. Byrne & Russon (1998) identified two levels; the action-level imitation copying the
surface of the behavior and a program-level imitation copying the structure of the behavior. A
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third level, the effect-level imitation, was introduced by Nehaniv & Dautenhahn (2001) in order
to better describe imitation between agents with dissimilar body structures. Demiris & Hayes
(1997) proposed three slightly different levels: 1) basic imitation with strong similarities to
the notion of action-level imitation, 2) functional imitation that best corresponds to effect-level
imitation and 3) abstract imitation that represents coordination based on the presumed internal
state of the agent rather than the observed behavior. Demiris and Hayes give the example of
making a sad face when someone is crying.
The necessity to consider the level of imitation in LFD becomes apparent when considering
two demonstrations that look very different considered as sequences of data, but that we as
humans still interpret as examples of the same behavior since they achieve similar results on
an abstract level. This would correspond to a functional or program-level imitation. In these
situations it is very difficult to find similarities between the demonstrations without providing
high level knowledge about the behavior, often leading to specialized systems directed to LDF
in limited domains.
A related problem is that two demonstrations of the same behavior may not have the same
length. If one demonstration takes longer time than another, they can not be directly compared
in order to find common features. Researchers have therefore used techniques to determine
the temporal alignment of demonstrations. One common technique is dynamic time warping
(Myers & Rabiner, 1981), that can be used to compensate for temporal differences in the data.
Behaviors can be demonstrated to a robot in many different ways. Argall et al. (2009)
outline four types of demonstrations: A direct recording of sensor stimuli, joint angles, etc.,
is referred to as an identity record mapping. In this case, the robot is often used during the
demonstration and controlled via teleoperation or by physically moving the robot’s limbs
(kinestetic teaching). An external observation, e.g. a video recording of the teacher, is called
a non-identity record mapping. This type of demonstrations poses a difficult sensing problem
of detecting how the teacher has moved, but also allows much more flexible demonstration
setting. The teacher may have a body identical to that of the pupil (identity embodiment) or a
body with a different structure (non-identity embodiment). In the latter case, the demonstration
has to be transformed into corresponding actions using the body of the pupil, a difficult
problem known as the correspondence problem (Nehaniv & Dautenhahn, 2001). In this work
we focus on LFD via teleoperation. Sensor data and motor commands are in this setting
recorded while a human teacher demonstrates the desired behavior by tele-operating the
robot, producing demonstrations with identity in both record mapping and embodiment.

1.1 Metric of imitation
Successful imitation requires that relevant features of the demonstration are selected at a
suitable imitation level and processed into a generalized representation of the behavior. The
process is difficult to implement in a robot since it is often far from obvious which imitation
level that is optimal in a specific situation, and the relevance of features may consequently
vary significantly from one learning situation to another. This problem has been formalized
as a metric of imitation, defined as a weighted sum over all strategy-dependent metrics on all
imitation levels (Billard et al., 2003).
The metric of imitation was originally demonstrated on a manipulation task with a humanoid
robot (Billard et al., 2003). With focus on the correspondence problem, Alissandrakis et al.
(2005) propose a similar approach to imitation of manipulation tasks. The what-to-imitate
problem is approached by maximizing trajectory agreements of manipulated objects, using
several different metrics. Some metrics encoded absolute trajectories while other metrics
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encoded relative object displacement and the relevant aspects of the behavior were in this way
extracted as the common features in the demonstration set. Calinon et al. (2007) developed
this approach by encoding the demonstration set using a mixture of Gaussian/Bernoulli
distributions. The Gaussian Mixture Model approach is attractive since the behavior is
divided into several distributions with different covariance, and different metrics can in this
way be selected for different parts of the demonstrated behavior. More recently, similar
encoding strategies have been evaluated for learning of a robot navigation task (de Rengervé
et al., 2010).

1.2 Behavior primitives as a basis for imitation
Another common approach to LFD is to map the demonstration onto a set of pre-programmed
or previously learned primitives controllers (Billing & Hellström, 2010). The approach
has strong connections to behavior-based architectures (Arkin, 1998; Matarić, 1997; Matarić &
Marjanovic, 1993) and earlier reactive approaches (e.g. Brooks, 1986; 1991). When introducing
behavior primitives, the LFD process can be divided into three tasks (Billing & Hellström,
2010):

1. Behavior segmentation where a demonstration is divided into smaller segments.

2. Behavior recognition where each segment is associated with a primitive controller.

3. Behavior coordination, referring to identification of rules or switching conditions for how the
primitives are to be combined.

Behavior segmentation and recognition can be seen as one way to approach the
what-to-imitate problem, whereas behavior coordination is part of how-to-imitate. The
approach represents one way of introducing good bias in learning and solve the generalization
problem by relying on previous behavioral knowledge. While there are many domain specific
solutions to these three subproblems, they appear very difficult to solve in the general case.
Specifically, behavior recognition poses the problem of mapping a sequence of observations
to a set of controllers to which the input is unknown. Again, the need to introduce a metric of
imitation appears.
Part of the problem to find a general solution to these problems may lie in a vague definition
of behavior (Matarić, 1997). The notion of behavior is strongly connected to the purpose of
executed actions and a definition of goal. Nicolescu (2003) identified two major types of goals:

Maintenance goals: A specific condition has to be maintained for a time interval.

Achievement goals: A specific condition has to be reached.

The use of behavior primitives as a basis for imitation has many connections to biology
(e.g. Matarić, 2002) and specifically the mirror system (Brass et al., 2000; Gallese et al., 1996;
Rizzolatti et al., 1988; Rizzolatti & Craighero, 2004). While the role of the mirror system
is still highly debated, several groups of researchers propose computational models where
perception and action are tightly interweaved. Among the most prominent examples are
the HAMMER architecture (Demiris & Hayes, 2002; Demiris, 1999; Demiris & Johnson, 2003)
and the MOSAIC architecture (Haruno et al., 2001; Wolpert & Kawato, 1998). Both these
architectures implement a set of modules, where each module is an inverse model (controller)
paired with a forward model (predictor). The inverse and forward models are trained together
such that the forward model can predict sensor data in response to the actions produced by
the inverse model. The inverse model is tuned to execute a certain behavior when the forward
model produces good predictions. The prediction error is used to compute a bottom-up
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signal for each module. Based on the bottom-up signal, a top-down responsibility signal or
confidence value is computed and propagated to each module. The output of the system is
a combination of the actions produced by each inverse model, proportional to their current
responsibility. The responsibility signal also controls the learning rate of each module, such
that modules are only updated when their responsibility is high. In this way, modules are
tuned to a specific behavior or parts of a behavior. Since the prediction error of the forward
model is used as a measure of how well the specific module fits present circumstances, it can
be seen as a metric of imitation that is learnt together with the controller. The architecture
can be composed into a hierarchical system where modules are organized in layers, with the
lowest layer interacting with sensors and actuators. The bottom-up signal constitutes sensor
input for the layer above and actions produced by higher levels constitutes the top-down
responsibility signal.
One motivation for this architecture lies in an efficient division of labor between different
parts of the system. Each module can be said to operate with a specific temporal resolution.
Modules at the bottom layer are given the highest resolution while modules higher up in the
hierarchy have decreasing temporal resolution. State variables that change slowly compared
to a specific module’s resolution are ignored by that module and are instead handled by
modules higher up in the hierarchy. Slowly changing states that lead to high responsibility for
the module is referred to as the module’s context. In a similar fashion, variables that change
fast in comparison to the temporal resolution are handled lower in the hierarchy. This allows
each module to implement a controller where the behavior depends on relatively recent states.
Long temporal dependencies are modeled by switching between modules, which removes
the requirement for each model to capture these dependencies. Furthermore, updates of a
single behavior or parts of a behavior will only require updates of a few modules and will
not propagate changes to other modules. See Billing (2009) for a longer discussion on these
aspects of hierarchical architectures.
The HAMMER and MOSAIC architectures make few restrictions on what kind of controllers
each module should implement. We argue however, that modules should be semi-reactive,
meaning that action selection and predictions of sensor events should be based on recent
sensor and motor events. Strictly reactive modules are not desirable since each module must
be able to model any dependency shorter than the temporal resolution of modules in the layer
directly above.
The division of behavior into modules is however also producing a number of drawbacks.
The possibility for the system to share knowledge between behaviors is limited. Moreover,
the system has to combine actions produced by different modules, which may be difficult in
cases when more than one module receives high responsibility.
One architecture with similarities to HAMMER and MOSAIC able to share knowledge
between different behaviors is RNNPB (Tani et al., 2004). RNNPB is a recurrent neural network
with parametric bias (PB). Both input and output layer of the network contains sensor and
motor nodes as well as nodes with recurrent connections. In addition, the input layer is given
a set of extra nodes, representing the PB vector. The network is trained to minimize prediction
error, both by back-propagation and by changing the PB vector. The PB vector is however
updated slowly, such that it organizes into what could be seen as a context layer for the rest
of the network. In addition to giving the network the ability to represent different behaviors
that share knowledge, the PB vector can be used for behavior recognition.
Another architecture known as Brain Emulating Cognition and Control Architecture (BECCA)
(Rohrer & Hulet, 2006) heavily influenced our early work on the PSL algorithm. The focus
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of BECCA is to capture the discrete episodic nature of many types of human motor behavior,
without introducing a priori knowledge into the system. BECCA was presented as a very
general reinforcement learning system, applicable to many types of learning and control
problems. One of the core elements of BECCA is the temporal difference (TD) algorithm
Sequence Learning (SL) (Rohrer, 2007). SL builds sequences of passed events which is used
to predict future events, and can in contrast to other TD algorithms base its predictions on
many previous states.
Inspired by BECCA and specifically SL, we developed the PSL algorithm as a method for LFD
(Billing et al., 2010; 2011). PSL has many interesting properties seen as a learning algorithm
for robots. It is model free, meaning that it introduces very few assumptions into learning and
does not need any task specific configuration. PSL can be seen as a variable-order Markov
model. Starting out from a reactive (first order) model, PSL estimates transition probabilities
between discrete sensor and motor states. For states that do not show Markov property, the
order is increased and PSL models the transition probability based on several passed events.
In this way, PSL will progressively gain memory for parts of the behavior that cannot be
modeled in a reactive way. In theory, there is no limitation to the order of the state and hence
the length of the memory, but PSL is in practice unable to capture long temporal dependencies
due to combinatorial explosion.
PSL has been evaluated both as a controller (Billing et al., 2011) and as a method for
behavior recognition (Billing et al., 2010). Even though the evaluation overall generated
good results, PSL is subject to combinatorial explosion both when the number of sensors
and actuators increase, and when the demonstrated behavior requires modeling of long
temporal dependencies. PSL can however efficiently model short temporal dependencies in a
semi-reactive way and should thus be a good platform for implementing a hierarchical system
similar to the HAMMER and MOSAIC architectures.
In this chapter, we present and evaluate a new version of PSL based on Fuzzy Logic. While
keeping the core idea of the original PSL algorithm, the new version can handle continuous
and multi dimensional data in a better way. To distinguish between the two, the new
fuzzy version of the algorithm is denoted FPSL, whereas the previous discrete version is
denoted DPSL. A detailed description of FPSL is given in Section 2. An evaluation with
comparisons between the two algorithms is presented in Section 3, followed by a discussion
and conclusions in section 4.

2. Predictive Sequence Learning

FPSL builds fuzzy rules, referred to as hypotheses h, describing temporal
dependencies between a sensory-motor event et+1 and a sequence of passed events(

et−|h|+1, et−|h|+2, . . . , et

)
, defined up until current time t.

h :
(

Υt−|h|+1 is Eh
|h|−1 ∧ Υt−|h|+2 is Eh

|h|−2 ∧ . . . ∧ Υt is Eh
0

)
C⇒ Υt+1 is Ēh (1)

Υi is the event variable and Eh (e) is a fuzzy membership function returning a membership
value for a specific e. The right hand side Ēh is a membership function comprising expected
events at time t + 1. |h| denotes the length of h, i.e., the number of left-hand-side conditions
of the rule. Both E and Ē are implemented as standard cone membership functions with base
width ε (e.g. Klir & Yuan, 1995).
A set of hypotheses can be used to compute a prediction êt+1 given a sequence of passed
sensory-motor events η, defined up to the current time t:
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η = (e1, e2, . . . , et) (2)

The process of matching hypothesis to data is described in Section 2.1. The PSL learning
process, where hypotheses are generated from a sequence of data, is described in Section 2.2.
Finally, a discussion about parameters and configuration is found in Section 2.3.

2.1 Matching hypotheses
Given a sequence of sensory-motor events η = (e1, e2, . . . , et), a match αt (h) of the rule is
given by:

αt (h) :
|h|−1∧

i=0
Eh

i (et−i) (3)

where ∧ is implemented as a min-function.
Hypotheses are grouped in fuzzy sets C whose membership value C (h) describes the
confidence of h at time t:

C (h) =

t
∑

k=th
αk (h) Ēh (ek+1)

t
∑

k=th
αk (h)

(4)

.
th is the creation time of h or 1 if h existed prior to training. Each C represents a context and can
be used to implement a specific behavior or part of a behavior. The responsibility signal λt (C)
is used to control which behavior that is active at a specific time. The combined confidence
value C̃t (h) is a weighted sum over all C:

C̃t (h) =
∑
C

C (h) λt (C)

∑
C

λt (C)
(5)

.
C̃t can be seen as a fuzzy set representing the active context at time t. Hypotheses contribute
to a prediction in proportion to their membership in C̃ and the match set M̂. M̂ is defined in
three steps. First, the best matching hypotheses for each Ē is selected:

M =
{

h | α (h) ≥ α
(
h′
)

f or all
{

h′ | Ēh′ = Ēh
}}

(6)

.
The longest h ∈ M for each RHS is selected:

M̃ =
{

h | |h| ≥ ∣∣h′∣∣ f or all
{

h′ ∈ M | Ēh′ = Ēh
}}

(7)

.
Finally, the match set M̂ is defined as:

M̂ (h) =

{
α (h) C̃ (h)

0
h ∈ M̃

otherwise
(8)

.
The aggregated prediction Ê (et+1) is computed using the Larsen method (e.g. Fullér, 1995):
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Ê (et+1) :
∨

h
Ēh (et+1) M̂ (h) (9)

Ê is converted to crisp values using a squared center of sum defuzzification:

ê =
∑
e

eÊ (e)2

∑
e

Ê (e)2 (10)

The amount of entropy in M̂ also bears information about how reliable a specific prediction
is, referred to as the trust ĉ:

ĉ
(

M̂
)
=

⎧⎨
⎩

0

exp
[

∑
h

M̂ (h) log2
(

M̂ (h)
)] M̂ = ∅

otherwise
(11)

The trust is important since it allows a controller to evaluate when to rely on PSL, and when
to choose an alternate control method. The proportion of time steps in η for which ĉ > 0 and
PSL is able to produce a prediction is referred to as the coverage φ (η):

φ (η) =

t
∑

i=1

{
1
0

ĉi > 0
otherwise
t

(12)

2.2 Generating hypotheses
Hypotheses can be generated from a sequence of sensory-motor events η. During training,
PSL continuously makes predictions and creates new hypotheses when no matching
hypothesis produces the correct prediction Ē. The exact training procedure is described in
Algorithm 0.1.
For example, consider the event sequence η = abccabccabcc. Let t = 1. PSL will search for
a hypothesis with a body matching a. Initially, the context set C is empty and consequently
PSL will create a new hypothesis (a) ⇒ b which is added to C with confidence 1, denoted
C (a ⇒ b) = 1. The same procedure will be executed at t = 2 and t = 3 such that
C ((b)⇒ c) = 1 and C ((c)⇒ c) = 1. At t = 4, PSL will find a matching hypothesis
(c) ⇒ c producing the wrong prediction c. Consequently, a new hypothesis (c) ⇒ a is
created and confidences are updated such that C ((c)⇒ c) = 0.5 and C ((c)⇒ a) = 1. The
new hypothesis receives a higher confidence since confidence values are calculated from the
creation time of the hypothesis (Equation 4). The predictions at t = 5 and t = 6 will be correct
and no new hypotheses are created. At t = 7, both (c) ⇒ a and (c) ⇒ c will contribute
to the prediction Ê. Since the confidence of (c) ⇒ a is higher than that of (c) ⇒ c, Ê will
defuzzify towards a, producing the wrong prediction (Equation 10). As a result, PSL creates
a new hypothesis (b, c) ⇒ c. Similarly, (c, c) ⇒ a will be created at t = 8. PSL is now able to
predict all elements in the sequence perfectly and no new hypotheses are created.
Source code from the implementation used in the present work is available online (Billing,
2011).
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Algorithm 0.1 Predictive Sequence Learning (PSL)

Require: ψ = (e1, e2, . . . , eT) where T denotes the length of the training set
Require: α̂ as the precision constant, see text

1: let t ← 1
2: let η = (e1, e2, . . . , et)
3: let C ← ∅

4: let Ê as Eq. 9
5: if Ê (et+1) < α̂ then
6: let hnew = CreateHypothesis (η, C) as defined by Algorithm 0.2
7: C (hnew)← 1
8: end if
9: Update confidences C (h) as defined by Equation 4

10: set t = t + 1
11: if t<T then
12: goto 2
13: end if

Algorithm 0.2 CreateHypothesis

Require: η = (e1, e2, . . . , et)
Require: C : h → [0, 1]
Require: α as defined by Eq. 3

1: let M̂ (h) as Eq. 8

2: let M̄ =
{

h | Ēh (et+1) ≥ α̂ ∧ M̂ (h) > 0
}

where α̂ is the precision constant, see Section 2.3

3: if M̄ = ∅ then
4: let E∗ be a new membership function with center et and base ε
5: return hnew : (Υt is E∗)⇒ Υt+1 is Ē
6: else
7: let h̄ ∈ M̄
8: if C

(
h̄
)
= 1 then

9: return null
10: else
11: let E∗ be a new membership function with center et−|h̄| and base ε

12: return hnew :
(

Υt−|h̄| is E∗, Υt−|h̄|+1 is Eh̄
|h̄|−1

, . . . , Υt is Eh̄
0

)
⇒ Υt+1 is Ē

13: end if
14: end if
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2.3 Parameters and task specific configuration
A clear description of parameters is important for any learning algorithm. Parameters always
introduce the risk that the learning algorithm is tuned towards the evaluated task, producing
better results than it would in the general case. We have therefore strived towards limiting the
number of parameters of PSL. The original design of PSL was completely parameter free, with
the exception that continuous data was discretized using some discretization method. The
version of PSL proposed here can be seen as a generalization of the original algorithm (Billing
et al., 2011) where the width ε of the membership function E determines the discretization
resolution. In addition, a second parameter is introduced, referred to as the precision constant
α̂. α̂ is in fuzzy logic terminology an α-cut, i.e., thresholds over the fuzzy membership function
in the interval [0, 1] (Klir & Yuan, 1995).
ε controls how generously FPSL matches hypotheses. A high ε makes the algorithm crisp
but typically increases the precision of predictions when a match is found. Contrary, a low
ε reduces the risk that FPSL reaches unobserved states at the cost of a decreased prediction
performance. The high value of ε can be compared to a fine resolution data discretization for
the previous version of PSL.
α̂ is only used during learning, controlling how exact a specific Ē has to be before a new
hypothesis with a different Ē is created. A large α̂ reduces prediction error but typically results
in more hypotheses being created during learning.
Both ε and α̂ controls the tolerance to random variations in the data and can be decided based
on how exact we desire that FPSL should model the data. Small ε in combination with large α̂
will result in a model that closely fits the training data, typically producing small prediction
errors but also a low coverage.

3. Evaluation

Two tests were performed to evaluate the performance of FPSL and compare it to the previous
version. A simulated Robosoft Kompai robot (Robosoft, 2011) was used in the Microsoft RDS
simulation environment (Microsoft, 2011). The 270 degree laser scanner of the Kompai was
used as sensor data and the robot was controlled by setting linear and angular speeds.
Demonstrations were performed via tele-operation using a joypad, while sensor and motor
data were recorded with a temporal resolution of 20 Hz. The dimensionality of the laser
scanner was reduced to 20 dimensions using an average filter. Angular and linear speeds
were however fed directly into PSL.
The first test (Section 3.1) was designed to compare FPSL and DPSL as prediction algorithms,
using sensor data from the simulated robot. The second test (Section 3.2) demonstrates the
use of FPSL as a method for LFD.

3.1 Sensor prediction
The two versions of PSL were compared using a series of tests of prediction performance.
Even though DPSL and FPSL are similar in many ways, a comparison is not trivial since DPSL
works on discrete data whereas FPSL uses continuous data. Prediction performance of DPSL
will hence depend on how the data is discretized while the performance of FPSL depends on
the parameters ε and α̂.
To capture the prediction performance of the two algorithms using different configurations,
a series of tests were designed. 10 discretization levels were chosen, ranging from a fine
resolution where DPSL could only produce predictions on a few samples in the test set, to
a low resolution where DPSL rarely met unobserved states. Laser readings were discretized
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Fig. 1. Simulation Environment (Microsoft, 2011) used for evaluations. Blue stars and yellow
dots represent starting positions used for demonstrations and test runs, respectively. The
green area marked with a G represents the target position. The white area under star 10 is the
robot.

over 0.8 m for the finest resolution, up to 8 m for the lowest resolution. Motor data was
discretized over 0.06m/s for the finest resolution up to 0.6 m/s for the lowest resolution.
Similarly, 10 ε values were chosen, corresponding to a cone base ranging from 0.8 m to 8 m
for laser data, and 0.06 m/s up to 0.6 m/s for motor data. α̂ was given a constant value of 0.9,
corresponding to a error tolerance of 10% of ε.
10 data files were used, each containing a demonstration where the teacher directed the robot
from a position in the apartment to the TV, see Figure 1. A rotating comparison was used,
where PSL was tested on one demonstration at a time and the other nine demonstrations
were used as training data. Prediction performance was measured in meters on laser range
data.

3.1.1 Results
The results from the evaluation are illustrated in Figure 2. While the ε value of FPSL cannot
directly be compared to the discretization level used for DPSL, the two parameters have
similar effect on coverage. Prediction error is only calculated on the proportion of the data for
which prediction are produced, and consequently, prediction error increases with coverage.
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Fig. 2. Results from the prediction evaluation (Section 3.1). Upper plot shows prediction
errors for FPSL (solid line) and DPSL (dashed line). Lower plot shows coverage , i.e. the
proportion of samples for which the algorithm generated predictions, see Equation 12.
Vertical bars represent standard deviation.

3.2 Target reaching
This evaluation can be seen as a continuation of previous tests with DPSL using a Khepera
robot (Billing et al., 2011). The evaluation is here performed in a more complex environment,
using a robot with much larger sensor dimensionality. Initial tests showed that DPSL has
sever problems to handle the increased sensor dimensionality when used as a controller.
A discretization resolution of about 2 m appeared necessary in order to produce satisfying
discrimination ability. Even with this relatively low resolution, the 20 dimensional data
produced a very large state space causing DPSL to frequently reach unrecognized states.
DPSL could control the robot after intense training in parts of the test environment, but could
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not compete with FPSL in a more realistic setting. We therefore chose to not make a direct
controller comparison, but rather show the behavior of FPSL in an applied and reproducible
setting.
FPSL was trained on 10 demonstrations showing how to get to the TV from various places in
the apartment, see Figure 1. The performance of FPSL as a method for LFD was evaluated
by testing how often the robot reached the target position in front of the TV starting out
from 10 different positions than the ones used during training. FPSL controlled the robot
by continuously predicting the next sensory-motor event based on the sequence of passed
events. The motor part of the predicted element was sent to the robot controller. A standard
reactive obstacle avoidance controller was used as fallback in cases where FPSL did not find
any match with observed data. The task was considered successfully executed if the target
position was reached without hitting any walls or obstacles. The experiment was repeated ten
times, producing a total of 100 test runs.

3.2.1 Results
FPSL successfully reached the target position in front of the TV (the green area in Figure 1) in
79% of the test runs. In 68 runs, it stopped in front of the TV as demonstrated, but in 11 runs it
failed to stop even though it reached the target position. The distribution over the 10 starting
positions illustrated in Figure 3.

4. Discussion

Applied as a robot controller, PSL is a semi-reactive generative model that produces both
actions and expected observations, based on recent sensory-motor events. We believe that this
approach to robot learning has great potential since the behavior can be learnt progressively
and previous knowledge contributes to the interpretation of new events. It is also general
in the sense that very little domain specific knowledge is introduced. Memories are stored
as sequences of sensory-motor events that in principle can represent any behavior. While
PSL efficiently can represent behaviors with short temporal dependencies, it is subject to
combinatorial explosion when the behavior requires representations over longer time spans.
We argue that the gradually extending memory of PSL, from being purely reactive to
containing representations over longer time when needed, provides a good bias in learning.
It will however make learning of behaviors that do require long temporal dependencies slow.
The fuzzy version of PSL presented in this work does not directly provide a solution to this
problem, but is one step towards integrating PSL in a hierarchical structure as discussed in
Section 1.2.
The seeds to FPSL came from the observation that a lot of training was required in order
to cover the state space of DPSL with satisfying resolution. A better tradeoff between high
precision in prediction and coverage would make PSL a more competitive alternative for real
world LFD scenarios. Without sacrificing the strong attributes of the original PSL algorithm,
such as the model free design, few parameters and progressively growing representations,
FPSL was designed.
Expressing PSL with Fuzzy Logic is in many ways a natural extension and generalization
of the discrete algorithm. By using a discrete uniform membership function E and a max
operator for defuzzification, FPSL becomes very similar to DPSL. Even though the processing
of continuous values does add significant processing requirements in comparison to DPSL,
FPSL can still be efficiently implemented as a fuzzy rule controller.
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Fig. 3. Results from test runs in simulated environment (Section 3.2). Each bar corresponds to
one starting position, see Figure 1. The green part of the bar represents number of successful
runs where the robot reached and stopped at the target position in front of the TV. The
yellow part represents runs when the robot successfully reached the target, but did not stop.
The test was executed 10 times from each starting position.

The evaluation shows that FPSL produces significantly smaller prediction errors in relation to
the coverage than DPSL (Section 3.1). This was expected since FPSL can be trained to produce
small prediction errors by keeping a high precision constant α̂, while the coverage is still kept
high by using a large ε. In contrast, when using DPSL, one must choose between a small
prediction error with low coverage or a high coverage at the price of an increased prediction
error. As can be seen in Figure 2, FPSL is also affected by the precision/coverage tradeoff, but
not nearly as much as DPSL. Furthermore, the number of generated hypotheses will increase
with α̂, which also has a positive effect on coverage for multidimensional data.
While FPSL performs much better than DPSL on large and multidimensional state spaces, it
should not be seen as a general solution to the dimensionality problem. The increased number
of hypotheses results in increased processing and memory requirements. Furthermore, FPSL
is still not able to ignore uncorrelated dimensions in data, making it subject to the curse
of dimensionality. One potential solution is to modify the size of membership functions in
relation to the information content of the dimension. However, initial tests did not produce
satisfying results and further experiments in this direction were postponed to future work.
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We found the results from the controller evaluation very promising (Section 3.2). The
application environment has been scaled up significantly in comparison to previous work
(Billing et al., 2011) and we are now able to perform learning in a fairly realistic setting.
When observing these results one should remember that PSL does not solve a spatial task.
There is no position sensor or internal map of the environment and the robot is still able to
navigate from almost any position in the environment, to a specific target location. The goal
is better described as an attractor in a dynamic system, where the robot in interaction with the
environment finally reaches a stable state in front of the TV (Figure 1).
An interesting observation is that it is often difficult to predict how well PSL will be able
to handle a specific situation. For example, starting position 6 was not passed during any
demonstration, but PSL still managed to control the robot such that it reached the target in 7
out of 10 test runs. On the other hand, position 5 and 10 produced worse results than expected.
Even though these starting positions were spatially close to several positions passed during
the demonstrations, the directions at which the robot reached these positions were different,
producing different laser scans, and PSL could consequently not find a suitable match. In
some of the cases, inappropriate matches were found and the robot turned in the wrong
direction. In other cases, no match at all was found causing the robot to fall back on the
reactive controller for a longer period and usually getting stuck in a corner.
The amount of training data used in this evaluation was fairly small. Only one demonstration
from each starting position was performed. One reason why FPSL is able to solve the task
despite the small amount of training is that all data potentially contribute to every action
selection, independently of where in the demonstration it originally took place. Techniques
that represent the whole behavior as a sequence with variations, typically require more
training since information from the beginning of the demonstration does not contribute to
action selection in other parts of the behavior. PSL does not relies on common features within
a set of demonstrations and consequently does not require that demonstrations are compared
or temporally aligned, see Section 1. In its current design, PSL is of course unable to perform
a program-level imitation since it always rely on sensory-motor events, but it does not suffer
from a large diversity in the demonstration set as long as the recent sensory-motor events bear
necessary information to select a suitable action.

4.1 Conclusions and future work
In this chapter, we show that PSL can be used as a method for LFD, in a fairly realistic
setting. The move from a discrete state space used in previous work to the continuous state
space appears to have a positive effect on generalization ability and prediction performance,
especially on multi-dimensional data. The next step is to conduct experiments with the
physical Kompai robot (Robosoft, 2010) in an attempt to verify the results in the real world.
The fuzzy version of PSL proposed here, and specifically the introduction of context sets C,
should be seen as one step towards integrating PSL in a hierarchical architecture. The higher
level controller may be another instance of PSL working on a lower temporal resolution, or a
completely different control system interacting with PSL by changing the responsibility λt (C)
for each context (Equation 5). For an actual interaction to take place, PSL also has to feed
information upwards, to higher level controllers. In previous work on behavior recognition
(Billing et al., 2010), we have shown that PSL can be used to compute a bottom-up signal
providing information about how well each context corresponds to present circumstances.
While this has not been the focus of this chapter, we intend to evaluate these aspects of PSL in
future work.

248 Robotic Systems – Applications, Control and Programming



Robot Learning from Demonstration using Predictive Sequence Learning 15

5. References

Alissandrakis, A., Nehaniv, C. L. & Dautenhahn, K. (2002). Imitation With ALICE: Learning
to Imitate Corresponding Actions Across Dissimilar Embodiments, IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans 32: 482–496.

Alissandrakis, A., Nehaniv, C. L., Dautenhahn, K. & Saunders, J. (2005). An Approach
for Programming Robots by Demonstration: Generalization Across Different Initial
Configurations of Manipulated Objects, Proceedings of 2005 International Symposium on
Computational Intelligence in Robotics and Automation, Ieee, Espoo, Finland, pp. 61–66.

Argall, B. D., Chernova, S., Veloso, M. & Browning, B. (2009). A survey of robot learning from
demonstration, Robotics and Autonomous Systems 57(5): 469–483.

Arkin, R. C. (1998). Behaviour-Based Robotics, MIT Press.
Billard, A., Epars, Y., Cheng, G. & Schaal, S. (2003). Discovering imitation strategies through

categorization of multi-dimensional data, Proceedings of the 2003 IEEE/RSJ Intl.
Conference on Intelligent Robots and Systems, Vol. 3, Las Vegas, Nevada, pp. 2398–2403
vol.3.

Billing, E. A. (2009). Cognition Reversed - Robot Learning from Demonstration, Lic. thesis, UmeÃ¥
University, Department of Computing Science, UmeÃ¥, Sweden.

Billing, E. A. (2011). www.cognitionreversed.com.
Billing, E. A. & Hellström, T. (2010). A Formalism for Learning from Demonstration, Paladyn:

Journal of Behavioral Robotics 1(1): 1–13.
Billing, E. A., Hellström, T. & Janlert, L. E. (2010). Behavior Recognition for Learning

from Demonstration, Proceedings of IEEE International Conference on Robotics and
Automation, Anchorage, Alaska.

Billing, E. A., Hellström, T. & Janlert, L. E. (2011). Predictive learning from demonstration, in
J. Filipe, A. Fred & B. Sharp (eds), Agents and Artificial Intelligence, Springer Verlag,
Berlin, pp. 186–200.

Brass, M., Bekkering, H., Wohlschläger, A. & Prinz, W. (2000). Compatibility between
observed and executed finger movements: comparing symbolic, spatial, and
imitative cues., Brain and cognition 44(2): 124–43.

Brooks, R. A. (1986). A Robust Layered Control System For A Mobile Robot, IEEE Journal of
Robotics and Automation 2(1): 14–23.

Brooks, R. A. (1991). New Approaches to Robotics, Science 253(13): 1227–1232.
Byrne, R. W. & Russon, A. E. (1998). Learning by Imitation: a Hierarchical Approach, The

Journal of Behavioral and Brain Sciences 16(3).
Calinon, S. (2009). Robot Programming by Demonstration - A Probabilistic Approach, EFPL Press.
Calinon, S., Guenter, F. & Billard, A. (2007). On Learning, Representing and Generalizing a

Task in a Humanoid Robot, IEEE Transactions on Systems, Man and Cybernetics, Part B.
Special issue on robot learning by observation, demonstration and imitation 37(2): 286–298.

de Rengervé, A., D’halluin, F., Andry, P., Gaussier, P. & Billard, A. (2010). A study
of two complementary encoding strategies based on learning by demonstration
for autonomous navigation task, Proceedings of the Tenth International Conference on
Epigenetic Robotics, Lund, Sweden.

Demiris, J. & Hayes, G. (1997). Do robots ape?, Proceedings of the AAAI Fall Symposium on
Socially Intelligent Agents, pp. 28–31.

Demiris, J. & Hayes, G. R. (2002). Imitation as a dual-route process featuring predictive and learning
components: a biologically plausible computational model, MIT Press, pp. 327–361.

Demiris, Y. (1999). Movement Imitation Mechanisms in Robots and Humans, PhD thesis,
University of Edinburgh.

249Robot Learning from Demonstration Using Predictive Sequence Learning



16 Robot Control

Demiris, Y. & Johnson, M. (2003). Distributed, predictive perception of actions: a
biologically inspired robotics architecture for imitation and learning, Connection
Science 15(4): 231–243.

Fullér, R. (1995). Neural Fuzzy Systems, Abo Akademi University.
Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. (1996). Action recognition in the premotor

cortex, Brain 119(2): 593–609.
Haruno, M., Wolpert, D. M. & Kawato, M. M. (2001). MOSAIC Model for Sensorimotor

Learning and Control, Neural Comput. 13(10): 2201–2220.
Klir, G. J. & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall.
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1. Introduction 
In biology, biarticular muscles are muscles that are passing two joints. One of the biarticular 
muscles that is passing the knee and the ankle joints is the Gastrocnemius muscle (see Fig. 
1). Functions of the biarticular muscles during human movement have been studied 
extensively by many researchers but these functions still remain unclear. One of such 
functions is the transportation of mechanical energy from proximal to distal points (Ingen 
Schenau, 1989). It is believed that this transportation causes an effective transformation of 
rotational motion of body segments into translation of the body centre of gravity. The 
mechanism by which this is achieved is the timely activation of biarticular muscles before 
the end of the explosive phase of the movement. The activation of the biarticular muscle 
prior to the end of the explosive phase of the motion enables the transportation of the power 
generated by the proximal joint extensors from the proximal joint to the distal joint. This 
transfer of mechanical energy can be explained using the following example of the 
gastrocnemius muscle activation. During the push-off phase of the human jump, the knee 
joint is rapidly extended as a result of the positive work done by the knee extensor muscles. 
If the biarticular gastrocnemius muscle contracts isometrically (its length does not change), 
the additional mechanical work is done at the ankle joint because of the gastrocnemius 
muscle, which contributes no mechanical work by itself. A part of the energy generated by 
the knee extensors appears as mechanical work at the ankle joint and the height of the jump 
is significantly increased. This is because, as the jump proceeds and the knee straightens, the 
angular position changes of the knee have progressively less effect on vertical velocity of the 
jumper centre of gravity. By gastrocnemius muscle activation, a rapid extension of the foot is 
produced. This extension has a greater effect on the vertical velocity than the extension of 
the almost straightened knee. The energy is more effectively translated into vertical velocity 
and a greater height of the jump is achieved. However, the timing of the gastrocnemius 
muscle activation is critical to obtain a maximum effect. This was demonstrated by an 
articulated physical model of the vertical jump by Bobbert et al (1986). 
Besides biarticularity, the gastrocnemius muscle has one more interesting feature. It is 
connected to the foot by an elastic tendon (see Fig. 1). The elasticity in the muscle fibres and 
tendons plays an important role in enhancing the effectiveness and the efficiency of human 
performance. An enhanced performance of human motion has been most effectively 
demonstrated for jumping and running (Cavagna, 1970; Bobbert et al., 1996; Shorten, 1985; 
Hobara, 2008). An important feature of elastic tissues is the ability to store elastic energy 
when stretched and to recoil this energy afterwards as a mechanical work (Asmussen and 
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Bonde-Petersen, 1974). Beside this feature, oscillatory movements performed at the natural 
frequency of muscle-tendon complex could maximize the performance. A countermovement 
vertical jump can be treated as one period of oscillatory movement and from this point of 
view the natural frequency, as well as parameters that define the natural frequency, can be 
determined. 
Lower extremities of today’s humanoid robots are mostly serial mechanisms with simple 
rotational joints that are driven directly or indirectly by electrical servo drives. Such design 
of humanoid robot mechanism allows only rotational motion in joints to occur. This means 
that translations of the robot’s centre of gravity are solely a result of the transformation of 
rotations in joints into translations of the robot centre of gravity. Especially in ballistic 
movements such as fast running or jumping where the robot centre of gravity is to be 
accelerated from low or zero velocity to a velocity as high as possible, this transformation is 
handicapped. The transfer of the angular motion of the lower extremity segments to the 
desired translational motion of the robot centre of gravity is less effective the more the joints 
are extended. When the joint is fully extended, the effect of this joint on the translational 
motion of the robot centre of gravity in a certain direction equals zero. Besides, the motion 
of the segments should decelerate to zero prior to the full extension to prevent a possible 
damaging hyperextension. Where relatively large segments which may contain considerable 
amounts of rotational energy are involved, high power is necessary to decelerate the angular 
motion. 
 

 
Fig. 1. Biarticular muscle gastrocnemius passing the knee and the ankle joints. It acts as a 
knee flexor and ankle extensor. Gastrocnemius muscle is connected to the foot by an elastic 
tendon 

The purpose of this chapter is, first, to make an extensive review of the research of the role 
of biarticular muscles in motion of the humans and to present this biomechanical body of 
knowledge from an engineering perspective, and second, to describe the research results 
where biarticular actuation was used to achieve energy efficient and high performance 
motion of a humanoid robotic leg. The chapter is based mostly on the previous journal 
publications of the author and on the yet unpublished research results. 

2. Role of biarticular muscles in human jump 
Vertical jumping is a complex task requiring quick and harmonized coordination of 
jumper’s body segments, first for the push-off, then for the flight and lastly for the landing. 
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The prime criterion for vertical jump efficiency is the height of the jump that depends on the 
speed of the jumper’s centre of gravity (COG) in the moment when the feet detach from the 
ground. Besides maintaining the balance, the task of the muscles during the push-off phase 
of the jump is to accelerate the body’s COG up in the vertical direction to the extended body 
position. During the push-off phase of the jump, the jumper’s centre of gravity must be 
above the supporting polygon that is formed by the feet (Babič et al., 2001). In contrast to the 
humans, today’s humanoid robots are mostly unable to perform fast movements such as the 
vertical jump. They can mostly perform only slow and statically stable movements that do 
not imitate the human motion. Besides, these slow and statically stable movements are 
energy inefficient. With the understanding of the anatomy and the biomechanics of the 
human body, one can find out that, beside the shape, majority of today’s humanoid robots 
and human bodies do not have a lot of common properties. To achieve a better imitation of 
the human motion and ability to perform fast movements such as the vertical jump or 
running, other properties and particularities, beside the shape of the body, should be 
considered in the design of the humanoid robot. 
In this section we will first analyse the human vertical jump and show that for each and 
every subject there exists an optimal triceps surae muscle-tendon complex stiffness that 
ensures the maximal possible height of the vertical jump. We define the influence of the m. 
gastrocnemius activation timing and the m. gastrocnemius and Achilles tendon stiffness on 
the height of the vertical jump and establish the methodology for analysis and evaluation of 
the vertical jump. We monitored kinematics, dynamics and m. gastrocnemius electrical 
activity during the maximum height countermovement jump of human subjects and 
measured viscoelastic properties of the m. gastrocnemius and Achilles tendon using the 
free-vibration technique. Based on the findings of the biomechanical study of the human 
vertical jump we performed a simulation study of the humanoid robot vertical jump. As a 
result we propose a new human inspired structure of the lower extremity mechanism by 
which a humanoid robot would be able to efficiently perform fast movements such as 
running and jumping. 

2.1 Biorobotic model of vertical jump 
Biorobotic model of the vertical jump consists of the dynamic model of the musculoskeletal 
system and of the mathematical model used for the motion control of the model. The results 
of the modelling are differential equations and a diagram for simulation and optimization of 
the vertical jump. 

2.1.1 Dynamic model of musculoskeletal system 
Vertical jump is an example of a movement that can be satisfactorily observed and analysed 
in just a sagittal plane. Therefore we built a model of the musculoskeletal system in a two 
dimensional space of the sagittal plane. Because both lower extremities perform the same 
movement during the vertical jump, we joined both extremities in one extremity with three 
rigid body segments. Trunk, head and upper extremities were modelled as one rigid body 
with a common COG, mass and moment of inertia. The model of the musculoskeletal 
system is therefore a planar model composed of four segments that represent the foot, 
shank, thigh and trunk together with the head and both upper extremities. Segments of the 
model are joined together by frictionless rotational hinges whose axes are perpendicular to 
the sagittal plane. The contact between the foot and the ground is modelled as a rotational 
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joint between the tip of the foot and the ground. A model, whose foot is connected to the 
ground by a rotational joint, is applicable only for the push-off and landing phases of the 
vertical jump and is not applicable for the flight. As the motion of the COG during the flight 
is simply described and depends only on the speed vector of the COG just prior to the take-
off, this simplification does not present any limitations. 
Fig. 2 shows the planar model of the musculoskeletal system, composed of four rigid bodies 
that represent the foot, shank, thigh and trunk together with the head and both upper 
extremities. The origin of the base coordinate system is in the centre of the virtual joint that 
connects the foot with the ground. 
 

 
Fig. 2. Planar model of the musculoskeletal system 

Passive constraints in the hip, knee and ankle that define the range of motion of these joints 
were modelled as simple nonlinear springs (Audu and Davy, 1985; Davy and Audu, 1987). 
Fig. 2 also shows the model of the biarticular link that consists of the gastrocnemius muscle 
(GA) with stiffness kGA and damping b and the Achilles tendon (AT) with stiffness kAT. 
Contrary to the real gastrocnemius muscle, biarticular link cannot contract. It can only be 
enabled or disabled at different moments during the push-off phase of the jump. High 
pennation angle of the gastrocnemius muscle fibres suggest that the predominant role of the 
m. gastrocnemius is not in its contraction but in its ability to bear high forces and to enable 
the energy transportation from the knee to the ankle (Bogert et al., 1989; Legreneur et al., 
1997). Therefore our simulated biarticular link that cannot contract and can only be enabled 
or disabled is considered as an appropriate model for this study. 
Insertions of the biarticular link on the foot (B) and thigh (C) have been determined from the 
muscle data provided by Brand et al. (1982) and Delp (1990). 
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Vector of the force in the biarticular link f is 

 0( )k b= ⋅ − − ⋅


f BC BC BC , (1) 

where k represents the stiffness of the m. gastrocnemius and Achilles tendon connected in 
series, BC is the vector between the insertions of the biarticular link on the foot and thigh. 
BC0 is the vector BC in the moment of the gastrocnemius muscle activation. Force in the 
biarticular link f causes a torque in the ankle joint 

 2bl BQ = − ×r f , (2) 

where rB is the moment arm vector from the centre of the ankle joint to the insertion of the 
biarticular link on the foot and a torque in the knee joint 

 3bl CQ = ×r f , (3) 

where rC is the moment arm vector from the centre of the knee joint to the insertion of the 
biarticular link on the thigh. 
Motion of the musculoskeletal system is written with a system of dynamic equations of motion 

 ( ) ( , ) ( ) mov pas bl+ + = + +H  q q h q q G q Q Q Q , (4) 

where Qpas is the vector of joint torques caused by the passive constraints in the joints and 
Qbl is the vector of joint torques caused by the biarticular link. Qmov is the vector of joint 
torques caused by muscles and represents the input to the direct dynamic model of the 
musculoskeletal system. The output from the direct dynamic model is the vector of joint 
displacements q. We determined parameters of (4) ( ) ( ) ( ), , ,H q h q q G q  using the equations 
published by Asada and Slotine (1986). Simulation diagram of the direct dynamic model of 
the musculoskeletal system is shown in the shaded rectangle of the Fig. 3. 

2.1.2 Motion control 
Motion controller of the musculoskeletal system was designed to meet the following four 
requirements: 
1. Perpendicular projection of the body’s COG on the ground coincides with the virtual 

joint that connects the foot with the ground during the entire push-off phase of the 
vertical jump. Therefore balance of the jumper and verticality of the jump is assured. 
Equation that describes this requirement is 

 ( ) 0d
Tx t = , (5) 

where ( )d
Tx t  is the distance between the desired perpendicular projection of the body’s 

COG on the ground from the origin of the base coordinate system in time t. 
2. Motion controller assures the desired vertical movement of the body’s COG relative to 

the ankle ( )d
TAy t . By controlling the movement of the body’s COG relative to the ankle, 

we excluded the influence of the biarticular link on the motion ( )d
TAy t . Therefore 

parameters of the biarticular link can be varied and optimized for a certain desired 
motion of the body’s COG relative to the ankle. 
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3. Motion controller assures a constant angle of the foot relative to the ground q1 before the 
biarticular link activation occurs. Thus the number of degrees of freedom of the model 
remains constant during the push-off phase of the vertical jump 

4. In the moment, when the biarticular link activates, motion controller sets the torque in 
the ankle joint Q2 to zero and thus enable a free motion of the foot relative to the 
ground. By setting the torque in the ankle joint to zero, the motion in the ankle joint is 
only a function of the motion in the knee joint that is transmitted to the ankle by the 
biarticular link. 

Motion controller that considers the requirement (5) and enables the desired vertical motion 
of the COG relative to the ankle ( )d

TAy t  in the base coordinate system is 

 
0 0 0c

T T d Td d d
TA A TA A TA A

k k
y y y y y y

        
= + − + −           + + +        

 
   px x x , (6) 

where kp and kd are coefficients of the PD controller, c
Tx  is the vector of the control 

acceleration of the COG in the base coordinate system, yA is the current height of the ankle 
joint relative to the ground, ,T Tx x  are the vectors of the current speed and position of the 
COG in the base coordinate system. 
The relation between the vector of the control speed of the COG in the base coordinate 
system c

Tx  and the vector of the control angular velocities in the joints cq  is 

 c
T T c= J x q , (7) 

where JT is the Jacobian matrix of the COG speed in the base coordinate system. Equation (7) 
represents an under determined system of equations. From the requirement that the motion 
controller assures a constant angle of the foot relative to the ground q1 before the biarticular 
link activation occurs, follows the condition 

 1 0cq = . (8) 

An additional condition that abolishes the under determination of (7) is the relationship of 
the knee and hip joint angles 

 4 3c cq n q= ⋅  , (9) 

where n is the coefficient that describes the relationship.  
By substitution of (8) and (9) into (7) we get a relation between the vector of the control 
speed of the COG in the base coordinate system c

Tx  and the vector of the control angular 
velocities in the ankle and knee joints c′q  

 c
T ′ ′= TJ  cx q , (10) 

where ′TJ  is a new Jacobian matrix of the centre of gravity speed in the base coordinate 
system. Differentiation of (10) with respect to time yields 

 2 1

3
( )c

T T
c

q
q

− 
′ ′ ′ ′= = − 

 
J J

   


c
c Tq x q , (11) 
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where 

 2

3

q
q
 ′ =  
 





q . (12) 

On the basis of conditions (8) and (9) and relation (11) we define control angular 
accelerations in all four joints 

 2

3

3

0

c

c

c

q
q

nq

 
 
 =  
 
  







cq . (13) 

By substitution of (13) into a system of dynamic equations of motion (4) we get control 
torques in joints Qmov that we need to control the model of the musculoskeletal system 

 ( ) ( , ) ( )mov + += H  cQ q q h q q G q . (14) 

Direct dynamic model of the musculoskeletal system together with the motion controller 
compose the biorobotic model of the vertical jump. Simulation diagram for the simulation of 
the vertical jump is shown in Fig. 3. Inputs into the simulation diagram are the desired 
trajectory of COG relative to the ankle d

TAy  and a signal for biarticular link activation a. 
Output from the simulation diagram is the vector of body’s COG position xT. 
 

 
Fig. 3. Simulation diagram for the simulation of the vertical jump. Inputs into the simulation 
diagram are the desired trajectory of the COG relative to the ankle and a signal for 
biarticular link activation. Output from the simulation diagram is the vector of jumper’s 
COG position 
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2.2 Biomechanical analysis of human vertical jump 
2.2.1 Subjects and experimental protocol 
Ten trained male subjects (age 26 ± 4 years, height 180.3 ± 6.56 cm, body mass 77.1 ± 7.24 kg) 
participated in the study. Informed consent was obtained from all of them. The protocol of 
the study was approved by the National Ethics Committee of the Republic of Slovenia. The 
experiments comply with the current laws of the Republic of Slovenia. 
After a warm-up procedure and three practice jumps, subjects subsequently performed four 
countermovement vertical jumps. They were instructed to keep their hands on the hips and 
to jump as high as possible. At the beginning of each vertical jump, subjects stood on their 
toes and in the erected position. During each jump, position of anatomical landmarks over 
epicondylus lateralis and fifth metatarsophalangeal joint were monitored, ground reaction 
forces were measured and electromyogram of m. gastrocnemius was recorded. After the 
jumping, we determined viscoelastic properties of the triceps surae muscle tendon 
complex of all subjects. Details on methods and procedures are provided in the following 
sections. 

2.2.2 Anthropometric measurements 
Segmental anthropometric parameters, such as masses, moments of inertia about the 
transverse axes, lengths and locations of the centres of gravity were estimated using 
regression equations (Zatsiorsky and Seluyanov 1983; Leva 1996). Position of the first 
metatarsophalangeal joint and the Achilles tendon insertion on the calcaneus were 
determined by palpation for each subject. Insertion of the m. gastrocnemius on femur was 
determined using the muscle data collected by Brand et al. (1982) and Delp (1990). 

2.2.3 Kinematics and dynamics 
To determine the motion of the body’s COG during the vertical jump we measured the 
vertical component of the ground reaction force caused by the subject during the jump. 
Subjects performed vertical jumps on a force platform (Kistler 9281CA) that is capable to 
measure ground reaction forces with the frequency of 1000 Hz. We zeroed the force 
platform just prior to the vertical jump when the subject was standing still in the erected 
position. Thus we enabled the precise determination of the subject’s body mass. Body mass 
of the subject standing on the force platform is therefore equal to the quotient between the 
negative ground reaction force during the flight phase of the jump and the ground 
acceleration. The vertical position of the body’s COG relative to the ground in time t ( )m

Ty t  
was obtained by double integrating with respect to time the vertical ground reaction force in 
time t F(t) 

 
0 0

1( ) ( ) (0)
t t

m m
T Ty t F t dtdt y

m
= +   (15) 

where m is the body mass of the subject and (0)m
Ty  is the initial height of the body’s COG 

relative to the ground. To determine the vertical position of the body’s COG relative to the 
ankle in time t ( )m

TAy t  we measured the motion of the ankle during the vertical jump by 
means of the contactless motion capture system (eMotion Smart). The vertical position of the 
body’s COG relative to the ankle is therefore 
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 ( ) ( ) ( )m m m
TA T Ay t y t y t= −  (16) 

where ( )m
Ay t  is the vertical position of the ankle in time t. 

2.2.4 Electromyography 
The activity of the m. gastrocnemius was recorded using a pair of surface electrodes put 
over the medial head of the m. gastrocnemius. Analogue EMG signals were amplified and 
filtered with a band-pass filter with cut off frequencies at 1 Hz and 200 Hz. The signals were 
then digitalized with 1000 Hz sampling frequency and full-wave rectified. To reduce the 
variability of sampled EMG signal, the signal was then smoothed with a digital low-pass 
Butterworth filter. Finally the EMG signal was normalized with respect to the maximum 
value attained during the vertical jump. 

2.2.5 Measurements of muscle-tendon viscoelastic properties 
Triceps surae muscle-tendon complex viscoelastic properties of both legs were measured for 
each subject using the free-vibration method described by Babič and Lenarcič (2004). The 
measurement device and the procedure have been designed in such a manner that as few 
human body segments move as possible during the measurement. Thus the measurement 
uncertainty due to the approximation of the properties of the human body segments was 
minimized. The results of the measurements are the elastic stiffness kGA and viscosity b of 
the m. gastrocnemius and the elastic stiffness kAT of the Achilles tendon. 

2.2.6 Treatment of data 
For the purposes of analysis and optimization of the vertical jump we adjusted the 
biomechanical model of the musculoskeletal system with segmental anthropometric 
parameters, such as masses, moments of inertia about the transverse axes, lengths and 
locations of the centers of gravity of each subject. Parameters of the biarticular link, such as 
insertion of the m. gastrocnemius on femur, insertion of the Achilles tendon on calcaneus, 
elastic stiffness and viscosity were adjusted to match the measured parameters of each 
subject. 
To simulate the vertical jump of the individual subject we used the measured trajectory of 
the body’s COG as the input into the biomechanical model of the vertical jump. Biarticular 
link activation that is also an input into the biomechanical model of the vertical jump was 
determined from the EMG signal of the m. gastrocnemius. The moment of biarticular link 
activation was determined as the moment when the rectified, normalized and filtered EMG 
signal of the m. gastrocnemius increased to 95% of its maximum value. After the activation, 
the biarticular link remains active during the entire push-off phase of the jump. 

2.2.7 Results 
To determine the optimal timing of the biarticular link activation that results in the highest 
vertical jump, a series of the countermovement vertical jump simulations have been 
performed for each subject. Each simulation was performed with a different timing of the 
biarticular link activation. 
All subjects activated their m. gastrocnemius slightly before the optimal moment, 
determined by means of simulations. In average, the difference between the optimal and 
measured knee angle when the m. gastrocnemius was activated was 6.4 ± 2.22˚. Because the 



 
Robotic Systems – Applications, Control and Programming 

 

260 

dynamic model of the musculoskeletal system does not include the monoarticular muscle 
soleus, the measured heights of the jumps were higher than the jump heights determined 
with the simulations for 4.3 ±1.12 % in average. The primary motive for omitting the m. 
soleus from the modelling is that we wanted to control the motion of the body’s COG 
relative to the ankle so that the parameters of the biarticular link could be varied and 
optimized for a certain measured motion of the subject’s COG relative to the ankle. If the 
dynamic model of the musculoskeletal system would include the m. soleus, the motion of 
the ankle would be fully determined by the force of the m. soleus and we would not be able 
to control it with regard to the desired body’s COG relative to the ankle. Moreover if the 
dynamic model of the musculoskeletal system would include the m. soleus, force produced 
by the m. soleus would be another input into the biomechanical model of the vertical jump 
and we would have to accurately measure the force produced by the m. soleus of subjects 
performing the vertical jump. An additional cause for the differences between the measured 
heights of the jumps and the jump heights determined by means of simulations can be the 
simplified model of the foot that we modelled as one rigid body. The arch of the foot is 
linked up by elastic ligaments that can store elastic energy when deformed and later 
reutilize it as the mechanical work (Alexander, 1988). Ker et al. (1987) measured the 
deformation of the foot during running and determined the amount of the energy stored 
during the deformation. They showed that the elasticity of the foot significantly contribute 
to the efficiency of the human movement. To be able to compare the measurements and the 
simulation results, we corrected the simulation results by adding the contribution of the m. 
soleus to the height of the vertical jump. Such corrected heights of the vertical jumps at the 
optimal moments of m. gastrocnemius activation are insignificantly larger than the 
measured heights of the vertical jumps for all subjects. In average the height difference is 
only 1.6 ± 0.74 cm. 
To determine the optimal stiffness of the Achilles tendon regarding to the height of the 
vertical jump, a series of the countermovement vertical jump simulations have been 
performed, each with a different stiffness of the Achilles tendon. Optimal timing of the 
biarticular link has been determined for each stiffness of the Achilles tendon as described in 
the previous paragraph. The measured values of the Achilles tendon stiffness for all subjects 
were always higher than the optimal values determined by means of simulations. By 
considering the elastic properties of the arch of the foot, we can assume that the optimal 
values of the Achilles tendon stiffness would increase and therefore the differences between 
the optimal and measured values would decrease. 
Results of the measurements, simulations and optimizations of the human vertical jumps 
are presented in Fig. 4. Subjects are arranged with regard to the ratio between the optimal 
stiffness of the Achilles tendon determined by means of simulations and the measured 
stiffness of the Achilles tendon. If we want to evaluate the contribution of the viscoelastic 
properties to the height of the jump, ranking of the subjects with regard to the height of the 
jump is not appropriate because the main parameter that influences the height of the vertical 
jump is the power generated by muscles during the push-off phase of the jump. The 
elasticity of the Achilles tendon has the secondary influence on the height of the jump. 
Results show that for the same power generated by an individual subject during the push-
off phase of the jump, the height of the vertical jump varies with the Achilles tendon 
stiffness. Therefore the appropriate criterion for ranking the subjects have to consider the 
elasticity of the Achilles tendon. 
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Fig. 4. Results of the measurements, simulations and optimizations of the vertical jumps. 
Whole bars represent the maximal heights of the vertical jumps achieved with the optimal 
values of the Achilles tendon stiffness and determined by means of simulations. The dark 
shaded parts of the bars represent the measured heights of the vertical jumps while the light 
shaded tops represent the differences between the maximal and measured heights of the 
vertical jumps. The differences are also shown as percentages relative to the measured 
heights. Bold line represents the ratio between the optimal stiffness of the Achilles tendon 
determined by means of simulations and the measured stiffness of the Achilles tendon for 
each subject 

3. Biarticular legged robot 
In the past, several research groups developed and studied jumping robots but most of these 
were simple mechanisms not similar to humans. Probably the best-known hopping robots 
were designed by Raibert and his team (Raibert, 1986). They developed different hopping 
robots, all with telescopic legs and with a steady-state control algorithm. Later, De Man et al. 
developed a trajectory generation strategy based on the angular momentum theorem which 
was implemented on a model with articulated legs (De Man et al., 1996). Hyon et al. 
developed a one-legged hopping robot with a structure based on the hind-limb model of a 
dog (Hyon et al., 2003). Recently, Iida et al. investigated a model of biped robot which 
makes use of minimum control and elastic passive joints inspired by the structures of 
biological systems (Iida et al., 2009). 
We built an efficient dynamic model of the humanoid robot and designed and built a 
human inspired half sized humanoid robotic mechanism that is capable of performing 
vertical jump and long jump. We describe the complete design process of the real robotic 
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system. Besides, we describe the controller of the robot and show the results of the vertical 
jump experiments performed by the hardware prototype of the robot. 

3.1 Design and specifications 
To perform explosive movements such as the vertical jump, very high torques in the robot’s 
joints are required in addition with the low mass of the whole system. To achieve high joint 
torque with a lightweight electromotor available on the market today, high gear ratio is 
usually necessary. However, high gear ratio is not desired because we want to maintain the 
friction in the joints as low as possible. Besides, the back drivability of the joints, where the 
joints can be easily moved by an external force, cannot be achieved using gears with high 
ratio. A suitable method to achieve high torques and back drivability at the same time is to 
use a motor with low gear ratio and overload it for the short periods of time when the high 
torque is needed. This allows us to get a sufficient torque for a shorter time, that depends on 
the cooling situation and the desired overloaded torque. Explosive movements such as 
vertical jump usually last a very brief period of time. Therefore this overloading method 
seems appropriate for our task. 
We used Maxon RE 40 DC servo drives with stall torque of 2.5 Nm and weight of only 480 g. 
The gear ratio we chose is 1:8, which ensures both low friction and back drivability of the 
joint. Using this motor/gear combination, the maximal joint torque is 20 Nm, which can, 
based on the simulations, be sufficient to perform a 20cm high vertical jump. 
Each joint is activated by a servo drive mounted inside the proximal segment with regard to 
the joint. The largest part of the robot weight is in the trunk segment where, besides the 
motor that activates the hip joint, a computer, a motion controller, all power amplifiers and 
an inclinometer are installed. To have a heavy trunk is not desired from a control point of 
view. However, it can be shown that this kind of weight distribution can be beneficial for 
improvement of fast and explosive movements such as the vertical jump. 
The biarticular actuation mechanism is attached between the thigh and heel as in the 
simulation model. It is realized by a stiff steel wire of diameter 1mm that is connected to the 
heel via a spring. The spring is interchangeable – springs of varying stiffness determined by 
measurements are available. At one end the steel wire is wound on a 10mm diameter 
grooved shaft that is directly connected to a flat servo motor (the spiral groove prevents the 
wire from knotting itself). This motor functions solely as a break: when the motor is not 
activated the biarticular link smoothly follows the motion of the robot (the force in the 
biarticular link is zero). 

3.1.1 Construction 
The real robotic system was constructed considering the CAD model built in I-DEAS. The 
real robotic system and its comparison with the CAD model is shown in Fig. 5. All 
mechanical parts are made of aluminium except the gears and axes that are made of 
titanium. The total weight of the robot is approximately 4.4 kg and its height is 972mm. 
To better understand the biarticular actuation mechanism, consider a jumping motion 
starting from a squat position. Until the instant of activation, the biarticular actuation 
mechanism has no effect on the system, essentially acting as a passive prismatic joint. When 
the biarticular actuation mechanism is activated, the robot essentially becomes redundantly 
actuated by the biarticular force. Immediately after robot pushes off the ground, the 
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biarticular actuator is deactivated. This sequence must be executed over a short time in an 
optimal fashion to maximize jump performance. 
 

 
Fig. 5. Real jumping robot 

3.2 Dynamic modelling 
To efficiently control the robot we determined the dynamic model of the robot. We 
approximated the robotic system as a planar articulated system composed of four rigid 
bodies connected together by three rotational joints. To define the dynamic model of the 
robot, all kinematic and dynamic properties of the robot segments have to be determined. 
We determined these parameters using I-DEAS modeling software. To increase the accuracy 
of the model, the weights that we obtained from the I-DEAS model were further adjusted by 
the measured weights of the manufactured parts. 
The obtained properties of all four links including servo drives, computer, power amplifiers 
and wirings are shown in Table 1. 
 

link mass 
kg 

length 
mm 

COM position 
mm 

Inertia 
kgmm2 

foot 0.399 93.5 70.7, -3.4 1057 
shank 0.963 255 127.8,  10.5 7487 
thigh 1.033 254 119.2, -12.0 7440 
trunk 2.031 370 186.4, -12.0 20366 

Table 1. Kinematic and dynamic properties of the robot links 

The dynamic model of the robot was used in the simulation of the robotic system and for the 
control of the real system. 
The dynamic model is a combination of two separate models, the model of the robot in 
contact with the ground and the model of the robot in the air. The contact between the tip of 
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the foot and the ground is modeled as a rotational hinge joint between the foot tip and the 
ground. With the assumption that the foot tip does not slip and does not bounce, the robot 
has four degrees of freedom during stance. While in the air, the robot has two more degrees 
of freedom. The generalized coordinates that describe the state of the robot and its motion 
are denoted by qi. The dynamic model of the robot is 

 ( ) ( ) ( ) τ+ =q q + q,q q H C g , (17) 

where H, C and g denote the inertia matrix, the vector of Coriolis and centrifugal forces 
and the vector of gravity forces, respectively. τ is the vector of the joint torques and q is 
the vector of the joint positions. The dynamic equation does not consider the friction in 
the gears. For this purpose, an additional controller was implemented in the control 
strategy. 

3.2.1 Description of model using SD/FAST 
SD/FAST is a physically-based simulation tool for simulating the mechanical systems. 
Based on the short description of an articulated mechanical system of rigid bodies it derives 
the full nonlinear equations of motion for the given system. These equations can then be 
directly used in a C programming language and further compiled or linked with an 
arbitrary simulation or animation environment. The symbolic derivation of the equations 
provides one of the fastest possible simulations of the mechanical system. 
 

 On the ground In the air 
segment connected joint type joint type 

foot ground rot 2 trans + 1 rot 
shank foot rot rot 
thigh shank rot rot 
trunk thigh rot rot 
Number of DOFs 4 (q3-q6) 6 (q1-q6) 

Table 2. Description of the jumping robot 

When the system was completely described, SD/FAST generated the equations of motion 
for both models. To perform simulations and to control the robotic system, these equations 
were then used in the simulation environment. 

3.3 Simulation and control 
The equations of motion which were generated by SD/FAST have to be used together with 
a programming tool that provides the integration of the equations of motion. For this 
purpose we used Matlab/Simulink. The C code describing the equations of motion is used 
in S-function, that can be used directly as a Simulink block. We designed two S-functions, 
one for the inverse dynamics and one for the direct dynamics. 

3.3.1 Inverse dynamics 
Depending on the current state of the robot ( q,q ) the inverse dynamics block in Simulink 
defines the matrices H, C and g that form the dynamic equations of motion (17). The inverse 
dynamics block also defines the position of the COM and its Jacobian matrix, which is used 
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in the controller. The output of the inverse dynamics block depends on whether the robot is 
in the contact with the ground or in the air. 
To get the requested output of the block, the following SD/FAST functions were used: sdpos 
for the position, sdrel2cart to calculate the Jacobian matrix and sdmassmat, sdequivht, sdfrcmat 
to calculate the H, C and g matrices.. 

3.3.2 Direct dynamics 
The direct dynamic model performs the integration of the equations of motion (17) and 
returns the states of the robot ( q,q ) depending on the input torque τ. In our case where 
Matlab/Simulink performs the integration, we only have to define the derivatives of the 
states ( q,q ). To calculate the derivatives of the states and to apply the input torque, the 
following functions were used: sdstate to get states, sdderiv to get the derivatives of the states 
and sdhinget to set the torque.  
 

 
Fig. 6. Inverse and direct dynamic model blocks in simulation environment Simulink 

Special attention should be paid to switching between the dynamic models. Usually all 
movements start with the foot touching the ground. In case of vertical jumping the switch 
occurs when the ground reaction forces exerted by the robot in the vertical direction change 
direction from downwards to upwards. In the moment of the switch all joint states have to 
maintains their values. Hence continuity and dynamic consistency is achieved. 
On the other hand when the robot lands, a force impact occurs and the joint velocities 
change their values. The joint velocities after the impact have to be calculated with regard to 
the robot configuration and the joint velocities before the impact using following equation 
(Zheng & Hemami, 1985): 

 -1 T -1 T -1
air air( )Δ Δq = v, H S SH S  (18) 

where Hair represents the H matrix of the system in the air, Δv  represents the velocity 
change in the moment of the impact and Δq  represents the resulting changes of the joint 
velocities at the impact. Matrix S defines the constraints of the impact and is equal to 

 
1 0 0 0 0 0

.
0 1 0 0 0 0
 

=  
 

S  (19) 

To get the ground reaction force and the position of the toe, the following functions are 
used: sdreac to calculate the reaction force and sdpos to calculate the position. 
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3.3.3 Control of the system 
To control the robot to perform the vertical jump, two separate controllers were used, one 
for the push-off phase of the jump and the other for the flight phase of the jump. 
Furthermore, not all degrees of freedom of the robot can be actuated. Both degrees of 
freedom that describe the position of the toe (q1 and q2) and the degree of freedom in the 
passive toe joint (q3) are considered as free degrees of freedom that cannot be actuated by 
the robot. While the robot is in contact with the ground, position of the toe (q1 and q2) is 
fixed. In the free degrees of freedom the control torque should remain zero at all times. The 
system of dynamic equations that describe the robot can be divided into two parts, for 
actuated and inactivated joints separately, 

 11 12 1 1 1 1

21 22 2 2 2 2
,

         
+ + =         

         

q
q




H H C g τ
H H C g τ

 (20) 

where τ 1 represents the degrees of freedom that cannot be actuated. This condition leads to 

 11 1 12 2 1 1

21 1 22 2 2 2 2

0,
.

+ + + =
+ + + =

q q
q q
 
 

H H C g
H H C g τ  (21) 

Accelerations in the uncontrollable joints 1q  are unknown and can therefore be eliminated. 
Combining both equations (21) we get 

 1
1 11 12 2 1 1( )−= − + +q q H H C g  (22) 

and 

 1
21 11 12 2 1 1 22 2 2 2 2( ) .−− + + + + + =q q H H H C g H C g τ  (23) 

Finally we get 

 

1
21 11 12 22 2

1
21 11 1 2

1
21 11 1 2 2

( )

( )

( ) .

new

new

new

−

−

−

− + +

− + +

− + =

q





H

C

g

H H H H

H H C C

H H g g τ

 (24) 

We have acquired a new dynamic model with three degrees of freedom. The other degrees 
of freedom cannot be controlled directly; however they can be controlled indirectly using 
other conditions such as COM and ZMP. 

3.3.4 Vertical jump controller 
To assure the verticality of the jump, the robot’s COM has to move in the upward direction 
above the support polygon during the push-off phase of the jump. The second condition, 
which refers to the balance of the robot during the push-off phase, is the position of the zero 
moment point (ZMP). Both conditions are described in details in (Babič et al. 2006). 
The vertical jump consists of a phase when the robot is in contact with the ground and a 
phase when the robot is in the air without any contact with the environment. To sufficiently 
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control the vertical jump we used ground model of the robot in the former case and air 
model of the robot in the latter case. Switching between the models was performed by the 
controller on the basis of the foot switch. 
 In the push-off phase of the jump we controlled the position of the COM and ZMP in such a 
way that the robot performed a vertical jump. The task of the controller in the flight phase of 
the jump was to stop the motion in all joints and to prevent the mechanical damage by over 
extension of the joints. At this point we did not consider any strategies for the landing phase 
of the jump. 
To control all joints we used the controller described by 

  2 2 ,new c new new c+ + =qH C g τ  (25) 

where 2cτ  is the control torque and 2cq  is the control acceleration of all active degrees of 
freedom. 2cq is defined as 

 2 2 2 2 .c d p d dK K= + + −q q e e,   e = q q    (26) 

Here, 2 dq  and 2q  are the desired and the actual joint positions of the joints, respectively. 
The desired joint trajectory during the jump is defined with regard to the COM and ZMP as 
described in (Babič et al. 2006). 
Fig. 7 schematically shows the complete system consisting of the controller and the direct 
dynamic model of the robot. The controller includes both ground and air controllers of the 
vertical jump. These two controllers are merged together as shown in Fig. 8. 
 

 
Fig. 7. Block diagram of robotic system consisting of controller and direct dynamic model of 
robot 
 

 
Fig. 8. Block diagram of vertical jump controller made of two separate controllers for push-
off and flight phases of vertical jump 
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3.4 Vertical jump experiments 
Based on the numerical results, we performed vertical jumping experiments with the 
hardware prototype and the controller described above. Joint torques obtained in the 
simulation study were used as the desired joint torques for the experiments. In the first case 
we performed squat vertical jumps for a conventional robot that does not have a biarticular 
link. In the second case we performed squat vertical jumps for a biarticular legged robot. In 
this latter case the robot was equipped with biarticular link that represents the 
gastrocnemius muscle in a human leg. 
The robot performed jumps on a force platform that was used to measure ground reaction 
forces generated by the robot during the push-off and landing phases of the vertical jump. 
By double integration of the measured forces that are proportional to the acceleration of the 
robot’s center of mass during the jump, the trajectory of the robot’s center of mass is 
determined during the vertical jump experiments. In this way we obtained the height of the 
jump of the robot without the biarticular link (0.11m) and the height of the jump of the 
biarticular legged robot (0.13m). The biarticular legged robot jumped approximately 18% 
higher than the conventional robot. 
A typical sequence of the vertical jump performed by the biarticular legged robot is shown 
in Fig. 9. Images in the first row show the robot between the beginning of the push-off phase 
of the jump and the moment when the robot reached the maximal height of the jump. In the 
second row of Fig. 9 the second part of the flight phase and the landing phase is shown. 
 

 
Fig. 9. A sequence of the biarticular legged robot performing a vertical jump experiment 
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Optimization and Synthesis  
of a Robot Fish Motion 

Janis Viba, Semjons Cifanskis and Vladimirs Jakushevich 
Riga Technical University 

Latvia 

1. Introduction 
Inverse method algorithm for investigation of mechatronic systems in vibration technology 
is used for robotic systems motion control synthesis. The main difference of this method in 
comparison with simple analysis method is that before synthesis of a real system the 
optimal control task for abstract initial subsystem is solved [1 - 4]. As a result of calculations 
the optimal control law is found that allows to synthesize series of structural schemes for 
real systems based on initial subsystem. Is shown that near the optimal control excitation 
new structural schemes may be found in the medium of three kinds of strongly non–linear 
systems:  
- systems with excitation as a time function;  
- systems with excitation as a function of phase coordinates only;  
- systems with both excitations mixed [2 – 4]. 
Two types of vibration devices are considered. The first one is a vibration translation 
machine with constant liquid or air flow excitation. The main idea is to find the optimal 
control law for variation of additional surface area of machine working head interacting 
with water or air medium. The criterion of optimization is the time required to move 
working head of the machine from initial position to end position. The second object of the 
theoretical study is a fin type propulsive device of robotic fish moving inside water. In that 
case the aim is to find optimal control law for variation of additional area of vibrating tail 
like horizontal pendulum which ensures maximal positive impulse of motion forces acting 
on the tail. Both problems have been solved by using the Pontryagin’s maximum principle.  
It is shown that the optimal control action corresponds to the case of boundary values of 
area. One real prototype was investigated in linear water tank. 

2. Translation motion system 

First object with one degree of freedom x and constant water or air flow V0  excitation is 
investigated (Fig. 1., 2.). The system consists of a mass m with spring c and damper b. The 
main idea is to find the optimal control law for variation of additional area S(t)  of vibrating 
mass m within limits (1.): 

 S S t S≤ ≤1 2( ) ,  (1) 
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where S1  - lower level of additional area of mass m; S2 - upper level of additional area of 
mass m, t - time. 
The criterion of optimization is the time T required to move object from initial position to 
end position.  
Then the differential equation for large water velocity  V x≥0    is (2): 

 m x c x b x u t V x= − − − ⋅ + 2
0( ) ( )   , (2) 

where u t S t k= ⋅( ) ( ) ,  c – stiffness of a spring, b – damping coefficient, V0  - constant velocity 
of water, S(t) – area variation, u t( )  - control action, k – constant.  
It is required to determine the control action u = u(t) for displacement of a system (2) from 
initial position x(t0)  to end position x(t1) in minimal time (criterion K)  K= T,  if area S(t) has 
the limit (1).  
 

 
Fig. 1. Working head construction 

 

 
Fig. 2. Side-view of a mathematical model 
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2.1 Solution of optimal control problem 
For solution of problem the Pontryagin’s maximum principle may be used [5 - 13]. We have 

the high-speed problem
t

t

K dt= ⋅
1

0

1 .   

To assume t t T= =0 0; 1 ,  we have K T= . 

From the system (2), we transform x x x x= =1 1 2;   or 

x x x c x b x u t V x
m

= = ⋅ − − − ⋅ + 2
1 2 2 0

1; ( ( ) ( ) )     

and we have Hamiltonian (3): 

 ( )H x cx bx u t V x
m

ψ ψ ψ= + + ⋅ − − − ⋅ + 2
0 1 2 2 1 2 0 2

1( ( ) ( ) ,  (3) 

here H Xψ= ⋅ , where (4) 

 
ψ

ψ ψ
ψ

 
 =  
 
 

0

1

2

; X x
x

 
 =  
 
 

1

2

0



. (4) 

Scalar product of those vector functions ψ and X  in any time (function H) must be 
maximal. To take this maximum, control action u(t) must be within limits 
u t u u t u= =( ) 1; ( ) 2 , depending only on function ψ 2  sign (5): 

 
H H

if u t V xψ
=

⋅ − ⋅ + =2
2 0 2

max ,
( ( ) ( ) ) max.

 (5) 

If u t uψ > =2 0, ( ) 1  and if 2 0, ( ) 2 u t uψ < = , where u S k= ⋅11  and u S k= ⋅22 , see (1).  
The examples of control action with one, two and three switch points are shown in Fig. 3. – 
Fig. 5. 

 

 
Fig. 3. Example of optimal control with one switch point 
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Fig. 4. Example of optimal control with two switch points in the system with damping 

 

 
Fig. 5. Example of optimal control with three switch points in the task of system excitation 

2.2 Theoretical synthesis of control action 
For realizing of optimal control actions (in general case) system of one degree of freedom 
needs a feedback system with two adapters: one to measure a displacement and another one 
to measure a velocity. There is a simple case of control existing with only one adapter 
when directions of motion are changed (Fig. 5) [3]. It means that control action is like 
negative dry friction and switch points are along zero velocity line. In this case equation 
of motion is (6): 

 

2

2

( 0 ) 1 (0,5 0,5 )

( 0 ) 2 (0,5 0,5 ) ,

x
m x c x b x k V x A

x

x
k V x A

x

 
⋅ = − ⋅ − ⋅ − ⋅ + ⋅ ⋅ − ⋅ − 

  
 

+ ⋅ + ⋅ ⋅ + ⋅ 
  

  





 (6) 

where m – mass; c, b, k, V0 – constants. Examples of modeling are shown in Fig. 6. – Fig. 9. 
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Fig. 6. Full control action in time domain 
 

 
Fig. 7. Displacement in time domain 
 

 
Fig. 8. Motion in phase plane starting from inside of limit cycle 

A search for the case with more than one limit cycle was investigated in a very complicated 
system with linear and cubic restoring force, linear and cubic resistance force and dry 
friction. It was found that for a system with non-periodic excitation (like constant velocity of 
water or air flow) more than one limit cycles exist (Fig. 10., 11.). 
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Fig. 9. Motion with initial conditions outside of limit cycle 
 

 
Fig. 10. Motion in phase plane for small limit cycle 
 

 
Fig. 11. Motion for large limit cycle 
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2.3 Synthesis of a real system with rotating blades 
Scheme of a system includes main mass of the object, spring and viscous damper (Fig. 12.). 
Part of mass with blades does not rotate. Second part of main mass like blades rotates 
around fixed axis inside body. Blades have symmetric areas A1 and A2. 
 

 
Fig. 12. System with rotating blades 

Results of investigation are shown in Fig. 13. – Fig. 14. 
 

 
Fig. 13. Area change function in time domain when blades rotate with constant angular 
velocity  ω 

Investigation shows that system is very stable because of air excitation and damping forces 
depending from velocity squared.  
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Fig. 14. Motion in phase plane for parameters close to the first resonance 

2.4 Synthesis of real system inside tube with variable hole area - A 
Adaptive control where analyzed by next area exchange functions f1(A) (Fig. 15, 16.): 

1( ) 2 (1 )v x
f A A a

v x
⋅= ⋅ + ⋅
⋅

, 

where A2, a – constants, v, x – velocity and coordinate of moving mass m2. 
 
 

 

 

Fig. 15. Synthesis of system inside tube 
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Fig. 16. Motion in phase plane 

It is shown that adaptive systems are also very stable because of water or air excitation and 
damping forces depending from velocity squared.  
In order to get values of parameters in equations, experiments were made in the wind 
tunnel. It should be noted that the air flow is similar to the water flow, with one main 
difference in the density. It is therefore convenient to perform synthesis algorithm 
experiments done with air flow in the wind tunnel. Experimental results obtained in the 
wind tunnel to some extent may be used to analyze water flow excitation in robot fish 
prototypes. Using “Armfield” subsonic wind tunnel several additional results were 
obtained. For example, drag forces, acting on different shapes of bodies, were measured and 

drag coefficients were calculated by formula d d
V

F C S
ρ ⋅= ⋅ ⋅

2

,
2

 where ρ – density, V – flow 

velocity, S – specific area, Cd – drag coefficient. These coefficients depend on bodie’s 
geometry, orientation relative to flow, and non-dimensional Reynolds number. 
 

 
Fig. 17. Subsonic wind tunnel used for experiments at Mechanics Institute of Riga TU 
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All experiments were done at constant air flow velocity in the range of 10 – 20 m/s. This 
corresponds to Re value of about 40 000. 
Drag coefficient for a plate perpendicular to the flow depends on plate’s length and chord 
ratio. For standard plates Cd  it is about 1.2. For infinitely long plates Cd reaches the value of 
2. For a cone Cd = 0,5; for a cylinder along the flow - about 0,81; for both cylinder and cone in 
one direction  - 0,32. All these forms can be used for robot fish main body form designing, 
(together with the tail) in real robot fish models (see part 3.4, where cone and cylinder 
were used). Depth control of prototypes was provided by two front control wings (see 
part 3.4). 
Parameters of subsonic wind tunnel were as follows:  length 2.98m, width 0.8m., height 
1.83m. Variable speed motor drive unit downstream of the working section permits stepless 
control of airspeed between 0 and 26 ms-1. Experiments prove that air flow excitation is 
very efficient.  

3. Investigation of a rotating system  
The second object of the theoretical study is a fin type propulsive device of robotic fish 
moving inside water. The aim of the study is to find out optimal control law for variation of 
additional area of vibrating tail like horizontal pendulum, which ensures maximal positive 
impulse of motion forces components acting on a tail parallel to x axis (Fig.18).  
 

 
Fig. 18. Side-view of a robot fish tail like horizontal pendulum 

Problem has been solved by using Pontryagin’s maximum principle.  It is shown that 
optimal control action corresponds to the case of boundary values of area.  
Mathematical model of a system consists of rigid straight flat tail moving around pivot (Fig. 
18.,19.). Area of the tail may be changed by control actions. For excitation of the motion a 
moment M(t,φ,ω)  around pivot must be added, where ω = dφ/dt – angular velocity of a rigid 
tail. To improve performance of a system additional rotational spring with stiffness c may be 
added (Fig. 19.). 
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Fig. 19. Top-view of a robot fish tail like horizontal pendulum.  
Simplified model with fixed pivot A 

The principal task described in this report is to find optimal control law for variation of 
additional area B(t)  of vibrating tail within limits (7.): 

 B B t B≤ ≤1 2( ) ,  (7) 

where B1  - lower level of additional area of a tail; B2 - upper level of additional area of a 
tail, t - time. 
The criterion of optimization is full reaction Ax* impulse in pivot, acting to a hull (indirect 
reaction to a tail) which is required to move an object from one stop - initial position ( 
ϕ ϕ =max , 0 ) to another stop - end position (ϕ ϕ =min , 0 ) in time T(8).  

 
T

K Ax dt= − ⋅
0

* , (8) 

Differential equation of motion of the system with one degree of freedom (including a 
change of angular momentum around fixed point A) is (9): 

 ( )
L

A tJ M t c k B sign dϕ ϕ ϕ ϕ ϕ ϕ ϕ ξ ξ ξ= − ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2

0

( , , ) ( ) .     (9) 

Here AJ  - moment of inertia of the tail around pivot point; ϕ  - angular acceleration of a 
rigid  straight tail; M t ϕ ϕ( , , )  - excitation moment of the drive; c  - angular stiffness;  tk  - 

constant coefficient; B  - area; ( )
L

dϕ ξ ξ ξ⋅ ⋅ ⋅
2

0

( )  - component of the moment of resistance 

force expressed as an integral along tail direction; ϕ  - angular velocity; L - length of the 
tail. 
From the principle of the motion of mass center C it follows (10): 
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 ( )
L

t
L L

m Ax k B sign dϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ξ ξ
  ⋅ ⋅ ⋅ + ⋅ ⋅ = − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅       


22

0

cos sin sin( ) ( )
2 2

     (10) 

After integration from equations (9) and (10) we have (11, 12): 
 

 t
A

L
M t c k B sign

J
ϕ ϕ ϕ ϕ ϕ ϕ

 
= ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅ 

 

4
21 ( , , ) ( )

4
    . (11) 

 

 
t

A

t

L L L
Ax m M t c k B sign

J

L
k B sign

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 
= ⋅ ⋅ ⋅ + ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + 

 

+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

4
2 2

3
2

1{ cos( ) ( , , ) ( ) sin( )}
2 4 2

sin( ) ( ) .
3

   

 
 (12) 

 

Then the criterion of optimization (full impulse) is: 
 

T t
A

t

L L L
m M t c k B sign

J
K dt

L
k B sign

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

  
⋅ ⋅ ⋅ + ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +  

  = − ⋅ 
 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 



4
2 2

3
0 2

1{ cos( ) ( , , ) ( ) sin( )}
2 4 2 ,

sin( ) ( )
3

   

 
 (13) 

 

Equations (13) will be used to solve the optimization problem. 

3.1 Task of optimization 
Solution of optimal control problem for a system with one degree of freedom (11) by using 
the Pontryagin’s maximum principle includes following steps [8 - 13]: 
1. Formulation of a criterion of optimization (13): 

T

K Ax dt= − ⋅
0

. 

2. Transformation of the equation (9) and equation (13) in the three first order equations 
with new variables φ0, φ1 and φ2 (phase coordinates): 

 

( )
t

A

t

L L L
m M t c k B sign

J

L
k B sign

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ ϕ

  
⋅ ⋅ ⋅ + ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +  

  = − ⋅
 
 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 

4
2 2

3
2

1{ 2 cos( 1) ( , 1, 2) 1 ( 2) 2 sin( 1)}
2 4 20 1

sin( 1) ( 1 2) 2 ,
3

 

 
t

A

L
M t c k B sign

J

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

=

 
= ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅ 

 

4
2

1 2;

12 ( , 1, 2) 1 ( 2) 2 .
4



  (14) 

According to procedure of Pontryagin’s maximum principle, Hamiltonian (H) is [9 -12]: 
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( )

[2

4
2

0

3
2

4
2

1

1} 2 cos( 1) ( , 1, 2) 1
2

1 ( 2) 2 sin( 1)})
4 2

sin( 1) ( 1 2) 2
3

12 2 ( , 1, 2) 1 ( 2) 2
4

A

t

t

t
A

L
m M t c

J

L L
H k B sign

L
k B sign

L
   M t c k B sign

J

ϕ ϕ ϕ ϕ ϕ

ψ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ψ ϕ ψ ϕ ϕ ϕ ϕ ϕ

 
⋅ ⋅ ⋅ + ⋅ − ⋅ − 

 
 
 

= ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + + 
 
 
 

+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
  


+ ⋅ + ⋅ ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅


.




 (15) 

here H ψ= ⋅ Φ , where (10, 11) 

 

ψ

ψ ψ

ψ

 
  =  
 
  

0

1

2

; (16) 

 

Φ 
  Φ = Φ 
 
Φ  

0

1

2

, (17) 

Φ Φ Φ0 1 2, , - right side of system equations (14). 
For functions Φ Φ Φ0 1 2, ,  calculations are following differential equations [9 - 12]: 
 

 H
φ

∂Φ = −
∂0

0

 ; H
φ

∂Φ = −
∂1

1

 ;  H
φ

∂Φ = −
∂2

2

 , (18) 

 

where left side is the derivation in time t:   
d

dt
Φ

Φ = 0,1,2
0 ,1,2
 . 

From equations (15) and (18) we get nonlinear system of differential equations to find 
functionsψ ψ ψ0 1 2, , .  Solution of such system is out of the scope of this report because it 
depends from unknown moment M(t,φ,ω). But some conclusions and recommendations 
may be given from Hamiltonian if excitation moment M(t,φ,ω)  does not depend from phase 
coordinates φ = φ1, ω = φ2: 

M = M(t). 

In this case scalar product of two last vector functions ψ  and Φ  in any time (Hamiltonian 
H [11]) must be maximal (supremum - in this linear B case) [8 – 12]. To have such maximum 
(supremum), control action B(t) must be within limits B t B B t B= =1 2( ) ; ( ) , depending only 
from the sign of a function (19) or (20): 
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t t

A

t
A

m L L
k sign k sign

J
sign

L
k sign

J

ψ ϕ ϕ ϕ ϕ ϕ

ψ ϕ

   
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ +   
     ≥ 

  + ⋅ ⋅ − ⋅ ⋅ ⋅    

5 3

0

4

11 ( 2) sin( 1) 1 sin( 1) ( 1 2)
4 2 3

0,
12 1 ( 2)

4

 (19) 

B = B2; 

 
t t

A

t
A

m L L
k sign k sign

J
sign

L
k sign

J

ψ ϕ ϕ ϕ ϕ ϕ

ψ ϕ

   
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ +   
     ≤ 

  + ⋅ ⋅ − ⋅ ⋅ ⋅    

5 3

0

4

11 ( 2) sin( 1) 1 sin( 1) ( 1 2)
4 2 3

0.
12 1 ( 2)

4

 (20) 

B = B1; 

From inequalities (19) and (20) in real system synthesis following quasi-optimal control 
action may be recommended (21):  

[ ]B B sign B signϕ ϕ ϕ ϕ= ⋅ − ⋅ ⋅ + ⋅ + ⋅ ⋅2 (0,5 0,5 ( 1 2)) 1 (0,5 0,5 ( 1 2)) , 

or  

 [ ]2 (0,5 0,5 ( )) 1 (0,5 0,5 ( ) .B B sign B signϕ ϕ ϕ ϕ= ⋅ − ⋅ ⋅ + ⋅ + ⋅ ⋅   (21) 

3.2 Synthesis of mixed system with time-harmonic excitation and area adaptive 
control 
In the case of time-harmonic excitation moment M in time domain is (see equations (9) and (11)): 

 M(t) = M0٠sin(k٠t).  

Results of modeling are shown in Fig. 20. – 25. Comments about graphics are given under 
all Fig. 20. – 25. 
 

 
Fig. 20. Tail angular motion in the phase plane – angular velocity as function of angle 
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Fig. 21. Angular acceleration of the tail as function of angle. At the end of transition process 
graph is symmetric 
 

 
Fig. 22. Angular acceleration ε ϕ=   of a tail in time domain (see equation (9)). Practically 
angular acceleration of the tail reaches steady-state cycle after one oscillation 

 
Fig. 23. Impulse Ax(t) in time domain (see equation (12)). Impulse is non-symmetric against 
zero level (non-symmetry is negative) 
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Fig. 24. Impulse Ax(t) as a function of angle φ. 
Impulse is non-symmetric against zero level (non-symmetry is negative) 

 

 
Fig. 25. Negative mean value of Ax(t) in time domain.  
Force of pivot to push a hull (necessary for robotic fish motion)  

3.3 Synthesis of a system with adaptive excitation and adaptive area control 
In a case of adaptive excitation a moment M may be used as the function of angular velocity 
in the form [3. 4]: 

M(t) = M0٠sign(ω). 

Results of modeling are shown in Fig. 26. – 31. Comments about graphics are given under 
all Fig. 26. – 31. 
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Fig. 26. Tail angular motion in phase plane – angular velocity as the function of angle. Due 
to large water resistance the transition process is very short. Adaptive excitation is more 
efficient than harmonic excitation (see Fig.20.) 
 

 
Fig. 27. Angular acceleration of a tail as the function of angle. At the end of transition 
process graph is more symmetric than the graph shown in Fig. 22 
 

 
Fig. 28. Angular acceleration ε ϕ=   of a tail in time domain (see equation (9)). Typically 
angular acceleration of the tail reaches steady-state cycle after half oscillation 
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Fig. 29. Impulse Ax(t) in time domain (see equation (12)). Impulse is non-symmetric against 
zero level (non-symmetry is negative) 
 

 
Fig. 30. Impulse Ax(t) as a function of angle φ 

Impulse is non-symmetric against zero level (non-symmetry is negative), it means that 
criterion of optimization (8) is positive and force of pivot pushes fish hull to the right. 
 

 
Fig. 31. Negative mean value of Ax(t) in time domain. Force of pivot to push fish hull to the 
right (in order to have robotic fish motions to the right). This graph shows that adaptive 
excitation of a moment is about four times more efficient than harmonic excitation (see Fig. 25.) 
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3.4 Robot fish model 
A prototype of robot fish for experimental investigations was made (Fig. 32, 33). This 
prototype was investigated in a linear water tank with different aims, for example: – find 
maximal motion velocity depending on the power pack capacity; – find minimal propulsion 
force, depending on the system parameters. 
Additionally this prototype was investigated in a large storage lake with autonomy power 
pack and distance control system, moving in real under water conditions with waves (Fig. 
34.). The results of the theoretical and experimental investigation may be used for inventions 
of new robotic systems. The new ideas of synthesising robotic systems in Latvia can be 
found in [15 - 23]. 
 

 
Fig. 32. Top-view of prototype 
 

 
Fig. 33. Inside prototype there are: microcontroller 1; three actuators  
(for level 4, direction 5 and velocity 6 control); power supply 2 and radio signal detector 3) 
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Fig. 34. Prototype was investigated in a large storage lake with autonomy power pack and 
distance control system, moving in real under water conditions with waves 

4. Conclusion  
Motion of robotic systems vibration by simplified interaction with water or air flow can be 
described by rather simple equations for motion analysis. That allows to solve mathematical 
problem of area control optimization and to give information for new systems synthesis. 
Control (or change) of object area under water or in air allows to create very efficient 
mechatronic systems. For realization of such systems adapters and controllers must be used. 
For this reason very simple control action have solutions with use of sign functions. 
Examples of synthesis of real mechatronic systems are given. As one example of synthesis is 
a system with time-harmonic moment excitation of the tail in the pivot. The second example 
of synthesis is a system with adaptive force moment excitation as the function of phase 
coordinates. In both systems area change (from maximal to minimal values) has control 
action as the function of phase coordinates. It is shown that real controlled systems vibration 
motion is very stable. 
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Modeling of Elastic Robot Joints with Nonlinear
Damping and Hysteresis
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1. Introduction

Elastic robot joints gain in importance since the nowadays robotics tends to the lightweight
structures. The lightweight metals and composite materials deployed not only in the links
but also in the joint assemblies affect the overall stiffness of robotic system. The elastic
joints provide the loaded robot motion with additional compliance and can lead to significant
control errors and vibrations in the joint as well as operational space. A better understanding
of the compliant joint behavior can help not only to analyze and simulate robotic systems but
also to improve their control performance.
Elastic robot joints are often denoted as flexible joints or compliant joints as well. The former
modeling approaches aimed to describe the dynamic behavior of elastic robot joints lead back
to Spong (1987). Spong extended the general motion equation of a rigid robotic manipulator to
the case of joint elasticity captured by a linear connecting spring. Remember that the general
motion equation derived either from Lagrange or Newton-Euler formalism for a class of rigid
robotic manipulators (Sciavicco & Siciliano (2000)) can be expressed as

M(q)q̈ + C(q, q̇)q̇ + G(q) = u . (1)

Here, q ∈ Rn is the vector of Lagrangian (also joint) coordinates and u ∈ Rn is the vector
of generalized input forces. The configuration dependent matrixes M ∈ Rn×n, C ∈ Rn×n,
and G ∈ Rn constitute the inertia, Coriolis-centrifugal, and gravity terms correspondingly.
The model introduced by Spong (1987) has been widely used in the later works which
deal with a compliance control (Zollo et al. (2005)) and passivity-based impedance control
(Ott et al. (2008)) of robots with joint elasticities. Despite a good acceptance for the control
applications this modeling strategy misses the damping factor related to the connecting
spring. In this regard, the approach proposed by Ferretti et al. (2004) which provides two
masses connected by a linear spring and damper arranged in parallel is more consistent
with the physical joint structure. Also the inverse dynamic model used for vibration
control of elastic joint robots (Thummel et al. (2005)) incorporates a torsional spring with
both stiffness and damping characteristics. From a slightly diversing point of view the
modeling of elastic robot joints was significantly influenced by the studies of harmonic drive
gear transmission performed in the end-nineties and last decade. The harmonic drives are
widely spread in the robotic systems due to their compact size, high reduction ratios, high
torque capacity, and low (nearly zero) backlash. However, a specific mechanical assembly

15



2 Will-be-set-by-IN-TECH

provides the harmonic drive gears with additional elasticities which are strongly coupled
with frictional effects. A structure-oriented dissipative model of the harmonic drive torque
transmission was proposed by Taghirad & Bélanger (1998). The model composes multiple
component-related frictional elements and an additional structural damping attributed to
the flexspline. Another notable modeling issue provided by Dhaouadi et al. (2003) presents
the torsional torque in harmonic drives as an integro-differential hysteresis function of both
angular displacement and angular velocity across the flexspline. Later, Tjahjowidodo et al.
(2006) describe the dynamics in harmonic drives using nonlinear stiffness characteristics
combined with distributed Maxwell-slip elements that capture the hysteresis behavior. A
complex phenomenological model of elastic robot joints with coupled hysteresis, friction
and backlash nonlinearities was proposed by Ruderman et al. (2009). However, realizing the
complexity of decomposing and identifying the single nonlinearities a simplified nonlinear
dynamic model was later introduced in Ruderman et al. (2010).
The leitmotif provided in this Chapter is to incorporate a combined physical as well as
phenomenological view when modeling the joint transmission with elasticities. Unlike
the classical approaches which rather operate with linear stiffness and damping elements
arranged either in series or in parallel the structure-oriented effects are emphasized here.
The inherently nonlinear compliance and damping of elastic robot joints are tackled from
the cause-and-effect point of view. It is important to note that such approaches can rapidly
increase the number of free parameters to be identified, so that the model complexity has to
be guarded carefully. The Chapter is organized as follows. Section 2 introduces the robot
joint topology which captures equally the dynamic behavior of both rigid and elastic revolute
joints. Three closed subsystems are described in terms of their eigenbehavior and feedforward
and feedback interactions within the overall joint structure. Section 3 provides the reader with
description of the developed joint model capable to capture two main nonlinearities acting in
the joint transmission. First, the dynamic joint friction is addressed. Secondly, the nonlinear
stiffness combined with hysteresis map is described in detail. An experimental case study
provided in Section 4 shows some characteristical observations obtained on a laboratory setup
of the joint with elasticities and gives some identification results in this relation. The main
conclusions are derived in Section 5.

2. Robot joint topology

Before analyzing the dynamic behavior of an elastic robot joint an underlying joint topology
has to be assumed first. Different topologies of robotic joints are conceivable starting from
the more simple linear structures as used e.g. by Ferretti et al. (2004), Zollo et al. (2005),
Albu-Schaffer et al. (2008) and migrating towards the more complex nonlinear approaches
as proposed e.g. by Taghirad & Bélanger (1998), Dhaouadi et al. (2003), Tjahjowidodo et al.
(2006), particularly in context of harmonic drive gear transmissions. Here it is important at
which level of detail the robot joint transmission could be described. Mostly it is conditioned
by the available knowledge about the mechanical joint structure and the accessibility of
system measurements required for the identification. In majority of applications, the actuator
measurements such as the angular position and velocity as well as active motor current are
available only prior to the gear transmission. In more advanced but also more cost-intensive
applications like DLR lightweight robots (see e.g. by Albu-Schaffer et al. (2008)), the angular
motion and torque measurements are available at both actuator and load side of the
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joint transmission. Although those hardware solutions are often not technically or (and)
economically profitable, a prototypic laboratory measurement performed on the load side
of robotic joints can yield adequate data sufficient for analysis and identification. Here, one
can think about highly accurate static as well as dynamic measurements of the joint output
position performed by means of the laser interferometry or laser triangulation. The load
torques can also be determined externally either by applying an appropriate accelerometer
or by using locked-load mechanisms equipped by the torque (load) cells. However, the latter
solution is restricted to the quasi-static experiments with a constrained output motion.
Now let us consider the topology of an elastic robot joint as shown in Fig. 1. In terms
of the input-output behavior the proposed structure does not substantially differ from a
simple fourth-order linear dynamic model of two connected masses. An external exciting
torque u constitutes the input value and the relative position of the second moving mass θ
constitutes the output value we are interested in. Going into the input-output representation,

joint
load

gear
transmission

joint
actuator

u q � �

Fig. 1. Topology of elastic robot joint

let us subdivide the robotic joint into three close subsystems connected by the feedforward
and feedback actions realized by appropriate physical states. The joint actuator loaded by
the feedback torque τ provides the output angular displacement q of a rigid shaft. This
value is an inherent determinant of the relative motion entering the gear transmission and
mostly measurable prior to that one. Since the gear transmission captures the intrinsic joint
elasticity, the angular output displacement of the joint load constitutes the second feedback
state. Assuming that the gear with elasticities behaves like a torsion spring with a certain
stiffness capacity its output value represents the transmitted torque which drives the joint
load. When cutting free the forward and feedback paths the joint model decomposes into three
stand-alone submodels, each one describing the specified physical subsystem. Note that from
energy conversion point of view we obtain three dissipative mappings with two different sets
of the input values. The first input set constitutes the forward propagation of the energy fed
to the system. The second input set represents the system reaction with a negative or positive
energy feedback depending on the instantaneous operation state. The superposition of the
feed-in and reactive joint torque provides the internal angular motion (u− τ) �→ q damped
by the friction. The constrained relative displacement across the gear transmission provides
the elastic tension in the joint (q − θ) �→ τ damped by its structure. Finally, the transmitted
torque provides the output relative motion τ �→ θ whose damping depends on the topology
of subsequent load.
The actual joint topology represents a general case which covers both elastic and rigid
transmission. The actuator submodel can be equally used for a rigid joint modeling, where τ
will appear as an input disturbance fed back directly from the joint load and acting upon the
overall torque balance. The stand-alone gear transmission modeling is however meaningful
only when the relative displacement occurs, i.e. q �= θ. When considering a rigid robotic joint
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the transmission submodel will describe a particular case with an unlimited stiffness. At this,
each infinitesimal change in q will lead to an immediate excitation of the load part, so that the
eigendynamics of the joint transmission disappears.
The following analytical example of two equivalent linear joint models explains the upper
mentioned ideas in more detail. For instant, consider a simple motion problem of two
connected masses m and M with two damping factors d and D, once with a rigid and once
with an elastic joint. Assume that the last one is represented by the spring with the stiffness
K. The first case can be described by the simple differential equation

(m + M) q̈ + (d + D) q̇ = u . (2)

It is evident that the system (2) provides the single dynamic state, and the mass and damping
factors appear conjointly whereas q = θ. The more sophisticated second case with elasticity
requires two differential equations

m q̈ + d q̇ + K(q− θ) = u ,

M θ̈ + D θ̇ − K(q− θ) = 0 (3)

which constitute the fourth-order dynamic system. For both systems, let us analyze the step
response in time domain and the amplitude response in frequency domain shown in Fig. 2
(a) and (b). Here, H1(s) denotes the transfer function H(s) = θ̇(s)/U(s) of Eq. (2), and
H2(s) as well as H3(s) denote the one of Eq. (3). At this, the stiffness K is set to 1e3 for
H2(s), and to 1e8 for H3(s). The case described by H3(s) should approximate a rigid system
at which the stiffness increases towards unlimited. Note that the residual parameters of Eqs.
(2) and (3) remain constant. It is easy to recognize that the step response of H3(s) coincides
well with those one of the absolute rigid joint H1(s). When analyzing the frequency response
function it can be seen that the resonance peak of H3(s) is shifted far to the right comparing
to H2(s). Up to the resonance range the frequency response function H3(s) coincides exactly
with H1(s). Note that the shifted resonance of H3(s) provides the same peak value as H2(s).
Hence, during an exceptional excitation exactly at the resonance frequency the oscillatory
output will arise again. However, from the practical point of view such a high-frequently
excitation appears as hardly realizable in a mechanical system. Even so, when approaching
the resonance range, the high decrease of the frequency response function provides a high
damping within the overall system response.
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Fig. 2. Comparison of linear joint approaches; step response (a), frequency response (b)

The performed qualitative example demonstrates the universal character of the proposed joint
topology. At this, the principal mechanisms conducting the joint dynamics are independent

296 Robotic Systems – Applications, Control and Programming



Modeling of Elastic Robot Joints with Nonlinear Damping and Hysteresis 5

from the complexity of a particular robotic system. Being conditional upon the gear and
bearing structure an optimal level of detail for modeling can be determined using a top-down
approach. Starting from the simplest rigid case with a single actuator damping, additional
compliant and frictional elements can be included hierarchically in order to particularize the
case-specific system behavior.
In the following, we consider the single modeling steps required to achieve an adequate
description of each subsystem included in the topology of a nonlinear elastic joint.

2.1 Joint actuator
Considering the joint actuator which is driven by an electrical servo motor the angular velocity
and angular position of the output shaft are determined by two input values. The first one
is the input torque u which induces the angular acceleration of the rotor. The second one is
a feedback load torque τ which antagonizes the controllable motion and thus behaves as a
disturbance value to be accounted for. The conjoint moment of inertia m includes the rotor
with shaft as well as the additional rotating elements such as encoders, breaks, and couplings.
Mostly, it can be supposed that all rotating bodies are homogenous and axially symmetrical.
This straightforward simplification allows us to deal with the concentrated model parameters
and to consider the relative motion at this stage as the single body dynamics. The joint
actuator can be described as follows

m q̈ + f (q̇) + τ = u , (4)

in which the input torque is assumed to be linear to the regulated motor current i. The fast
current controls of the common servo motors operate at sampling rates about or larger than 10
kHz. Hence, the transient behavior of the current control loop can be easily neglected taking
into account the time constants of the mechanical system part. The latter amount to several
tens up to some hundred milliseconds. With an appropriate current regulation an electrical
servo motor can be considered as a nearly reactionless power source which provides the joint
actuator with the driving input torque u(t) ∼= kmi(t).
The friction f (·) acting in the bearings is in large part load-independent. However, since a
particular joint actuator can be mounted on the robotic manipulator with multiple degrees
of freedom (DOF) its frictional characteristics can vary dependent on the actual robot
configuration. Particularly, the orientation of the supported motor shaft to the gravity field
can influence the breakaway and sliding friction properties to a certain degree. Aside of the
dependency from the robotic configuration the most significant frictional variations, as well
known, are due to the thermal effects. Both the external environment temperature and the
internal temperature of contacting elements play a decisive role, whereas the last one increases
usually with the operating time and intensity. However, the thermal frictional effects can be
rather attributed to a slow time-variant process and a corresponding adaptivity of the model
parameters. For reason of clarity an explicit temperature dependency is omitted here just as
in most known approaches of modeling the robot dynamics. In the following, we also assume
that no significant eccentricities are present in the system, so that almost no periodic torque
ripples occur on a shaft revolution. Otherwise, the harmonic disturbances partially attributed
to the position-dependent friction can be efficiently estimated and compensated as proposed
e.g. by De Wit & Praly (2000).
The complexity of the obtained actuator model can differ in number of the free parameters to
be identified, mostly dependent on the selected mapping of the friction behavior. The lumped
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moment of inertia can be easily estimated by decoupled load using the large steps and (or)
free run-out experiments. However, in doing so a linear damping has to be assumed. Since
the motion is essentially damped by a nonlinear friction it appears as more reasonable to
identify the actuator inertia together with the corresponding friction parameters. For these
purposes more elaborated and specially designed experiments either in time or frequency
domain can be required (see e.g. by Ruderman & Bertram (2011a)). Often, it is advantageous
to identify the actuator friction together with the friction acting in the gear transmission. The
friction effects in the actuator and gear assembly are strongly coupled with each other since
no significant elasticities appear between both. When identifying the dynamic friction one has
to keep in mind that the captured torque value, mostly computed from the measured motor
current, represents a persistent interplay between the system inertia and frictional damping.

2.2 Gear transmission
The mechanical gear transmission can be considered as a passive transducer of the actuator
motion to the output torque which drives the joint load. At this, the angular position of
the joint load constitutes the feedback value which contains the signature of elasticities and
backlash acting in the transmission system. Often, the gear transmission provides the main
source of nonlinearities when analyzing the joint behavior, the reason for which several
applications arrange the direct drives without gear reduction (see e.g. by Ruderman et al.
(2010)). However, most nowadays robotic systems operate using the gear units which
offer the transmission ratios from 30:1 up to 300:1. Apart from the classical spur gears the
more technologically elaborated planetary and harmonic drive gears have been established
in robotics for several years. Different gear types exhibit quite differing level of torsional
compliance and mechanical play, also known as backlash.

(a)

Nq

(c)(b)

 

Fig. 3. Gear transmission with elasticities and backlash

An idealized rigid gear with a transmission ratio N provides the angular motion reduction

θ =
1
N

q (5)

and the corresponding torque gain
T = N τ . (6)

Due to the gear teeth meshing the disturbing torsional compliance and backlash can occur
during a loaded motion. Assuming the rotationally symmetrical gear mechanisms, i.e.
excluding any rotary cam structures, the cumulative effects of the gear teeth meshing can be
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represented as shown schematically in Fig. 3. Here in (a), the angular relative displacement

δ = N q− θ (7)

is additionally subject to a backlash. However, the latter one can be neglected when the play
size stays below the resolution of q and θ measurement. Thereafter, the case (b) represents
a pure elastic deflection of the teeth meshing, whereat the corresponding compliance is not
mandatory linear. In fact, it is rather expected that the teeth interaction exhibits a hardening
stiffness property. Due to internal frictional mechanisms within the teeth engagement area
the overall torsional joint compliance can behave piecewise as elasto-plastic and thus give
rise to substantial hysteresis effects. The backlash, even when marginal, is coupled with
an internal teeth friction and thus provides a damped bedstop motion. Due to a mutual
interaction between the mentioned nonlinear phenomena the resulting hysteresis is hardly
decomposable in proper frictional, structural and backlash elements. Hence, it must be rather
considered as a compound input-output nonlinearity, while keeping in mind the nature of its
internal mechanisms.
The overall hysteresis torque can be considered as a general nonlinear function

T(t) = h
(
δ(t), δ(0)

)
(8)

of the relative displacement, and that under impact of the initial condition δ(0). The latter is
poorly known when the absolute angular position is captured neither on the input nor output
side of the joint, that is the most typical case in the robotic praxis. In this regard, it could
be necessary first to saturate the transmission load in order to determine a proper hysteresis
state which offers a well known memory effect. Here, the hysteresis memory manifests itself
in the transmitted torque value which depends not only on the recent relative displacement
between the gear input and output but equally on the history of the previous values. Thus,
the dynamic hysteresis map has to replace the static stiffness characteristic curve of the
gear transmission. However, the last one remains a still suitable approximation sufficient
for numerous practical applications. Well understood, the hysteretic torque transmission
includes an inherent damping which is characterized by the energy dissipation on a closed
load-release cycle. The enclosed hysteresis loop area provides a measure of the corresponding
structural losses, where the damping ratio is both amplitude- an frequency-dependent. Thus,
the structural hysteresis damping differs from the linear viscous one and can lead to the limit
cycles and multiple equilibrium states.
The following numerical example demonstrates the damping characteristics of the joint
transmission in a more illustrative way. For instance, the single mass with one DOF is
connected to the ground, once using a linear spring with linear viscous damping, and once
using a nonlinear hysteretic spring. At this, the linear stiffness is selected so as to coincide
with the average value of the nonlinear stiffness map included in the hysteresis model.
When exciting the system by the Dirac impulse (at time t=1) the eigenmotion behaves as
a damped oscillation shown in Fig. 4. The linear case (a) provides a typical second-order
oscillatory response which is dying out towards zero equilibrium state, having an exponential
enveloping function. In case (b), the nonlinear hysteretic spring is higher damped at the
beginning, though does not provide a final equilibrium state. Instead of that, the motion
enters a stable limit cycle up from a certain amplitude. The last one indicates the hysteresis
cancelation close to zero displacement that is however case-specific and can vary dependent
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Fig. 4. Damped response of the excited eigenmotion when applying linear and nonlinear
hysteretic spring

on the selected hysteresis map. From a physical point of view an autonomous mechanical
system will surely converge to a static idle state due to additional damping mechanisms not
necessarily captured by the hysteresis. However, theoretically seen the hysteresis damping
does not guarantee the full decay of all eigenmotions. An interesting and more realistic
case (c) represents a combination of the linear and nonlinear hysteretic damping. Due to an
additional velocity-dependent damping term the eigenmotion does not stay inside of a limit
cycle and converges towards a non-zero idle state, thus providing the system response with
memory. The characteristical nonzero equilibrium states denote the forces remaining in the
gear transmission after the input and output loads drop out.

2.3 Joint load
The robot links which connect the single joints within the kinematic chain of manipulator
constitute the moving bodies with additional inertia and elasticities. They may generate
lightly damped vibrational modes, which reduce the robot accuracy in tracking tasks
according to Zollo et al. (2005).
The overall multi-body manipulator dynamics (1) provides the interaction between the
actuated joints and passive links. Recall that Eq. (1) captures a rigid robot structure
with no elasticities at all. However in general case, the contribution of the gravity and
Coriolis-centrifugal forces has to be taken into account independent of the considered rigid
or elastic manipulator. For reason of traceability, we cut free the kinematic chain and consider
the single robot joint with the following link as depicted in Fig. 5. At this, the joint link can be
represented either as the concentrated L or distributed L1, . . . , Ln mass. Here, no additional
inertia and Coriolis-centrifugal terms fed back from the following joints and links contribute
to the overall load balance. Note that the recent approach constitutes a strong simplification
of the link dynamics so that the additional degree of freedom θL = θ − α or θL = θ − ∑ αi
for case (b) is used to capture the vibrational disturbances only. It means that in terms of the
distributed impact of gravity the angular link deflection α is assumed to be small enough, so
that sin(θ) ≈ sin(θ − α) and

G = l g sin(θ) . (9)

Here, g denotes the gravity constant and l is the lever of COG (center of gravity). The
transmitted torque τ drives the joint output with inertia M and bearing friction which can
be captured in a simplified way using Coulomb and viscous friction Fc sgn(θ̇) + d f θ̇ only.
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Fig. 5. Concentrated (a) and distributed (b) joint load

For reasons of clarity let us analyze here the case of a concentrated mass shown in Fig. 5 (a). At
this point it is important to say that the load model with distributed masses shown in Fig. 5 (b)
can behave more accurately and capture more complex vibration modes. At the same time, the
identification of distributed mass-stiffness-damper parameters can rapidly exceed the given
technical conditions of the system measurement. Besides, the achieved gain in accuracy of
capturing the reactive load related to vibrations is not necessarily high. Recall that the primary
objective here is to determine the reactive torque fed back from the oscillating elastic link and
thus to improve the prediction of θ. An accurate computation of the link end-position due
to link elasticities is surely also an important task in robotics. However, this falls beyond
the scope of the current work whose aim is to describe the robot joint transmission with
nonlinearities. Introducing the state vector x = (θ θ̇ θL θ̇L)

T and the vector of nonlinearities
h =

(
sin(θ) sgn(θ̇) 0 0

)T one can obtain the state-space model of the concentrated joint load
given by

ẋ =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

−k/M −(d f + d)/M k/M d/M

0 0 0 1

k/L d/L −k/L −d/L

⎞
⎟⎟⎟⎟⎠

x +

⎛
⎜⎜⎜⎜⎝

0 0 0 0

−lg/M −Fc/M 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

h +

⎛
⎜⎜⎜⎜⎝

0

N/M

0

0

⎞
⎟⎟⎟⎟⎠

τ .

(10)
The 4×4 matrices in Eq. (10) constitute the system matrix of a linear part and the coupling
matrix of nonlinearities correspondingly. For all physically reasonable parameter values the
system proves to be controllable whereas the input torque τ occurs as always lagged due to
preceding dynamics of the joint actuator and gear transmission.
The following numerical example demonstrates the disturbing link vibrations during the
torque step whose unavoidable lag is approximated by a first-order low pass filter with cut-off
frequency 1000 rad/s. The parameter values are selected so as to provide the relation between
both inertia M/L = 0.1 and damping d f /d = 10000. Further, two relative stiffness values
1k and 10k are considered. Since the gravity term is not directly involved into vibrational
characteristics it can be omitted at this stage. In the same manner the Coulomb friction
nonlinearity which constitutes a constant torque disturbance during an unidirectional motion
is also excluded from the computation. The response of the simulated, insofar linear, joint load
is shown in Fig. 6. Two stiffness values differing in order of magnitude lead to the oscillating
link deflection depicted in Fig. 6 (b) and (c). Besides the differing eigenfrequencies the
principal shape of the enveloping function appears as quite similar for both stiffness values.
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Fig. 6. Response of the joint load with elasticities to the lagged step of the input torque

However, most crucial is the fact that the amplitudes differ in the same order of magnitude,
so that a lower stiffness provides a definitely higher level of link vibrations. Considering
the correspondent velocity response, once in the joint output and once in the link deflection
coordinates depicted in Fig. 6 (a) the impact of the link vibrations becomes evident. Here,
the output joint velocity θ̇ is subject to the substantial oscillations at the beginning of relative
motion. As a consequence, the oscillating behavior of the joint load will be propagated back
to the joint transmission, thus increasing the complexity of overall joint behavior.

3. Nonlinear joint model

The main focus of the current Chapter relates to the grey-box modeling of elastic robot joints
with nonlinearities. With respect to the proposed joint topology shown in Fig. 1 that means to
derive a particular structure and to find a suitable set of equations to capture the transmission
behavior for a class of robotic joints with elasticities. At this, the use of freely parameterizable
sub-models and functions allows to describe the system dynamics for different types of gears
and bearings involved in the joint assembly. The class of the robot joints aimed to be described
here is characterized by a rotary-to-rotary transmission of the actuated relative motion with no
position-dependent changes in the joint behavior. That is the input drive torque is transmitted
to the joint output by means of the axially symmetric gear mechanisms. Note that the latter,
including all bearings and couplings, allow one degree of freedom only. Several types of
the gears like harmonic drives, planetary, and diverse subtypes of spur gears fulfill these
assumptions, though offering quite differing mechanical principles of the torque transmission.

3.1 Joint structure
The proposed single elastic robot joint with nonlinear damping and hysteresis is shown in Fig.
7. The input drive torque u accelerates the combined actuator mass m, where the friction f
constitutes the overall coupled friction of the actuator and gear input. The mechanical joint
interface arranges the observation of angular motion, once prior (q, q̇) and once beyond (θ, θ̇)
the gear transmission. That is the input and output joint axes are assumed to be rigid outside
the employable state measurements. Note that the output joint axis does not necessarily
coincide with some physical rotary shaft coming out from the mechanical joint assembly. Just
as well it can be a virtual axis of a rotary motion for which the interface will indicate the
measuring points. More simply, the input motion interface coincides with the rotary actuator
(motor) shaft to which the angular position/velocity measurement is directly applied in the
most cases. The nominal gear transmission ratio is denoted by N. The main transmission
element with elasticities can be represented by a nonlinear rotary spring with hysteresis Γ.
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Fig. 7. Elastic robot joint with nonlinear damping and hysteresis

Apart from the hardening stiffness and hysteresis property, the rotary spring can also include
the backlash nonlinearities as mentioned afore in Section 2.2. Note that the complexity degree
of nonlinearities involved in the transmitting rotary spring can vary. This depends on the
required model accuracy as well as significance of each particular phenomenon observable
when measuring the joint behavior.
Since the hysteresis map captures the frequency-independent structural damping, an
additional linear damping term D is connected in parallel to the rotary spring. The introduced
linear damping comprises all viscous (velocity-dependent) dissipative effects arising from
the internal teeth and slider interactions as mentioned afore in Section 2.2. Here, one
must be aware that the velocity-dependent damping map can ditto possess the nonlinear
characteristics. However, for reasons of clarity and more straightforward identification
the simple linear damping is further assumed. As shown previously in Fig. 4 (c) the
superposition of both damping mechanisms provides the system dynamics with multiple
non-zero equilibrium states. Apart from the curvature and area of the underlying hysteresis,
which determine the dissipative map, the magnitude of the linear damping affects a faster
settling of the oscillatory joint motion.
The moving output joint part is mandatory supported by some rotary-type bearing, so that the
output friction torque F has to be included. A proper decomposition of the input and output
joint friction appears as one of the most challenging identification tasks when modeling
the joint with elasticities. When no sufficient input and output torque measurements are
available, certain assumptions about the friction distribution across the joint transmission
have to be made. One feasible way to decompose a coupled joint friction is to identify first
the overall friction behavior under certain conditions, at which the impact of joint elasticities
is either negligible or it constitutes a constant bias term. Here, one can think about the drive
experiments under reduced (decoupled) or stationary handled joint load. The steady-state
velocity drive experiments can constitute the basis for such an identification procedure. Once
the overall joint friction is identified it can be decomposed by introducing the weighting
functions and finding the appropriate weighting rates within the overall joint dynamics.
However, this heuristic method requires a good prior knowledge about the acting joint
elasticities. That is the nonlinear spring and damping models have to be identified afore.

3.2 Dynamic friction
The modeling of dynamic friction is one of the crucial tasks in robotics since the joint friction
constitutes not only the stabilizing damping but also can lead to large errors in the control.
There is a huge number of works dedicated to modeling and compensating the frictional
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effects in robotic joints and machine tools (see Armstrong-Helouvry et al. (1994), Bona & Indri
(2005), Al-Bender & Swevers (2008) for overview).
Generally, the existent approaches can be subdivided into static and dynamic mapping of
kinetic friction. Note that in terms of kinetics the static friction signifies the friction forces
acting during a relative motion at constant or slightly changing velocities and not the sticking
forces of stationary bodies. Here, the classical constant Coulomb friction and the linear
velocity-dependent viscous friction can be involved to describe the frictional forces between
two contacting surfaces which slide upon each other. Moreover, the well-known Stribeck
effect can be involved to describe the nonlinear transition between the break-away friction at
zero velocity and linear viscous friction in a more accurate way. The most dynamic friction
models capture both pre-sliding and sliding regimes of the friction and provide the smooth
transition through zero velocity without discontinuities typical for static friction models.
The most advanced dynamic friction models are also capable of describing such significant
frictional phenomena as position-dependent pre-sliding hysteresis and frictional lag in the
transient behavior. An extensive comparative analysis of several dynamic friction models,
among Dahl, LuGre, Leuven, and GMS one, can be found in Al-Bender & Swevers (2008) and
Armstrong-Helouvry & Chen (2008).
Apart from the pre-sliding frictional mechanisms, the main differences between the static
and dynamic friction modeling can be explained when visualized in the velocity-force (w, F)
coordinates as shown in Fig. 8. The static friction map provides a discontinuity at zero
velocity which can lead to significant observation errors and control problems since the
system operates with frequent motion reversals. However, when the steady-state operation
modes are predominant the static map can be accurate enough to capture the main frictional
phenomena. Further, it is easy to recognize that the closer the relative velocity is to zero the
larger is the impact of nonlinear Stribeck effect. The peak value at zero velocity indicates
the maximal force, also called break-away, required to bear the system from the sticking to
the sliding state of continuous motion. Comparing the Stribeck static map with the dynamic
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Fig. 8. Static (a) and dynamic (b) friction map in velocity-force coordinates

one shown in Fig. 8 (b) it can be seen that the principal shape of the velocity-force curves
remain the same. However, the transient frictional behavior when passing through zero
velocity is quite different dependent on the ongoing input frequency ω. Here, the overall
friction response to a cyclic input velocity with an increasing frequency is shown. The higher
is the ongoing frequency when changing the motion direction the higher is the stretch of the
resulting frictional hysteresis. This phenomenon is also known as the frictional lag (see by
Al-Bender & Swevers (2008)) since the friction force lags behind the changing relative velocity.
Roughly speaking, the frictional lag occurs due to the time required to modify either the
hydro-dynamic lubricant properties during the viscous, or the adhesion contact properties
during the dry sliding. With an increasing relative velocity after transient response the friction

304 Robotic Systems – Applications, Control and Programming



Modeling of Elastic Robot Joints with Nonlinear Damping and Hysteresis 13

force is attracted towards the static characteristic curve which represents the steady-state
friction behavior. Depicted in Fig. 8 (b), the dynamic friction response is obtained using 2SEP
(two-state with elasto-plasticity) model which is briefly described in the rest of this Section.
The 2SEP dynamic friction model (Ruderman & Bertram (2010), Ruderman & Bertram
(2011a)) maintains the well-established properties of dynamic friction which can
be summarized as i) Stribeck effect at steady-state velocity-dependent sliding, ii)
position-dependent pre-sliding hysteresis, and iii) friction lag at transient response. The
model describes the dynamic friction behavior using a linear combination of the pre-sliding
and transient friction state that converges towards the velocity-dependent steady-state. At
this, one independent and one dependent state variables are intuitively related to such
frictional phenomena as the pre-sliding hysteresis and friction lag at transient behavior. The
weighted superposition of both yields the total friction force as

F = A z1 + B |w| z2 . (11)

Note that the instantaneous friction value is conducted coevally by the relative displacement
and relative velocity without switching functions and (or) thresholds to separate the
pre-sliding and sliding regimes. The pre-sliding friction behavior, predominantly
captured by z1, is described using the Modified Maxwell-Slip (MMS) approximation
(Ruderman & Bertram (2011b)). The MMS structure can be imagined similar to a single
Maxwell-slip element, but with a pivotal difference of representing the applied connecting
spring. In MMS model, the irreversible nonlinear spring exhibits a saturating elasto-plastic
deflection until a motion reversal occurs. Assuming an exponentially decreasing stiffness
by an increasing relative displacement after reversal, the overall hysteretic state converges
towards the constant tangential force. It is assumed that the deflection of elasto-plastic
asperity contacts saturates at the Coulomb friction level, so that the weighting factor A can
be often set to one. A saturated friction state characterizes the plastic sliding at which the
deflected asperities slip upon each other and provide an approximately constant value of the
tangential force at non-zero velocity. The state dynamic is defined as a first-order nonlinear
differential equation

ż1 = |Ω|w K exp
(−K|qr|

)
, (12)

with
Ω = sgn(w) Fc − F , (13)

when the velocity sign changes. The average stiffness capacity Ω of interacting asperities
memorizes the last motion reversal, at which the asperity junctions are released and reloaded
again in the opposite direction. The integrated relative displacement qr is reset to zero
whenever the motion direction changes. Solely two parameters, the Coulomb friction Fc and
the initial stiffness K, determine the overall hysteresis map of the pre-sliding friction.
The transient friction state

ż2 =
S(w)− F
|S(w)| , (14)

behaves as a first-order time delay element that transfers the velocity-dependent dynamic
friction and attracts it towards the steady-state S(w) = s(w) + σ w. The factor σ constitutes
the linear viscous friction term and the nonlinear characteristic curve

s(w) = sgn(w)
(

Fc + (Fs − Fc) exp
(−| w

Vs
|δ)

)
(15)
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describes the well-known Stribeck effect. The velocity-dependent Stribeck map is upper
bounded by the static friction (also called stiction) force Fs and low bounded by the Coulomb
friction force. The exponential factors Vs and δ denote the Stribeck velocity and the Stribeck
shape factor correspondingly. In Eq. (11), the attraction gain B determines how fast the
overall friction force converges towards the steady-state. The attraction gain is additionally
subject to the velocity magnitude. On the one hand, this is done in order to reduce the
impact of the transient behavior in vicinity to zero velocity, at which the pre-sliding frictional
mechanisms predominate. On the other hand, the velocity-dependent attraction gain ensures
the steady-state convergence as |w| increases.
Overall seven free parameters are required to describe the dynamic friction using 2SEP
model, where five of them are already spent to support the standard Stribeck effect. Here,
it is important to say that other dynamic friction models which capture the basic frictional
phenomena can be applied in equal manner when describing the overall joint behavior. At
this, the most significant aspects by the choice of a particular friction model are the ease of
implementation, generality, as well as practicability in terms of the identification to be done
under the circumstances of a real operation mode.

3.3 Nonlinear stiffness with hysteresis
In the simplest case the robot joint stiffness can be represented by a linear function of the
relative angular displacement across the joint transmission. This somehow archaic but still
widely used and, in particular, robust approach relates the joint torque transmission to a
classical spring behavior. Nevertheless, most compliant mechanical structures are well known
to exhibit a kind of the hardening properties. That is an increasing relative displacement or
better to say deflection of the transmitting elements causes an increase of the overall joint
stiffness, and thus leads to higher torque rates. Hence, the joint stiffness which is the inverse
compliance of all embedded transmitting elements appears as variable, depending on the
ongoing joint load. In order to account for variable stiffness properties several manufacturers
of gears and components as well as some works published by researchers suggest to use
a piecewise linear stiffness approximation with multiple characteristical segments. An
alternative to describe the variable stiffness characteristics is to use the polynomial functions
whose coefficients have to be fitted from the accurate laboratory measurements.
Since a nonlinear transmission spring is coupled with corresponding hysteresis effects as
mentioned in Section 2.2 a suitable hysteresis map has to be also incorporated. A huge
number of available hysteresis approaches (see e.g. Bertotti & Mayergoyz (2006)), originated
from different domains of natural and technical science, allow a certain freedom by choosing
an appropriate model. The well established Bouc-Wen (Bouc (1967), Wen (1976)) hysteresis
model as well as its numerous differential extensions (see survey provided by Ismail et al.
(2009)) appears to be particulary suitable for those purposes. The Bouc-Wen hysteresis model,
which originated from the structural mechanics, uses a first-order non-linear differential
equation that relates the relative displacement to the restoring force in a hysteretic way.
At this, the shape of the displacement-force hysteresis is controlled by a compact set
of free parameters to be determined in each particular case. Another advantage of a
Bouc-Wen-like hysteresis modeling is the possibility to incorporate more complex nonlinear
stiffness characteristics, as suggested by Ruderman et al. (2010) and shown in the following in
more detail.
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The restoring torque arising in a hysteretic spring is subdivided into an elastic and plastic
(irreversible) part related to each other by a weighting factor. When using the polynomials
k1, . . . , ki for describing the characteristic stiffness curve the total restoring torque can be
expressed as a superposition

Γ(δ, x) = ∑
i

(
μ ki sgn(δ) |δ|i + (1− μ) ki sgn(x) |x|i) . (16)

At this, the weighting coefficient 0 < μ < 1 provides a relationship between the purely
elastic (μ = 1) and purely hysteretic, further also as plastic, (μ = 0) deflection. The dynamic
state variable x which captures the elasto-plastic deflection, therefore responsible for arising
hysteresis, is described by

ẋ = A δ̇− β |δ̇| |x|n−1x− γ δ̇ |x|n . (17)

The amplitude and shape of hysteresis are determined by the parameters A, β, and γ. The
factor n ≥ 1 provides the smoothness of transition between an elastic and plastic response.
For an interested reader a more extensive parameter analysis of Bouc-Wen-like differential
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Fig. 9. Hysteretic restoring torque for purely elastic (a), elasto-plastic (b), and plastic (c)
torsional deflection

hysteresis models can be found by Ma et al. (2004). In Fig. 9, an example of the restoring
torque on a closed load-release cycle is shown dependent on the factor μ. At this, the residual
model parameters have been held by the same values. It is evident that no hysteresis losses
occur for μ=1, and the case represented in Fig. 9 (a) provides a simple nonlinear characteristic
stiffness curve with hardening properties. Though the larger a plastic contribution to the
overall restoring torque is the larger is the hysteresis area in Fig. 9 (b) and (c), and the larger
is the corresponding structural damping acting in the joint transmission.
With respect to the joint structure derived in Section 3.1 the overall transmitted joint torque is
given by

T = Γ(δ) + D δ̇ . (18)

Note that the transmitted joint torque already includes the nominal gear ratio N captured by
δ. When replacing the nonlinear function Γ(·) by a linear spring described by Kδ a simple
joint transmission model with linear stiffness and damping can be achieved again. However,
when accounting for hysteresis motion losses the use of a hysteresis stiffness map becomes
indispensable and has to be included in the overall joint dynamics.
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4. Experimental case study

In the following, let us analyze the experimental observations together with some exemplary
identification results obtained on the laboratory setup of an elastic revolute joint. The
deployed laboratory setup depicted in Fig. 10 has been designed and constructed at the
Institute of Control Theory and Systems Engineering of Technical University Dortmund and
is primarily intended for investigating the single joint behavior as well as for the control
experiments. The testbed contains a standard BLDC motor with rated power 400 W and idling
speed 3100 rpm. The servo drive is equipped by a 15-bit resolver and is energized by a PWM
electronic unit with onboard current control loop of 11 kHz rate. Through a torsionally stiff

BLDC motor 

Gear unit 

Joint load 

Fig. 10. Laboratory setup of elastic revolute joint

compensating coupling the servo drive is connected to the lightweight harmonic drive gear
set (160:1) embedded in a rigid casting. On the output of gear transmission a high-precise
absolute encoder with 20-bit resolution is mounted. Using the fixture with couplings a
contactless torque cell is applied to measure the output torque for both bounded and free
joint motion. Behind the torque measurement the output shaft is equipped with a mechanical
interface in order to attach the link rod with adjustable additional weights. Note that the
torsional deflection is determined as a difference between the output joint angle and input
joint angle captured on the motor shaft.
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Fig. 11. Frequency response functions measured at different excitation conditions

Before looking on the identification results let us analyze first the obtained frequency response
functions (FRF)s of the joint actuator. Four FRFs depicted in Fig. 11 are measured at the
different excitation conditions. The transfer from the input torque U(jω) to the angular
velocity W(jω) is realized once for a free and once for a bounded motion for which the output
joint shaft was locked. As a controlled input excitation the short impulse of 5 A amplitude
and 1.5 ms duration is applied. The bounded motion response is obtained once for a relaxed
and once for a prestressed joint state. The latter one means that before applying the input
impulse the motor shaft was turned manually in the same motion direction until the elastic
transmission becomes fully twisted but does not rotate back due to the friction. The bounded
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prestressed FRF exhibits a slight resonance increase due to the raised joint elasticity comparing
to the bounded relaxed and the free FRF. At the same time, the high structural and frictional
damping impedes the occurrence of significant resonances which could be related to the joint
elasticities. The transfer from the joint torque T(jω) to the angular velocity W(jω) illustrates
a backward propagation of reactive restoring torque coming from the joint load. The torque
excitation is realized by an external shock applied mechanically to the load part of the joint.
The W(jω)/T(jω) FRF coincides qualitatively with the W(jω)/U(jω) FRF of free motion
despite a high level of process and measurement noise.
Further, let us examine the identification of the joint actuator including the nonlinear friction
and the total inertia of the motor and gear assembly. Using the available motor current and
joint torque as the inputs and the angular actuator velocity as the output the identification
problem can be easily solved in the least-squares sense. The system is excited by a down-chirp
signal with 30–1 Hz frequency range. The measured and identified velocity response shown
in Fig. 12 exhibits some resonant and anti-resonant phases related to the overall system
dynamics.
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Fig. 12. Measured and identified velocity response to the down-chirp excitation

In the similar manner, the nonlinear joint transmission can be identified using the joint
torque and torsion measurements obtained from the same experiment. The time series of
the measured and identified joint torque is depicted in Fig. 13 (a). It is easy to recognize
that both curves coincide fairly well with each other, thus proving the transmission model
to be capable of describing the dynamic joint behavior. Note that the visible discrepancies
occur rather at low frequencies at t > 19 s. Here, the joint output vibrations which come
from the non-smoothly moving load part influence the torque and angular measurements in
a non-congruent way. The corresponding torsion-torque hysteresis depicted in Fig. 13 (b)
confirms ditto a good agreement between the measured and modeled response, and that for a
large set of the nested hysteresis loops.
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Fig. 13. Measured and identified joint torque, (a) time series, (b) torsion-torque hysteresis
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Finally, the diagrams provided in Fig. 14 visualize some identification results related to the
joint load. The gravity term can be determined in a quite simple way using the quasi-static
motion experiments. The joint link is driven slowly across the overall operation space by
using the lowest possible constant input torque. The obtained measurements of the joint
torque and output angular position are used to fit the gravity as shown in Fig. 14 (a). The
measured and predicted velocity response of the identified joint load is shown in Fig. 14
(b) for the applied step excitation. The peak velocity of about 60 deg/s is in the upper
operation range of the experimental joint setup. A substantial velocity decrease occurs due
to an increasing impact of gravity. Note that the depicted (measured) joint torque constitutes
the total torque balance behind the gear affected simultaneously by the transmitted actuator
torque and reactive torque of the joint load. A clearly visible oscillation pattern indicates the
impact of the output joint shaft and link vibrations.
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Fig. 14. Measured and identified gravity torque (a), measured and predicted velocity
response of the joint load together with the measured applied and transmitted torque (b)

5. Conclusions

The presented methodology aims for analyzing and modeling the behavior of elastic robot
joints with nonlinearities such as hysteresis and friction which affect the stiffness and damping
characteristics. Independent of the rigid or elastic joint consideration a general topology of
revolute robot joints has been demonstrated as a starting position for a subsequent, more
detailed system modeling. The defined forward and feedback paths allow to decompose
the robot joint into the close physical subsystems with appropriate eigenbehavior. This
permits to cut free the entire joint, and to analyze and identify its subsystems stand-alone,
under the terms of fully or partially measurable states. For a large class of rotary joint
transmissions a sophisticated but nevertheless manageable model has been proposed. In
addition to numerical examples an experimental case study has been shown to prove the
proposed methods.
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1. Introduction

In recent years, the scientific community has had an increased interest in exploring
the asteroids of the solar system (JAXA/ISAS, 2003; JHU/APL, 1996; NASA/JPL, 2007).
Technological advances have enabled mankind for the first time to take a closer look at these
small solar system objects through sensors and instruments of robotic deep space probes.
However, most of these space probe missions have focused on the reconnaissance of the
asteroids’ surfaces and their compositional analysis from a distance. Little attention has been
given to locomotion on their surfaces with a mobile robotic system, due to the challenging
gravity conditions found in these small solar system bodies.
In small bodies like asteroids, the gravitational fields are substantially weaker than those of
Earth or Mars, therefore the likelihood of a robot’s unintentional collision with the surface
while attempting a movement is substantially higher. In one of the latest missions, the
Japanese Hayabusa spacecraft carried onboard a small robot named MINERVA (Yoshimitsu
et al., 2001) to be deployed and used to explore the asteroid surface. The robot was designed
with a single reaction wheel, located inside of it, to produce the necessary inertial reaction to
move. But with this system the location of the robot when the motion is damped out is very
challenging to predict or control. Subsequently, in order to maximize the scientific return from
any given mission on an asteroid’s surface, future missions must have the ability to conduct
stable mobility and accurate positioning on the rough terrain.
In the robotics field, limbed locomotion is broadly recognized as superior in its capability to
traverse terrains with irregularities such as obstacles, cliffs and slants. Exotic types of wheeled
rovers (Bares et al., 1999; Wilcox & Jones, 2000) can only drive over obstacles of heights that
are at best a fraction of the vehicle’s body length. Thus, some terrains are not accessible to
wheeled vehicles. Conversely, legged or limbed locomotion has the possibility to provoke
minimum reactions on the asteroid surface that could push the robot with sufficient force
to reach escape velocity and drift into space. It also facilitates achievement of desired goal
configurations that deal with new complex situations, ensuring that a robot’s behavior does
not deviate from a stable condition.
In this chapter, the focus is on gravity-independent locomotion approaches, technologies
and challenges of robotic mobility on asteroids. Recommendations and methods to perform
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Fig. 1. Mosaic of Eros ©Applied Physics Lab/JHU and Asteroid 25143 Itokawa ©JAXA/ISAS

compliant motions during operations by a surface robot under microgravity conditions
are presented. Taking into account the contact dynamics and the reaction force from its
environment, a control scheme enables a limbed robot to move using the natural features of
the environment and the friction of the surface for forward progress in any direction having
contact only with the limbs’ end tips.

2. Asteroid exploration

Orbiting between 2.1 to 3.2 AU1 from the sun, primitive asteroids in the main asteroid
belt represent key bodies to research on the early planetary system origin and evolution.
Asteroids could provide clues about the birth and growth of our planetary system, but without
any in-situ observation, we are not able to link measurements of asteroid material with a
corresponding catalog of meteorite groups on Earth. The in-situ study of asteroids can lead
to important scientific findings in the effort to map the main asteroid belt. Mapping the belt
by spectral classes and knowledge about which region on Earth the meteorites have landed
can provide key clues about the origin and evolution of our solar system, even including the
geological history of our planet Earth (Fujiwara et al., 2006).
Asteroids’ physical characteristics provide a very hostile environment distinguished by
the absence of (almost any) gravity. The effects of the microgravity environment can be
approximated for convenience as those on order of 10−6g (Scheeres, 2004) (where g is the
acceleration due to gravity on Earth). In such an environment, objects basically do not fall,
but remain orbiting unless they reach the low escape velocity of the asteroid on order of 20
cm/s (Scheeres, 2004), as in the case of the asteroid 25143 Itokawa (Fig. 1, right). To attain
stable mobility on these bodies, it is critical to consider the interaction forces between a robot
and the asteroid’s surface in such microgravity environments.
Relatively little attention from planetary scientists and planetary robotics engineers has been
focused on surface mobility on asteroids. As a result, there exists some risk that premature
conclusions about the feasibility of stable mobility on asteroid surfaces may be drawn without
thorough consideration of all possible alternatives. However, it is clear that in order to increase

1 AU stands for astronomical unit and is based on the mean distance from Earth to the Sun, 1.5×108 [km].
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any scientific return from a mission operating on an asteroid, movement on the surface would
require a closer look at stability control against the forces interacting between bodies in a
microgravity environment.
The following section presents recent developments in robotics which may pose the most
feasible solutions to asteroid surface exploration challenges.

3. Mobility in microgravity

Weak gravitational fields (micro-g to milli-g) characteristic of asteroids make it difficult to
achieve normal forces usually required for stable surface locomotion. Various approaches to
mobility in weak gravity domains of asteroids are discussed below.

3.1 Rolling and hopping locomotion
Although all rovers sent to other planetary surfaces have been wheeled vehicles, wheels
are not an obvious solution for asteroid surface mobility. However, at least one study has
suggested wheels to be viable in certain cases for rovers with mass less than one kilogram.
Baumgartner et al (Baumgartner et al., 1998) reported that the analysis of whether adequate
tractive forces can be achieved for rolling mobility depends on the wheel-terrain interaction
model employed. Traction sufficient for a small rover to traverse at a rate of 1 cm/sec was
shown to be feasible via dynamic simulations revealing traction losses at the beginning of
traverses. The simulations separately considered Coulomb friction alone and a combined
Coulomb friction and adhesive force model.
Behar conducted computer-based dynamic simulation studies of hopping and wheeled
vehicles concluding that both types have limited use for asteroid mobility (Behar et al., 1997).
Hopping robots were deemed to be of limited utility due to complexity of both thruster control
for accurate maneuvers and robot pose estimation. Wheeled robot utility was viewed as
limited due to difficulty maintaining wheels on the surface when undesired surface reactions
led to long periods of ballistic floating before touching down. To mitigate difficulties of
maintaining wheel contact with asteroid terrain, Behar proposed a colony of small robots that
would traverse asteroid surfaces while connected to a common physical net that was anchored
to the asteroid. Robots connected to the anchored net would use wheeled locomotion to
traverse along dedicated strands of the net. Another variation on rolling locomotion for
asteroid mobility was proposed by Hokamoto and Ochi (Hokamoto & Ochi, 2001) based on a
vehicle with a dodecahedron shape and 12 individually actuated prismatic leg joints oriented
radially around the body to provide intermittent walking and rolling.
When complexities associated with accurate 3-axis thruster-based maneuvers are avoided and
replaced by simpler propulsion mechanisms, ballistic hopping is perhaps the simplest means
of mobility for reaching discrete patches of asteroid terrain. The aforementioned MINERVA
vehicle was the only asteroid hopping rover fully developed for a space flight mission thus far.
It was a 600 g vehicle designed for several asteroid days of autonomous operation involving
ballistic hopping with variable hop speed and some control of hop direction depending on its
attitude on the surface (Yoshimitsu et al., 2001). Other designs are in development or have
been proposed as viable concepts. A 1.3 kg wheeled rover, at one time considered a payload
for the Hayabusa mission on which MINERVA flew (Kawaguchi et al., 2003; Wilcox, 2000),
was proposed with a novel mobility mechanism that also enables ballistic hopping. It further
offered a capability to self-right in response to inevitable tumbling during landing from a hop
or while traversing the surface at 1.5 mm/sec in low gravity (Tunstel, 1999).
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Another hopping vehicle intended for asteroids is the Asteroid Surface Probe (Cottingham et
al., 2009), an 8 kg battery-powered (100 hours) spherical body of 30 cm diameter that uses
thrusters to hop. When stationary, the sphere opens up using 3 petals to expose a science
instrument payload. The petals also provide the means to self-right the probe (Ebbets et al.,
2007). Similar, in principle, is a 12 kg thruster-propelled ballistic free-flyer concept designed
by the German Aerospace Center (DLR) as part of a European Space Agency study (Richter,
1998). Other hopping robots proposed for asteroid exploration include a pyramid-shaped, 533
g prototype with four single degree-of freedom (DOF) flippers at its base to enable hopping
plus a lever arm for self-righting (Yoshida, 1999), and a spherical 1 kg robot with internal iron
ball actuated by electro-magnets to induce hopping (Nakamura et al., 2000).
A recent study concluded that wheeled and hopping locomotion modes in low gravity are
comparable in locomotion speed (Kubota et al., 2009). The study considered ideal conditions
(e.g., flat terrain and no loss of contact between wheels and terrain). A similar conclusion
regarding energy consumption was reached in a comparative study of wheeled and hopping
rovers for Mars gravity (Schell et al., 2001).

3.2 Locomotion by crawling and climbing
Nature offers many existence proofs, in the form of animals and insects, for solutions capable
of traversing rough terrain against forces of gravity. Limbed locomotion solutions are common
among alternatives that could enable crawling or climbing to achieve viable mobility across
asteroid surfaces.
Certain limbed mobility solutions for planetary rovers received limited consideration in the
past for reasons of lower efficiency as compared to wheeled systems. Related arguments are
less persuasive when dealing with the microgravity environment encountered on asteroids.
The same holds when considering mobility on planetary surfaces of extreme topography that
are impossible to access using conventional wheeled systems. On asteroids, a means to cling
to the surface (Yoshida et al., 2002) would offer a critical capability for controlled motion and
fine positioning. Limbs can also be beneficial as an active suspension that damps and prevents
“bouncing” during traverse or upon landing after a hop. Crawling/climbing locomotion
approaches without the use of limbs may also have merit for the asteroid domain. Such
“limbless” approaches are briefly discussed below followed by promising technologies and
concepts for clinging and gripping to surfaces.

3.2.1 Limbless crawling
A significant volume of engineering literature exists on research advances for snake-like
or serpentine robots. A recent survey is provided in (Transeth et al., 2009). Robots have
been developed to execute a variety of locomotion gaits inspired by snakes. Among them,
the side-winding gait is perhaps best suited for effective locomotion under low surface
friction conditions (Dalilsafaei, 2007) and especially effective for traversal of loose or slippery
terrain (Hatton & Choset, 2010). The latest technologies for implementing side-winding gaits
may provide viable solutions to local locomotion on asteroid surfaces. Relying largely on
lateral friction forces, side-winding seems promising as a means to maintain surface contact
but, in lieu of limbed mechanisms, may require additional means to adhere to the surface.
Technologies such as dry adhesion are advancing for robotics applications in combination
with mechanisms for climbing. Similar technologies can enhance the capability of a robotic
side-winding mechanism. Discussed next are adhesive means of achieving secure surface
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contact while crawling or climbing based on examples of technology proposed for space and
planetary rovers.

3.2.2 Enabling adhesion technologies
Dry adhesive and electrostatic adhesion approaches that permit walking or climbing robotic
systems to stick to natural surfaces hold promise for gravity-independent locomotion. An
example is the Automated Walking Inspection and Maintenance Robot (AWIMR), a concept
intended for operation on the exterior of crewed space vehicles or structures in space rather
than on planet or asteroid surfaces (Wagner & Lane, 2007). The AWIMR engineers established
the feasibility of walking on such surfaces with the aid of prototype sticky feet, inspired by
gecko feet, using dry adhesive polydimethylsiloxane for adhesion. The robot’s sticky feet
could walk on any clean, non-fragile surface (of the types found on space vehicle exteriors)
and required a certain pull-off force. The AWIMR project also tested electrostatic means
of sticking to surfaces, finding that greater shear forces were possible and that 2-3 kV was
suitable for locomotion in this case (Wagner & Lane, 2007).
Bombardelli (Bombardelli et al., 2007) proposed artificial dry adhesives inspired by geckos
and spiders for securing ballistically delivered microprobes to asteroid surfaces upon landing.
The preliminary study suggests that multilevel conformal adhesive structures may be key
to the performance of the microprobe attachment system for unknown asteroid terrain.
The concept is motivated by the successful fabrication of several engineering prototypes of
artificial reusable gecko adhesives. It is reported that the strongest such dry adhesive was
recently fabricated using bundles of carbon nanotubes exhibiting four times the stickiness
of natural gecko foot hairs (Bombardelli et al., 2007; Ge et al., 2007). Some researchers have
found carbon nanotubes to be intrinsically brittle but express confidence in their near-term
robustness for climbing robots (Menon et al., 2007).
Among the desirable characteristics of synthetic, gecko-like dry adhesion for enabling asteroid
traversal by rovers is its effectiveness on many surface types (as its functional basis is van
der Waals forces), its effectiveness in the vacuum of space, the fact that no additional energy
is required to maintain an established grip on a surface, and their potential for mimicking
the self-cleaning or dust resistant property of natural gecko footpads (Menon et al., 2007;
Silva & Tenreiro, 2008). The applicability of this technology for space and planetary robotic
vehicles that would walk or climb on in-space structures and terrestrial surfaces is highlighted
in (Menon et al., 2007). What could be considered early phases of suitable asteroid robot
designs are briefly described in that work. We next discuss examples of technologies that
offer mechanical means for gripping with robot limbs or momentarily anchoring robot limbs
to natural surfaces.

3.2.3 Limbs with gripping end-effectors
Limbed approaches employing gripping end-effectors as feet/hands can enable
walking/climbing locomotion while maintaining contact with asteroid surfaces. The
ability to grapple onto surfaces is key to gravity-independent locomotion allowing mobility
in any orientation including steeply sloped natural terrain and upside down. Such
“grapple-motion” capability enables natural surface traversal by clawing into regolith or
forming grasping configurations against rough, hard surfaces of high friction.
During the past decade, prototypes of such limbed systems have been under development
for planetary mobility and more recently focused on the problem of climbing steep terrain
on Mars. A representative example of the state of the art for such applications is an 8 kg
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four-limbed planetary rover, LEMUR IIb, for which several types of climbing end-effectors
have been investigated (Kennedy et al., 2005). The locomotion functionality for the
LEMUR-class of robots evolved (kinematically) from 6-limbed robots for walking on space
structures in orbit to 4-limbed free-climbing on steep terrain. Technologies addressed during
the development of free-climbing capabilities for LEMUR IIb (e.g., gripping end-effectors,
force control, and stability-based motion planning) should be useful for gravity-independent
locomotion on asteroids as well.
Recent work at Tohoku University spearheaded limbed locomotion solutions and prototypes
that are more specific to asteroid surface mobility and explored the feasibility of statically
stable grapple-motion in microgravity (Chacin & Yoshida, 2005). The work is motivated
by a desire to achieve finer and more deterministic control of robot motion and position.
The focus thus far has been a 6-legged rover with 4 DOF per leg and spiked/gripping
end-effectors for grasping the asteroid surface. Motion control complexities are handled using
a behavior-based control approach in addition to bio-inspired central pattern generators for
rhythmic motion and sensor-driven reflexes. Dynamic simulation results showed that static
locomotion is feasible when grasping forces on the surface can be achieved (Chacin & Yoshida,
2005). A 2.5 kg prototype of the Tohoku asteroid rover was built using a piercing spike at the
tip of each limb to serve as momentary anchors in soft regolith or as contact points of a static
grip on hard surfaces when used in combination (Chacin et al., 2006). Crawling gaits feasible
for locomotion in microgravity environments using this system are analyzed in (Chacin &
Yoshida, 2006) for stability (in the sense that they hold the rover to the asteroid surface).
The next section focuses on this robotic system as an example of an asteroid mobility solution
and control approach. It considers issues related to the microgravity environment and its
effect on dynamics of robotic systems on asteroids.

4. Asteroid robot - ASTRO

In a future asteroid exploration mission (Chacin & Yoshida, 2005; 2006; Yoshida et al., 2002),
it is expected to have a smart design of a robotic system that would allow scientists to
benefit from more accurate instrument positioning capability on the asteroid’s surface in
microgravity. However, the engineering complexity of this task makes the design of an
effective robot with stable locomotion difficult. A feasible robotic design for such a mission
would be a small limbed robot deployed over the asteroid to crawl on its rough surface.
The asteroid robot ASTRO (Fig. 2) is a multi-limbed ambulatory locomotion system (Chacin
et al., 2006) developed through the observation and imitation of clever solutions exhibited
by biological systems. The robot is intended to use the natural features of the environment
and the friction of the surface for omni-directional walking, having contact only at the limb
end tips. This type of locomotion has the possibility to provoke minimum reactions on the
asteroid surface thus avoiding excessive forces that could push the robot into space, or even
the possibility to grasp the surface when some legs are controlled in a coordinated manner
(Chacin & Yoshida, 2006).
During its development, the limbed robot concept was inspired from nature and other robots
that have adopted the radially symmetric hexapod topology commonly used to obtain a
platform complexity with a type of mechanism expected to perform robustly in unstructured
environments, through the replication of walking gaits using six limbs like certain insects. A
similar but much larger lunar rover concept is ATHLETE (Wilcox et al., 2007). However, while
ASTRO and ATHLETE are kinematically similar, their distinguishable sizes and purposes
enforce different sets of constraints to their designs. To eventually move on the Moon’s
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Fig. 2. Robot during early stages of development (top) and its simulated model (bottom).

surface, ATHLETE uses a combination of conventional rolling on wheels and quasi-static
walking on wheels, and in ASTRO’s case, the use of six limbs was decided based on the needs
of a mission to an asteroid, where the microgravity environment would impose on the robot
the challenging task of moving with high accuracy and still performing science operations in
a stable manner. The main purpose of this form of motion is to avoid getting ejected from the
surface. Therefore, six limbs would be better than two or four, given the possibility of using
at least three limbs to grasp the surface to maintain the robot’s attachment to the asteroid as
a stable base while still using the remaining limbs for locomotion towards any direction or
available for manipulation. Therefore, ASTRO is equipped with force/torque sensors on its
end tips to provide feedback of the applied force to the surface.
ASTRO is expected to move on an asteroid surface with the capability of fine positioning over
the surface to achieve science studies and mapping at several locations. As a result, the robot’s
design has been developed in a modular basis for all of its components, facilitating any normal
changes in the adaptation process to accomplish a robust design for the demanding activities
imposed.
Finally, because the scientific objectives of asteroid exploration missions are so ambitious,
extensive prioritization on the development had to be made. Given that no robot designed
by the current effort is intended to be tested in space, the space-environment requirements
were given the lowest priority. This means that, the robot needs to be tested first in a 1g
environment with as little information from its surroundings as possible.

4.1 General assumptions
Regular operations for limbed robots are characterized by multiple contacts between the limbs
and the environment. In a microgravity environment, a planning algorithm can exploit this
property by generating motions in contact, or more formally compliant motions (Borenstein,
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1995). During the execution of a compliant motion, the trajectory of the end tip is reflected
according to the sensed forces derived from the contacts.
In this context, the problem of specifying a compliant motion command is similar to the
problem of planning using pure position control to orient the end tip. The compliant motion
control (Klein & Briggs, 1980) allows specification of the forces and velocities to be maintained
in the motion frame until the meeting of a set of termination conditions is detected.
Throughout the following analysis, to simplify the discussion, it is assumed that:
a1) The object is a rigid body in contact with a rigid link of the robot;
a2) Accurate models of the limbs and object are given;
a3) Interference between limbs is ignored;
a4) Each limb has only one frictional contact point at a fixed location;
a5) The z direction of the contact point is always inward of the surface normal;
a6) Contact points are known and the mass of each link of the robot is negligible;
a7) Dynamic and static frictional coefficients are not distinguished between each other;
a8) The motion is quasi-static2 to suppress any dynamic effect.
Assumption a4 allows us to consider only forces at the contact points. In this way, while
executing a compliant command, the robot controller can interpret the sensed forces to
automatically generate the corrective actions needed to comply with the task while preserving
contact during motion.
Static friction occurs when the relative tangential velocity at a contact point is zero; otherwise,
the friction is called dynamic friction. Assumptions a7 and a8 allow us to consider a
“first-order" (or quasi-static) world where forces and velocities are related and also has static
friction but no dynamic friction.

4.2 Dynamics model
Surface mobile robots have the same structure in terms of dynamics equations as free flying
or floating robots which do not have a fixed point but have interaction with the ground. The
model of the robot developed in this research (Chacin & Yoshida, 2005) consists of a central
body with a hexagonal shape and six identical limbs (Inoue et al., 2001; 2002) symmetrically
distributed around it.
Each limb has three links and three actuated revolute joints. Two of these joints are located
in the junction of the leg/limb with the central body. The third joint is located at the
knee connecting the upper and lower link, which results in each limb having three DOF.
Considering six legs and the additional six DOF for central body translation and rotation,
the system has a total of 24 DOF.
In this model, self-collision between limbs is ignored, meaning that links are allowed to cross
each other, equal mass and length is assumed for all eighteen links, and that the joints are
limited by internal mechanical stops. Any configuration of the robot can be defined by a set
of parameters, the coordinates and orientation of the body, and the joint angles of each limb.
The dynamic motion of the free-flying multi-body system with the presence of the external
forces Fex is described as (Yoshida, 1997):

H
[

ẍb
φ̈

]
+

[
cb
cm

]
=

[
Fb
τ

]
+ JT Fex (1)

2 A quasi-static (“quasi-" (almost) “static") motion ensures that the system will go through a sequence of
states that are infinitesimally close to equilibrium.
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where,

H : inertia matrix of the robot
xb : position/orientation of the base
φ : articulated joint angles

cb, cm : velocity/gravity dependent non-linear terms
Fb : forces/moments directly applied on the base
τ : joint articulated torque
JT : Jacobian matrix
Fex : external forces/moments on the end points.

And the kinematic relationship around the end points is expressed as follows:

ẋex = Jmφ̇ + Jb ẋb (2)

ẍex = Jmφ̈ + J̇mφ̇ + Jb ẍb + J̇b ẋb (3)

where Jb and Jm denote the Jacobian of the base (main) body and the Jacobian of a given
manipulator (limb) respectively.
The magnitude of the forces is determined by the friction of the contact surface. Let us
consider the i-th limb of the robot. Vectors pij ∈ R3×1, f ij ∈ R3×1 and τij ∈ R3×1 denote
the contact position, the contact force and the joint torque vectors, respectively; i and j express
the i-th limb and the j-th contact point. Let τ

j
i be the torque due to the contact force f ij. The

relationship between the contact force and the joint torque is given by

τ
j
i = JT

ij f ij (4)

where JT
ij denotes the transpose of the Jacobian matrix that maps the contact force into the

joint torque. Then, using the principle of superposition for the relationship between τ
j
i and

f i, we have:

τi =
ki

∑
j=1

τ
j
i (5)

τi =
ki

∑
j=1

JT
ij f i (6)

where, ki is the number of contact points of the i-th limb. Since it is assumed that a limb can
only have one contact point, Equation 6 can be rewritten in the following form.

τi = JT
i f i (7)

where τi = [τi1, · · · , τ im]
T, f i = [ f T

i1, · · · , f T
im]

T and JT
i = [JT

i1, · · · , JT
im].

Mathematically, both arms (upper limbs) and legs (lower limbs) are linked multi-body
systems. Forces and moments yielded by the contact with the ground, or planetary surface,
govern the motion of the system.
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Fig. 3. Contact model.

4.3 Limb compliance and stiffness
Given an applied force on the end tip, any kinematic chain (on any given limb) experiences
a deformation. This relation between the applied force and the corresponding deformation
is defined as the “stiffness" of the kinematic chain. This stiffness can be related to two
possibilities: the mechanical elasticity of the system and/or the dynamic behavior of the
control system.
In general, for each joint there is a deflexion component defined by:

τ = KΔφ (8)

where

K =

⎡
⎢⎣

k1 0
. . .

0 kN

⎤
⎥⎦ . (9)

The relation between the force f i and the corresponding spatial deformation Δp is determined
from the following relationship:

Δp = JΔφ. (10)

Solving Equation 8 for Δφ,
Δφ = K−1τ. (11)

And substituting in Equation 10,
Δp = JK−1τ. (12)

Finally, from Equation 7 and Equation 12,

Δp = JK−1 JT f i. (13)

From this point the compliance matrix can be defined as:

C = JK−1 JT. (14)

The impact phase can be divided into two stages: compression and restitution. During the
compression stage, the elastic energy is absorbed by the deformation of the contact surfaces
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of the impacting bodies. In the restitution stage the elastic energy stored in the compression
stage is released back to the bodies making the relative velocity greater than zero.
The robot can be modeled as a mass-spring system (Fig. 3) with a purely elastic contact at its
end tips (Chacin & Yoshida, 2008). As a result, the following relation between the mass, the
velocity and the force should hold:

2mv = FΔt. (15)

Isolating the reaction force, we have:

F =
2mv
Δt

. (16)

Now, considering the time of contact as a function of the mass of the system m and the stiffness
coefficient of the limbs K, we have:

Δt = π

√
m
K

. (17)

Finally, from Equation 16 and Equation 17,

Fcontact =
2
π

(√
mK

)
v (18)

with

Fcontact =
N

∑
i=1

f i (19)

where N is the number of limbs in contact at landing.

4.4 Contact dynamics
In commonly used contact models (Brach, 1991; Keller, 1986), the relationship of momentum
exchange and force-time product assumes infinitesimal impact. However, the infinitesimal
impact between two single rigid bodies is a much idealized case. When modeling the ground
(natural terrain), it is usually observed that as the stiffness coefficient is lowered, greater
penetration in the ground occurs. The lower the damping constants, the longer the vibrations
occur. However, a very high increment in stiffness or in damping constants in the limbs’
model produces instabilities in simulations due to numerical issues that can be avoided by
using a rigid limb, thus reducing the model order. The following discussion looks at how to
determine the contact force Fex (Der Stappen et al., 1999).
Where there is friction at a contact point, the friction force at a point acts tangential to the
contact surface. We will denote the magnitude of the friction force at the i-th contact as f i, an
magnitude of the normal force as f n. To specify the tangential acceleration and friction force
completely in a three-dimensional system, we would also need to specify the direction of the
acceleration and friction force in the tangent plane (Gilardi & Shraf, 2002; Yoshida, 1999).
Since the authors assume a model with a purely elastic deformation in the normal (z) direction
of the contact point, and Coulomb friction in the tangential directions, we have the following
general expressions from Fig. 4:

f ci−tg = f cicosθ (20)

f ci−normal = f cisinθ (21)

where θ is the angle of the surface normal.
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Fig. 4. Decomposition of the contact forces.

Next, the coefficient of friction can be denoted as:

μ =
f ci

f ci−normal
>

f cicosθ

f cisinθ
(22)

μ > f citanθ. (23)

Considering Fcontact = f ci on the last expression, and using Equation 16 we have,

μ >
2mv
Δt

tanθ. (24)

And substituting Equation 17,
tanθμ

2m

(
π

√
m
K

)
> v. (25)

Equation 25 shows that the considered contact stability will strictly depend on the approach
velocity of the robot.
Quasi-static stability is a more general stability criterion than that used in the previous
discussion. Under this condition, inertia forces are included but limb dynamics are not
separately considered; the masses of the limbs are considered with that of the body. In
the previous argument, quasi-static stability is partly assumed, provided all the normal
components of the contact points’ f forces are positive. Since the contact point cannot support
a negative normal force (as shown in Fig. 4), the appearance of a negative force indicates that
the given limb will lift and, since it cannot provide the required movement about the center
of mass, the robot will jump in a microgravity environment like MINERVA (Yoshimitsu et al.,
2001).
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4.5 Motion control
If a robot is to successfully achieve walking with static stability, the control system must ensure
that the behavior of the robot does not deviate from the following stable condition.

m

∑
i=1

f i + mog = 0 (26)

m

∑
i=1

pi × f i = 0 (27)

To remain balanced, the robot must be able to apply forces with its end tips on the terrain that
compensate for gravity without slipping. A necessary condition is that the robot’s center of
mass lies above the support polygon. But on an irregular surface, the support polygon does
not always correspond to the base of the contact points. To compute the support polygon the
contact interface (all contact points) is modeled as shown in (Chacin, 2007), with

‖ f n‖ ≥ 0 (28)

‖ f t‖ ≤ μ‖ f n‖. (29)

The support polygon is the projection of these polyhedrons onto the global coordinate system.
The body attitude also needs to be controlled in order for the robot to maintain static balance.
Assuming that the robot is well balanced in the lateral plane, the body attitude at any given
moment is an important determinant of the acceleration experienced by the center of mass
(COM) in the sagittal plane. If the desired value of the acceleration output is known at all
times throughout the gait cycle, then a corrective action can be generated which will maintain
the robot in a stable state. If the body attitude needs to be increased or decreased depending
upon the error signal, and assuming that we can determine the desired acceleration in the
sagittal plane for all times throughout the gait cycle, we can implement a continuous control
system.

4.6 Zero moment point and momentum of the system
In the walking robotics community, Zero Moment Point (ZMP), which was first introduced by
(Vukobratovic et al., 1970), is a key concept to discuss the tip-over stability and gait control of
a robot. Fig. 5 is a schematic drawing to explain ZMP. Point O is the center of gravity (COG)
of the entire robot. Let vector r be a position vector from an arbitrary point on the ground P to
the point O, and vector li be a position vector from the point P to each ground contact point
of the limbs. For this model, the following dynamic equilibria hold true

Ṗp = ∑ f exi + Mg (30)

L̇p = np + r× Ṗp + ∑(li × f exi) (31)

where Pp and Lp are linear and angular momentum around point P, and M is the total mass
of the robot. The ZMP is a position P at which the component of moment np around the
horizontal axes, npx and npy, becomes zero. The robot is stable, otherwise if the ZMP stays
inside a polygon formed by ground contact points of the limbs. Otherwise the robot starts
tipping over.
Gait generation and motion control algorithms for walking robots have been developed based
on this concept. In addition, an advanced planning and control algorithm with a special
attention to the kinetic momentum has been proposed recently (Kajita et al., 2003).
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Fig. 5. A schematic force/moment model for an articulated surface robot

For a surface limbed robot, the gravity forces exerted on it can be neglected; the non-linear
term in Equation 1 then becomes cb = Ḣb ẋb + Ḣbmφ̇b. Integrating its upper set with respect
to time, we obtain the total momentum of the system as:

L =
∫

JT
b Fexdt = Hb ẋb + Hbmφ̇. (32)

Going back to Equation 2, and eliminating φ̇, we can obtain the following equation:

L = (Hb − Hm J−1
s )ẋb + Hm J−1

s ẋex. (33)

In this way, if the system does depart from static stability, then the control system can identify
this condition and bring the robot back to the statically stable condition.

4.7 Generalized control algorithm
Since walking is a continuous and cyclic process, we can consider two main types of control
systems, a closed-loop control system and an event driven control system (Fig. 6). A general
closed-loop control system for controlling the continuous process of the walking gait can be
considered. However, since the positioning of the end tip itself can be modeled as a discrete
process, we use an event driven control system to identify the existence of such states and
modify the closed-loop control depending upon the current state of the system.
Given a motion command (a vector �X), the motion planning and control algorithm to move
in the commanded direction and magnitude is carried out in the following way:

1© Use the gait planner presented in (Chacin & Yoshida, 2006) to plan the complete set of
limb motions to move in the desired direction.

2© At time t, compute link positions and velocities, recursively from link 0 to n.

3© Set accelerations ẍb and φ̈ to zero, and external forces Fb and Fex to zero, then compute
the inertial forces recursively from link n to 0. The resultant forces on the coordinates xb
and φ are equal to the non-linear forces cb and cm, respectively.

4© Plan the end point trajectory of each limb xexi using the kinematics in Subsec. 4.6, so
that ZMP satisfies the stability condition. Then obtain the end point velocity ẋex along the
trajectory.
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Fig. 6. Gait planner detail

5© Considering the friction cone estimation (Chacin, 2007) and the contact stability
conditions shown by Equation 25, determine the robot base motion ẋb by

[
ẍb
φ̈

]
= H−1

{[
Fb
τ

]
+ JT Fex −

[
cb
cm

]}

6© Calculate the joint velocity of the limbs φ̇ by Equation 2, using ẋb and ẋex while
considering Equation 29; change the state of the control system. If necessary, adjust �x
to maintain the force vectors bounded within the friction cones.

7© Adopt the new contact configuration to release the support contacts and apply a
permissible contact force at the new contact points. Dynamic exploration can be applied
to reduce the surface position/orientation uncertainties. Change the state of the control
system.

8© Control the joints along with the solution from 6© to move the body. Verify if the goal
position �X has been reached; if it has not, then repeat.

One difference of this algorithm with respect to conventional ones is the consideration of
momentum of the robot in 3©. Without this step, the obtained joint motion may have errors
from the originally planned end point trajectory, thus may not satisfy the stability condition.
Conventionally, a feedback control may be employed to correct these errors. But using
Equation 33 in 3©, the error can be compensated in advance.
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Fig. 7. The experimental setup: robot mounted on a PA10 manipulator (left) and over an
uneven surface (right).

4.8 Emulating microgravity
To simulate the real dynamic conditions of a robot on an asteroid, the authors used a robust
control system that could counterbalance Earth’s gravity and leave the robot in an emulated
state of microgravity. For this reason, ASTRO was mounted on the tip of a Mitsubishi PA10
manipulator arm (Fig. 7) controlled by a dynamics based model simulation equipped with
an ATI Industrial Automation Gamma SI-32-2.5 Force/Torque sensor (ATI, 2005). This sensor
allows the appropriate control of the manipulator arm to emulate the microgravity condition
that asteroid 25143 Itokawa would impose on the robot by means of calculating its position,
force, acceleration and velocity with high accuracy using real-time impedance and dynamic
compliance control.
Experiments were performed to observe and analyze the robot’s behavior under microgravity
conditions, as it would approach the surface of an asteroid and perform motions on it. Gravity
emulation is achieved through impedance control, also known as virtual compliance control,
as shown in (Hirabayashi et al., 2000). The control algorithm is based upon the basic equation
of motion shown in Equation 34.

[m]
dv
dt

= q− [K]Δx− [C]v (34)

where q is the external force and torque applied to the manipulator’s end tip, Δx is the
displacement of the end tip relative to the reference and v is its velocity. [m] ∈ R6 is the
virtual mass, [K] ∈ R6 is the virtual spring constant and [C] ∈ R6 is the damping constant.
Equation 34 can be transformed into:

v =
1
[m]

∫
(q− [K]Δx− [C]v)dt (35)

which can be represented as the following finite differential equation:

vn =
Δt
[m]

(qn−1 − [K]Δxn−1) + ([I]− Δt
[m]

[C])vn−1 (36)

where Δt is the time step and [I] is the identity matrix. Equation 36 describes the velocity at
the sampling time based upon values from the previous time step. Based on this equation,
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Fig. 8. Composite velocity profile of the manipulator’s end tip.

and knowing the forces and torques as well as the displacement, the arm can be controlled in
real-time using Equation 36 and Equation 1 to simulate the attached robot and to compensate
the input of the F/T sensor on its tip. In short, the control policy uses the relationship between
force and velocity to find the position and then calculate a velocity command as inputs to the
system. The behavior of the system can be altered by changing the impedance constants [m],
[K] and [C] as defined in Subsec. 4.3 and Subsec. 4.4 or can be fine tuned in order to exhibit
the desired properties.

4.9 Preliminary tests
To evaluate the performance of the manipulator’s control strategy, several tests were designed
to examine how the impedance constants [m], [K] and [C] influence the behavior of the system.
For simplicity, only four typical cases are described while keeping [m] constant to damp out
small mechanical vibrations on the system.
During the first case, the parameters were selected under the following constraint K � C. A
force is applied on the manipulator’s end tip, which is displaced before it starts swinging back
and forth. A small reduction in the position is observed with time since the damping is not
zero.
In the second case the condition changes to K > C. As in the first experiment, the end tip
starts to swing back and forth when a force is applied, but since the damping constant [C]
has been increased, this swing motion dies out much faster as the end tip is back to its initial
position without any further movement.
For the third case, the condition is switched to K 	 C. When a force is applied, the velocity
increases but it is quickly reduced back to zero. The position also exhibits a rather small
change where it remains when the velocity is damped out.
In the fourth case, the spring and damping constants are selected to satisfy K < C, but both
parameters are chosen similar to what they are expected to be in a microgravity environment,
where both [K] and [C] tend to zero3. It was observed that the manipulator’s end tip velocity
changes rapidly, and then it slowly decreases due to the small damping coefficient.
Several tests designed to verify the energy absorption and the velocity profile of the
manipulator arm were performed. Typical experimental results are shown in Fig. 8.
The manipulator’s end tip velocity changes after impacting the surface but remains within
10%-15% of its approaching phase yielding reasonable results that are in accordance with
what is expected in microgravity conditions. At this point, if the virtual mass value is to be
changed in any of the experiments, the behavior of the system would not change, but the force

3 In reality [C] is chosen to be 0.1 to avoid problems in the computational solution of Equation 36 and to
satisfy the condition.
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Fig. 9. Force profile during motion without control feedback.

required in order to get the same velocity and position displacement would have increased
accordingly. Similar experiments have been carried out for rotational and multi-translational
movements, but their description has been omitted to show these results as the basic principle
behind the selection of proper parameter values.
After achieving a satisfactory response from the control system, ASTRO was attached to the
end tip of the manipulator and was suspended above a table that serves as analog to the
asteroid surface.

4.10 Experimental results
To demonstrate the concept and to verify the control strategy, further experiments were
performed under the dynamic conditions shown in the previous section, and for comparison,
motion was attempted first without control or feedback and then using the control algorithm
described in Subsec. 4.7. In the first motion experiment, the robot was commanded to go
forward over a rugged surface4 with a known inclination angle, while keeping a stable and
statically balanced position. The problem of control is simplified by giving the control system
the geometry5 of the environment and the gait is calculated off-line.
Although the robot successfully took three contact points and executed one gait motion, the
selected contact points were not ideal, and the robot exhibited pronounced oscillating swaying
motions in the lateral plane causing slip. This can be seen in the force data (Fig. 9). It was
observed that after the gait missed the contact points the stability of the system was severely
undermined. This instability at the end tips could cause the unpredictable behavior of the
robot due to the escalating effect of the accumulative error. This is somewhat indicative of the
dynamic behavior of uncontrolled hopping robots in similar microgravity environments.
Due to the contact instability of the previous attempt, the ability of the robot to use the
information from the friction forces (friction cones) while walking on the surface was further
examined (Fig. 11). The overall stability of the walking gait depends upon the timing of
the motion from the gait planner. If the timing is incorrect, it will affect the stability of the
robot during the walking gait. It is, therefore, desirable to study the relationship between the
stability of the robot and the motion conditions. The stability of the robot can be examined by
enabling the robot to walk continuously on the surface using the control strategy presented in
Subsec. 4.7. This has the desired effect of reducing end tip momenta which are created when
the robot translates or rotates an end tip, which can increase the instability of the contact.

4 Sandpaper of different grit sizes was used in the experiments to simulate the potential roughness of an
asteroid surface.

5 The term geometry is used, when referring to robot control and gait planning, to mean that a robot is
controlled based on fixed relationships between models of the robot and models of the world in which
the robot operates.
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The results of this experiment are shown in Fig. 10. It can be noted that the force values are
higher, but more importantly the robot is resting balanced on the limbs in contact with the
surface. With the feedback from the force sensors, the control system was able to determine
an appropriate corrective measure for the robot to take in order to maintain the stability of
the contact while keeping its attitude (expressed in roll-pitch-yaw angles) mostly unchanged
during motion. For the case where the robot is under a known environment and the desired
forces to be exerted on the surface are known in advance, any deviation from this state should
cause an appropriate corrective action to be taken.

5. Challenges

A rich set of challenges are encountered during development and evaluation of prospective
solutions for gravity-independent locomotion on asteroids. The experiments reported here
are indicative of a few, but several additional key challenges deserve early attention by
researchers. One of them is the mechanics of controlled ballistic hopping on rotating asteroids
and in non-uniform gravity fields due to their irregularly shaped bodies. Bellerose et al
(Bellerose et al., 2008; Bellerose & Scheeres, 2008) modeled the dynamics of hopping vehicles to
enable hops covering designated distances by computing and controlling initial hop velocity.
The model accounts for distance covered by residual bounces as the vehicle comes to rest
(considering surface friction coefficient and restitution). A particularly challenging aspect
to consider is that some asteroid shapes may have surface locations where a vehicle could
stay in equilibrium, thus affecting vehicle dynamics on the surface (Bellerose et al., 2008;
Bellerose & Scheeres, 2008). Conceivably, a hopping rover could be perturbed away from
predicted ballistic trajectories by such equilibria. This can affect exploration objectives by
constraining the total area that a rover can safely or reliably traverse to on an asteroid surface
when stable and unstable equilibrium locations happen to coincide with surface regions of
scientific interest. Purely hopping vehicles that operate primarily at the mercy of small body
physics can have limited accessibility of such surface regions. Bellerose’s model also provides
insight into the effects of non-uniform gravity fields and how centripetal and Coriolis forces
due to asteroid rotation may assist or hinder hop performance (Bellerose & Scheeres, 2008).
Another key challenge is achieving the ability to land after hopping in such a way as to avoid
rebound. Control and robotics techniques can be used to address this challenge. One robot
concept employs a spring and linear actuators with horizontal velocity control to achieve this
(Shimoda et al., 2003), while other research is experimenting with active grappling of the
surface upon landing (Chacin, 2007; Chacin & Yoshida, 2008; 2009). The related challenge,
central to gravity-independent locomotion, is maintaining grip or temporary anchoring while
controlling force for closure and compliance. The work presented herein and in (Chacin
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Fig. 11. Movement over inclined frictional surface with friction feedback gait control.
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& Yoshida, 2009) examines the motion/force control and dynamic modeling germane to
the problem of stable crawling and force closure needed to maintain contact/grip with an
asteroid surface under microgravity conditions. Experiments with ASTRO reveal the utility
of force feedback for maintaining contact during execution of compliant motion. Kennedy
et al (Kennedy et al., 2005) address active force control to achieve anchoring associated with
stable free-climbing motion control. Tactile sensing and related motion planning algorithms
(Bretl et al., 2003) have been implemented on the LEMUR IIb robot.
The low gravity environment and its effect on surface vehicles present a key challenge for
rover localization whether hopping, crawling, or climbing. Determining, updating and
maintaining knowledge of rover position and orientation on an asteroid surface can be
important for recording spatial context for surface science measurements and for certain
mission concepts of operation. Localization approaches for hopping robots have been
proposed with some reliance on range measurements to an orbiting or station-keeping mother
spacecraft (Yoshimitsu et al., 2001) and via use of more general approaches such as particle
filters (Martinez, 2004), Kalman Filters with landmark geo-referencing (Fiorini et al., 2005),
and optical flow as well as visual odometry without continuous terrain feature tracking while
tumbling (So et al., 2008; 2009). During local navigation across the terrain, existing localization
approaches for rolling or walking robots may apply. These may be based on use of extended
Kalman Filters on fused celestial sensor data and optical-flow measurements (Baumgartner et
al., 1998).
Finally, a key challenge is the testing and verification of gravity-independent locomotion
systems to ensure confidence in their technology readiness for asteroid missions. This
is always a challenge for space systems and particularly those intended for operation in
microgravity domains. The testbed described in the previous section and its means of
emulating reduced gravity are representative solutions for addressing the challenge using
relatively affordable technology. Other testbed approaches to emulating reduced gravity in
the laboratory include the use of overhead gantry systems with frictionless air-bearing pulleys
from which to suspend prototype rovers, and the use of prototype rovers on flat air-tables or
mounted on a mobile base with integrated air bearings. Beyond the fundamental feasibility of
controlled surface mobility in low gravity fields of asteroids, additional challenges of high
relevance and importance remain to be addressed by advanced research and technology
development.

6. Summary and conclusions

In this chapter, various approaches to gravity-independent locomotion on weak gravity
surfaces of asteroids are discussed along with related technologies. Challenges are also
described that affect planning and control of surface exploration robots that use hopping and
rolling mechanisms and/or articulated limbs for the ground contact.
Given the focus on gravity-independent locomotion approaches, technologies, and challenges
of robotic mobility on asteroids, an in-depth representative example of an asteroid mobility
solution and control approach is provided. The control approach considers reaction and
friction forces with the asteroid surface and is demonstrated using a prototype robot (ASTRO)
and laboratory testbed that emulates microgravity. This example considered issues that most
solutions must address related to the microgravity environment and its effect on dynamics of
robotic systems on asteroids.
The research presents a planning and control structure for the locomotion of a multi-limbed
robot under microgravity conditions. The algorithm can be considered as constructive proof
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that there exists a solution that satisfies the force conditions for any system with friction. It
works by reacting to the current locations of contact points and estimating the force-closure
condition for stable motion. Such a mechanism is central in the control structure.
The control methods proposed in this research are useful to improve the operational
performance and efficiency for robots capable of position-based controlled motion on an
asteroid. They demonstrated that proper knowledge of the force cone interaction with the
surface plays a significant role in the development of proper control procedures that can allow
next-generation surface robots to gain proper mobility in a microgravity environment.
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1. Introduction

Parallel manipulators have been proposed to overcome accuracy problem in the end effector
positioning, exhibited by serial manipulators(Stewart, 1965)(Reboulet, 1988)(Merlet, 2000).
These parallel robots are primarly used in the applications for which the considered processes
require a high degree of accuracy, high speeds or accelerations. Aircraft simulator (Stewart,
1965), machining tools (Neugebauer et al., 1998)(Poignet et al., 2002), and various other
medical applications (Merlet, 2002)(Leroy et al., 2003)(Plitea et al., 2008) constitute some of the
many possible applications of parallel robots.
The computation of the inverse dynamic model is essential for an effective robot control. In
the field of parallel robots, many approaches have been developed for efficient computation
of the inverse dynamics. The formalism of d’Alembert has been used to obtain an analytical
expression of the dynamics model (Fichter, 1986)(Nakamura & Ghodoussi, 1989). The
principle of virtual works has been applied in (Tsai, 2000) for solving the inverse dynamics
of the Gough-Stewart platform and in (Zhu et al., 2005) for a Tau parallel robot. Lagrangian
formalism is applied in (Leroy et al., 2003) for the dynamics modeling of a parallel robot used
as a haptic interface for a surgical simulator. These various approaches do not seem effective
for a robot dynamic control under the real time constraint. A better computational efficiency
can be achieved by the development of approaches using recursive schemes, in particular,
based on the Newton-Euler formulation. Gosselin (Gosselin, 1996) proposed an approach
for the computation of the inverse dynamic model of planar and spatial parallel robots, in
which all the masses and inertias are taken into account. This proposed method is difficult
to generalize for all the parallel architectures. Dasgupda et al (Dasgupta & Choudhury, 1999)
applied this method to several parallel manipulators. Khan (Khan, 2005) has developed a
recursive algorithm for the inverse dynamics. This method is applied to a 3R planar parallel
robot. Bi et al (Bi & Lang, 2006) use the Newton-Euler recursive scheme for the computation of
the articular forces of a tripod system. Khalil et al (Khalil & Guegan, 2004) proposed a general
method for the inverse and direct dynamic model computation of parallel robots, which is
applied to several parallel manipulators (Khalil & Ibrahim, 2007).
Despite the large amount of contributions in this field, there is still a need for improving
the computational effeciency of the inverse kinematic and dynamic model clculation for
real-time control. In this paper, a parallel robot is considered as a multi robot system with
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k serial robots (the k parallel robot segments) moving a common load (the mobile platform).
The proposed approach uses the methodology developed by Khalil et al (Khalil & Guegan,
2004)(Khalil & Ibrahim, 2007).
In this paper, we first review the proposed approaches for computation of kinematics and
inverse dynamics of of a C5 joint parallel robot. One of the interesting aspects of the parallel
robots is that, unlike the serial robots, it is easy and efficient to directly compute the inverse
of Jacobian matrix: However, there seems to be no proposed approach for direct computation
of the Jacobian matrix. We propose a new method which allows the derivation of the Jacobian
matrix in a factored form, i.e., as a product of two highly sparse matrices. This factored form
enables a very fast computation and application of the Jacobian matrix, which is also needed
for the inverse dynamics computation. Another issue for inverse dynamics computation is
the determination of joint accelerations given the acceleration of the mobile platform. We
propose a new scheme that, by using projection matrices, enablse a fast and direct calculation
of the joint accelerations. Since this calculation is needed in any inverse dynamics formalism,
our proposed new method improves the efficiency of the computation. For calculation of the
inverse dynamics, we consider the formalism developped by Khalil et al (Khalil & Guegan,
2004)(Khalil & Ibrahim, 2007). In this approach, since the inverse of Jacobian is used, the
calculation of the joint forces would require a linear system solution. We show that, by using
our factorized form of the Jacobian, our proposed scheme not only eliminates the need for
linear system solution but it also does not require the explicit computation of either Jacobian
or its inverse. As a result, a significantly better efficiency in the computation can be achieved.
This paper is organized as follows. In Section 2, we present some preliminaries and the
notation used in our appraoches. The C5 parallel robot is presented in Section 3. The proposed
methodologies for computation of the inverse kinematics and the inverse Jacobian matrix are
reviewed in Sections 4 and 5. The new methodology for derivation of the Jacobian matrix
in a factored form is presented in Section 6. In Section 7, we present a fast and direct
scheme for calculation of joint accelerations, given the desired acceleration of the mobile
platform. The formalism for computation of the inverse dynamics, developed by Khalil et
al (Khalil & Guegan, 2004)(Khalil & Ibrahim, 2007), is discussed in Section 8 and it is shown
how the new scheme for calculation of joint accelerations as well as the use of factored form
of the Jacobian matrix can significantly improve the computational efficiency. A simulation
of the proposed scheme for computation of the inverse dynamics is provided in section 9
validating the proposed approach. Finally, some concluding remarks are presented in Section
10.

2. Preliminaries

In this section, the required notation for a serial chain are presented (see also Fig. 1).

2.1 System model and notations
2.1.1 Joint and link parameters

• Oj: Origin of frame j which is taken to be the center of jth joint

• Pj : position vector from Oj to Oj+1

• N: number of bodies

• Qj, Q̇j: position and velocity of the jth joint
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2.1.2 Spatial quantities
• Hj: spatial-axis (map matrix) of joint j. For a joint with one rotational degree of freedom

(DOF) around z-axis, Hj is given by:

Hj =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

• Vj =

[
ωj
vj

]
∈ �6: spatial velocity of point Oj

• Ij ∈ �6×6 : spatial inertia of body j

The spatial inertia of body j about its center of mass,Gj, is denoted by IGj
and is given by:

IGj
=

[
JGj

0
0 mj U

]
∈ �6×6

where JGj
is the second moment of mass of link j about its center of mass and mj is the

mass of link j. The spatial inertia Ij can be calculated by:

Ij = Ŝj IGj
Ŝt

j

Where sj represents the position vector from Oj to Gj

• VN+1 ∈ �6: spatial velocity of the end effector

2.1.3 Global quantities
The following global quantities are defined for j = N to 1

• Q̇ = Col
(
Q̇j

)
: vector of joint velocity

• V = Col
(

Vj
) ∈ �6N : global vector of spatial velocities

• H = Diag
(

Hj
) ∈ �6N×N : global matrix of spatial axis.

• M : Symmetric positive definite (SPD) mass matrix

2.2 General notation

With any vector V =
[

Vx Vy Vz
]t, a tensor Ṽ can be associated whose representation in any

frame is a skew symmetric matrix given by:

Ṽ =

⎡
⎣

0 −Vz Vy
Vz 0 −Vx
−Vy Vx 0

⎤
⎦

The tensor Ṽ has the property that Ṽ = −Ṽt and Ṽ1V2 = V1 × V2 i.e., it is the vector
cross-product operator. A matrix V̂ associated to the vector V is defined as:
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V̂ =

[
U Ṽ
0 U

]

where U and 0 stand for unit and zero matrices of appropriate size.
In our derivation, we also make use of global matrices and vectors which lead to a compact
representation of various factorizations. A bidiagonal block matrix P ∈ �6N×6N is defined as:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U
−P̂N−1 U 0

0 −P̂N−2 U
0 0
...

...
0 0 0 −P̂1 U

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The inverse of matrix P is a block triangular matrix given by:

P−1 =

⎡
⎢⎢⎢⎢⎢⎣

U 0 · · · 0
P̂N,N−1 U 0 · · · 0
P̂N,N−2 P̂N−1,N−2 U 0 0

...
...

...
...

...
P̂N,1 P̂N−1,1 · · · P̂2,1 U

⎤
⎥⎥⎥⎥⎥⎦

2.3 Equations of motion
In this section, we briefly review the equations of motion: velocity, force and acceleration
propagation, for a serial chain of interconnected bodies.

2.3.1 Velocity propagation
The velocity propagation for a serial chain of interconnected bodies, shown in Fig. (1), is given
by the following intrinsic equation:

Vj − P̂
t
j−1 Vj−1 = HjQ̇j (1)

By using the matrix P , Eq. (1) can be expressed in a global form as:

P t V = HQ̇ (2)

thus:
V =

(P t)−1 HQ̇ (3)

The end effector spatial velocity VN+1 is obtained by the following relation:

VN+1 − P̂t
N VN = 0 (4)

thus:
VN+1 = P̂ t

N VN (5)

Let β ∈ �6×6N be the matrix defined by β =
[

P̂t
N 0 · · · 0

]
, Eq. (5) becomes:

VN+1 = βV (6)
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Thus, inserting the expression of V from Eq. (3), we obtain:

VN+1 = β
(P t)−1 HQ̇ (7)

Thus:
J = β

(P t)−1 H (8)

2.3.2 Acceleration and force propagation
The propagation of accelerations and forces among the links of serial chain are given by:

V̇j = P̂ t
j−1 V̇j−1 + HjQ̈j (9)

Fj = Ij V̇j + P̂j Fj+1 (10)

Eqs. (9)-(10) represent the simplified N-E algorithm (with nonlinear terms being excluded) for
the serial chain (Luh et al., 1980).
The force Fj can be written, by using a rather unconventional decomposition of inter body
force of the form (see, for example (Fijany et al., 1995) (Fijany et al., 1997), as:

Fj = Hj FTj + Wj FSj (11)

Where FSj represents the constraint force.
Complement to the Degrees Of Freedom (DOF), Degrees Of Constraint (DOC) are introduced
(DOC = 6− DOF).
The projection matrices Hj and Wj are taken to satisfy the following orthogonality conditions:

Ht
j Wj = Wt

j Hj = 0 (12)

Hj H
t
j + WjW

t
j = U (13)

Ht
j Hj = Wt

j Wj = U (14)

Fig. 1. Joint force and position vector of a serial chain.
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3. C5 parallel robot

The C5 joint parallel robot (Dafaoui et al., 1998) consists of a static and a mobile part connected
together by six actuated segments (Fig. 2 and 3). Each segment is connected to the static part
at point Ai and linked to the mobile part through a C5 passive joint (3DOF) in rotation and
2DOF in translation) at point Bi. Each C5 joint consists of a spherical joint tied to two crossed
sliding plates (Fig 4). Each segment is equipped with a ball and a screw linear actuator driven
by a DC motor.

Fig. 2. C5 joint parallel robot

Fig. 3. C5 parallel robot representation.
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Fig. 4. Details of the C5 joint.

Following notations are used in the description of the parallel robot:

• Rb is the absolute frame, attached to to the fixed base: Rb = (0, x, y, z).

• Rp is the mobile frame, attached to the mobile part: Rp =
(
C, xp , yp, zp

)
.

• O is the origin of the absolute coordinate system.

• C is the origin of the mobile coordinate system, whose coordinates in the absolute frame
are given by:

OC/Rb
=

[
xc yc zc

]t

• Ai is the center of the joint between the segment i and the fixed base:

OAi/Rb
=

[
ax

i ay
i az

i

]t

• Bi is the center of the rotational joint between the segment i and the mobile part:

CBi/Rp
=

[
bx

i by
i bz

i

]t

• R is the rotation matrix, with elements rij (using the RPY formalism), expressing the
orientation of the Rp coordinate system with respect to the Rb coordinate system. The
expression for this matrix is given by:

R =

⎡
⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ (15)

where:
r11 = cos β cos γ
r12 = − cos β sin γ
r13 = sin β
r21 = sin γ cos α + cos γ sin β sin α
r22 = cos α cos γ− sin α sin β sin γ
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r23 = − cos β sin α
r31 = sin γ sin α− cos γ sin β cos α
r32 = sin α cos γ + cos α sin β sin γ
r33 = cos β cos α

• The rotation angles, α, β and γ , also called Roll Pitch and Yaw (RPY), describe the rotation
of the mobile platform with respect to the fixed part. α is the rotation around x axis, β
around y axis and γ around z axis.

• X is the task coordinate vector.

X =
[

α β γ xc yc zc
]t

In the following, the parallel robot is considered as six serial robots (the six segments) moving
a common load (the mobile platform). According to our notation presented in the previous
section, we define the following quantities:

• i is the segment index

• j is the body index

• Oij is the jth joint center of the segment i

• Pij is the position vector from Oij to Oi,j+1

• Qij is the position of the jth joint of the segment i

• Qi =

[
Qi2
Qi1

]
∈ �6 is the joint coordinate vector of the segment i

• Q̇i =

[
Q̇i2
Q̇i1

]
∈ �6 is the joint velocity vector of the segment i

• Q̈i =

[
Q̈i2
Q̈i1

]
∈ �6 is the joint acceleration vector of the segment i

• Hij is the spatial-axis of joint jth joint of the segment i. For the C5 joint robot the projection
matrices Hij and Wij, describe in the base frame, are given as:

H11 = H21 =
[

0 0 0 1 0 0
]t

H31 = H41 =
[

0 0 0 0 1 0
]t

H51 = H61 =
[

0 0 0 0 0 1
]t

H12 = H22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

H32 = H42 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
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H52 = H62 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

W12 = W22 =
[

0 0 0 1 0 0
]t

W32 = W42 =
[

0 0 0 0 1 0
]t

W52 = W62 =
[

0 0 0 0 0 1
]t

• Vij =

[
ωij
vij

]
∈ �6 is the spatial velocity of the link j for the segment i

• Iij ∈ �6×6 : spatial inertia of body j for the segment i

• V i = Col
(

Vij
) ∈ �12: global vector of spatial velocities for the segment i

• Hi = Diag
(

Hij
) ∈ �12×6: global matrix of spatial axis for the leg i

• Mi : Symmetric positive definite (SPD) mass matrix of the segment i

Fig. 5. Force and position vectors.

4. Inverse kinematic model

In this section, we briefly review the methodology used for the inverse kinematic model
computation. More details can be found in (Dafaoui et al., 1998).
The inverse kinematic model relates the active joint variables Qa =[

Q61 Q51 Q41 Q31 Q21 Q11
]t to the operational variables which define the position

and the orientation of the end effector (X). This relation is given by the following equation
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(Dafaoui et al., 1998):
Q11 = xc +

r31(zc−L)+r21yc
r11

Q21 = xc +
r31(zc+L)+r21yc

r11

Q31 = yc +
r12(xc−L)+r32zc

r22

Q41 = yc +
r12(xc+L)+r32zc

r22

Q51 = zc +
r23(yc−L)+r13xc

r33

Q61 = zc +
r23(yc+L)+r13xc

r33

(16)

where:

L = ‖AiAi+1‖
2 for i = 1, 3 and 5

For the C5 joint parallel robot, the actuators are equidistant from point O (Fig. 6).

Fig. 6. The spatial arrangement of the C5 joint parallel robot segments.

5. Determination of the inverse Jacobian matrix

For parallel robots, the inverse Jacobian matrix computation (J −1) is obtained by the
determination of the velocity of point Bi (Merlet, 2000)(Gosselin, 1996):

˙OBi = vN+1 +BiC ×ωN+1 (17)

By using the following:
Q̇i1 = ˙OBi ni (18)

where ni is the unit vector of the segment i, defined by:

ni =
AiBi

Qi1
(19)
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and inserting Eq. (17) into Eq. (18), we obtain the following expression:

Q̇i1 = nivN+1 +ωN+1 (ni ×BiC) (20)

The (6− i)th row of the inverse Jacobian matrix is given as:
[
(ni ×BiC)t nt

i

]
(21)

The inverse Jacobian matrix of the C5 parallel robot is then given by the following relation:

J −1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(n6 ×B6C)t nt
6

(n5 ×B5C)t nt
5

(n4 ×B4C)t nt
4

(n3 ×B3C)t nt
3

(n2 ×B2C)t nt
2

(n1 ×B1C)t nt
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎣
(n6 ×P62)

t nt
6

...
(n1 ×P12)

t nt
1

⎤
⎥⎥⎦ (22)

As stated before, for parallel robots, unlike the serial robots, the inverse of Jacobian matrix can
be directly and efficiently obtained. In fact, the cost of computation of J −1 from Eq. (22) is
(18m + 30a) where m and a denote the cost of multiplication and addition, respectively.

6. Factorized expression of the Jacobian matrix

6.1 General approach
The differential kinematic model of a manipulator is defined by the relationship between the
spatial velocity of the end effector and the vector of generalized coordinate velocities of the
robot: VN+1 = J Q̇a, where J is the Jacobian matrix.
For parallel robots, it seems more efficient to compute the Jacobian matrix J by inverting
the inverse Jacobian matrix J −1 (see for example (Khalil & Ibrahim, 2007)). In deriving the
forward kinematic model of the C5 parallel robot, an analytical expression of the Jacobian
matrix is presented in (Dafaoui et al., 1998). From a computational efficiency point of view,
such a classical method, which is only applicable to the C5 parallel robot, is not well suited
for real-time control.
Here, we present opur approach for direct and efficient computation of the Jacobian
matrix (Fried et al., 2006). In this approach, an analytical expression of the Jacobian matrix
is obtained in factorized form as a product of sparse matrices which achieves a much better
computational efficiency.
In our approach, the parallel robot is considered as a multi-robot system, composed of serial
robots (the segments) moving a common load (the mobile platform). A relationship between
the Jacobian matrix of the parallel robot (J ) to the Jacobian matrix of each segment (Ji) is first
derived.
The principle of this approach consists of first computing the Jacobian matrix for each leg
considered as an open serial chain. Secondly, the closing constraint is determined, allowing
the computation of the parallel robot Jacobian matrix.
The Jacobian matrix J of the parallel robot is obtained by the closing constraint determination
of the kinematic chain. This determination can be obtained by expressing the actuated joint
velocity Q̇a of the parallel robot in function of vectors Q̇i associated to each segment i. Let
the matrix Πi be defined as:

Q̇i = Πi Q̇a (23)
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Inserting Eq. (23) into Eq. (7), we obtain:

VN+1 = βi
(P t

i
)−1 HiΠiQ̇a (24)

Therefore, a factorized expression of the parallel robot Jacobian matrix is obtained as:

J = βi
(P t

i
)−1 HiΠi (25)

The matrices J and Ji are related by the following relationship:

J = Ji Πi (26)

The computation of matrix of Πi depends on the considered parallel robot’s structure. In the
following, we present the computation of this matrix for the C5 parallel robot.

6.2 Application to the C5 parallel robot

Let Pi2 =
[

xi yi zi
]t denote the position vector from Bi to C:

Pi2 = BiC/Rb
= −Qi1 ni +AiO+OC (27)

The spatial arrangement of the segments (see Fig. 6) is as follows:

• The segments 1 and 2 are in the direction of the x-axis (ni =
[

1 0 0
]t for i = 1, 2).

• The segments 3 and 4 are in the direction of the y-axis (ni =
[

0 1 0
]t for i = 3, 4).

• The segments 5 and 6 are in the direction of the z-axis (ni =
[

0 0 1
]t for i = 5, 6).

Thus, we deduce the following relations:

y1 = y2 = yc
z3 = z4 = zc
x5 = x6 = xc

(28)

The global vector of articular coordinate velocity of the leg i is given by:

Q̇i =
[

ẇpi u̇pi γ̇pi β̇pi α̇pi Q̇i1
]t (29)

where u̇pi and ẇpi are translation velocities due to the crossed sliding plates.

6.2.1 Determination of matrix Πi
The matrix Πi given in Eq. (23) is obtained as follows. We have:

⎡
⎢⎢⎢⎢⎢⎢⎣

ẇpi

u̇pi

γ̇pi

β̇pi

α̇pi

Q̇i1

⎤
⎥⎥⎥⎥⎥⎥⎦
= Πi

⎡
⎢⎢⎢⎢⎢⎢⎣

Q̇61
Q̇51
Q̇41
Q̇31
Q̇21
Q̇11

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

The elements iπjk of the matrix Πi are computed by using Eq. (7). This equation is true for
i = 1 to 6, thus:

βi
(P t

i
)−1 HiQ̇i = βj

(
P t

j

)−1 HjQ̇j (31)
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for i and j = 1 to 6. From Eq. (31), we can show that for all i, j = 1, . . . , 6, we have the following
relations: ⎧

⎨
⎩

α̇pi = α̇pj

β̇pi = β̇pj

γ̇pi = γ̇pj

(32)

After some manipulations on relation (31), we obtain:
• For i = 1 and j = 2

Q̇11 = (z2 − z1) β̇pi + (y1 − y2) γ̇pi + Q̇21 (33)

• For i = 3 and j = 4:
Q̇31 = (z3 − z4) α̇pi + (x4 − x3) γ̇pi + Q̇41 (34)

• For i = 5 and j = 6:
Q̇51 = (y6 − y5) α̇pi + (x5 − x6) β̇pi + Q̇61 (35)

• For i = 1 and j = 3:
u̇p1 = (z1 − z3) α̇pi + (x3 − x1) γ̇pi + Q̇31 (36)

• For i = 1 and j = 5:
ẇp1 = (y5 − y1) α̇pi + (x1 − x5) β̇pi + Q̇51 (37)

From Eq. (28), we have y1 = y2, z3 = z4 and x5 = x6. Thus, the Eqs. (33, 34, and 35) can be
written as:

Q̇11 = (z2 − z1) β̇pi + Q̇21
Q̇31 = (x4 − x3) γ̇pi + Q̇41
Q̇51 = (y6 − y5) α̇pi + Q̇61

(38)

From Eqs. (30), (36), (37) and (38), the matrix Π1 is computed as:

Π1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y5−y1
y5−y6

y6−y1
y6−y5

0 0 x1−x5
z1−z2

x1−x5
z2−z1

z1−z3
y5−y6

z1−z3
y6−y5

x3−x1
x3−x4

x4−x1
x4−x3

0 0
0 0 1

x3−x4

1
x4−x3

0 0
0 0 0 0 1

z1−z2

1
z2−z1

1
y5−y6

1
y6−y5

0 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

The computational cost of explicit construction of the matrix Π1 is (17m + 28a) wherein the
cost of division has been taken to be the same as multiplication.
Considering the matrix Π1, the expression of the jacobian matrix is given by:

J = J1 Π1 (40)

With:

J1 = β1 P−t
1 H1 =

[
P̂ t

12 0
] [

U P̂ t
11

0 U

] [
H12 0

0 H11

]

Thus:

J1 =
[
P̂ t

12 H12 P̂ t
12 P̂

t
11 H11

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 −y1 z1 0 1
0 1 x1 0 −z1 0
1 0 0 −x1 y1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(41)
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Note the highly sparse structure of the matrix J1. In fact, if the matrix Π1 is already computed
then the computation of the matrix J1 does not require any operation. However, if the explicit
computatiuon of J is needed it can be then computed as J = J1 Π1. Exploiting the sparse
structure of matrices J1 and Π1, this computation can be performed with a cost of 29m + 37a.

7. Computation of joint accelerations of the segments

The conventional approach to calculate Q̈i is based on time derivation of Eq. (7) as:

Q̈i = J −1
i V̇N+1 +

d
dt
J −1

i VN+1 (42)

Eq. (42) represents the second-order inverse kinematic model of the segment i.

In the following, we propose a new and more efficient approach for computation of Q̈i. From
the propagation of acceleration given in Eq. (9), we can derive the following relations:

V̇N+1 = P̂ t
i2 V̇i2 (43)

V̇i2 = Hi2Q̈i2 + P̂ t
i1V̇i1 +

d
dt

P̂ t
i1 Vi1 (44)

V̇i1 = Hi1Q̈i1 (45)

Considering the othogonality properties of the projection matrices Hij and Wij given in
Eq. (12), by multiplying both sides of Eq. (44) by Wt

i2 we get:

Wt
i2 V̇i2 = Wt

i2 Hi2Q̈i2︸ ︷︷ ︸
0

+Wt
i2 P̂

t
i1V̇i1 + Wt

i2
d
dt

P̂ t
i1 Hi1

︸ ︷︷ ︸
0

Q̇i1 = Wt
i2 P̂

t
i1V̇i1 (46)

Note that the above projection indeed eliminates the term Q̈i2 from the equation. From
Eqs. (45) and (46), we then obtain:

Q̈i1 =
(
Wt

i2 P̂
t
i1 Hi1

)−1
Wt

i2 V̇i2 (47)

Where the term defined by
(
Wt

i2 P̂
t
i1 Hi1

)−1 is a scalar.
Again, considering the properties given by Eq. (14), multiplying both sides of Eq. (44) by by
Ht

i2 we get:

Q̈i2 = Ht
i2 V̇i2 − Ht

i2 P̂
t
i1V̇i1 − Ht

i2
d
dt

P̂ t
i1 Hi1

︸ ︷︷ ︸
0

Q̇i1 = Ht
i2 V̇i2 − Ht

i2 P̂
t
i1V̇i1 (48)

Note that, Ht
i2

d
dt P̂

t
i1 Hi1 = 0 since d

dt P̂
t
i1 is along Hi1 and as can be seen from the description

of Hi1 and Hi2 in section 3, Ht
i2Hi1 = 0.

The joint accelerations of the segment i are then computed in four steps as follows:

1. Compute V̇i2 from Eq. (43)

2. Compute Q̈i1 from Eq. (47)

3. Compute V̇i1 from Eq. (45)

4. Compute Q̈i2 from Eq. (48)

352 Robotic Systems – Applications, Control and Programming



Kinematic and Inverse Dynamic Analysis of a C5 Joint Parallel Robot 15

Exploiting the sparse structure of matrices Hi1, Hi2, and Wi2 as well as an appropriate scheme

for projection of the equations, the cost of computing Q̈i =

[
Q̈i2
Q̈i1

]
for each segment is of

(10m + 10a).

8. Inverse dynamic model

The inverse dynamic computation for the parallel robot consists of determination of the
required active joints torques to achieve a desired acceleration of the mobile platform, which
is needed for accurate control of the robot. In this section, we review the approch proposed
by Khalil et al in (Khalil & Guegan, 2004) (Khalil & Ibrahim, 2007).
Our contibution is to show that by using the factorized expression of the Jacobian matrix, and
the new formulation of acceleration joints, a significantly better computational efficiency can
be achieved for the inverse dynamic calculation.

8.1 Computation of inverse dynamic model
The dynamical equation of motion for each segment is given by:

Mi Q̈i +Ci +Gi + J t
Bi
Fi2 = Γi (49)

Where:

• Fi2 is the force exterted to the mobile platform by the segment i (Fig. 5).

• JBi is the Jacobian matrix of the segment i, computed to the point Bi. The expression of
JBi is given by:

JBi = P̂−t
i2 Ji (50)

• Ci +Gi represents the contributation of the Coriolis, centrifugal, and gravitional terms.

• Γi represents the joint force vector of the segment i.

The contact forces exerted to the mobile platform by the segments, shown in Fig. 5, are
computed from Eq. (49) as:

Fi2 = −J−t
Bi

(Mi Q̈i +Ci +Gi

)
+ J −t

Bi
Γi (51)

The dynamic behavior of the mobile platform is given by the following relation:

FN+1 = ΛC V̇N+1 + (GC +CC) (52)

Where:

• FN+1 is the spatial force applied at the point C, representing the contribution of the contact
forces FiN propagated to the point C:

FN+1 =

[
nN+1
fN+1

]
=

6

∑
i=1

P̂ t
i2 Fi2 (53)

• ΛC ∈ �6×6 is the spatial inertia matrix of the mobile platform:

ΛC =

[
IC mC G̃C

−mC G̃C mC U

]
(54)
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• mC is the platform mass

• IC ∈ �3×3 is the inertia tensor of the mobile platform expressed in the mobile platform
center of mass and projected in the fixed frame Rb:

IC = R IC/Rm
Rt (55)

• CC ∈ �6 is the vector of Coriolis and centrifugal forces:

CC =

[
ω̃N+1 IC ωN+1

−mC ω̃N+1 G̃C ωN+1

]
(56)

• GC ∈ �6 is the vector of gravitational forces:

GC =

[−mC G̃C
−mC U

]
g (57)

• g being the acceleration vector of gravity

Substituting (51) in (53), we obtain:

FN+1 =
6

∑
i=1

P̂ t
i2

(
J −t

Bi
Γi −J −t

Bi

(MiQ̈i +Ci +Gi

))
(58)

The active joint forces vector is given by:

Γ =
[

Γ61 Γ51 Γ41 Γ31 Γ21 Γ11
]t

We have ∑6
i=1 P̂

t
i2 J −t

Bi
Γi = J −1 Γ where J −1 is the inverse Jacobian matrix of the parallel

robot. Eq. (58) can be rewritten as:

FN+1 = J −t Γ−
6

∑
i=1

P̂ t
i2 J −t

Bi

(MiQ̈i +Ci +Gi

)
(59)

The inverse dynamic model, given by Kahlil et al in (Khalil & Ibrahim, 2007) is then expressed
by:

Γ = J t

[
FN+1 +

6

∑
i=1

P̂ t
i2 J −t

Bi

(MiQ̈i +Ci +Gi

)]
(60)

8.2 Computational complexity analysis
The inverse dynamic model, given in Eq. (60), is computed in six steps:

1. Computation of joint accelerations from Eq. (42)

2. Computation of the vector defined as Ti = MiQ̈i + Ci + Gi with the recursive
Newton-Euler algorithm (Cork, 1996).

3. Computation of the vector resulting from the propagation of forces exterted on the mobile
platform by all the segments as Φ = ∑6

i=1 P̂
t
i2 Ti

4. Computation of FN+1 from Eq. (52)

5. Computation of the vector defined as K = FN+1 + Φ
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6. Computation of the vector Γ = J t K

The computation of the last step, as discussed by Khalil et al in (Khalil & Guegan,
2004) (Khalil & Ibrahim, 2007), is performed by first computing J −t from Eq. (22). As a result,
the computation of Γ requires solving a linear system of dimension 6 as:

J −t Γ = K (61)

The computation cost for the derivation of J −1, from Eq. (22), is (18m + 30a). The cost of
solving the linear system of dimension 6 in Eq. (61) is of (116m + 95a) wherein the cost of
division and multiplication are taken to be the same. Therefore, the total cost of Step 6 is of
(134m + 125a)
Our contribution concerns the improvement of the efficiency of the inverse dynamic
computational by using the factorized expression of the Jacobian matrix and the new
formulation of the joint accelerations. Using these formulations, the computations can be
then performed as follows:
Step 1 is performed with a cost of (10m + 10a) for each segment by using the expression given
in Eqs. (47) and (48). This represents a much better efficiency than that of using Eq. (42).
Steps 2, 3, 4 and 5 are the same as in Khalil et al in (Khalil & Guegan, 2004) (Khalil & Ibrahim,
2007) .
For computation of Step 6, the factorized expression of J , given by Eq. (40) is used. To this
end, we have:

Γ = Π1
t J1

tK (62)

Note that, the above equation not only eliminates the need for solving a linear system but it
also does not require the explicit computation of neither J −1 nor J . By exploiting the sparse
structure of matrices Π1

t and J1, the cost of computation of the vector Γ from Eq. (62) is
of (65m + 67a), which represents a much better efficiency, almost half of the computations,
compared by using Eq. (40).

9. Simulation of the inverse dynamic model

To validate our inverse dynamic model of the C5 joint parallel robot, a simulation under
Matlab environment is presented in this section. The dynamic parameters used for the
simulation are given in appendix.
The trajectory profile used for this study is given as follows:

• Fig. 7 shows cartesian trajectory of the mobile platform for a constant orientation (α = 10o ,
β = 15o and γ = 20o).

• Fig. 8 and 9 show respectively the linear velocity and linear acceleration of the mobile
platform along the given trajectory.

• The active joint forces are computed using inverse dynamic model given by Eq. (60). Fig.
10 shows the active joint force evolution along the trajectory.
The simulation results show the feasibility of the proposed approach. The terms of Eq (60)
have been computed, and especially, the joint accelerations and the Jacobian matrix in its
factorized form, which represent our main contribution in this present paper.
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Fig. 7. Mobile platform cartesian trajectory.

Fig. 8. Mobile platform linear velocity profile.

356 Robotic Systems – Applications, Control and Programming



Kinematic and Inverse Dynamic Analysis of a C5 Joint Parallel Robot 19

Fig. 9. Mobile platform linear acceleration profile.

Fig. 10. Active joint forces Γi along the trajectory.
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10. Conclusion

In this paper, we first presented a review of various proposed schemes for kinematics and
inverse dynamics computation of the C5 parallel robot. We presented a new and efficient
scheme for derivation of the Jacobian matrix in a factored form as a product two highly
sparse matrices. We also presented a new scheme for fast and direct computation of the
joint accelerations, given the desired acceleration of the mobile platform. We also reviewed
the proposed scheme by Khalil et al (Khalil & Guegan, 2004)(Khalil & Ibrahim, 2007) for
computation of the inverse dynamics of the C5 parallel robot. We showed that by using
our new scheme for computation of the joint acceleration as well as the use of Jacobian in
a factored form a much better efficiency in the computation can be achieved.
The proposed methodology by Khalil et al (Khalil & Guegan, 2004)(Khalil & Ibrahim, 2007)
for computation of the inverse dynamics is very systematic and indeed has been applied
to several parallel robots. However, we still believe that more efficient formulations can be
derived by a further exploitation of specific structures of the parallel robots. We are currently
investigating new approaches for the inverse dynamics computation of parallel robots. We
are also extending our derivation of the Jacobian matrix in the factored form to other parallel
robots.

11. Appendix: dynamic parameters

Body Mass Inertia

1 2 kg JGi1 =

⎡
⎣

0.0025 0 0
0 0.00125 + 0.1667 (Qi1)

2 0
0 0 0.00125 + 0.1667 (Qi1)

2

⎤
⎦

2 1.67 kg JGi2 =

⎡
⎣

0.00167 0 0
0 0.0084 0
0 0 0.0084

⎤
⎦

Table 1. Dynamic parameters of the segment i = 1 and 2

Body Mass Inertia

1 2 kg JGi1 =

⎡
⎣

0.00125 + 0.1667 (Qi1)
2 0 0

0 0.0025 0
0 0 0.00125 + 0.1667 (Qi1)

2

⎤
⎦

2 1.67 kg JGi2 =

⎡
⎣

0.0084 0 0
0 0.00167 0
0 0 0.0084

⎤
⎦

Table 2. Dynamic parameters of the segment i = 3 and 4
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Body Mass Inertia

1 2 kg JGi1 =

⎡
⎣

0.00125 + 0.1667 (Qi1)
2 0 0

0 0.00125 + 0.1667 (Qi1)
2 0

0 0 0.0025

⎤
⎦

2 1.67 kg JGi2
=

⎡
⎣

0.0084 0 0
0 0.0084 0
0 0 0.00167

⎤
⎦

Table 3. Dynamic parameters of the segment i = 5 and 6

Body Mass Inertia

Mobile platform 10 kg IC =

⎡
⎣

0.375 0 0
0 0.1875 0
0 0 0.1875

⎤
⎦

Table 4. Dynamic parameters of the mobile platform
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Utilizing the Functional Work Space  
Evaluation Tool for Assessing a System Design  

and Reconfiguration Alternatives  
A. Djuric and R. J. Urbanic  

University of Windsor 
Canada 

1. Introduction 
1.1 Problem definition   
The ‘boundary of space’ model representing all possible positions which may be occupied 
by a mechanism during its normal range of motion (for all positions and orientations) is 
called the work envelope. In the robotic domain, it is also known as the robot operating 
envelope or workspace (Nof, 1999). Several researchers have investigated workspace 
boundaries for different degrees of freedom (DOF), joint types and kinematic structures 
utilizing many approaches (Ceccarelli , 1996), (Ceccarelli & Vinciguerra, 1995), (Ceccarelli & 
Lanni, 2004), (Cebula & Zsombor-Murray, 2006), (Castelli, et al., 2008), (Yang, et al., 2008). A 
recent example utilizes a reconfigurable modeling approach, where the 2D and 3D 
boundary workspace is created by using a method identified as the Filtering Boundary 
Points (FBP) algorithm. This is developed fully in Djuric and ElMaraghy (2008). 
However, this work envelope based work is limited as it does not contain relevant 
information regarding the relationships between the robot, or mechanisms within a system. 
This includes the general kinematic structures within the system, the location of the working 
part(s), tools, process parameters and other operation related parameters. Here an operation 
is defined as consisting of the travel path, manipulator/end-effector or working tool, tool 
and part location, and orientation, and any other related process related parameters. The 
work envelope provides essential boundary information, which is critical for safety and 
layout concerns, but the work envelope information does not by itself determine the 
feasibility of a desired configuration. The effect of orientation is not captured as well as the 
coupling related to operational parameters. Included in this are spatial occupancy concerns 
due to linking multiple kinematic chains, which is an issue with multi-tasking machine 
tools, reconfigurable machines, and manufacturing cells.   
Multi-tasking machine tools can be considered CNC mill-lathe hybrids (Figure 1). These 
machines enable multiple tool engagement in multiple parts simultaneously. Each tool/ 
part/ spindle/ axis set combination follows its own unique programmed path. These 
machines minimize the number of manual operations, as well as reduce setup costs and 
potential quality issues. A single multi-tasking machine tool can completely machine 
complex parts from start to finish (Hedrick & Urbanic, 2004). Traditional computer 
numerical control (CNC) machines consist of multiple kinematic chains (two – one to 
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support the tool and the other to support the fixture), and can be defined by standard 
families, i.e., 3 axis horizontal machine, 3 axis vertical, 4 axis horizontal and so forth. The 
valid kinematic chain loops need to be defined, but are static. It must be noted that 
depending on the machine type and configuration for multi-tasking machines, the kinematic 
chain loops can dynamically change, which is beyond the scope of this work, but needs to be 
considered when assessing the feasibility in time and space of these machine families.  
 

 
Fig. 1. Okuma LT300-MY (Okuma, 2002) and Programmable Axes (adapted from Hedrick & 
Urbanic, 2004)  

In any manufacturing environment, responsiveness to unforeseen disturbances on the shop 
floor is highly desirable in order to increase throughput, reduce waste and improve resource 
utilization and productivity (ElMaraghy, 1993).  Process improvement methods to increase 
shop floor responsiveness while minimizing capital investments have consistently been a 
topic for manufacturing research. This is presently being addressed through the concept of 
reconfigurable manufacturing (ElMaraghy, 2008). The key building blocks of a 
reconfigurable manufacturing system are scalability, adaptability, and transformability 
(Koren et al., 1999). This should reduce capital investments over the system life cycle, rapid 
changeovers, steeper launch curves, and minimal fluctuations in quality and this has great 
future potential (Anderson & Bunce, 2000).  The reconfiguration concept is divided into two 
subsets for this work: extendibility (Figure 2) and reconfigurability (Figure 3).  
Changing cutting tools, the tooling systems used to mount the tools into the machine, the 
end-effector or replacing an axis with another with different constraints is considered 
extendibility. For machining, this usually introduces shifts in the working boundaries 
allowing the same programs / travel paths to be used with appropriate offsets. 
For robotic applications, this may not be the case. (Note: for systems where the end-effector 
requires specific orientations, it is assumed that the orientation remains constant for a given 
length offset.) These modifications are typically made in the tooling domain.  
A reconfiguration consists of altering the machine topology, i.e. changing the DOF by 
adding or removing an axis. This may require re-programming, or depending on the 
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reconfiguration, a totally different programming or process planning strategy may be 
required. 
 

 
Fig. 2. Extendibility breakdown 
 

 
Fig. 3. Reconfigurability breakdown 

The work envelope does not allow one to assess the operating feasibility of a machine, robot, 
or system configuration for a set of tasks. Another assessment parameter needs to be 
introduced to indicate the functional operating work space. Hence, the work window is 
introduced, and is defined as the valid functional space for a configuration to allow a 
kinematic structure (robot, machine tool, manufacturing cell, etc.) to follow a path for a set 
of conditions relating to the system configuration, tooling, fixture location and so forth 
(Djuric & Urbanic, 2009). A part may be located within the work envelope, but it may not be 
within the work window. In Figure 4, the encircled region cannot be reached for the ‘normal 
to the base’ orientation for the 6R Fanuc robot although the part is within the envelope. The 
items bounded by a bolded line in Figures 2 and 3 are discussed in this research.  
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Fig. 4. Work envelope and work window for a 6R Fanuc robot (Djuric & Urbanic, 2009) 

The actual work window conditions will vary based on the part, travel path tool parameters, 
geometry, machine kinematic composition and the application. For machining operations, 
the work window will vary for each unique orientation/ tooling /fixture combination. 
Structural reconfigurations, such as adding or removing an axis (DOF and type of joints) 
either virtually or physically, will also impact the work window. A methodology needs to 
be developed to define the work window for a configuration, and any potential 
reconfigurations. The assessment of system elements is necessary in order to examine the 
feasibility and practicality of a set of kinematic structures in a manufacturing scenario. This 
does not exist at this time. There is a direct relation between the kinematic structures, their 
manipulability and constraints, to the work window. Proper assessment of system elements 
will help in optimization of a system and help in deciding various parameters such as 
number of degrees of freedom, placement of machines, robots and other supporting 
mechanisms (in case of a work cell consisting of multiple kinematic chain elements) and so 
forth. The methodology needs to be applicable for the reconfigurable type of machinery. The 
goal of this work is to focus on foundational work window assessment approaches. 

1.2 Research approach 
This structure of the chapter is as follows. First, the assessment methodology for machine 
tool type mechanisms is presented. An appraisal of “primitive” or basic kinematic building 
blocks is performed and a breakdown of their characteristics is presented. These elemental 
building blocks are used to create the basic working boundaries using geometric modelling 
techniques and Boolean operations for more advanced kinematic structures.  
A different solution approach is required for the selected industrial robot families (ABB and 
Fanuc), which is presented in detail in this work.  However, the Boolean approach in order 
to couple the operating environment to the kinematic structure is common. The case study 
in this work in centred on a robotics work cell application. The feasibility of solution 
alternatives can then be assessed, as well as the determination of alternative options, which 
is explored in the case studies section. This research work is then summarized and 
concluded. 
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2. Methodology to define the work window 
The approaches to determine the work window are different for machine tool type 
kinematic structures and 6 DOF robots at the base level due to their unique topologies.  The 
machine tool type of devices is decomposed into elemental or primitive groups. The term 
primitive is utilized, as basic mathematical definitions are used to present the regions of 
interest.  Combining these primitive elemental structures to characterize a selection of 
machine tools is then illustrated. The methodology to couple the fixture based and tooling 
based kinematic chains is then presented.  
For the selected industrial robot families, an empirical and detailed analytical methodology 
to determine the workspace boundary for a desired orientation is presented, along with 
illustrative examples. 

2.1 Decomposition analysis for machines consisting of elemental combinations 
Machine types consisting of primitive elemental combinations are milling machines, lathes, 
routers, coordinate measuring machines (CMM’s), and so forth. There are standard machine 
families, but there are also specialty combinations that are becoming more ubiquitous.  
There are several basic travel paths strategies that can be employed. The types and typical 
applications are as follows: 
• 2 axis (X, Y) travel path motion (used for tool less profile machines such as water jet, 

plasma jet and laser cutting – this is trivial as the work space = work window and is a 
rectangular surface bounded by the axis stroke limits. This is presented as Case 4 in 
Table 1.) 

• 2 axis (Z, X) travel path motion + rotary spindle (used for lathe machining – this is a 
subset of Case 4 in Table 1. The axes only move in Z and X, but are swept in a rotary 
profile) 

• 2 axis (X, Y) + Z depth (‘2 ½ axis’) travel path motion (used for additive manufacturing 
machines – this is trivial as the work space = work window and is a surface bounded by 
the axis stroke limits, incremented by a specific Δz value. This is a subset of Case 6 in 
Table 1.) 

• 3 axis travel path motion (used for standard milling machines – the work window is 
offset from the workspace by the length of the tool and is a solid, also bounded by the 
axis stroke limits. This is presented by Case 6  or Case 4 in combination with the Case 0, 
T in Table 1.)  

• 3 axis travel path motion and 1 or 2 axis rotary positioning (used for standard 4 and 5 
axis milling machines, and 5 axis CMMs. These are combinations of Cases 4-6 and 8-10 
in Table 1.) 

• 5 axis travel path motion and (used for 5 axis milling machines. These are combinations 
of Cases 4-6 and 8-10 in Table 1.) 

More sophisticated machines, such as multi-tasking machines (Figure 1), consist of a 
combination of 3, 4, and 5 axis sub-machines on a lathe frame. The valid kinematic chain 
combinations must be understood for these machines. The common characteristic of these 
types of mechanisms is that they can be broken down into basic primitive elemental 
structures. One kinematic chain holds the tool, the other the part. These elemental structures 
are combined to create a closed kinematic loop. The reference planes reflect how the axes are 
physically stacked, and the datum locating points between these elemental structures, and 
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are used to link relationships to define the usable three dimensional (3D) space. It is readily 
evident that the work envelope essentially consists the bounding stroke positions of the 
linear or translational axes.  The process flow for determining the work window for these 
mechanisms is illustrated in Figure 5. 
 
 

 
Fig. 5. Work window algorithm for mechanisms created from elemental kinematic chains, 
adapted from Djuric & Urbanic, 2009 

To assist with steps 1 and 2 in the process flow, the workspace and window are analysed for 
a set of 2 and 3 DOF kinematic structures (a selected set presented in Table 1). The R 
represents a rotary axis, and the T a translational axis. For this work, it is assumed that axes 
are stacked orthogonally. The coded delineation represents the axis stack, i.e., RT indicates 
that a translational axis is orthogonally stacked at the end of a rotary axis (Case 2 in Table 1). 
When specific subscripts are included, for example Case 8 - TXRB, this is used to indicate an 
axis placed on top of another axis, in the order listed. The A axis rotates around the X 
translational axis, the B axis rotates around the Y translational axis, and the C axis rotates 
around the Z translational axis. 
The workspace of the 2 DOF mechanisms may be a surface, curve or line. Depending on the 
axis combination and axis stack, the bounding conditions for an axis combination may be a 
segmented line – i.e., a void exists where the axis/part / fixture is located. The 3 DOF 
mechanisms usually have a solid workspace. Again, this depends of the joint type 
(rotational or translational) and their order in the kinematic chain. The revolve profile 
consists of the sweep volume of the rotary axis, part, and fixture profiles around the rotation 
axis. 
Two combinations of vertical 3 axis milling machines are shown in Figure 6, which are 
comprised of Case 0, T and Case 4. In Figure 7, a 5 axis vertical milling machine which is 
comprised of Cases 5 and 6 is shown. In Figure 8, a horizontal 5 axis milling machine is 
illustrated, which is comprised of Cases 4 and 9. For this machine, the revolve profile is also 
displayed. 
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Case Kinematic 
Structure 

Label Workspace Work window Comment 

0, T T - - 1 DOF basic element 

0, R 
R 

- - 1 DOF basic element 

1  
 RR Flat circular 

surface 
Flat circular 

surface 
Work space = Work 

window 

2 
 
 RT Cylindrical 

surface 
Cylindrical 

surface 
Work window =  

Work space - tool length 

3  
 

TR Cylindrical 
surface 

Cylindrical 
surface 

Work window =  
Work space - tool length 

4  
 

TXTY Rectangular 
surface 

Rectangular 
Surface 

Work space = Work 
window 

5  
 

RR-
articulated

Spherical 
surface Indeterminate 

Point position also dependent 
on tool  length / part fixture 

length 

6  TXTYTZ Cube solid Cube solid 
Work window =  

Work space offset by tool 
length 

7 
 
 

RRR-
articulated

Toroidal 
surface 

Indeterminate Point position also dependent 
on tool length 

8 TXRB Line 
Segmented or 
offset line – 

not completely 
defined until 

combined with 
other 

kinematic 
chains 

Void in the region of the 
axis dependent on the 
revolve profile sweep 
radius and axis stack 

9 TXRBRA Line 

Void in the region of the 
axis dependent on the 

revolve profile sweep radii 
and axis stack 

10 TZRCRA

Hemi--
spherical + 
cylindrical 

surfaces 

Indeterminate 
Void in the region of the 

axis dependent on the 
sweep radii and tool length 

Table 1. Summary of selected elemental structures (adapted from Djuric & Urbanic (2009) 
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 (a) (b) 

Fig. 6. (a) TZ + TYTX combination, (b) (TZ1 + TZ2)+ TXTY combination 

For step 3 in the work window process flow, the analytical representation for Cases 1-7 is 
relatively simple, and related directly to the axis limits (all cases) and tool length (Cases 2, 3, 
5 - 7). The complexity is introduced when coupling the kinematic chains for Cases 0, R and 
0, T, and Cases 4, 5, and 6 with Cases 8-10. Reference planes need to be established to link 
the axes’ grounds. Along with the axis stack order, the axes travel limits must be defined, as 
well as the revolve profiles, where appropriate. Set theory and Boolean operations are then 
performed to couple the fixture and tooling kinematic chains in relation to their bounding 
geometry.  
 

 
 (a) (b) 

Fig. 7. (a) 5 axis milling machine and basic structure, (b) RR+ TXTYTZ combination 
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 (a) (b)  

Fig. 8. 5 axis milling machine and basic structure, TZRBRA+ TXTY combination, (b) revolve 
profile around the B axis at the home position (centre) of X axis 

The addition of the rotary axes immediately reduces the maximum part size that can be 
machined. This reduction of available work space (or volumetric void) depends on the 
centre of rotation for the rotary axis, its rotational limits, and the axis stack; hence, the 
importance of being able to generate the revolve profile. The inclusion of the fixture(s) and 
part(s) modifies the rotary profile for an axis stack located on the table. For an axis stack 
located on the end-effector, the tool length (cutting tool or CMM probe) needs to be taken 
into consideration. This needs to be defined in order to assess the optimal fixture(s) 
positioning, the maximum part size or number of parts to be located on a fixture (i.e., a 
tombstone configuration consisting of multiple parts), the maximum tool length and width 
parameters, and the retraction travel path. The table based revolve profile must be contained 
or be a volumetric space subset within the workspace region defined by the X, Y, Z travel 
limits. For mechanisms that contain Cases 8 and 9, initial volumetric assessments need to 
be performed at the X and Y travel limits with the Z axis fully retracted while considering 
the tool offset to ensure no basic crash conditions and the maximum part/fixture 
conditions. Then assessments need to be performed at the rotary axes limits to determine 
orientation feasibilities. A sample of Boolean operations for the region defined by the tool 
offset (Figure 9 (a)) and then an axis stack on the Z axis (Figure 9 (b)) are illustrated in 
Figure 9. 

2.2 Industrial robot solution approach 
To start, the Denavit-Hartenberg notation (i.e., DH parameters) is presented to provide the 
background for the subsequent analyses, as the DH parameters are commonly used in the 
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(a) 

 

 
(b)  

Fig. 9. Boolean operations for a Case 10 set of tools to establish valid operating region 

robotics domain and provide a standard methodology to write the kinematic equations of a 
manipulator or end-effector.  Each joint in a serial kinematic chain is assigned a coordinate 
frame. Using the DH notation (Denavit  & Hartenberg , 1955), 4 parameters are needed to 
describe how a frame i  relates to a previous frame 1i −  as shown in Figure 10.  
After assigning coordinate frames the four D-H parameters can be defined as following: 

ia
 - Link length is the distance along the common normal between the joint axes 

iα  - Twist angle is the angle between the joint axes 
iθ  - Joint angle is the angle between the links 
id  - Link offset is the displacement, along the joint axes between the links 
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Fig. 10. Coordinate frames and D-H parameters 

2.2.1 Empirical approach using a commercial robot simulation software package 
The determination of open kinematic chain dexterity has been done using numerical and 
analytical methods. These methods are applied and compared using a six DOF manipulator, 
(Abdel-Malek & Yeh, 2000). The Jacobian formulation provides quantitative dexterity 
comparison between manipulators with different architectures. It was first applied to 
analyze serial robots and compared with parallel robots with the same DOF, (Pond & 
Carretro, 2011). Using the virtual angle analysis the dexterous workspace is generated to 
analyzed the orientation capability of a manipulator trough its equivalent mechanism (Dai & 
Shah, 2003). Placement of the manipulator has been done by implementing the Workspace 
towards the target points and subjecting it to a set of constraints to determine the reachability 
of the end-effector without using the inverse kinematics (Jingzhou Yang, et al., 2009).  
Using the above information as a starting point, the methodology to generate the work 
window for robots using empirical equations follows. Two robots were selected with 
different kinematic structures (an ABB IRB 140 Robot and a Fanuc M16) and their work 
window was generated using the Workspace 5 robotic simulation software. A systematic 
manual valid point generation approach is used to develop the algorithm that supports both 
procedures. After this was completed, analytical equations were developed empirically and 
tested for their validity using different examples, an approach conceptually similar to that 
taken by Abdel-Malek & Yeh (2000). Then the methodology was expanded upon to reflect 
the problem being solved. By varying joint values to get the complete space representation 
with the desired orientation (in this example, the orientation is ‘normal to the robot base’ as 
this represents common pick and place operations associated with material handling), only 
four joints are used: Joint 1, Joint 2, Joint 3, and Joint 5. Joint 4 and Joint 6 remain constant. 
For this study the detailed kinematic information for the ABB IRB 140 Robot and Fanuc M16 
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robots is presented below. The ABB IRB 140 kinematic structure diagram is shown in Figure 
11 and its D-H parameters are given in Table 2. 
 

i  id  iθ  ia  iα  

1 1d  1 0θ =   1a  90−   

2 0  2 90θ = −   2a  0  

3 0  3 180θ =   0  90  

4 4d  4 0θ =   0  90− 

5 0 5 0θ =  0 90

6 6d 6 90θ = −  0 90

Table 2. D-H parameters for the ABB IRB 140 Robot 

The Fanuc M16 kinematic structure diagram is shown in Figure 12 and its D-H parameters 
are given in Table 3. 
 

 
Fig. 11. Kinematic structure of the ABB IRB 140 robot  
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i  id  iθ  ia  iα  

1 1d  1 0θ =   1a  90−   

2 0  2 90θ = −   2a  180  

3 0  3 180θ =   3a  90  

4 4d  4 0θ =   0  90− 

5 0 5 0θ =  0 90

6 6d 6 180θ =  0 180

Table 3. D-H parameters for the Fanuc M16 Robot 

 

 
Fig. 12. Kinematic structure of the Fanuc M16 Robot  

Using a commercial simulation and off-line programming software Workspace 5, the work 
window (subspace with ‘normal to the base’ orientation) is generated for the ABB IRB 140 
robot. The black net represents the 2D workspace and the green coordinate frames represent 
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the work window region. The 2D set of points for the ABB IRB 140 is presented in Figure 13. 
Similarly, the work window (subspace with ‘normal to the base’ orientation) is generated for 
the Fanuc M16 robot and this set of 2D points is presented in Figure 14. 
 

 
Fig. 13. Work window for the ABB IRB 140 Robot for the 90 degree (normal) orientation 

 

 
Fig. 14. Work window for the Fanuc M16 Robot for 90 degree (normal) orientation 

Upon combining the procedures for the generation both work windows, an empirical 
formula for the joint five angle is developed, which is shown in equation (1). 
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 )( 325 θθφθ KK +−=  (1) 

The parameter K in Equation 1 is calculated using the formula below: 

 2cosK α=  (2) 

Where 2α  is the Joint 2 twist angle. 
The generalized algorithm for generating the work window for two different kinematic 
structures is given in Figure 15. This solution is valid for 6 DOF robots with rotational joints 
and the Fanuc and ABB robot kinematic structures. The outcome of the algorithm is either a 
2D or 3D work window. 
 

 
Fig. 15. Algorithm for work window generation  
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2.2.2 Generation of Work window using analytical equations  
In the kinematic analysis of the manipulator position, there are two separate problems to be 
solved: the direct kinematics, and inverse kinematics. Assessing the direct kinematics 
involves solving the forward transformation equation to find the location of the hand in 
terms of the angles and displacements between the links. The angles and displacements 
between the links are called joint coordinates and are described with link variables, while 
the location of the hand in space is described using Cartesian coordinates. Inverse 
kinematics involves solving the inverse transformation equation to find the relationships 
between the links of the manipulator from the location of the hand in space. A serial link 
manipulator is a series of links, which connects the end-effector to the base, with each link 
connected to the next by an actuated joint. If a coordinate frame is attached to each link, the 
relationship between two links can be described with a homogeneous transformation matrix 
using D-H rules (Denavit & Hartenberg, 1955), and they are named 1i

iA− , where i  is 
number of joints. 
 

 1

cos cos sin sin sin cos

sin cos cos sin cos sin
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 (3) 

The robot can now be kinematically modeled by using the link transforms:  
 

 n
n

i
i

n AAAAAA 11
3

2
2

1
1

00 −−=   (4) 

Where 0
nA  is the pose of the end-effector relative to base; 1i

iA−

  is the link transform for the 
thi  joint; and n  is the number of links.  

For the ABB IRB 140 robot, six homogeneous transformation matrices have been developed 
using Maple 12 symbolic manipulation software, Equation 2 and the D-H parameters from 
Table 2. 
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The ABB IRB 140 robot can now be kinematically modeled by using Equations 4-10.  

 0 0 1 2 3 4 5
6 1 2 3 4 5 6A A A A A A A=  (11) 

The pose matrix of the end-effector relative to the base is presented in Equation 12. 

 0
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 (12) 

The end-effector orientation is defined with the rotation matrix. The upper 3 3X  sub 
matrices of the homogeneous transformation matrices Equation 11, represents the rotational 
matrix, Equation 13. The graphical representation of the end-effector is shown in Figure16. 
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Fig. 16. The end-effector frame of the ABB IRB 140 robot  

The normal vector n is along 6x  axis, the sliding vector s is along 6y  axis, and the approach 
vector a is along 6z  axis. The orientation of the end-effector, relative to the robot base 
frame, is defined with the three vectors: n , s , and a . Their projections onto the robot base 
frame are given with the rotational matrix 0

6R . For the ABB IRB 140 Robot the relation 
between end-effector and base frame, when the end-effector is normal to the robot base, is 
graphically shown in Figure 17. The orientation matrix for the given position is calculated 
(see Equation 13). 
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Fig. 17. The end-effector frame of the ABB IRB 140 robot  
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The calculation of the 2D end-effector orientation is dependent on the three joint angles: 
Joint 2, Joint 3 and Joint 5. The formula for Joint 5 is generated by assigning initial values for 
the Joint 1, Joint 4 and Joint 6 in the forward kinematic solution. The rotational matrix in that 
case is calculated and is shown in Equation 15. 

2 3 5 2 3 5 2 3 5 2 3 5

0
6

2 3 5 2 3 5 2 3 5 2 3 5

0 cos( )sin sin( )cos cos( )cos sin( )sin

1 0 0

0 sin( )sin cos( )cos cos( )sin sin( )cos

R

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

+ + + − + + + 
 
 = −
 
 − + + + + + + 

 (15) 

By combining Equation 14 and 15 the formula for the Joint 5 angle is generated. 

 2 3
5

2 3

sin( )tan 2
cos( )

a
θ θθ
θ θ

 +=  − + 
 (16) 

To be able to generate complete work window, the Joint 2 and Joint 3 angles must vary 
between their given limits for the desired increment value Δ  and using the forward 
kinematic solution to generate the solution for Joint 5. 
Equation 16 was evaluated using the commercial software Matlab. The results were 
compared to the forward kinematics calculated using the Maple 12 software and the 
Workspace 5 simulation and off-line programming software ( Figure 18). 
 

 
Fig. 18. Evaluation of the formula for the ABB IRB 140 robot  

The forward kinematic calculations for the Fanuc M16 robot are done using Equations 2 and 
3 and Table 3, which are shown in equations 17-22. 
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Similarly to the previous calculations, the end-effector orientation matrix is found. The 
graphical representation of the end-effector is shown in Figure 19. 
For the Fanuc M16 Robot the relationship between end-effector and base frame, when end-
effector is normal to the robot base, is graphically shown in Figure 20. The orientation 
matrix for the given position is calculated using Equation 23. 
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Fig. 19. The end-effector frame of the Fanuc M16 robot 

 

 
Fig. 20. The end-effector frame of the Fanuc M16 robot  
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The rotational matrix in this case is calculated and is shown in Equation 24. 
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By combining Equations 23 and 24, the formula for Joint 5 angle is generated. 
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To be able to generate the complete work window, again the Joint 2 and Joint 3 angles must 
be varied between their given limits for the desired increment value Δ  and using the 
forward kinematic solution to generate the solution for the Joint 5. 
As with the ABB IRB 140 robot, this resulting equation 25 is evaluated using Matlab, and 
compared with result assessments Maple 12 and Workspace 5 (Figure 21). 
 

 
Fig. 21. Evaluation of the formula for Fanuc M16 Robot  

Equations 16 and 25 can be unified into one general formula for calculating Joint 5 angle for 
either ABB IRB 140 robot or Fanuc M16 robot by using the parameter K in Equation 2. The 
unified formula is presented in Equation 26. 

 2 3
5

2 3

sin( )tan 2
cos( )

K K
a

K
θ θθ
θ θ

 +=  − + 
 (26) 

This methodology can be applied to any similar kinematic structure and the unification 
procedure can be extended. The formula is valid for any desired orientation. The example 
using a 45 degree orientation for the ABB IRB 140 robot is illustrated in Figures 22 and 23. 
As with the machine tool example illustrated in Figure 9 (b), the Boolean intersection of the 
selected 45° orientation and the 90 ° normal to the base regions is the zone where both 
orientations are valid (Figure 23), and where the part should be located if both orientations 
are required for the process travel paths.  

Workspace 5

Matlab PROGRAM
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Fig. 22. Work window for the ABB IRB 140 robot for the 45 degree orientation 

 

 
Fig. 23. Work window for the ABB IRB 140 robot showing the comparison between the 90 
normal to the base orientation and the 45 degree orientation 
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To facilitate the 6 DOF work window calculation, empirical and analytical methods are used 
and validated. From the empirical study, it found out that Joint 2, Joint 3, and Joint 5 play 
the most important role. By varying Joint 2 and Joint 3 between their limits, Joint 5 needs to 
be calculated to satisfy the desired end-effector orientation angle. The study of a repeatable 
procedure led to the generation of the analytical method.   
Two kinematically different robots are selected and their work windows are generated:  the 
ABB IRB 140 and Fanuc M16 robots. The resulting work window space can then be assessed 
using Boolean operations to determine the valid working zone for multiple travel paths, 
orientations, or regions of overlap for a manufacturing cell. This is illustrated for the 90 
degree normal to the base and selected 45 degree orientation example.  

3. Robot cell case study 
For the selected example, the work window is generated using the empirical formula 
(algorithm in Figure 11) and evaluated with analytical solution (Figure 24). Three 6DOF 
ABB robots are place in a work cell. The desired orientation is required for synchronous 
motion. The robots’ placement will depend on the end-effector orientation. Using the work 
window for each robot, the layout can be done quickly, accurately and options can then be 
assessed. For example, the consideration that the robots may offset and sliding rails (or a 7th 
axis) added such that one robot could be repositioned to perform the other robot’s tasks if a 
robot is non-performing for a reason. Reduced productivity would result, but production 
could still continue.  
 

 
Fig. 24. Work window for the selected example 

4. Conclusion 
To conclude, a methodology to predetermine regions of feasible operation for multiple 
kinematic chain mechanisms and manufacturing cells is presented. The approach differs 
for mechanisms consisting of 1, 2, and 3 DOF subsets linked together via reference frames, 
and 6 DOF industrial robots. However, after the basic region of valid operation is 
determined, assessment of the part location and travel paths can be performed. With 
complex system configurations, it is not intuitive to define the region of task feasibility for 
the initial design and as well as design alternatives, as there is much coupling related to 
the kinematic structures and their manipulability, tooling, fixtures, part geometry and 
task requirements.  Changing an operation / task set or a system reconfiguration can be 

Generation of 
Work window 
for the selected 
example
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executed virtually, and these methods employed to determine feasibility prior to physical 
set ups or modification in the manufacturing environment, which represents a time and 
cost savings.  
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1. Introduction

The development of industrial production is subject to a change, which is mainly caused
by higher customer orientation. The possibility of an end-customer to configure nearly
individual mass products results in sophisticated challenges for production. The diversity
of variants is growing. In addition an increasing demand to offer a band of new products
leads to shorter product life cycles. To be competitive a company has to provide the product
at reasonable costs. Considering serial production lines in highly developed countries, a
high degree of automation is necessary to gain economies of scale. These changes of the
economic boundaries demand specific design methodologies for the production equipment.
In particular reconfigurable robotic systems are promising alternatives to the purchase of new
production equipment. In case of changed production organization, reconfigurable robotic
systems reduce redesign efforts and do not require rescheduling of entire production lines.
Major impact factors to the design of reconfigurable robots are shown in Figure 1. They are
subdivided into product and production driven aspects.

Fig. 1. Impact factors to reconfigurable robotic systems.

Regarding robotic systems, parallel robots, due to their high speed, acceleration and stiffness
parameters have a huge potential to be reconfigurable systems. Several and entirely different
reconfiguration strategies of parallel robotic systems can be derived based on these properties.
Starting from the early design stage of requirement management, design considerations
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and machine elements have to be considered in order to enable effective reconfiguration of
the systems. Since development and design complexity for reconfigurable robotic systems
increase necessary steps to be addressed are use case derivations, their segmentation and
discretization as requirement spreads as well as the relation between the systems components
and parameters of the robotic system, which are modified.
In this contribution general aspects of robotic reconfiguration approaches are shown and a
methodological design procedure for reconfigurable systems is introduced. A brief literature
review tends to determine the general idea of reconfiguration and the state of research of
robotic reconfiguration by several approaches. As parallel robots constitute the focus in
this chapter, some basics of this particular type of robots are shown. In order to develop
reconfigurable robotic systems, the requirement management as the first step of the design
process is significant. Therefore, paragraph 4 discusses the modeling of complex requirements
and requirement spreads using SysML. In the following, static and dynamic reconfiguration
approaches of parallel robots are presented and applied exemplary. Since the suitability
of each reconfiguration strategy depends on the restrictions of the considered use cases, a
systematic assessment of reconfiguration approaches is done in section 6. The chapter closes
with a conclusion and a brief prospect to further research activities.

2. Literature review

The field of robotic research reconfiguration is often attended by modularization,
standardization of interfaces or morphology on different mechatronic levels. In order
to establish a consistent comprehension the term "‘reconfiguration"’ is defined, before
representatives of different concepts are described briefly.

2.1 General idea and term definition
The general idea in developing reconfigurable robots is to enable a system to change its
abilities to fulfil various tasks. These tasks are characterized by different requirements
depending on the robots field of application. In this contribution parallel kinematic robots
are focused on, where handling and assembly tasks are typical. Hence, a suitable definition
for reconfiguration is given by Setchi (2004):

"‘Reconfigurability is the ability to repeatedly change and rearrange the components of a system in a
cost-effective way"’.

In literature a wide spread understanding of reconfigurable robots is existent (see Figure 2). In
the following section different approaches and realization examples are introduced in order
to distinguish the scope of this contribution.

2.2 Classification of reconfiguration approaches
Many approaches for the reconfiguration of robotic systems have been proposed in literature
but are not yet established in industry. These approaches can be considered as either online or
offline. While online reconfiguration is performed during the use of a robot without switching
it off, offline reconfiguration demands a shut-down of the robot (see Figure 2). The following
literature review helps to gain a deeper insight into the possibilities to realize reconfigurable
robots that can adapt to external environments.
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Fig. 2. General classification of reconfiguration approaches to adapted parallel robots to
external environments.

2.2.1 Offline reconfiguration
The mechanical structure of fully parallel robotic systems is very suitable for offline
reconfiguration since those structures are actuated in parallel and therefore consists of many
consistent components. Components or sub-modules of the system are replaced or the same
components are mounted in different positions and orientations. Thus, various morphologies
of the kinematic structure can be arranged.
Reassembling and replacement. Various pieces of work focus on the design of modular
kinematic structures in order to enable effective reconfiguration of robot systems [Krefft
(2006), Fisher (2004), Wurst (2002)]. A modular robotic system consists of a set of
standardized modules, such as actuators, passive joints, rigid links (connectors), mobile
platforms, and end-effectors, that can be rapidly assembled into complete systems with
various configurations. In Ji (1998) a reconfigurable platform manipulator based on a
HEXAPOD kinematic structure is presented. Each module e.g. leg modules of the structure
can be replaced and position and orientation of the joints on the mobile platform and the base
can be varied, using different sets of pattened holes. Thus, different workspace dimensions
are obtained. Yang et al. (2001) propose two types of robot modules in order to simply
assemble three-legged parallel robots. Using fixed-dimension joint modules and variable
dimension link modules that can be custom-designed rapidly, various kinematic structures
can be facilitated.
In order to develop offline reconfigurable parallel robots numerous design approaches have
been presented in literature. Since modular design is a research field in engineering design,
specific methodologies for modular reconfigurable parallel kinematic machines (PKM) were
introduced e.g. by Jovane (2002), Pritschow et al. (2000), and Koren et al. (1999). These
approaches are mostly limited to concrete kinematic structures e.g. HEXAPOD robots, so
transfer of constructive realizations is narrowed down.

2.2.2 Online reconfiguration
Online reconfiguration means to change the robots’ properties without rearranging the
mechanical parts. Hence, no shut-down of the system is essential, but particular hardware
components as well as dedicated control functions are required.
Modular self-reconfiguration. Modular self-reconfigurable robotic systems have been topic
of tradition in robotics science for years, a survey of Jantapremjit (2001) shows a variety of
these reconfigurable robots. In general they are assembled by a set of identical modules with
the same functional range. Each module has to carry actuation, sensing, control entities
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as well as energy supply, communication and offers several interfaces. In order to be
self-reconfigurating the set of interlocked modules has to change configuration autonomously,
which mostly imply the ability of locomotion for each module. In Yim (2007) the classification
of modular self-reconfigurable robots by architecture and the way in which the units
are reconfigured is provided. The control strategy of those robots can be centralized or
distributed. Famous examples of this robot class are PolyBot G3 [Yim (2000)] or Molecubes
[Molecubes (2011)].
Auxiliary drives and adaptive machine elements. In order to adapt the configuration of the
kinematic structure during operation of the robot, passive components can be substituted by
auxiliary drives or adaptive machine elements. Using these components, geometries of the
kinematic structure e.g. strut length and degree of freedom (DoF) are affected, thus different
configurations are achieved. Adaption of the strut length is carried out using auxiliary
linear motion devices such as linear motors, hydraulic jacks, air cylinders, or lead screws
driven by rotary actuators. An approach to select suitable components for reconfiguration
of manufacturing systems is introduced by Lee (1997). However, a requirement oriented
consideration of component parameters is not made. In Krefft (2006) a concept to vary the
length of struts in discrete steps by means of air cylinders is introduced. This geometric
reconfiguration results in workspace as well as stiffness variations. Approaches to affect
systems DoF are presented e.g. by Theingi et al. (2007). Here, belt drives are used to couple
joints and therefore reach new kinematic configurations as well as passing singularities within
the workspace. O’Brien (2001) proposes a kinematic control of singularities applying passive
joint brakes to affect the kinematic DoF.
Main difference of the described approaches is the impact to the robots’ performance. Adding
auxiliary drives, the performance is mostly influenced negatively. For instance system weight
raises because of higher component weight. Hence, adaptive machine elements which offer
basic function as well as additional ones are focus of this contribution. Other aspects such as
the realization of redundant actuated mechanisms are not considered.
System inherent reconfiguration. Due to the fact that within the workspace of parallel
robots singularities occur (see section 3), system inherent reconfiguration without demanding
particular mechanical components is feasible. Several research works focus on passing
through or avoiding singularities within the workspace [Budde (2010), Hesselbach et al.
(2002), Wenger (1998)]. Passing actuator singularities, workspaces of different assembly
modes can be combined to a larger workspace [Krefft (2006)]. Hesselbach et al. (2002) firstly
introduced an approach to cross singularities using inertia of the Tool Center Point. A
comprehensive procedure for the passing of singularities as well as the concerning control
issues is described in Budde (2008).
Reconfiguration via grasping. The last approach to be considered in context of online
reconfiguration of parallel robots is, that separate manipulators constituting an entire
mechanism by grasping an object. In Riedel (2008) a reconfigurable parallel robot with an
underactuated arm structure is presented. After grasping, the contact elements at the end
of the underactuated arm mechanisms are connected to the object which forms a closed
loop mechanism similar to the architecture of parallel manipulators. Each arm mechanism
is a combination of a five-bar-linkage with a parallelogram arrangement, a revolute joint
around the vertical axis and a spherical wrist joint [Riedel (2010)]. Consequently, different
configurations of the entire system can be arranged to face specific requirements (workspace
dimension, process forces, stiffness) of the current task.
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Based on this brief literature review in the following section particular properties as well as
design aspects of parallel robots are introduced. Subsequently, requirement management for
reconfigurable robots is introduced in section 4. Further considerations will also focus on
offline and online reconfiguration. Here, the use of adaptive machine elements as well as
system inherent reconfigurations are considered.

3. Parallel robotic systems

Parallel robots constitute a special class of robotic systems mainly for industrial applications.
The characteristic property of parallel robots, in comparison to their serial counterparts is the
closed-loop kinematic chain referring to the kinematic structure. The constructive advantage
of this robot architecture is the possibility to assemble the drive near the frame, which
implicates very low moving masses. This specific design leads to several significant benefits
in the robots’ performance, such as high stiffness and high dynamic properties. Due to these
aspects, parallel robots are employed for an increasing amount of handling and assembly tasks
[Merlet (2001)]. The most famous example of a parallel kinematic structure is the Delta robot
of Clavel (1991) (see Figure 3). Here, a four DoF Delta robot is shown, where three translational
DoF are provided by the rotary drives mounted at the frame. The load transmission is carried
out by the three close-loop chains, where the constant orientation of the end-effector platform
is provided by the parallelogram structure in the mechanism. The middle axis offers an
additional rotary DoF by the application of a length variable connecting shaft.

Drive

Frame

Closed Kinematic Chain

End-effector Platform

Fig. 3. Delta structure as famous example for parallel robotic systems.

The rather low market penetration of parallel robots (except the Delta kinematic) is reasoned
by specific drawbacks. The unfavorable workspace-to-installation space ration in comparison
to serial robots is the main aspect. Furthermore, the presence of diverse singularities within
the workspace, which lead to a degeneration of the robots’ manipulability. In addition, these
singularities result in challenging tasks in control design. In Park (1998) singularities are
classified as

1. configuration space singularities at the boundaries of configuration space

2. actuator singularities, where the DoF of the robot varies
(a) degenerate types: links can be moved, even if the actuators are locked
(b) nondegenerate types: internal forces are generated
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3. end-effector singularities, in which the end-effector frame loses DoF of available motion.

Mathematically, the mentioned singularities occur, if one of the Jacobian Matrices JA,B with

JA =
δ f
δX
∨ JB =

δ f
δq

(1)

where X represents the Tool Center Point (TCP) coordinates X = (x, y, z)T and q the actuator
variables q = (q1, q1, ..., qn)T , becomes singular. Whereas, a configuration space singularity
appears if,

det(JA) �= 0∧ det(JB) = 0. (2)

Actuation singularities are conditioned by

det(JA) = 0∧ det(JB) �= 0. (3)

The singularity analysis is hindered by the structural complexity of parallel mechanisms,
which is attended by an extensive kinematic description. Due to reconfiguration approaches
of parallel robots, singularity detection, avoidance or passing is especially focused in
paragraph 5.2.
For the systematic design of parallel robotic systems different approaches have been proposed
in literature e.g. [Frindt (2001)]. The parameter space approach proposed by Merlet (1997)
considers requirements such as workspace and the articular velocities and leads to possible
sets of robot geometries that satisfy these requirements. These first design solutions are
sampled to identify the best compromise with regard to other requirements, i.e. accuracy.
Following the cost function approach [Bourdreau (2001)] the robot geometries are arranged in
the way that workspace dimensions are as closely congruent as possible with the prescribed
as possible. Based on this demand the design problem becomes a multi objective optimization
problem. Whereas these approaches consider only one use cases of the robotic system they
lead to "‘static"’ solutions, which can hardly be adapted to other use cases. Therefore, the
proposed approach can be seen as an addition to these approaches. It ensures the design of
reconfigurable robotic systems in order to satisfy temporal changes of requirements which are
caused by different use cases.
This brief overview of the properties of parallel robotic systems shows the benefits and
drawbacks of these systems. With regard to the aforementioned aspects of reconfiguration
parallel robots are suitable systems to be reconfigured, as their extensive dynamic, accuracy
and stiffness parameters. Hence, they can cover a huge range of requirements. For this reason
a specific methodical approach for the requirement management e.g. under consideration of
the identification of requirement spreads is needed.

4. Requirement management for reconfigurable robotic systems

The development of reconfigurable robotic systems demands detailed analysis of the
product surroundings and relevant use cases during each life-cycle phase (e.g. operation,
maintenance). As a result of this analysis numerous requirements are refined to forecast
claimed system properties. In order to enhance life-time and performance of the system
several target values for one requirement have to be fulfilled. For instance, different use cases
require different workspace dimensions. These varying values for one requirement we call
requirement spread [Schmitt (2009)]. In order to identify spreading requirements and derive
reconfiguration scenarios, a structured model of the expected life-cycle as well as the desired
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system properties is needed. Nevertheless, a consistent model is essential to facilitate domain
specific views on the gathered information and therefore enable an efficient treatment of the
development task.
In this section an object oriented approach to work out a requirement model is introduced. In
order to identify reconfiguration parameters a methodical procedure is presented.

4.1 Modeling requirements
The modeling of requirements is carried out in order to provide a functional, comprehensive,
complete, operational, non redundant and minimal set of requirements, which can be
used as a pattern for the whole development process [Roozenburg (1991)]. Analysing the
requirements and their relations reconfigurations scenarios for the robotic system can be
derived and estimated. Requirement management for reconfigurable robotic systems focuses
on three aspects [Stechert (2010)], namely: Surroundings, structure, and relations. Based on
these aspects an analysis can be arranged in order to indentify reconfiguration parameters and
develop reconfiguration concepts.
Surroundings. As one of the first steps in the development process the surrounding of
the robotic system has to be respected in order to recognize important requirements for the
involved domains. Therefore, each life-cycle phase has to be taken into account including
different scenarios (e.g. Anggreeni (2008), Brouwer (2008)) or use cases with all related
actors, surrounding environment and possible disturbances. A systematic documentation
helps to identify and to use gathered requirements and constraints. It further shows which
requirements derive from what surrounding element.
Structure. In order to handle the gathered information in the following development steps, it
has to be structured [Franke (1999)]. Requirements can be hierarchical structured such as goal,
target, system requirement and subsystem requirement. Furthermore, they can be allocated
to the respective domain and to the purpose in the development process. In progress of the
development process requirements can be allocated to concerning subsystems. Assignment
of certainty and change probability helps to focus on most relevant requirements during each
development step.
Relations. Elements of complex models are related among one another. A basic classification
for relations was presented in earlier work [Stechert (2009b)]. This classification helps to
declare relations associated to development steps, granularity, support, direction, linking and
quantifiability. Representing these relations within the requirement model helps designers to
understand the influences of changes (e.g. change of rack radii), point out goal conflicts and
highlight interfaces to other disciplines. However, the modeling of relations is the basis for
the analysis of the requirement model, discussed in section 4.2.
Within the work of the Collaboration Research Centre (CRC) 562 "‘Robotic Systems for
Handling and Assembly - High Dynamic Parallel Structures with Adaptronic Components"’
a SysML-based requirement model was developed [Stechert (2010)]. Since the Systems
Modeling Language (SysML) uses parts of UML (Unified Modeling Language) it is a widely
known notation in the fields of software development, electronic design and automation. In
recent years it has become more and more popular in mechanical engineering e.g. Woelkl
(2009). Using SysML a product can be modeled out of different viewpoints and on different
levels of abstraction [Weilkiens (2008)]. However, within the introduced requirement model
the above mentioned aspects are picked up in order to provide a coherent product model.
Major elements of the requirement model are "‘Requirements"’ and "‘Surroundings"’ [Stechert
(2009a)]. The requirements are hierarchically distinguished into "‘Goals"’, "‘Targets"’, and
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Fig. 4. Elements of an extended requirements diagramm based on SysML.

"‘Technical Requirements"’. Within the element "‘Surronding"’ "‘Product Environments"’ (e.g.
neighbor systems) and "‘Use Cases"’ are defined. These use cases are related to the product
life-cycle and describe e.g. the handling of muffins within the use-phase of the robot. Figure 4
shows an excerpt of the hierarchical structure as well as different use cases. Pointing out the
relations between use cases and requirements, several requirements are refined concerning
their target values. For instance, the use case "‘handling muffins"’ correlates amongst others
with the requirements "‘workspace"’ and "‘payload"’. In addition, the requirements are linked
to components of the robotic system (e.g. drive). Indicating constraints, correlation between
components and requirements as well as requirements among each other are specified. In this
way the requirement speed correlates with the component drive (constraint power).

4.2 Identification of reconfiguration parameters
Based on the introduced requirement model a systematic analysis can be carried out in
order to identify meaningful scenarios and relevant requirement spreads for reconfiguration
scenarios as well as their particular impact on the whole robotic system. By linking
requirements which vary for different use cases with corresponding product parameters,
reasonable reconfiguration concepts can be derived. Reconfiguration parameters can be
systematically detected following the two steps shown in Figure 5. These two superordinated
steps; identify resonable reconfiguration scenarios and assess possible reconfiguration concepts;
constitute five working steps which are described below, following earlier work [Schmitt
(2009)].
Initially, possible applications of the robotic systems and the corresponding use cases
(e.g. handling muffins, PCB assembly) have to be considered. With regard to tasks (e.g.
pick-and-place, feeding, high precision assembly) on the one hand and branches of trade
(e.g. food industry, material processing, ICT) on the other hand, the identified use cases are
structured. In addition, the reconfiguration of the robotic system is considered as a use case
itself. Subsequently, relations between use cases and requirements are established. Using
the relation "‘refine"’ each requirement is stated more precisely by an use case. As a result
of this refinement a new sub requirement is created. For instance, the use case handling
muffins refines the requirement workspace width to the exact value 500 mm. Assuming
different use cases within the life-time of the robotic system it becomes evident, that diverse
sub requirements for the same parent requirement occur.
Within the second step a hierarchical goal-system is developed. Based on the requirements
considered before, traces are followed to superordinated targets and goals. Furthermore,
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Structuring use cases and establishing 
relations to requirements.

Compiling the hierarchical goal-system and 
identifying essential requirements for both 
concept and embodiment.

Analysing whether spreading requirements 
are subject of reconfiguration.

Analysing how these parameters can be used 
for reconfiguration and how changed
parameters will affect the whole system.

Establishing relations between requirements 
and system components and component 
parameters, respectively.

Identify reasonable 
reconfiguration scenarios

Assess possible 
reconfiguration concepts

Fig. 5. Working steps for the identification of reconfiguration-relevant parameters.

the derived requirements have to be analysed to determine whether they are relevant for
reconfiguration of the robot. First of all, concept-relevant requirements (e.g. DoF) are
analysed. Based on the definition of concepts, embodiment related requirements have to
be considered. For instance, different payloads and process loads lead to the relevant
requirement operation forces, while accuracy leads to elastic deformation. Both are related
by the structural stiffness of the kinematic structure.
The object of the third step is to estimate whether spreading requirements are subject of
reconfiguration. It is obvious, that a reconfiguration is not probable between every use
case. A robot used in the chemical industry first will not be sold to a company from the
food industry, reconfigured and reused for pick-and-place tasks. However, a pick-and-place
robot in the food industry might handle muffins first and convert to packaging of croissants
in the same company later. Additionally the influence of requirement changes to other
requirements have to be considered. The DoF at the gripper for instance might be subject
of a wide spread. However, extending a fully parallel structure with an additional DoF
causes a completely new control program. Therefore, it becomes obvious that not every
requirement spread is a meaningful basis for reconfiguration concepts. Costs and engineering
complexity are major limits. A detailed analysis of the goal-system leads to a lean set of
essential reconfiguration-relevant requirements for robotic systems [Schmitt (2009)]:

• enabling object handling • assure high accuracy
• provide workspace • provide performance
• enable operation forces • enable low lifecycle costs
• provide degree of freedom

These general requirements are specified by different use cases. For instance, the DoF is
refined by the number of possible movements and the orientation of rotation (e.g. ξ = ±25).
In the fourth step, requirements are related to system components. System components can
be hard- or software and are related to other components (e.g. information flow, geometric
surfaces). For instance, the requirement workspace dimension is satisfied by the kinematic
structure. More precisely the system component strut and its parameter strut length fulfill
this requirement.
As a last step reconfiguration scenarios are developed and analyzed. Therefore, traces from a
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requirement to the involved parameters are followed and detected relations are described in
a qualitative or - if possible - in a quantitative way. For instance, relation between strut length
and workspace dimension can be described by kinematic problem, see section 3. Furthermore,
it is necessary to determine the influence of the identified reconfiguration parameters to other
requirements and detect possible goal-conflicts. It is obvious, that an extension of the strut
length will lead to a higher moved mass, which might decrease the performance of the robotic
system.

5. Reconfiguration approaches for parallel robotic systems

In Paragraph 2.1 general approaches for reconfigure robotic systems were introduced, in case
of parallel robots for industrial applications three reconfiguration approaches are of major
relevance. These different concepts are discussed in detailed, following the classification
proposed by Krefft (2006):

• Static reconfiguration (SR) requires switching off the robot and rearranging machine parts
such as drives, struts, or joints as well as complete sub-assemblies manually (see section
2.2.1).

• Dynamic reconfiguration type 1 (DR I) is carried out during operation of the system. Physical
dimensions are not changed, but different configurations of the kinematic structure are
used. Here singularities of type 1 have to be passed by the robot (see paragraph system
inherent reconfiguration).

• Dynamic reconfiguration type 2 (DR II) is realized during operation of the system. The
changing of kinematic properties is effected by the adjustment of geometric parameters
such as strut length or modification of the DoF by joint couplings in order to avoid or
replace singularities (see paragraph auxiliary drives and adaptive machine elements).

Table 1 illustrates the description of SR, DR I and DR II by characterizing the robot status and
the configuration chance. The detailed discussion of the concepts is made in the following
sections, whereas section 5.4 points out two case studies of reconfigurable parallel robots.

Reconfiguration Approach Robot Status Configuration Change
Static (SR) off manual rearrangement of

components/ subassemblies
Dynamic Type I (DR I) on usage of different configuration

by passing through singularities
Dymanic Type II (DR II) on adjustment of geometries by

machine components

Table 1. Reconfiguration approaches for parallel robotic systems.

5.1 Static reconfiguration
According to the term of definition of static reconfiguration, the rearrangement of mechanical
components is the objective to deal with. Based on a starting concept, the introduced
methodology supports identification of reasonable reconfiguration modules (RMi) of the
parallel robot. Within this modularization it is possible to allocate several requirements to
the system components. In this way it can be sorted out, which key property of the system is
affected by what reconfiguration strategy. Figure 6 shows the RM1...3 and their interrelation
as well as the interfaces between single machine components of parallel robots.
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Fig. 6. SysML model for the modularization of the system components of a parallel robot.

The application of different grippers (RM1) according to the requirement spread
accomplishes the type of requirement, that result from the variation of the manufactured
product. In this case, the workpiece size, geometries, surface or material properties are
meant. The workspace or the required structural stiffness are only slightly influenced by the
gripper. To integrate different kinds of grippers, e.g. mechanical or pneumatic ones, adequate
constructive and control interfaces have to be designed. Furthermore, the changing manner
of energy supply must be considered e.g. at the mobile platform. The change in mass and
moments of inertia influences operation forces, accuracy and performance.
The strut/joint assembly (RM2) can be reconfigured through the installation of different
strut kits. Here, diverse strut length results in variations of the position and dimension of
the workspace. In addition, changes in strut length affect performance and accuracy due
to changes in moved masses and transmission ratio of the kinematic chain, thence possible
acceleration, maximum speed and eigenfrequencies. In terms of a modular construction kit,
the interfaces between modules have to correspond with one another.
In general the drives are the base of the characteristic kinematic chain of a parallel robot and
represent the 3rd reconfiguration module (RM3) together with the drive/joint fixture. They
are assembled at or near the frame platform and are distinguishable between rotational and
translational DoF. According to static reconfiguration, the specific properties such as weight
or number and accessibility of the application points, must be observed during the design
process for reconfigurability. Therefore, the frame can determine the ability for the static
reconfiguration of parallel robots. If the frame provides a set of patterned holes to assemble
the drives or base assembly points of the struts, the workspace dimension and position as well
as stiffness can be influenced according to the identified requirement spread.
In order to show the benefits of static reconfiguration concerning the variation of the
workspace position and dimension, a simple 2-DoF parallel mechanism is considered. The
kinematic 2-RPR structure consists of passive rotary joints (R) at the base and the end-effector
platform and active prismatic joints (P) (see Fig. 7).
The point of origin is fixed at base A and the Tool Centre Point (TCP) is defined by the
vector X = (xp, yp)T . The distance between base A and B is given by b. The vector
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a) Kinematic structure of the RPR
mechanism.

q1 =

[
xp
yp

]
=

√
x2

p + y2
p (4)

q2 =

[
cos(α) · (b− xp)

sin(α) · b · yp

]
= (5)

=
√

cos(α) · (b− xp))2 + (yp + b · sin(α))2 (6)

b) Relations for kinematic analysis.

Fig. 7. Kinematic structure and relation for kinematic analysis of the considered RPR
mechanism.

q = (q1, q2)
T includes the actuated strut variables, whereas each strut can be moved between

the intervals [qmin, qmax]. The parameter α describes the angular displacement B of base
B to A. For the kinematic analysis the solution of the relation between end-effector coordinates
and drive parameter ( f (X, q) = 0) is essential. Here, the direct and inverse kinematic
problem constitutes the motion behavior constrained by the geometric dimensions. The direct
kinematic problem calculates the position and orientation of the TCP out of the given drive
displacement. If the TCP coordinates are defined, the inverse kinematic problem assesses the
actuator displacement. The relation given in Figure 7 b) is important for kinematic analysis.
In paragraph 3 the existence and kinematic influences of singularities of parallel robots were
discussed briefly. In case of the shown planar 2-DoF parallel mechanism the configuration
space singularities can be associated with the boundary of the respective workspace.
Actuation singularities are existent for the condition

|q1|+ |q2| = b. (7)

Referring to the kinematic structure in Figure 7 a) a workspace analysis to point out
several reconfiguration concepts was done using MATLAB. First, the variation of the
interval [qmin, qmax] can be associated as a change of strut kits. Here length range can
be varied according to the boundary of each requirement in the chosen use case. The
second reconfiguration concept is to reposition the assembly points. This can be shown
by the variation of the parameter b in a way that the distance between A and B is in- or
decreasable. Furthermore, the change α expresses the repositioning of B not only in x-, but
also in y- direction to B. The following Figure 8 demonstrates the possibilities of workspace
repositioning by changing the drive assembly points and varying strut length. In field (a) the
range l with respect to [qmin...qmax] of the actuated struts is changed. Illustration (b) shows
the repositioning of the drive carrying struts in x-direction. In the kinematic model this is
equivalent to the adjustment of parameter b. Furthermore in (c) the reconfiguration of the
base assembly points in y-direction by varying the angel α between the drives is shown.

5.2 Dynamic reconfiguration type I
Dynamic reconfiguration of type I focuses on the passing through singularities during
operation without adding specific components. Therefore, it also can be constituted as a
system inherent ability of the parallel robot to reconfigure itself. Based on the works of Budde
[Budde (2010), Budde (2007)] this reconfiguration approach is introduced in detail, using the
TRIGLIDE structure as an example.
As pointed out before, workspace dimension is an essential system parameter, which has
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(a) (b) (c)

Fig. 8. Influence of the reconfiguration parameter on the position and dimension of the
workspace: a) varied strut length l1, l2; b) varied frame diameter b and c) varied angle α at
the frame connection level.

to be varied to fulfil different tasks. Since the main drawback of parallel mechanisms is
the small workspace-to-installation-space ratio, dynamic reconfiguration type I facilitates the
passing of singularties. Hence, several workspaces are combined during operation and the
useable overall workspace is enlarged. The different workspaces are mathematically defined
by different solutions of the direct kinematic problem (DKP) (assembly modes) or the indirect
kinematic problem (IKP) (working modes). Each mode constitutes its own workspace. The
workspaces of different working modes are divided by configuration space singularities,
where assembly mode workspaces are distinguished by actuator singularities. In order to
determine each of the possible configurations a vector k of binary configuration parameters
(+1 or -1) has been established by Budde (2008) with

k = (k1, k2, ...) = (kIKP, kDKP), (8)

where kIKP expresses the different solutions of the IKP and kDKP denotes the different set
of drive positions (solutions of the DKP). Each sprocket chain has two solutions of the IKP.
Hence, a parallel mechanism with nSC sprocket chains and nDKP solutions of the DKP can
have 2nSC · nDKP theoretical configurations, whereas not every solution is a real one and
therefore relevant for the reconfiguration strategy. In order to use different workspaces
or configurations generally (several) change-over configurations has to be captured to
reconfigure the mechanism.

x
y

z

drive 3

drive 2

drive 1

Fig. 9. Kinematic structure of the TRIGLIDE robot.

The described approach of DR I (passing through singularities to enlarge the workspace)
should now be demonstrated using the example of the CRC 562 TRIGLIDE robot. The robot
is based on the Linear-Delta structure. It consists of three linear driven kinematic chains,
which guide the working platform. Each chain has a parallelogram structure in order to
keep the end-effector platform in a constant orientation. This arrangement allows three DoF,
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additionally a fourth rotary axis can be mounted at the end-effector platform. Thus, a hybrid
kinematic structure occurs. In Figure 9 the kinematic structure of the TRIGLIDE robot without
the rotary axis is shown.

Fig. 10. Prototype of the TRIGLIDE robot (left); Usable working-configurations and resulting
overall workspace (right).

In case of the TRIGLIDE robot the change between different configuration workspaces is
accomplished by passing through singularities. Implemented strategies to go through the
different singularity type are described in Budde (2010). In Figure 10 the prototype of the
TRIGLIDE robot is shown as well as the desired main-workspaces and the resulting overall
workspace.
As mentioned before the so called change-over configurations have to be captured in order to
reach the main-workspaces, which are mostly capable to fulfil requirement spreads regarding
to workspace. Several configurations are shown in Figure 11. The presented approach to
reconfigure the TRIGLIDE robot leads to challenging tasks in control. The necessary steps and
the adapted control strategy is explained in Maass (2006).
To complete the explanation of the named reconfiguration approaches for parallel robots, the
next paragraph deals with DR II with a focus on adaptive machine elements.

5.3 Dynamic reconfiguration type II
Unlike the aforementioned reconfiguration strategies, the adjustment of geometric parameters
is the subject of DR II. Here, the variation of strut length or the modification of kinematic
DoF by joint couplings or lockings e.g. in order to avoid singularities or dislocate them
are reasonable reconfiguration scenarios. Since this reconfiguration strategy demands no
shut-down of the system, specific machine elements are required. In Schmitt (2010) an
adaptive revolute joint is presented. Besides the basic functions of a passive joint, this
revolute joint enables adaption of friction and stiffness. This functionality is based on the
so-called quasi-statical clearance adjustment in the bearings using piezoelectric actuators
Stechert (2007). This clearance modification between the inner and outer ring leads to an
adaption of friction and stiffness (see Fig. 12 a)). Depending on the previous friction moment
caused by the preload of the bearings the realized prototype enables continuous locking of
rotary DoF by friction magnification of 440 percent [Inkermann (2011)]. In Figure 12 the first
prototype of the adaptive revolute joint is illustrated.
In order to demonstrate a reconfiguration strategy of parallel mechanisms in the sense of
DR II with an adaptive machine element a simple RRRRR-mechanism is further considered,
following Schmitt (2010). The RRRRR-mechanism is a fully closed-loop planar parallel
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Fig. 11. Main-workspaces in working configuration (top); Selected changeover
configurations (middle, buttom) of the TRIGLIDE robot.

clearance

inner
ring

outer
ring

FactuatorFaxial Mfriction Faxial Mfriction+

(a) (b)

Fig. 12. Effect principle and realized prototype of the adaptive revolute joint used for
dynamic reconfiguration type II.

manipulator with two DoF. The cranks at the base points A1 and A2 are actuated. The
two passive rods L12 and L22 are coupled to each other by a passive revolute joint in the
end-effector point C. The kinematic chain originating at base A1 and the corresponding crank
is connected by the described adaptive revolute joint, which is marked by ⊗ (see Figure 13).

B1

C

L22

q1

L11

B2

q2

L21

A2A1

y

x

LB

L12

(a)

B1

C

L22

q1

L11

B2

q2

L21

A2A1

LB

L12

C´

(b)

Fig. 13. Kinematic scheme and geometries of the RRRRR-mechanism (a) and solutions of the
DKP (b).
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The kinematic description of the mechanism with its two closed loop chains i = 1, 2 can
be geometrically done with the cartesian end-effector coordinates X = [xc, yc]T , the base
coordinates A = [xAi, yAi]

T , which can be derived by LB, the actuator angles qi and the given
geometric parameters Lii with respect to the base frame {0}. In eq. 9 the kinematic describtion
of the mechanism is given, considering the parameters and variables shown in Figure 13 (a).

F =

[[
xc
yc

]
−

[
xAi + cos(qi) · Li1
yAi + sin(qi) · Li1

]]2
− Li2

2 = 0. (9)

Expression 9 provides a system of equations which relate the end-effector coordinated X to
the actuator coordinates qi. The equation for the direct kinematic problem (DKP) has two
solutions, in case of the RRRRR-mechanism. They constitute to different configurations of
the mechanism (see Figure 13 (b)). Changing these configurations an actuator singularity
occurs, when moving from position C to C′. In general actuator singularities can occur in the
workspace or separate workspaces into different areas.
In order to reconfigure the mechanism or to use these different workspaces adequate strategies
have to be developed, in case of DR II using the adaptive revolute joint. Assembling the
adaptive revolute joint in point B1 (see Fig. 13 (a)) and blocking it entirely, it is possible to treat
the mechanism as a RRRR 4-bar structure, with one actuated revolute joint at base point A1.
According to the theorem of GRASHOF different kinds of 4-bar mechanisms exist, depending
on the geometric aspect ratio of the links [Kerle (2007)]:

lmin + lmax < l′ + l′′ ability to turn around

lmin + lmax = l′ + l′′ ability to snap-through

lmin + lmax > l′ + l′′ no ability to turn around.

lmin and lmax are the lengths of the shortest and the longest link in the structure and l’, l” are
the lengths of the remaining links. In case of the shown 5-bar mechanism with the adaptive
revolute joint, one link length can be adjusted according to the desired mechanism property.
The resulting length LR can be calculated by

LR =
√

L2
12 + L2

11 − 2 · L12 · L11 · cos(Θ1). (10)

Beside the aforementioned possibility to reconfigure the robot, it is feasible to develop
strategies to pass through an actuator singularity in an assured manner by blocking and
releasing the mechanism at point B1 by means of the adaptive revolute joint. This
reconfiguration strategy is shown in Fig. 14.
The aspect ratios in the example are chosen by Li1/(Li2, LB) = 3/4. If the mechanism is close
to a singular position (Fig. 14.1), the adaptive revolute joint will be locked, (θ1 = 40◦). The
resulting 4-bar mechanism moves on a path, which is defined by a segment of a circle of radius
LR with center at A1 through the singular position (Figure 14.2). Subsequently, the mechanism
is in another configuration, which is not a singular position (Fig. 14.3) and the adaptive joint
can be released.

5.4 Case studies
In the previous paragraphs different approaches to reconfigure parallel robotic systems were
explained on a theoretical level. In order to give examples and fields of application two
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Fig. 14. Strategy of passing through singularity by blocking the adaptive joint.

case studies are explained and the benefits of reconfigurable robots are shown. The first
one deals with the reconfiguration of a pick-and-place robot to an assembly robot, using
the approach of static reconfiguration. Another case study is the classification of solar cells
under consideration of their efficiency. This case study will illustrate an example of dynamic
reconfiguration of type I.

5.4.1 Example I - reconfiguration of a "‘pick-and-place"’ robot into an assembly robot
In order to highlight the introduced procedure and the concept of static reconfiguration in this
section case study is presented. Therefore, a "‘pick-and-place"’ robot should be reconfigured
for an assembly task, while handling object and DoF of the system remain the same. To
demonstrate the reconfiguration concept the kinematic structure described in section 5.1 is
used. The use case assembly is characterised by a small workspace. However, higher process
forces and accuracy are required. At the same time the performance (in this case numbers of
assembly cycles per minute) compared with the "‘pick-and-place"’ task is not such important.
The lifetime cost should be minimal. With regard to the introduced reconfiguration modules
(see section 5.1), a change of the rack radius (RM3) leads to a meaningful reconfiguration
concept.

Fig. 15. Relation network for the static reconfiguration of a tow DoF parallel mechanism.
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As can be seen in Figure 15 with the new use case the requirements process forces, accuracy
and workspace dimension are refined. Since the workspace is directly influenced by the rack
radius, the accuracy is influenced via the sensitivity. For increasing rack radius sensitivity
in x-direction also increases and leads to higher accuracy in this direction. At the same
time accuracy decreases in y-direction. In addition, the accuracy is influenced by the elastic
deformation of the structure. The dimension of the deformation correlates with the value of
the process forces and the stiffness of the structure. For the same stiffness higher process forces
result in higher deformation and, therefore, decreased accuracy. This leads to a goal conflict
which can be reduced with higher stiffness of the structure. At the same time the stiffness
can be increased due to an adaption of the rack radius. Here, a higher rack radius results in a
higher stiffness.

Fig. 16. Exemplary use cases for reconfiguration of a "‘pick-and-place"’ robot (a) into an
assembly robot (b).

Static Reconfiguration from "‘pick-and-place"’ to assembly system in this case is carried out
by increasing the rack radius. Figure 16 highlights the reconfiguration, showing the two
use cases. In the first use case push-buttons are delivered via a first conveyer belt and
placed into a container on a second belt. For this reason the workspace is elongated. After
reconfiguration the same push-buttons are taken from a container and assembled into a
casing. As the push-buttons provide a snap-in fastening operational forces in y-direction are
needed and forces in x-direction might appear due to alignment deviations. Hence, the second
configuration complies with the demanded changes.

5.4.2 Use case II - solar cell classification
The end-of-line process-step within the fabrication of crystalline solar cells is the classification
of the cells according to their efficiency. Here, the "‘flash-test"’ is conducted, where each cell
is lighted by a defined flash (time, brightness per area) comparable to the sun irradiation. The
result determines the quality class of a cell. In order to sort the cells according to their class
after the flash-test, handling devices are necessary. Due to the high number of classes, which
are physically represented as square boxes, the handling robot has to provide a relatively huge
workspace. Additionally, the requirement of cycle time about 1 sec. per "‘pick-and-place"’
operation is very challenging. This combination makes the application of parallel robots
feasible, if it is possible to overcome the poor workspace-to-installation-space ratio. The
process flow of the classification can be summarized as following:

1. Conveying the cells to the classifying facility via feed band

2. Determination of the efficiency value (flash test)

3. Define the right box/position of the robots’ end-effector

4. Picking up the cell with the robot

5. Position the cell at the determined box according to the efficiency value
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6. Drop the cell in the box

7. Pick up the next cell→ return to process step 3

The values of the cell efficiency are subject to a distribution e.g. Gaussian, which means that
a certain percentage rate (depends on the standard deviation σ) of the classes corresponding
to the cell efficiency are distributed with a dedicated expectation value of μ. The remaining
classes, which belong to

μ± nd · σ, (11)

where nd constitutes the desired interval of σ.
Under this assumption the concept of DR I, the TRIGLIDE robot makes use of the two
workspaces. The high frequented boxes to classify the solar cells are located in the first, the
less ones in the second workspace. Due to the required time TR to change the configuration,
it is not efficient to vary workspace every cycle. Therefore, the proposed box distribution
according to the expectation value μ is feasible. In Figure 17 (a) the workspaces with the
corresponding intervals of the Gaussian distribution and in (b) the concept of the storage
boxes are shown. The indices of the boxes cmno describe the actual workspace (m), the column
(n) and the row (o), so that the position is dedicated.

xi

P (X = x )i

�

TR

xi

P (X = x )i

� + nd�� - nd�

(a)

(b)

Fig. 17. Exemplarily probability distribution of supplied solar cells and used workspaces (a)
and top view of a feasible conceptual design of a classification facility with the TRIGLIDE
robot without periphery (b).

Since the introduced application examples highlight the advantages of reconfigurable parallel
robotic systems to fulfil changing requirement, specific restrictions have to be considred in
order to apply reasonable reconfiguration concepts. For this reason in the following section
major aspects for the assessment and their interrelations to the presented static and dynamic
reconfiguration strategies are proposed.
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6. Assessment of reconfiguration concepts

As pointed out before the reconfiguration of robotic systems should not be considered as an
end itself. It should rather follow an aim and should be subject of a systematic analysis.
According to Steiner [(Steiner (1998), Steiner (1999))] changeability (reconfiguration) may not
be cost efficient for systems which:

• are highly expedient, short life systems without needed product variety,

• are highly precendented systems in slowly changing markets and no customer variety,

• are insensitive to change over time, and

• are developed for ultrahigh performance markets with no performance loss allowables.

However, different use cases within the life time (e.g. handling muffins, packing croissants)
and specific secondary functions (e.g. gripping principle) call for reconfiguration of robotic
systems. Demands of high life-cycle times emphasize this need. In order to support the
assessment of the before mentioned reconfiguration concepts a set of distinguishing aspects
was derived. These aspects point out for which type of requirement spread a static or dynamic
reconfiguration should be considered. Furthermore, the complexity of each reconfiguration
approach is taken into account considering:

• Duration time characterizes the period needed to adapt the robotic systems performance,
both manually and automatically.

• Mechanical complexity indicates the complexity of mechanical modifications and additional
components, including costs to realize a reconfigurable robotic system.

• Computational complexity indicates the complexity of computational modifications and
additional algorithms, including costs to realize a reconfigurable robotic system.

• Parameter range characterizes the potential of a reconfiguration approach to change several
system properties e.g. workspace dimension in a wide range.

• Robustness indicates the vulnerability of a reconfiguration concept due to unforeseen
operating conditions e.g. varying payload

The matrix in Figure 18 indicates which reconfiguration strategy is contributing to what
reconfiguration-relevant requirement, see section 4.2. In applying the different approaches
it is important to show up more detailed realizations. For this reason different reconfiguration
concepts are stated following the introduced concepts. For instance, static reconfiguration
can be realized by different strut kits and varying fixture distances. Relevant reconfiguration
concepts are given for each approach.
While static reconfiguration concepts do not demand specific computational adaption and
have high potencies to change several system properties such as workspace and accuracy,
long time is needed to carry out the reconfiguration. The system has to be switched off,
in order to rearrange several components. Thus, static reconfigurations approaches offer
robust solutions since the configurations are changed manually. Regarding to dynamic
reconfiguration concepts duration time is the essential advantage. However, to realize
dynamic reconfiguration of a parallel robotic system specific components (DR II) have to
developed or challenging control tasks have to be solved (DR I). Besides this in particular
DR II features high potential to affect system properties.
This brief assessment of the introduced reconfiguration approaches should not be seen as
a strict selecting tool. It rather helps to reason different concepts in early design phases of
parallel robotic systems.
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Fig. 18. Reconfiguration-approach-matrix.

7. Conclusion and further research

The need to increase flexibility of production systems via reconfiguration is mainly driven
by the customers of the end product. Rising demands for individual products and shorter
periods for product changes force the manufacturers to think about reconfigurable production
equipment. In order to present ideas and strategies for reconfigurable robotic systems this
contribution firstly shows the general meaning of reconfiguration and gives a brief literature
review by classifying the most common types into offline and online approaches.
Such as parallel robots are in focus in this chapter, this special class of robotic systems was
explained and the essential benefits as well as disadvantages, in particular the occurrence
of singularities within the workspace and at its borders were introduced. Based on
high potential of parallel robots to cover a huge range of requirements, an adequate
requirements management referring to robotic reconfiguration has been introduced. Thereby,
the identification of requirement spreads and the derivation of reconfiguration parameters
were considered. The main part of the contribution examines the distinctive static and
dynamic (type I and II) reconfiguration approaches of parallel robotic system. Each strategy
is first discussed theoretically before two case studies are presented. In order to assess the
different reconfiguration approaches, a matrix-based scheme is proposed, which serves the
designer as a decision support.
Potential aims of further research activities should deal with the validation of the adapted
development procedure with respect to reconfiguration issues. Further, regarding parallel
robots, the proposed reconfiguration strategies should be surveyed to their transferability to
other parallel structures. Another aspect, to be investigated, is the control implementation
of the SR or DR concepts, in order to reduce efforts of changes. The treatment of an
entirely changed kinematic structure after reassembling its mechanical components (SR) or the
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realization of passing through respectively to avoid singular positions (DR) are challenging
research fields to deal with.
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Yim, M., et al. (2007). Modular Self-Reconfigurable Robot Systems - Challenges and
Opportunities for the Future -. In: IEEE Robotics and Automation Magazine. March
2007, pp. 43-52

Yim, M.; Duff, D.G.; Roufas, K.D. (2000). "PolyBot: a modular reconfigurable robot," Robotics
and Automation, 2000. In: Proc of ICRA ’00., pp.514-520.

410 Robotic Systems – Applications, Control and Programming



Part 3 

Vision and Sensors 



 



20 

Real-Time Robotic Hand Control  
Using Hand Gestures  

Jagdish Lal Raheja, Radhey Shyam, G. Arun Rajsekhar and P. Bhanu Prasad 
Digital Systems Group, Central Electronics Engineering Research Institute 

(CEERI)/Council of Scientific & Industrial Research (CSIR), Pilani, Rajasthan  
India 

1. Introduction  
Interpretation of human gestures by a computer is used for human-machine interaction in 
the area of computer vision [3][28]. The main purpose of gesture recognition research is to 
identify a particular human gesture and convey information to the user pertaining to 
individual gesture. From the corpus of gestures, specific gesture of interest can be 
identified[30][36], and on the basis of that, specific command for execution of action can be 
given to robotic system[31]. Overall aim is to make the computer understand human body 
language [14], thereby bridging the gap between machine and human. Hand gesture 
recognition can be used to enhance human–computer interaction without depending on 
traditional input devices such as keyboard and mouse. 
Hand gestures are extensively used for telerobotic control applications [20]. Robotic systems 
can be controlled naturally and intuitively with such telerobotic communication [38] [41]. A 
prominent benefit of such a system is that it presents a natural way to send geometrical 
information to the robot such as: left, right, etc. Robotic hand can be controlled remotely by 
hand gestures. Research is being carried out in this area for a long time. Several approaches 
have been developed for sensing hand movements and controlling robotic hand [9][13][22]. 
Glove based technique is a well-known means of recognizing hand gestures. It utilizes 
sensor attached mechanical glove devices that directly measure hand and/or arm joint 
angles and spatial position. Although glove-based gestural interfaces give more precision, it 
limits freedom as it requires users to wear cumbersome patch of devices. Jae-Ho Shin et al  [14]  
used entropy analysis to extract hand region in complex background for hand gesture 
recognition system. Robot controlling is done by fusion of hand positioning and arm gestures 
[2][32] using data gloves. Although it gives more precision, it limits freedom due to necessity 
of wearing gloves. For capturing hand gestures correctly, proper light and camera angles are 
required. A technique to manage light source and view angles, in an efficient way for 
capturing hand gestures,  is given in [26].  Reviews have been written on the subsets of hand 
postures and gesture recognition in [6]and [18]. The problem of visual hand recognition and 
tracking is quite challenging. Many early approaches used position markers or colored bands 
to make the problem of hand recognition easier, but due to their inconvenience, they cannot be 
considered as a natural interface for the robot control [24]. A 3D Matlab Kinematic model of a 
PUMA [1][4][16] robot,  is used for executing actions by hand gesture[39]. It can be extended to 
any robotic system with a number of specific commands suitable to that system [17]. 
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In this chapter, we have proposed a fast as well as automatic hand gesture detection and 
recognition system. Once a hand gesture is recognised, an appropriate command is sent to a 
robot. Once robot recieves a command, it does a pre-defined work and keeps doing until a 
new command arrives. A flowchart for overall controlling of a robot is given in figure 1. 
 

 
Fig. 1. Flow diagram for robot control using hand gestures 

2. Methodology 
The proposed methodology involves acquisition of live video from a camera for gesture 
identification. It acquire frames from live video stream in some given time interval[15]. In 
this case frame capture rate for gesture search is 3 frames per second. The overall proposed 
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technique to acquire hand gestures and to control robotic system using hand gestures is 
divided into four subparts:  
• Image acquisition to get hand gestures. 
• Extracting hand gesture area from captured frame. 
• Determining gesture by pattern matching using PCA algorithm. 
• Generation of  instructions corresponding to matched gesture, for  specified robotic 

action. 

2.1 Image acquisition to get hand gestures 
First step is to capture the image from video stream. It is assumed that while capturing 
video, black background with proper light soure is used. To minimize number of light 
sources, arrangement of the light sources and camera is made as shown in figure 2. 
 

 
Fig. 2. Arrangement of light sources for image aquisition 

From video stream one frame is captured every 1/3 of a second. Our aim is to identify the 
frame that contains hand gesture shown by human. For this we are searching the frame in 
which there is no or least movement. Required frame is identified by comparing three 
continuously captured frames. Motion parameter is determined for each frame by counting 
total pixels of mismatch. If motion parameter is less than the specified threshold value, it is 
considered as a frame having least  movement of object i.e. the hand of the person.  
Analysis of frames to find the frame of interest is carried out by converting the captured 
frame into a binary frame[23]. Since binary images have values of one or zero., differences of 
white pixels  between newly captured frame and two previously captured frames are 
determined and they are added together to find motion parameter. XOR function is used to 
find the differences in white pixels [5][15]. 
If frame1, frame2, and, frame3 are three matrices containing three frames captured in three 
continuous time slots respectively then: 

 fr1 = frame1 XOR frame3   (1) 

 fr2 = frame2 XOR frame 3   (2) 

Light Source

Light Source

Camera
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 mismatch_matrix = fr1 OR fr2   (3) 

 [ ][ ]1 1
Sum = _r c

i j
mismatch matrix i j

= =   (4) 

 Motion parameter 
*

sum
r c

=  (5) 

Here r and c are the number of rows and columns in an image frame. Threshold value is set 
as 0.01. i.e. if total pixels of mismatch are less than 1% of total pixels in a frame, then it is 
considered as frame of interest. Required frame is forwarded for further processing and this 
module again starts searching for next  frame of interest. 

2.2 Extracting hand gesture area from frame of interest 
It may happen that the frame, as shown in fig.3,  with a gesture contains extra part along with 
required part of hand i.e. background objects, blank spaces etc. For better results in pattern 
matching, unused part must be removed. Therefore hand gesture is cropped out from the 
obtained frame. Cropping of hand gesture from the obtained frame contains three steps: 
 

 
Fig. 3. Grayscale image 

First step is to convert selected frame into HSV color space. As shown in fig.4, a HSV based 
skin filter was applied on the RGB format image to reduce lighting effects [8][1]. The 
thresholds for skin filter used in the experiment were as below: 

 
< < 

< < →
< < 

0.05  H 0.17
0.1  S 0.3

0.09  V  0.15
 (6) 

The resultant image was segmented to get a binary image of hand[37]. Binary images are bi-
level images where each pixel is stored as a single bit (0 or 1). Smoothening was needed, as the 
output image had some jagged edges as clearly visible in figure 4(c). There can be some noise 
in the filtered images due to false detected skin pixels or some skin color objects (like wood) in 
background, it can generate few unwanted spots in the output image as shown in figure 4(e). 
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Fig. 4. Binary Image formation   (a) Target image   (b) HSV conversion     (c) Filtered image 
(d) Smoothened image   (e) Binary image   (f) Biggest BLOB 

To remove these errors, the biggest BLOB (Binary Linked Object) method was applied to the 
noisy image [24][25]. The error free image is shown in figure 5. The only limitation of this 
filter was that the BLOB for hand should be the biggest one. In this, masking background 
would be illuminated, so false detection is not possible from the background [7][10]. 
Second step is to extract object of interest from the frame. In our case, object of interest is the 
part of human hand showing gesture [29]. For this, extra part, other than the hand, is 
cropped out so that pattern matching can give more accurate results [12]. For cropping extra 
parts row and column numbers are determined, from where object of interest appears. This 
is done by searching from each side of binary image and moving forward until white pixels 
encountered are more than the offset value [25]. Experimental results show that offset value 
set to 1% of total width gives better result for noise compensation. If size of selected image is 
mXn then: 

    Hor_offset= m/100   (7) 

    Ver_offset=n/100     (8)  

Min_col= minimum value of column number where total number of white pixels are more 
than Hor_offset. 
Max_col= maximum value of column number where total number of white pixels are more 
than Hor_offset. 
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Min_row= minimum value of row number where total number of white pixels are more than 
Ver_offset. 
Max_row= maximum value of row number where total number of white pixels are more 
than Ver_offset. 
 

 
Fig. 5. Error free image  

Figure 6 shows Min_row, Max_row, Min_col, and, Max_col for the selection of the boundary 
for cropping of hand. 
Third step is to remove parts of hand not used in gesture i.e. removal of wrist, arm etc. As 
these extra parts are of variable length in image frame and pattern matching with gesture 
database gives unwanted results. Therefore, parts of hand before the wrist need to be 
cropped out. 
Statistical analysis of hand shape shows that either we pose palm or fist, width is lowest at 
wrist and highest at the middle of palm. Therefore extra hand part can be cropped out from 
wrist by determining location where minimum width of vertical histogram is found. Figure 
7.c and 7.d show global maxima and cropping points for hand gestures in figure 7.a and 7.b 
respectively. 
Cropping point is calculated as: 
Global Maxima = column number where height of histogram is highest (i.e. column number for global 
maxima as shown in figure 7). 
Cropping point = column number where height of histogram is lowest in such a way that cropping 
point is in between first column and column of Global Maxima 
If gesture is shown from opposite side (i.e. from other hand), then Cropping point is searched 
between column of Global Maxima and last column. Direction of the hand is detected using 
continuity analysis of object during hand gesture area determination. Continuity analysis 
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shows that whether the object continues from the column of Global maxima to first column 
or to last column. i.e. whether extra hand is left side of palm or right side of palm. 
 

 
Fig. 6. Boundary selection for hand cropping 
 

 
Fig. 7. Histogram showing white pixels in each column, with cropping point for hand gesture 
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2.3 Determining the gesture by resizing and pattern matching 
Cropping results in a frame of 60x80 pixels, so that the gesture can be compared with the 
database. This particular size of 60x80 is chosen to preserve the aspect ratio of the original 
image, so that no distortion takes place. 
Figure 8.b shows cropped hand gesture from figure 8.a. and figure 8.c. shows the result of 
scaling and fitting 8.b within 60X80 pixels. Figure 8.d represents final cropped and resized 
gesture of desired dimension. 
 

 
Fig. 8. Scaling cropped hand gesture to fit into desired dimension 
 

  
(a)                                                                   (b) 

Fig. 9. (a) PCA basis  (b) PCA reduction to 1D 
(a) The concept of PCA. Solid lines: the original basis; dashed lines: the PCA basis. The dots 
are selected at regularly spaced locations on a straight line rotated at 30degrees, and then 
perturbed by isotropic 2D Gaussian noise. (b) The projection (1D reconstruction) of the data 
using only the first principal component. 

There are many different algorithms available for Gesture Recognition, such as principal 
Component Analysis, Linear Discriminate Analysis, Independent Component Analysis, 
Neural Networks and Genetic Algorithms. 
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Principal Component Analysis (PCA)[11] is used in this application to compare the acquired 
gesture with the gestures available in the database and recognize the intended gesture.  

 

 

                 
                                                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RGB images take 3 values for 
each pixel (RED, GREEN, BLUE) 
but we want gray scale images. 

Calculate number of images which are 
stored in Training Database 

we are considering 10 images in 
Training database[12][21] 

Convert RGB images into Gray images 

Calculate size of an image 

Reshaping of an image by converting this 
into 1-D column vector 

Calculate mean of all images 

Compute the difference image for each 
image and merge all images 

Calculate surrogate of covariance matrix 
C=A*A‘ 

Calculate Eigenvalues and Eigenvectors 

we are taking image of 100 X 100
  

Mj = (1/P)*sum (Tj), where P is 
number of images in Train 
Database, and Tj is the jth image, 
Mj is the mean of jth image.  

A column vector contains data 
for 1 complete image, so size of 
each column vector will be 
10000 X 1. All images will be 
stored like this in T Matrix, T 
grows after each turn. So the 
final size of T will be 10000 X 10. 

Ai = Ti- Mi , where A represents 
new difference matrix of images. 
Size of A will be 10000 X 10 

L = A‘*A, A‘ is transpose of 
matrix A Size of L will be 10 X 
10 

[V D] = eig (L), Diagonal 
elements of D are Eigenvalues 
for both L=A‘*A and C=A*A‘ 
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Fig. 10. PCA Algorithm steps for 10 Images 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sorting and eliminating eigen values 

Extracting the PCA features from test 
i

All eigenvalues of matrix L are 
sorted and those less than a 
specified threshold are eliminated. 
So the number of non-zero eigen 
vectors may be less than (P-1).  
Let us consider for discussion’s 
sake that it is P-1 i.e. 9 here. 

Reshape test image, Calculate 
difference by subtracting mean of 
Train images from test image for 
which we are calculating 
equivalent image. 

Projected Train Image 

Calculate Eigenhands 

Eigenhands = A*L_eig_vec. 
Eignevhands is centered image 
vector, Size of Eigenhands is  
10000 X 9 

temp= Eigenhands‘*A (: i); 
Projection  of centered images 
into face space. Temp grows after 
each turn. 
Projection of all centered images 
will be stored in  
Projected Train Images 

Size of Projected Train Image is 
9 X 9 

Projected test image 

Calculate Projected Test Image 
by Eigenhands‘*Difference. 
Size of Eigenhands is 10000 X 9, 
size of difference is 10000 X 1 
So, size of project test image will 
be 9 X 1 
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The concept of PCA is illustrated in Figure 9;  The graph shows data that originally has two 
components along the x1 and x2 directions. This is now resolved along the Φ1 and Φ2 

directions. Φ1 corresponds to the direction of maximum variance and is chosen as the first 
principal component.  In the 2D case currently being considered, the second principal 
component is then determined uniquely by orthogonality constraints; in a higher-
dimensional space the selection process would continue, guided by the variances of the 
projections. 
A comprehensive explanation of the above scheme for gesture recognition[19] within a 
database of ten images is given in figure 10. For simplicity of calculations and ease of 
understanding, each figure is taken to be of size of 100X100 pixels. This algorithms was 
tested on a PC platform.        

2.4 Generation of control Instructions for a robot 
Different functions corresponding to each meaningful hand gesture are written and stored 
in database for controlling the robotic Arm. For implementation of robotic arm control, 
PUMA robotic model has been chosen. Since this model was only available at the time of 
interface, hand gestures are used to control the various joints of the arm. However, these 
gestures can be used to control the robotic hand also. Altogether 10 different hand gestures 
are related to 10 different movements of robotic arm. Movement commands are written as a 
function in robot specific language. Whenever a gesture is matched with a meaningful 
gesture from the database, the instruction set corresponding to that gesture is identified and 
passed to robot for execution. In this way the robotic system can be controlled by hand 
gesture using live camera. Figure 11 shows movements of robotic hand corresponding to 
four different specific hand gestures. 
 

 
Fig. 11. Movements of PUMA 762 corresponding to some specific hand gestures 

However, there are a total of 10 actionable gestures, and one background image for resetting 
purpose  that have been identified as shown in fig. 12.  
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Fig. 12. Set of specified gestures used for robot control 

3. Implementation on FPGA processor 
We have implemented the algorithm on an FPGA, using a Database of 6 images. Each image 
size is 60X80 pixels. The reduction in number of images, image size and its resolution are 
due to FPGA memory constraints. The MATLAB code produces 6x6 projection vectors 
which are stored in the RAM of the FPGA using a JTAG cable [27]. After formation of the 
database, the system captures an image and projection vector of 6x1 is produced and that is 
given to the hardware for further processing. The hardware is responsible for calculating the 
Euclidian Distance [ED] with a dedicated block which we designate as ED block [34]. Then 
the minimum distance [MD] is found using a dedicated block named MD block. And the 
index corresponding to the minimum distance is returned to MATLAB to display the 
matched image from the Database [33]. The whole process is shown in fig. 13. 
The main drawback of this implementation is that only part of the algorithm resides on 
FPGA and rest of the algorthim still runs on PC. Therefore it is not standalone system and 
requires interface with the PC[13]. FPGA implementation of PCA algorithm is a great 
challenge  due to the limited resources available in commercial FPGA kits. But it is quite 
important to have a complete system on a FPGA chip [40]. As far as the technology is 
concerned, FPGA is most suited for implementation of real time image processing 
algorithm. It can be readily designed with custom parallel digital circuitry tailored for 
performing various imaging tasks making them well-suited for high speed real time vision 
processing applications[35].  

4. Conclusion  
Controlling a robot arm, in real time,  through the hand gestures is a novel approach. The 
technique proposed here was tested under proper lighting conditions that we created in our 
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laboratory. A gesture database consisting of binary images of size 60 X 80 pixels is pre-
stored, so it takes less time and memory space during pattern recognition. Due to the use 
of cropped image of gesture, our database becomes more effective as one image is 
sufficient for one type of gesture presentation. So, neither we need to store more than one 
image for same gesture at different positions of image, nor have we to worry about 
positions of hand in front of camera. Experimental results show that the system can detect 
hand gestures with an accuracy of 95 % when it is kept still in front of the camera for 1 
second.  
 

 
Fig. 13. Recognition process                                                  
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1. Introduction 
1.1 Visual servoing for robotics applications 
Numerous advances in robotics have been inspired by reliable concepts of biological 
systems. Necessity for improvements has been recognized due to lack of sensory capabilities 
in robotic systems which make them unable to cope with challenges such as anonymous and 
changing workspace, undefined location, calibration errors, and different alternating 
concepts. Visual servoing aims to control a robotics system through artificial vision, in a way 
as to manipulate an environment, in a similar way to humans actions. It has always been 
found that, it is not a straightforward task to combine "Visual Information" with a "Arm 
Dynamic" controllers. This is due to different natures of descriptions which defines 
"Physical Parameters" within an arm controller loop. Studies have also revealed an option of 
using a trainable system for learning some complicated kinematics relating object features to 
robotics arm joint space. To achieve visual tracking, visual servoing and control, for accurate 
manipulation objectives without losing it from a robotics system, it is essential to relate a 
number of an object's geometrical features (object space) into a robotics system joint space 
(arm joint space). An object visual data, an play important role in such sense. Most robotics 
visual servo systems rely on object "features Jacobian", in addition to its inverse Jacobian. 
Object visual features inverse Jacobian is not easily put together and computed, hence to use 
such relation in a visual loops. A neural system have been used to approximate such 
relations, hence avoiding computing object's feature inverse Jacobian, even at singular 
Jacobian postures. Within this chapter, we shall be discussing and presenting an integration 
approach that combines "Visual Feedback" sensory data with a "6-DOF robotics Arm 
Controller". Visual servo is considered as a methodology to control movements of a 
robotics system using certain visual information to achieve a task. Visionary data is 
acquired from a camera that is mounted directly on a robot manipulator or on a mobile 
robot, in which case, motion of the robot induces camera motion. Differently, the camera 
can be fixed, so that can observe the robot motion. In this sense, visual servo control relies 
on techniques from image processing, computer vision control theory, kinematics, 
dynamic and real time computing. 
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Robotics visual servoing has been recently introduced by robotics, AI and control 
communities. This is due to the significant number of advantages over blind robotic 
systems. Researchers have also demonstrated that, VISUAL SERVOING is an effective and a 
robust framework to control robotics systems while relying on visual information as 
feedback. An image-based scheme task is said to be completely performed if a desired 
image is acquired by a robotic system. Numerous advances in robotics have been inspired 
by the biological systems. In reference to Fig. (1), visual servoing aims to control a robotics 
system through an artificial vision in a way as to manipulate an environment, comparable to 
humans actions. Intelligence-based visual control has also been introduced by research 
community as a way to supply robotics system even with more cognitive capabilities. A 
number of research on the field of intelligent visual robotics arm control have been 
introduced. Visual servoing has been classified as using visual data within a control loop, 
enabling visual-motor (hand-eye) coordination. There have been different structures of 
visual servo systems. However, the main two classes are; Position-Based Visual Servo 
systems (PBVS), and the Image-Based Visual Servo systems (IBVS). In this chapter, we 
shall concentrate on the second class, which is the Image-based visual servo systems. 
 

 
Fig. 1. Overall structure of an ANN based visual servoing 
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1.2 Literature surveys   
EGT, Epipolar Geometry Toolbox, (Eleonora et al., 2004), was also built to grant MATLAB 
users with a broaden outline for a creation and visualization of multi-camera scenarios. 
Additionally, to be used for the manipulation of visual information, and the visual 
geometry. Functions provided, for both classes of vision sensing, the PINHOLE and 
PANORAMIC, include camera assignment and visualization, computation, and estimation 
of epipolar geometry entities. Visual servoing has been classified as using visual data within 
a control loop (Cisneros, 2004), thus enabling visual-motor (Hand-Eye) coordination. 
Image Based Visual Servoing (IBVS) Using Takagi-Sugeno Fuzzy Neural Network 
Controller has been proposed by (Miao et. al, 2007). In their study, a T-S fuzzy neural 
controller based IBVS method was proposed. Eigenspace based image compression method 
is firstly explored which is chosen as the global feature transformation method. Inner 
structure, performance and training method of T-S neural network controller are discussed 
respectively. Besides that, the whole architecture of TS-FNNC was investigated. 
An Image Based Visual Servoing using Takagi-Sugeno fuzzy neural network controller has 
been proposed by Miao, (Miao et. al, 2007). In this paper, a TAKAGI-SUGENO Fuzzy 
Neural Network Controller (TSFNNC) based Image Based Visual Servoing (IBVS) method 
was proposed. Firstly, an eigenspace based image compression method is explored, which is 
chosen as the global feature transformation method. After that, the inner structure, 
performance and training method of T-S neural network controller are discussed 
respectively. Besides, the whole architecture of the TS-FNNC is investigated. 
Panwar and Sukavanam in (Panwar & Sukavanam 2007) have introduced Neural Network 
Based Controller for Visual Servoing of Robotic Hand Eye System. For Panwar and 
Sukavanam, in their paper a neural network based controller for robot positioning and 
tracking using direct monocular visual feedback is proposed. Visual information is provided 
using a camera mounted on the end-effector of a robotics manipulator. A PI kinematics 
controller is proposed to achieve motion control objective in an image plane. A Feed 
forward Neural Network (FFNN) is used to compensate for the robot dynamics. The FFNN 
computes the required torques to drive the robot manipulator to achieve desired tracking. 
The stability of combined PI kinematics and FFNN computed torque is proved by Lyapunov 
theory. Gracia and Perez-Vidal in (Gracia & Perez-Vidal 2009), have presented a research 
framework through which a new control scheme for visual servoing that takes into account 
the delay introduced by image acquisition and image processing. The capabilities (steady-
state errors, stability margins, step time response, etc.) of the proposed control scheme and 
of previous ones are analytically analyzed and compared. Several simulations and 
experimental results were provided to validate the analytical results and to illustrate the 
benefits of the proposed control scheme. In particular, it was shown that this novel control 
scheme clearly improves the performance of the previous ones. 
Alessandro and researchers, as in (Alessandro et. al. 2007), in their research framework, they 
proposed an image-based visual servoing framework. Error signals are directly computed 
from image feature parameters, thus obtaining control schemes which do not need neither a 
3-D model of the scene, nor a perfect knowledge of the camera calibration matrix. Value of 
the depth "Z" for each considered feature must be known. Thus they proposed a method to 
estimate on-line the value of Z for point features while the camera is moving through the 
scene, by using tools from nonlinear observer theory. By interpreting "Z" as a continuous 
unknown state with known dynamics, they build an estimator which asymptotically 
recovers the actual depth value for the selected feature. 
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In (Chen et. al. 2008), an adaptive visual servo regulation control for camera-in-hand 
configuration with a fixed camera extension was presented by Chen. An image-based 
regulation control of a robot manipulator with an uncalibrated vision system is discussed. 
To compensate for the unknown camera calibration parameters, a novel prediction error 
formulation is presented. To achieve the control objectives, a Lyapunov-based adaptive 
control strategy is employed. The control development for the camera-in-hand problem is 
presented in detail and a fixed-camera problem is included as an extension. Epipolar 
Geometry Toolbox as in (Gian et. al. 2004), was also created to grant MATLAB users with a 
broaden outline for a creation and visualization of multi-camera scenarios. In addition, to be 
used for the manipulation of visual information, and the visual geometry. Functions 
provided, for both class of vision sensing, the pinhole and panoramic, include camera 
assignment and visualization, computation, and estimation of epipolar geometry entities. 
Visual servoing has been classified as using visual data within a control loop, enabling 
visual-motor (hand-eye) coordination.  
Image Based Visual Servoing Using Takagi-Sugeno Fuzzy Neural Network Controller has 
been proposed by (Miao et. al. 2007). In their study, a T-S fuzzy neural controller based IBVS 
method was proposed. Eigenspace based image compression method is firstly explored 
which is chosen as the global feature transformation method. Inner structure, performance 
and training method of T-S neural network controller are discussed respectively. Besides 
that, the whole architecture of TS-FNNC is investigated. For robotics arm visual servo, this 
issue has been formulated as a function of object feature Jacobian. Feature Jacobian is a 
complicated matrix to compute for real-time applications. For more feature points in space, 
the issue of computing inverse of such matrix is even more hard to achieve.  

1.3 Chapter contribution 
For robotics arm visual servo, this issue has been formulated as a function of object feature 
Jacobian. Feature Jacobian Matrix entries are complicated differential relations to be 
computed for real-time applications. For more feature points in space, the issue of 
computing inverse of such matrix is even more hard to achieve. In this respect, this chapter 
concentrates on approximating differential visual information relations relating an object 
movement in space to the object motion in camera space (which usually complicated 
relation), hence to joint space. This is known as the (object feature points). The proposed 
methodology will also discuss how a trained learning system can be used to achieve the 
needed approximation. The proposed methodology is entirely based on utilizing and 
merging of three MatLab Tool Boxes. Robotics Toolbox developed by Peter Corke (Corke, 
2002), secondly is the Epipolar Geometry Toolbox (EGT) developed by Eleonora Alunno 
(Eleonora et. al. 2004), whereas the third is the ANN MatLab Tool Box. 
This chapter is presenting a research framework which was oriented to develop a robotics 
visual servo system that relies on approximating complicated nonlinear visual servo 
kinematics. It concentrates on approximating differential visual changes (object features) 
relations relating objects movement in a world space to object motion in a camera space 
(usually time-consuming relations as expressed by time-varying Jacobian matrix), hence to a 
robotics arm joint space.  
The research is also presenting how a trained Neural Network can be utilized to learn the 
needed approximation and inter-related mappings. The research whole concept is based on 
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utilizing and mergence three fundamentals. The first is a robotics arm-object visual 
kinematics, the second is the Epipolar Geometry relating different object scenes during 
motion, and a learning artificial neural system. To validate the concept, the visual control 
loop algorithm developed by RIVES has been thus adopted to include a learning neural 
system. Results have indicated that, the proposed visual servoing methodology was able to 
produce a considerable accurate results. 

1.4 Chapter organization 
The chapter has been sub-divided into six main sections. In this respect, in section (1) we 
introduce the concept of robotics visual servo and related background, as related to visual 
servo. In section (2), we present a background and some related literatures for single 
scene via signal camera system. Double scene, as known as Epipolar Geometry is also 
presented in depth in section (3). Artificial Neural Net based IBVS is also presented in 
Section (4), whereas simulated of learning and training of an Artificial Neural Net is 
presented in section (5). Section (5) presents a case study and a simulation result of the 
proposed method, as compared to RIVES algorithm. Finally, Section (6) presents the 
chapter conclusions. 
 

 
Fig. 2. Camera geometrical representation in a 3-D space 
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Fig. 3. Camera image plane and geometry 

2. Single camera model: {object to camera plane kinmeatics} 

Fig. (2) shows a typical camera geometrical representation in a space. Hence, to assemble a 
closed loop visual servo system, a loop is to be closed around the robotics arm system. In 
this study, this is a PUMA-560 robotics arm, with a Pinhole camera system. The camera 
image plane and associated geometry is shown in Fig. (3). For analyzing closed loop visual 
kinematics, we shall employ a Pinhole Camera Model for capturing object features. For 
whole representation, details of a Pinhole camera model in terms of image plane ( aξ , aψ ) 
location are expressed in terms ( ξ ,ψ , and ζ ), as in Equ. (1). In reference to Fig. (2), we can 
express ( )a a,ξ ψ  locations as expressed in terms ( ), ,ξ ξΨ : 

 

a a

a a

ξξ φ
ζ

ψψ φ
ζ

  =  
 


  =  

 

   (1) 

Both ( )a a,ξ ψ  location over an image plane is thus calculated by Equ. (1). For thin lenses (as 
the Pinhole camera model), camera geometry are thus represented by, (Gian et. al. 2004) : 
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 a

1 1 1
φ ζζ

   = −  
   

   (2) 

In reference to (Gian et. al. 2004), using Craig Notation, denotes coordinate of point P  in 
frame B . For translation case : 
 

 
B A B

A
P P O= +    (3)  

OA
B  is a coordinate of the origin OA  of frame "A" in a new coordinate system "B". Rotations 
are thus expressed : 
 

 ( )
A T

B

B B B B A T
A A A A B

A T
B

i

R i j k j

k

 
 
 = =
 
 
 

   (4) 

In Equ (4), B
Ai  is a frame axis coordinate of "A" in another coordinate "B". In this respect, for 

rigid transformation we have:  
 

B B A
AP R P=  

 
B B A B

AAP R P O= +    (5) 
 

For more than single consecutive rigid transformations, (for example to frame "C"), i.e. form 
frames CBA →→ , coordinate of point P  in frame " C " can hence be expressed by: 

( )B B B A B C
A BA AP R R P O O= + +         

 ( ) ( )B C A C A CB
A A AB BP R P R O OR= + +    (6) 

For homogeneous coordinates, it looks very concise to express
B
P  as :  
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We could express elements of a transformation ( Γ ) by writing : 
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as becoming offline transformation. If ( )A R= , i.e., a rotation matrix ( Γ ), once TR R I= , 
then : 
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Euclidean transformation preserves parallel lines and angles, on the contrary, affine 
preserves parallel lines but not angles, Introducing a normalized image plane located at 
focal length 1φ = . For this normalized image plane, pinhole (C) is mapped into the origin of 
an image plane using: 

 ( )T
P u vˆ ˆ ˆ=    (12) 
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we also have :         
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Now once kκ φ=  and Lβ φ= , then we identify these parameters oo, , ,u vκ β  as intrinsic 
camera parameters. In fact, they do present an inner camera imaging parameters. In matrix 
notation, this can be expressed as : 
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Both ( R ) and ( Ω ) extrinsic camera parameters, do represent coordinate transformation 
between camera coordinate system and world coordinate system. Hence, any ( )u v,  point in 
camera image plan is evaluated via the following relation: 
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    (17) 

Here ( M ) in Equ (17) is referred to as a Camera Projection Matrix. We are given (1) a 
calibration rig, i.e., a reference object, to provide the world coordinate system, and (2) an 
image of the reference object. The problem is to solve (a) the projection matrix, and (b) the 
intrinsic and extrinsic parameters. 

2.1 Computing a projection matrix 
In a mathematical sense, we are given ( )w w w

i i iξ ψ ζ  and T
i iu v( )  for i = (1 …… n), we 

want to solve for M1  and M2 : 
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c w w w
ii i i iu m m m m11 12 13 14ζ ξ ψ ζ= + + +  

 c w w w
ii i i iu m m m m21 22 23 24ζ ξ ψ ζ= + + +   (20) 

c w w w
ii i i iu m m m m31 32 33 34ζ ξ ψ ζ= + + +  
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 c w w w
ii i i iu 21 22 23 24ζ ξ ψ ζσ σ σ σ= + + +    (22) 

c w w w
ii i i iu 31 32 33 34ζ ξ ψ ζσ σ σ σ= + + +  

Obviously, we can let 34 1σ = . This will result in the projection matrix is scaled by 34σ . 
Once KM U= , 2 n 11K ×∈ ℜ is a matrix, a 11-D vector, and 2 n DU −∈ ℜ  vector. A least square 
solution of equation KM U=  is thus expressed by: 

M UK +=    

 T TM UK K K1−=    (23) 

K+  is the pseudo inverse of matrix K , and m and 34m consist of the projection matrix M . 
We now turn to double scene analysis. 

3. Double camera scene {epipolar geometry analysis} 
In this section, we shall consider an image resulting from two camera views. For two 
perspective views of the same scene taken from two separate viewpoints 1Ο  and 2Ο , this is 
illustrated in Fig. (3). Also we shall assume that ( 1m  and 2m ) are representing two separate 
points in two the views. In other words, perspective projection through 1Ο  and 2Ο , of the 
same point wΧ , in both image planes 1Λ  and 2Λ . In addition, by letting ( 1c ) and ( 2c ) be 
the optical centers of two scene, the projection 1E  ( 2E ) of one camera center 1Ο ( 2Ο ) onto 
the image plane of the other camera frame 2Λ ( 1Λ ) is the epipole geometry.  
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It is also possible to express such an epipole geometry in homogeneous coordinates in terms 
1E  and 2E :  

 ( )T

x yE E E1 1 1 1=  and ( )T

x yE E E2 2 2 1=    (24) 

One of the main parameters of an epipolar geometry is the fundamental Matrix Η  (which is 
3 3ℜ∈ × ). In reference to the Η  matrix, it conveys most of the information about the relative 

position and orientation ( t,R ) between the two different views. Moreover, the fundamental 
matrix Η algebraically relates corresponding points in the two images through the Epipolar 
Constraint. For instant, let the case of two views of the same 3-D point wΧ , both 
characterized by their relative position and orientation ( t,R ) and the internal, hence Η  is 
evaluated in terms of 1K  and 2K , representing extrinsic camera parameters, (Gian et al., 
2004) : 

 ( )T
x

K t RK 1
2 1Η − −=    (25) 

In such a similar case, a 3-D point ( wΧ ) is projected onto two image planes, to points ( m2
) 

and ( m1
), as to constitute a conjugate pair. Given a point ( m1

) in left image plane, its 
conjugate point in the right image is constrained to lie on the epipolar line of ( m1

). The line 
is considered as the projection through C 2  of optical ray of m1

. All epipolar lines in one 
image plane pass through an epipole point.  

This is a projection of conjugate optical centre: 
c

E P
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  . Parametric equation of epipolar 

line of m1  gives T Em mP P 1
2 12 12 λ −= +  . In image coordinates this can be expressed as:  
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here v mP P 1
2 2 1

−=   is a projection operator extracting the (ith ) component from a vector.  
When ( C 1

) is in the focal plane of right camera, the right epipole is an infinity, and the 
epipolar lines form a bundle of parallel lines in the right image. Direction of each epipolar 
line is evaluated by derivative of parametric equations listed above with respect to ( λ ) : 
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Fig 4. Camera image frame (Epipolar Geometry) 

The epipole is projected to infinity once ( )E2 3
0= . In such a case, direction of the epipolar 

lines in right image doesn't depend on any more. All epipolar lines becomes parallel to 
vector ( )T

E E2 21 2
      
  . A very special occurrence is once both epipoles are at infinity. This 

happens once a line containing ( C 1
) and ( C 2 ), the baseline, is contained in both focal 

planes, or the retinal planes are parallel and horizontal in each image as in Fig. (4). The right 
pictures plot the epipolar lines corresponding to the point marked in the left pictures. This 
procedure is called rectification. If cameras share the same focal plane the common retinal 
plane is constrained to be parallel to the baseline and epipolar lines are parallel.  

4. Neural net based Image - Based Visual Servo control (ANN-IBVS) 

Over the last section we have focused more in single and double camera scenes, i.e. 
representing the robot arm visual sensory input. In this section, we shall focus on "Image-
Based Visual Servo" (IBVS) which uses locations of object features on image planes 
(epipolar) for direct visual feedback. For instant, while reconsidering Fig. (1), it is desired to 
move a robotics arm in such away that camera's view changes from ( an initial) to (final) 
view, and feature vector from ( 0φ  ) to ( dφ ). Here ( 0φ ) may comprise coordinates of vertices, 
or areas of the object to be tracked. Implicit in ( dφ ) is the robot is normal to, and centered 
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over features of an object, at a desired distance. Elements of the task are thus specified in 
image space. For a robotics system with an end-effector mounted camera, viewpoint and 
features are functions of relative pose of the camera to the target, ( c

tξ ). Such function is 
usually nonlinear and cross-coupled. A motion of end-effectors DOF results in complex 
motion of many features. For instant, a camera rotation can cause features to translate 
horizontally and vertically on the same image plane, as related via the following 
relationship : 

 ( )c
tfφ ξ=    (30) 

Equ (30) is to be linearized. This is to be achieved around an operating point: 

 ( )f c c
t tcJ x xδφ δ=    (31) 

 ( )f c
tc c

t

J x
x

φ ∂=  ∂ 
   (32) 

In Equ (32), ( )f c
tcJ x  is the Jacobian matrix, relating rate of change in robot arm pose to rate 

of change in feature space. Variously, this Jacobian is referred to as the feature Jacobian, 
image Jacobian, feature sensitivity matrix, or interaction matrix. Assume that the Jacobian is 
square and non-singular, then: 

 ( )fc c
t tcJ fx x

1−
=     (33) 

from which a control law can be expressed by : 

 ( ) ( ) ( )( )fc
t t dc

cK f f tJx x
1−

= −    (34) 

will tend to move the robotics arm towards desired feature vector. In Equ (34), fK  is a 
diagonal gain matrix, and (t) indicates a time varying quantity. Object posture rates c

tx  is 
converted to robot end-effector rates. A Jacobian , f c

tcJ x( )  as derived from relative pose 
between the end-effecter and camera, ( )c

tx  is used for that purpose. In this respect, a 
technique to determine a transformation between a robot's end-effector and the camera 
frame is given by Lenz and Tsai, as in (Lenz & Tsai. 1988). In a similar approach, an end-
effector rates may be converted to manipulator joint rates using the manipulator's Jacobian 
(Croke, 1994), as follows: 

 ( )t t
ct J x6 1 6

θθ θ−=    (35) 

tθ  represents the robot joint space rate. A complete closed loop equation can then be given 
by: 

  ( ) ( )( )ft t c
tt c dK J J J f f tx6 1 6 1

θ θθ θ− −= −    (36) 

For achieving this task, an analytical expression of the error function is given by : 
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 ( ) 2
1 6

φφ φ γ+ + ∂= Ζ + Ι − Ζ Ζ
∂Χ

   (37) 

Here, +γ ∈ℜ  and +Ζ  is pseudo inverse of the matrix Ζ , m n T T
1( ) (J )×Ζ ∈ℜ = ℜ Ζ = ℜ  and J  is 

the Jacobian matrix of task function as J ∂φ =  ∂Χ 
. Due to modeling errors, such a closed-loop 

system is relatively robust in a possible presence of image distortions and kinematics 
parameter variations of the Puma 560 kinematics. A number of researchers also have 
demonstrated good results in using this image-based approach for visual servoing. It is 
always reported that, the significant problem is computing or estimating the feature 
Jacobian, where a variety of approaches have been used (Croke, 1994). The proposed IBVS 
structure of Weiss (Weiss et. al., 1987 and Craig, 2004), controls robot joint angles directly 
using measured image features. Non-linearities include manipulator kinematics and 
dynamics as well as the perspective imaging model. Adaptive control was also proposed, 
since f 1 cJ ( )−

θ θ , is pose dependent, (Craig, 2004). In this study, changing relationship between 
robot posture and image feature change is learned during a motion via a learning neural 
system. The learning neural system accepts a weighted set of inputs (stimulus) and 
responds. 

4.1 Visual mapping: Nonlinear function approximation ANN mapping 
A layered feed-forward network consists of a certain number of layers, and each layer 
contains a certain number of units. There is an input layer, an output layer, and one or more 
hidden layers between the input and the output layer. Each unit receives its inputs directly 
from the previous layer (except for input units) and sends its output directly to units in the 
next layer. Unlike the Recurrent network, which contains feedback information, there are no 
connections from any of the units to the inputs of the previous layers nor to other units in 
the same layer, nor to units more than one layer ahead. Every unit only acts as an input to 
the immediate next layer. Obviously, this class of networks is easier to analyze theoretically 
than other general topologies because their outputs can be represented with explicit 
functions of the inputs and the weights.  
In this research we focused on the use of Back-Propagation Algorithm as a learning method, 
where all associated mathematical used formulae are in reference to Fig. (5). The figure 
depicts a multi-layer artificial neural net (a four layer) being connected to form the entire 
network which learns using the Back-propagation learning algorithm. To train the network 
and measure how well it performs, an objective function must be defined to provide an 
unambiguous numerical rating of system performance. Selection of the objective function is 
very important because the function represents the design goals and decides what training 
algorithm can be taken. For this research frame work, a few basic cost functions have been 
investigated, where the sum of squares error function was used as defined by Equ. (38): 

 ( )
P N

pi pi

p i

E t y
NP

2

1 1

1
= =

= −   (38)     

where p indexes the patterns in the training set, i indexes the output nodes, and tpi and ypi 

are, respectively, the target hand joint space position and actual network output for the ith 
output unit on the pth pattern. An illustration of the layered network with an input layer, 
two hidden layers, and an output layer is shown in Fig. (5). In this network there are i 
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inputs, (m) hidden units, and (n) output units. The output of the jth hidden unit is obtained 
by first forming a weighted linear combination of the (i) input values, then adding a bias:  

  
ji

l

i jj
i

a w x w1 1
0

1=

 = + 
 
  (39) 

where jiw(1)  is a weight from input (i) to hidden unit (j) in the first layer. jw(1)
0  is a bias for 

hidden unit j. If we are considering a bias term as being weights from an extra input x0 1= , 
Equ. (39) can be rewritten to the form of: 

 
l

j iji
i

a w x1

0=

 =  
 
  (40) 

The activation of hidden unit j then can be obtained by transforming the linear sum using a 
nonlinear activation function g x( ) :  

  ( )j jh g a=   (41) 

 

 
Fig. 5. Employed four layers artificial neural system 

Outputs of the neural net is obtained by transforming the activation of the hidden units 
using a second layer of processing units. For each output unit k, first we get the linear 
combination of the output of the hidden units, as in Equ. (42):  



 
Robotic Systems – Applications, Control and Programming 

 

444 

  
kj j k

m

k
j

a w h w
2 2

0
1=

 
= +  
 
   (42) 

absorbing the bias and expressing the above equation to: 

    
kj j

m

k
j

a w h2

0=

 
=   
 
   (43) 

Applying the activation function ( )g x2  to Equ. (43), we can therefore get the kth output : 

 ( )k ky g a2=    (44) 

Combining Equ. (40), Equ. (41), Equ. (43) and Equ. (44), we get a complete representation of 
the network as: 

 
ij

m l

k kj i
j i

y g w g w x
22

2
0 0= =

  =      
     (45) 

 

 
Fig. 6. Features based data gathering: Training patterns generations 
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The network of Fig. (5) is a synthesized ANN network with two hidden layers, which can be 
extended to have extra hidden layers easily, as long as we make the above transformation 
further. Input units do transform neural network signals to the next processing nodes. They 
are hypothetical units that produce outputs equal to their supposed inputs, hence no 
processing is done by these input units. Through this approach, the error of the network is 
propagated backward recursively through the entire network and all of the weights are 
adjusted so as to minimize the overall network error. The block diagram of the used 
learning neural network is illustrated in Fig. (6). The network learns the relationship 
between the previous changes in the joint angles k 1−ΔΘ , changes in the object posture c

auΔ  , 
and changes joint angles kΔΘ . This is done by executing some random displacements from 
the desired object position and orientation. The hand fingers is set up in the desired position 
and orientation to the object. Different Cartesian based trajectories are then defined and the 
inverse Jacobian were used to compute the associated joints displacement ( )h kΘ . Different 
object postures with joint positions and differential changes in joint positions are the input-
output patterns for training the employed neural network. During the learning epoch, 
weights of connections of neurons and biases are updated and changed, in such away that 
errors decrease to a value close to zero, which resulted in the learning curve that minimizes 
the defined objective function shown as will be further discussed later. It should be 
mentioned at this stage that the training process has indeed consumed nearly up to three 
hours, this is due to the large mount of training patterns to be presented to the neural 
network. 

4.2 Artificial neural networks mapping: A biological inspiration 
Animals are able to respond adaptively to changes in their external and internal 
environment and surroundings, and they use their nervous system to perform these 
behaviours. An appropriate model/simulation of a nervous system should be able to 
produce similar responses and behaviours in artificial systems. A nervous system is built by 
relatively simple; units, the neurons, so copying their behaviour and functionality should be 
the solution, (Pellionisz, 1989). In reality, human brain is a part of the central nervous 
system, it contains of the order of (10+10) neurons. Each can activate in approximately 5ms 
and connects to the order of (10+4) other neurons giving (10+14) connections, (Shields & 
Casey, 2008). In reality, a typical neural net (with neurons) is shown in Fig. (5), it does 
resemble actual biological neuron, as they are made of: 
• Synapses: Gap between adjacent neurons across which chemical signals are transmitted: 

(known as the input)  
• Dendrites: Receive synaptic contacts from other neurons 
• Cell body /soma: Metabolic centre of the neuron: processing 
• Axon: Long narrow process that extends from body: (known as the output) 
By emulation, ANN information transmission happens at the synapses, as shown in Fig. (5). 
Spikes travelling along the axon of the pre-synaptic neuron trigger the release of 
neurotransmitter substances at the synapse. The neurotransmitters cause excitation or 
inhibition in the dendrite of the post-synaptic neuron. The integration of the excitatory and 
inhibitory signals may produce spikes in the post-synaptic neuron. The contribution of the 
signals depends on the strength of the synaptic connection (Pellionisz, 1989). An Artificial 
Neural Network (ANN) is an information processing paradigm that is inspired by the way 
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biological nervous systems, such as the brain, process information. The key element of this 
paradigm is the novel structure of the information processing system. It is composed of a 
large number of highly interconnected processing elements (neurons) working in unison to 
solve specific problems. ANN system, like people, learn by example.  
An ANN is configured for a specific application, such as pattern recognition or data 
classification, through a learning process. Learning in biological systems involves 
adjustments to the synaptic connections that exist between the neurons. This is true of ANN 
system as well (Aleksander & Morton, 1995). The four-layer feed-forward neural network 
with (n) input units, (m) output units and N units in the hidden layer, already shown in the 
Fig. (5), and as will be further discussed later. In reality, Fig. (5). exposes only one possible 
neural network architecture that will serve the purpose. In reference to the Fig. (5), every 
node is designed in such away to mimic its biological counterpart, the neuron. 
Interconnection of different neurons forms an entire grid of the used ANN that have the 
ability to learn and approximate the nonlinear visual kinematics relations. The used learning 
neural system composes of four layers. The {input}, {output} layers, and two {hidden layers}. 
If we denote ( w

cν ) and ( w
cω ) as the camera’s linear and angular velocities with respect to the 

robot frame respectively, motion of the image feature point as a function of the camera 
velocity is obtained through the following matrix relation: 

 

c c c c c
cx x x x x

xc c c c w
z z z w c

c c c wc c c cc y w ccx x x x
xc c c

z z z

p p p p p
p

p p p R

p p Rp p p p
p

p p p

0 0
0

0
1 1

ναλγ
ω

 
− 

       = −        − − − 
 

   (46)  

Instead of using coordinates ( x
cP ) and ( y

cP ) for the object feature described in camera 
coordinate frame, which are a priori unknown, it is usual to replace them by coordinates (u) 
and (v) of the projection of such a feature point onto the image frame, as shown in Fig. (7). 
 

 
Fig. 7. Neural net based visual servo system 
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5. Simulation case study: Visual servoing with pin-hole camera for 6-DOF 
PUMA robotics arm  

Visual servoing using a "pin-hole" camera for a 6-DOF robotics arm is simulated here. The 
system under study is a (PUMA) and integrated with a camera and ANN. Simulation block 
is shown Fig. (7). Over simulation, the task has been performed using 6-DOF-PUMA 
manipulator with 6 revolute joints and a camera that can provide position information of the 
robot gripper tip and a target (object) in robot workplace. The robot dynamics and direct 
kinematics are expressed by a set of equations of PUMA-560 robotics system, as 
documented by Craig, (Craig, 2004). Kinematics and dynamics equations are already well 
known in the literature, therefore. For a purpose of comparison, the used example is based 
on visual servoing system developed by RIVES, as in (Eleonora, 2004). The robotics arm 
system are has been servoing to follow an object that is moving in a 3-D working space. 
Object has been characterized by some like (8-features) marks, this has resulted in 24, 8 3×ℜ∈
size, feature Jacobian matrix. This is visually shown in Fig. (7). An object 8-features will be 
mapped to the movement of the object in the camera image plane through defined 
geometries. Changes in features points, and the differentional changes in robot arm, 
constitute the data that will be used for training the ANN. The employed ANN architecture 
has already been discussed and presented in Fig. (5). 

5.1 Training phase: visual training patterns generation  
The foremost ambition of this visual servoing is to drive a 6-DOF robot arm, as simulated 
with Robot Toolbox (Corke , 2002), and equipped with a pin-hole camera, as simulated with 
Epipolar Geometry Toolbox, EGT (Gian et al., 2004), from a starting configuration toward a 
desired one using only image data provided during the robot motion. For the purpose of 
setting up the proposed method, RIVES algorithm has been run a number of time before 
hand. In each case, the arm was servoing with different object posture and a desired location 
in the working space. The EGT function to estimate the fundamental matrix Η , given U1 
and U2, for both scenes in which U1 and U2 are defined in terms of eight ( ξ , ψ , ζ ) feature 
points:  
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    (47) 

Large training patterns have been gathered and classified, therefore. Gathered patterns at 
various loop locations gave an inspiration to a feasible size of learning neural system. Four 
layers artificial neural system has been found a feasible architecture for that purpose. The 



 
Robotic Systems – Applications, Control and Programming 

 

448 

net maps 24 (3×8 feature points) inputs characterizing object cartesian feature position and 
arm joint positions into the (six) differential changes in arm joints positions. The network is 
presented with some arm motion in various directions. Once the neural system has learned 
with presented patterns and required mapping, it is ready to be employed in the visual 
servo controller. Trained neural net was able to map nonlinear relations relating object 
movement to differentional changes in arm joint space. Object path of motion was defined 
and simulated via RIVES Algorithm, as given in (Gian et al., 2004), after such large number 
of running and patterns, it was apparent that the learning neural system was able to capture 
such nonlinear relations. 

5.2 The execution phase  
Execution starts primary while employing learned neural system within the robotics 
dynamic controller (which is mainly dependent on visual feature Jacobian). In reference to 
Fig. (7), visual servoing dictates the visual features extraction block. That was achieved by 
the use of the Epipolar Toolbox. For assessing the proposed visual servo algorithm, 
simulation of full arm dynamics has been achieved using kinematics and dynamic models 
for the Puma 560 arm. Robot Toolbox has been used for that purpose. In this respect, also 
Fig. (8) shows an "aerial view" of actual object "initial" posture and the "desired" posture. 
This is prior to visual servoing to take place. The figure also indicates some scene features. 
Over simulation, Fig. (9) shows an "aerial view" of the Robot arm-camera servoing, as  
 

 
Fig. 8. Top view. Actual object position and desired position before the servoing 
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approaching towards a desired object posture. ANN was fed with defined patterns during 
arm movement. Epipolars have been used to evaluate visual features and the update during 
arm movement. 

5.3 Object visual features migration  
Fig. (10) shows the error between the RIVES Algorithm and the proposed ANN based visual 
servo for the first (60) iterations. Results suggest high accuracy of identical results, 
indicating that a learned neural system was able to servo the arm to desired posture. 
Difference in error was recorded within the range of (4×10−6) for specific joint angles. Fig. 
(11) shows migration of the eight visual features as seen over the camera image plan. Just 
the once the Puma robot arm was moving, concentration of features are located towards an 
end within camera image plane. In Fig. (12), it is shown the object six dimensional 
movements. They indicate that they are approaching the zero reference. As an validation of 
the neural network ability to servo the robotics arm toward a defined object posture, Fig. 
(13) show that the trained ANN visual servo controller does approach zero level of 
movement. This is for different training patterns and for different arm postures in the 6-
dimenstional space. Finally, Fig. (14) shows the error between RIVES computed joint 
space values and the proposed ANN controller computed joint space values. Results 
indicate excellent degree of accuracy while the visual servo controller approaching the 
target posture with nearly zero level of erroe for different training visual servo target 
postures.  
 

 
Fig. 9. Robot arm-camera system: Clear servoing towards a desired object posture 
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Fig. 10. Resulting errors. Use of proposed ANN based visual servo 
 

 
Fig. 11. Migration of eight visual features (as observed over the camera image plan) 
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Fig. 12. Puma arm six dimensional movements 
 

 
Fig. 13. ANN visual servo controller approaching zero value for different training visual 
servo target postures 
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Fig. 14. Error of arm movements: ANN based controller and RIVES output difference ANN 
visual Servo 

6. Conclusions  
Servoing a robotics arm towards a moving object movement using visual information, is a 
research topic that has been presented and discussed by a number of researchers for the last 
twenty years. In this sense, the chapter has discussed a mechanism to learn kinematics and 
feature-based Jacobian relations, that are used for robotics arm visual servo system. In this 
respect, the concept introduced within this chapter was based on an employment and 
utilization of an artificial neural network system. The ANN was trained in such away to 
learn a mapping relating the " complicated kinematics" as relating changes in visual loop 
into arm joint space. Changes in a loop visual Jocobain depends heavily on a robotics arm 
3-D posture, in addition, it depends on features associated with an object under visual 
servo (to be tracked). Results have shown that, trained neural network can be used to 
learn such complicated visual relations relating an object movement to an arm joint space 
movement. The proposed methodology has also resulted in a great deal of accuracy. The 
proposed methodology was applied to the well-know Image Based Visual Servoing, 
already discussed and presented by RIVES as documented in (Gian et al., 2004). Results 
have indicated a close degree of accuracy between the already published "RIVES 
Algorithm" results and the newly proposed "ANN Visual Servo Algorithm". This 
indicates ANN Visual Servo, as been based on some space learning mechanisms, can 
reduce the computation time.  
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1. Introduction   
Quality assurance in all industrial fields depends on having a suitable and robust inspection 
method which let to know the integrity or characteristics of the inspected sample. The 
testing can be destructive or not destructive. The former is more expensive and it does not 
guarantee to know the condition of the inspected sample. Though, it is used in sectors 
where the latter cannot be used due to the technical limitations. The second one is an 
ongoing research field where cheaper, faster and more reliable methods are searched to 
assess the quality of specific specimens.  
Once a suitable reliability and quality are achieved by using a specific method, the next step 
is to reduce the duration and cost of the associated process. If it is paid attention to the fact 
that most of these processes require of a human operator, who is skilled in the labour of 
interpreting the data, it can be said that those previously mentioned factors (process 
duration and cost) can be reduced by improving the automation and autonomy of the 
associated processes. If a robotic system is used this can be achieved. However, most of the 
algorithms associated to those processes are computationally expensive and therefore the 
robots should have a high computational capacity which implies a platform of big size, 
reduced mobility, limited accessibility and/or considerable cost. Those constraints are 
decisive for some specific applications.  
One important factor which should be considered to develop a low cost, small size and 
mobile robotic system is the design of the software and hardware of the sensor. If it is 
designed with a depth analysis of the context of the specific application it can be obtained a 
considerable reduction on the requirements and complexity of the robotic system.  
The appropriated design of the hardware and software of the sensor depends on the proper 
selection of the signal pattern which is going to be used to characterize the condition of the 
inspected sample. For ultrasonic waves the patterns are changes on amplitude, frequency or 
phase on the received echo because of the properties of a specific target. Some of those 
properties are attenuation, acoustic impedance and speed of sound, among others.  
Among the many applications of ultrasound, one of them which is important for the 
aerospace, automotive, food and oil industries, among others, is the material identification. 
Depict the fact that there are many ultrasonic sensors which let to identify the material of 
the sample being inspected, most of them are not appropriated to be implemented in a 
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robot. The high computational capacity demanded by the algorithm of the sensor is the 
main constraint for the implementation of the ultrasonic identification of materials in a 
robot. In this book chapter is addressed this problem and it is solved by the Peniel method. 
Based on this method is designed and constructed a novel sensor which is implemented in 
two robots of the kit TEAC2H-RI. 
This book chapter is organized as follows: Section Two briefly reviews some approaches in 
Material Identification with ultrasonic sensors. Section Three illustrates the novel Peniel 
method and its associated hardware and software. Section Four describes the results. 
Finally, section five presents the conclusions and future work.  

2. Material identification with ultrasonic sensors 
The material identification using ultrasonic techniques is very important for a plethora of 
sectors of the industry, research, security, health, among others. In contrast with other 
methods for the identification of materials, those based on ultrasonic signals not only are 
cheaper but also some of them let to identify objects which are occluded by others.  
Following is the general procedure to achieve this: 
1. It is used a specific configuration for the receiver and transmitter ultrasonic transducers. 

Some of them are: Pulse-Echo, Through-Transmission and Pitch-Catch configuration 
[NASA, 2007] 

2. It is sent an ultrasonic wave to the inspected sample  
3. Once the wave has interacted with the object, it returns as an echo to its source and 

there it is captured by means of an ultrasonic transducer (receiver).  
4. Then, the electrical signal goes to a signal conditioning system, which is formed by 

amplifiers, filters, digital to analog converters (DAC), and so on.  
5. Finally, there is the processing module, which is in charge to perform the most 

important stage of the system, i.e., the signal processing. In this case, it can be used 
microcontrollers, microprocessors, FPGAs, computers, among other devices. In this 
processing module the algorithm is implemented, in order to process the respective 
signal patterns and indicates the material under inspection. 

In the next lines is illustrated some methods proposed in the state of the art for the material 
identification and is mentioned their strengths and more important limitations. 
In [Thomas et al, 1991] is developed an ultrasonic perception system for robots for the task 
of identification of materials. This system is based on the neural network Multi Layer 
Perceptron (MLP), which was trained with the characteristics of the frequency spectrum and 
the time domain of the ultrasonic echo. Its most relevant advantage is that the sample was 
inspected from different positions; additionally the ultrasonic transducer did not require 
making contact with the inspected sample. Its more remarkable limitations are that it identifies 
the material in a stochastic manner, i.e. sometimes the material is correctly identified and other 
not, and the issue that the sensor was never implemented in a robotic system.  
In [Gunarathne et al, 2002] is proposed an implementation to identify the material of 
nonplanar cylindrical surface profiles (e.g. petroleum pipelines) with a prediction accuracy 
of the result. The method is mainly based on the feature extraction by curve fitting. The 
curve fitting consists in a computationally generated artificial signal which fits the shape of 
the experimental signal. The optimal parameters chosen for the artificial signal (AS) are 
those which make the AS to fit the experimental signal with a low error; those are used for 
the task of material identification. 
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Furthermore, for this case is used a database which contains the typical values of the 
parameters correspondent to specific materials. Its more relevant strengths are the 
identification of the materials of objects of non-planar cylindrical surface profiles and the 
accuracy of the results. On the other hand, its more significant limitations are the expensive 
computational cost of its processing algorithm, the absence of autonomy and the restrictions 
to the position of the transducer.  
In [Ohtanil et al, 2006], is implemented an array of ultrasonic sensors and a MLP neural 
network for the materials identification. Some experiments were performed on copper, 
aluminium, pasteboard and acrylic, at different angles with respect to the x and z axes. 
The maximum distance between the sensor array and the target was 30cm. The main 
strength of the system is that it works in air over a wide range of distances between the 
target and the sensor system. Additionally, the sensor model is automatically adjusted 
based on this distance. The results are quite accurate. Its more significant limitation is the 
big size of the system (only appropriated for a huge robot), the computing requirements 
and the dependence on the position of the target to achieve the identification of the 
material.  
In [Zhao et al, 2003] is used the ultrasonic identification of materials for the quality 
assurance in the production of canned products. The configuration of the ultrasonic system 
is pulse-echo. Water is the coupling medium between the transducer and the target. By 
means of this set up, it can be detected any shift from a specific value of the acoustic 
impedance, which is the result of foreign bodies within the bottle. Its main strengths are the 
accuracy of the system and the high sensibility. Its more relevant weaknesses are the 
absence of mobility and autonomy.  
In [Pallav et al, 2009] is illustrated a system which has the same purpose of the previous 
mentioned system, i.e. also by means of the material identification performs quality 
control in canned food. The system uses an ultrasonic sensor to identify the acoustic 
impedance shift within the canned food which is related to foreign bodies within the can. 
The main difference in comparison to the previous mentioned system [Zhao et al, 2003] is 
the fact that the Through-Transmission configuration is used, and that the couplant is not 
water but air. Its more relevant strengths are the successful detection of foreign bodies 
and the mobility achieve in the X and Y axes. Its more important limitations are the high 
requirements of voltage, the dependence of the object’s position and the narrow range of 
mobility.  
In [Stepanić et al, 2003] is used the identification of materials to differentiate between 
common buried objects in the soil and antipersonnel landmines. For this case is used a tip 
with an ultrasonic transducer in its border and this latter is acoustically coupled with the 
target. The procedure to operate the system is: 1. Select a zone where is suspected the 
landmine is. 2. Introduced the tip in this zone in order to touch the suspecting object 3. Take 
some measurements. Based on this measurements the material can be identified and as a 
consequence it can be detected the presence or absence of landmines. Its more important 
limitations are the lack of autonomy, because it requires a human operator, and the 
dangerous fact which involves making contact with the landmine.  
From the previous mentioned approaches the most significant limitation which forbids the 
automation in small robotic agents is the expensive computational cost of the processing 
algorithms. This problem was addressed in a master thesis and the results are exposed in 
this article.  
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3. Peniel method  
In the following lines is exposed the Peniel Method, which is a method of low 
computational cost and therefore its associated algorithm and circuit can be implemented in 
a small robot. It is important to highlight that only one microcontroller is used to implement 
this method. 

3.1 Mathematical model  
In [Gunarathne et al, 1997, 1998, 2002; Gonzalez & Jiménez, 2010b] is exposed that the 
reverberations within a plate follow the next expression.  

 ( ) ( )B t CA t Ae D− −= +   (1) 

where A is related to the first echo amplitude, B to the rate of decay of reverberations,  
C to the timing of the first echo from the start of the scan and D to the signal-to-noise 
ratio.  
In [Gunarathne et al, 2002] is mentioned that knowing the decay coefficient (B) the material 
can be identified. Moreover, in [Allin, 2002] is illustrated that there are several methods that 
are based on the decay coefficient to identify the material. This variable is important because 
it only depends on the attenuation and acoustic impedance of the material, if the thickness is 
kept constant.  In most of the solids, the attenuation is low and its effect is negligible in 
comparison with the acoustic impedance. Based on this the material can be identified if the 
acoustic impedance is known. In the following lines we present a novel method developed 
to estimate indirectly the decay coefficient B and therefore it can be used to identify the 
material of solid plates.  
Without losing generality, in (1) we assume that D=0 and C=0. If it is sought the time  
interval during A(t) is greater than or equal to a value w, then the equation which express 
this is: 

 ( )A t w≥   (2) 

Replacing (1) in (2) and taking into account the considerations that were made with respect 
C and D, we obtained:  

 B tAe w− ⋅↔ ≥   (3) 

After some algebra we obtained:   
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It means that in the time interval 
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0,  the exponential function is greater than or 

equal to w. The duration of this time interval is defined as tdi,, and then for the previous case 
it can be said that: 
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The left side term in the expression (3) is an artificial signal which fits the received ultrasonic 
echo (see page 3). If the received ultrasonic echo is amplified by a Gain G, as will the 
exponential function (3). Thus it is obtained from (3): 

 B tG Ae w− ⋅⋅ ≥  (6) 

It leads to expressions similar to those obtained in (4) and (5): 
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Therefore, for two signals with similar A values, the tdi duration is inversely proportional to 
the decay coefficient B. It can be seen in figure 1 for the case when A = 1, w = 0.5, and B = 
1000, 2000, 3000 and 4000. Additionally, it is shown the behavior with G of the difference 
between tdi3 and tdi4. This let us to conclude that tdi can be used to characterize a material if G, 
A and w are known. 
 

 
Fig. 1. The variation of the time interval duration depending on the gain. For this case, the 
time interval is the time during an exponential signal is above 0.5 (w) 
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Now, if it is used two different gain values (G1 and G2) for the same signal, the equation (8) 
yields:  
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If G1<G2 and (9) is subtracted from (10), it is obtained: 
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As it can be seen (14) does not depend on A and therefore is only necessary to know G2 and 
G1 to find B from ∆t1. Moreover, if there are two signals from different materials, even 
though G2 and G1 are not known, the material can be identified from the difference between 
the correspondent ∆ts. In figure 2 is shown the behavior of ∆t as a function of B for different 
values of Gr. 
As it can be seen in the figure 2 the duration increment of the time interval (∆t) depends on 
B if Gr is kept constant. Also, it can be recognized that if B is kept constant, high values of Gr 
result in high increases on the duration of the time interval (∆t).  

3.2 The electronic circuit and the algorithm 
One of the conditions to identify the material using the expression (8) of the Peniel Method, 
is that those signals compared in terms of the behavior of the time interval durations should 
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have a similar value A (see equation 1). To meet this requirement it has been used the circuit 
in the figure 3. This circuit is called clustering circuit. Despite the fact that by means of (14) 
the material can be identified without knowing A, the clustering circuit is used to make 
more robust the method.  
 

 
Fig. 2. Behavior of the duration increment of the time interval, (∆t), in function of the decay 
coefficient for values of G1=10, 20, 30 and G2= 20, 30, 40 

3.2.1 Clustering algorithm and circuit 
This circuit is formed by four amplifiers, four comparators and a microcontroller. Each 
amplifier has different gains. The gain grows in the direction of AMP4, i.e., the smaller and 
higher gains belong to the AMP1 and AMP4 amplifiers, respectively. Each amplifier 
represents a group, in this manner AMP3 represents the group 3 and group 2 is represented 
by AMP2 
The output of the amplifiers goes to the respective comparators. The threshold (w) is the 
same for the last three comparators and a little bit higher for the first comparator (AMP1). 
The echo signal belongs to the group which has the amplifier with lower gain but with its 
comparator activated. In this manner a signal which activates the comparator three only 
belongs to the group three if the respective comparators of AMP1 and AMP2 are not 
activated.  
The output of each comparator goes to the microcontroller and once this detects low levels 
on any comparator, it identifies what is the amplifier with lower gain which has its 
comparator activated and therefore it identifies the group the signal belongs to.    
Consequently, those signals with similar peak amplitude, A (see equation 1), will be in the 
same group. In this manner is met the requirement that the A value should be similar 
between signals which are compared in terms of the duration of the time interval.  
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Fig. 3. Clustering circuit to assure that the A value is similar in signals which are compared 
in terms of duration of the time interval. The abbreviation Amp refers to the amplifier and 
Comp to the comparator 

3.2.2 The Peak voltage detection circuit and the algorithm 
In addition to the previous mentioned circuit also the system has a circuit that allows 
knowing the peak value of the received echo. This peak value is an estimation of A, which is 
also a parameter of the expression (1) and therefore can be used to identify the material. The 
associated circuit is shown in Figure 4. The AMP1, 2, 3 and 4 are the same as in the circuit of 
Figure 3. The ENV1, 2, 3 and 4 are envelope detectors, whose function is conditioning the 
signal before is sent to the microcontroller. The CD4052 is a multiplexer. The exit of each 
comparator goes to a specific input of the CD4052, and the output of this latter in the pin 3 
goes to the microcontroller.  
As mentioned above, the clustering circuit identifies which group the signal belongs to; this 
information is used by the microcontroller to select which of the four envelope detectors 
should be used to find the peak amplitude. This selection is done by means of the CD4052. 
Once the microcontroller has chosen the right envelope detector and captured the 
correspondent signal, it proceeds to search the peak value by successive analog to digital 
conversions and comparison.  
 

 
Fig. 4. Electronic circuit for calculating an estimated value of A. AMP1, AMP2, AMP3 and 
AMP4 are the same as in Figure 3. ENV means envelope detector 
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3.2.3 The Circuit and the algorithm for the identification of the changes in the 
durations  
As it was mentioned in section 3.1 the material can be identified by finding the difference 
between the two durations which are produced for the same signal when it is amplified by 
two different gain values, i.e. finding ∆t. 
In order to do this, the circuit of Figure 5 was implemented. In this case AMP1-4 correspond 
to the same amplifiers mentioned in Figure 3. Amp1.1, Amp2.1, Amp3.1 and Amp4.1 are 
additional amplifiers. COMP5, COMP6, COMP7 and COMP8 are comparators which even 
with an amplitude modulated sinusoidal signal, such as the ultrasonic echo, remains 
activated as long as the envelope of the signal is above the threshold of 2.5V. While the 
output of this comparator is quite stable, still it has some noisy fluctuations which are 
necessary to be removed and this is the reason to use the comparators COMP5.1, COMP6.1, 
COMP7.1 and COMP8.1. The output of these comparators is connected to a specific input in 
the CD4052, and the output in the pin 13 of this multiplexer goes to the microcontroller. 
 

 
Fig. 5. The electronic circuit for calculating the durations associated to different gain values 

4. Results and discussion  
In order to prove the effectiveness of the Peniel Method, it was performed some 
experiments. The characteristics of the experiments are mentioned below:  
The transducer used for the measurements was the AT120 (120KHz) of Airmar Technology, 
which is a low cost transducer commonly used for obstacle avoidance or level measurement 
but not for NDT. This transducer was used both for transmission and reception in the 
Through-Transmission configuration which was used to inspect the samples. 
The transmitter circuit is the T1 development board of Airmar Technology (Airmar 
Technology, 2011). With this transmitter is sent a 130KHz toneburst which has a 40µs 
duration and a pulse rate of 10Hz.  
The chosen samples for the inspection were Acrylic (16mm thickness), Aluminium (16mm 
thickness) and Glass (14mm thickness). Oil was the couplant used between the transducers 
and the inspected sample. 
The receiver circuit is the result of integrating the three circuits mentioned in the section 3.2. 
The circuit is fed by four 9volts batteries. Two of them are for the positive source and the 
other two are for the negative. The data were processed by the main board of the mom-robot 
of the kit TEAC2H-RI (González J.J. et al, 2010a).which was developed by the authors. In the 
main board, the microcontroller MC68HC908JK8 is the device in charge to assign tasks or 
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process the data of the sensors. The six outputs from the receiver circuit go to the main 
board and two outputs of the main board go to the receiver circuit. These two outputs 
control the CD4052.  
The microcontroller sends the duration and the peak voltage of the signals to the PC. There, 
the signal is processed by Matlab and the results are plotted.  
The whole set up of the experiments can be seen in figure 6.  
In order to assure the repeatability of the results the following procedure was followed: 
Procedure 1 
1. Clean the inspected sample and the transducers face  
2. Spread oil over the surface of both transducer faces   
3. Push the transducers against the inspected sample  
4. Take ten different measurements 
5. Repeat this procedure for five times.  
The ten different measurements refer to send in different moments a toneburst to the 
inspected sample and capture the received echo. This is done ten times.  
For the different materials used in this experiment this procedure was followed and the 
results are in figure 7.  
 

 
Fig. 6. Diagram of the Experimental set up used in procedure 1. The couplant is oil. Tx and 
Rx refer to the Transmitter and Receiver, respectively 

In figure 7 Delta t1 refers to tdi2 - tdi1, Delta t2 refers to tdi3 - tdi2, and so on. tdi1 refers to the 
duration of the signal at the output of the comparator which corresponds to the group signal 
and the other tdi, belong to the comparators of the groups with amplifiers with higher gain 
than the amplifier of the group of the signal, e.g. if the signal belongs to group 2 the tdi1 
refers to the duration of Comp6.1, and tdi2 and tdi3 belong to Comp7.1 and Comp8.1, 
respectively. As it can be seen, for the higher order groups the number of tdi will be fewer 
than for the groups of lower order.  
As it can be seen from figures 7a-7b, the ∆t is not constant for any material. However, it can 
be said that this value is always within a defined interval. In [Gunarathne et al, 2002] is 
mentioned that the decay coefficient B does not have a fixed value from measurement to 
measurement but it takes different values within an interval. Because of this is defined a 
Gaussian Probability Density Function for the B value of each material, then the value can 
be any of those values within the PDF. This fact, confirms that the results obtained here with 
∆t are correct because they are congruent with the theory. Though, for the current case it 
was not necessary to create a PDF but only intervals where the correspondent ∆t belongs. 
This fact simplifies the material identification task. Following, the intervals are chosen.   



Design and Construction of an  
Ultrasonic Sensor for the Material Identification in Robotic Agents 

 

465 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Duration increment of the time interval for the results obtained using the procedure 1. 
The materials inspected were a) Acrylic b) Glass and c) Aluminum 
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(a) 

 
(b) 

 
(c) 

Fig. 8. Peak voltage for the results obtained using the procedure 1. The materials inspected 
were a) Acrylic b) Glass and c) Aluminum 
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       (a) (b) 
 

 
(c) 

Fig. 9. Duration increment of the time interval for the results obtained using the procedure 2. 
The materials inspected were a) Acrylic b) Glass and c) Aluminum 

From figure 7a it can be seen that the ∆t1 is always within the range (0.025ms, 0.15ms), while 
∆t2 and ∆t3 are in the ranges (0.16ms, 0.4ms) and (0, 0.1ms), respectively, then these intervals 
are chosen to identify the acrylic sample.   
From figure 7b it can be seen that the ∆t1 and ∆t2 are always between (0.6ms, 1ms) and 
(0.2ms, 0.65ms), respectively. Then, those are the intervals for the glass sample.  
From figure 7c it can be seen that the ∆t1 and ∆t2 are always between (1ms, 2ms) and (0.8ms, 
1.9ms), respectively. Then, those are the intervals for the aluminium sample.  
In figure 8 is shown the peak voltages for the correspondent measurements in figure 7. It 
can be seen from this figure that the peak voltage also varies in a wide range from 
measurement to measurement. Then, if this parameter is going to be implemented to 
identify the material also have to be defined a voltage interval for each material. This 
parameter can be used to make more robust the measurements but for this moment only the 
∆t variable will be used for the identification of the materials.  
It is important to mention that both, the peak voltage and ∆t change, are within an interval 
from measurement to measurement because those variables are very dependent on the 
characteristics of the couplant used between the transducer face and the inspected sample.  
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From the previous mentioned results the algorithm was modified and the intervals were 
used to identify the material. With this new algorithm a procedure (procedure 2) similar to 
procedure 1 was repeated for all the materials. The only difference in this new procedure is 
that the average of the ten measurements is taken and this result is compared with the 
different intervals. In figure 9 can be seen one of the five repetitions of the new procedure.  
In table 1 can be seen the performance of the developed sensor for the material identification 
task.  
 

Material Trials 
Correct 

Identification
Wrong 

Identification % Accuracy 

Acrylic 5 5 0 100% 
Glass 5 5 0 100% 
Aluminum 5 5 0 100% 

Table 1. Accuracy of the developed sensor to identify the material  

As it can be seen in these experiments the accuracy of the identification is 100% for all the 
materials. This fact is very important because with a quite easy method and a low cost 
computational algorithm was performed a task which requires of more complex methods 
and algorithms of more expensive computational cost.   

4.1 The robotic kit TEAC2H-RI 
In the previous sections, the signal was processed using the main board of the mom-robot of 
the kit TEAC2H-RI (González J.J. et al, 2010a) joint with the software Matlab. Then, the 
Peniel Method was partially implemented in a robotic system.  
In future work the sensor will be fully implemented in a robotic system formed by two 
robots of the kit TEAC2H-RI. These robots are the mom-robot and the son-robot. Both of 
them can be seen in figure 10 
 

 
Fig. 10. Son-robot and mom-robot exploring the environment (González J.J. et al, 2010a) 
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5. Conclusion and future work  
In this book chapter was proposed for the first time in the literature the shift in ∆t as a 
variable which can be used to identify the material. The method based on this variable, 
Peniel Method, is much easier and much less computationally expensive than other 
methods in the literature. This fact is the most important approach of this research because it 
lets to implement the ultrasonic material identification sensor in two robots. This last result 
was not found in the literature reviewed.  
The cost of the ultrasonic AT120 transducer is only $35US which is very low in comparison 
with other options (>$400US) in the market which are used for the identification of 
materials. Then, it can be concluded that low cost ultrasonic transducers can be used instead 
of more expensive transducers if the proper method is used. This is another important 
strength of the method because it can be used in industrial processes to automate the 
material identification task at a low cost.  
Another important conclusion of this work is that if the appropriate methodology is 
followed to design a sensor, it could be save considerable economical investments in the 
transducer, the processing system and the other elements necessary to design the sensor. In 
this case the methodology followed to develop the sensor consists of seven steps: 1) to study 
in depth the model or physical-mathematical models proposed in the literature 2) to 
perform experiments to confirm the theory and identify new signal patterns which let to 
develop new models 3) to redefine or create a new physical-mathematical model which 
must be simpler than the others and fits to the specific characteristics of the application, 
which in this case is two small robots to identify materials 4) This new model is the basis of 
the new method, but again it is necessary to also consider the characteristics of the specific 
application and all the constraints in order to design the electronic circuit and the algorithm 
of the method 5) to build the sensor with the proper devices in terms of cost, size and 
functionality 6) to design the appropriate experiments for the verification of the method 7) 
to validate the performance of the sensor using the proposed experiments and debug both 
the algorithm and circuit for optimum performance. 
As it can be seen not only is necessary to design or redefined the software or hardware but 
also the mathematical model in order to obtain the sensor which fulfils the requirements of 
the application at the lowest cost.  
The next step of this work is to implement completely the sensor in the mom-robot and son-
robot of the kit TEAC2H-RI without depending on the processing of the PC to identify the 
material.  
Also more materials will be evaluated with the sensor in order to provide to the robot a 
wider database of materials. 
Also in future work, will be used the peak voltage as another factor to identify the materials 
or to differentiate between materials of very similar acoustic properties.   
 

6. Acknowledgment  
We would like to acknowledge to the Science, Technology and Innovation Management 
Department,  COLCIENCIAS, for the economical support to the master student Juan José 
González España within the Youth Researchers and Innovators Program- 2009. 



 
Robotic Systems – Applications, Control and Programming 

 

470 

7. References  
Allin M. J. (2002) Disbond Detection in Adhesive Joints Using Low Frequency Ultrasound. PhD 

Thesis. Imperial College of Science Technology and Medicine. University of 
London. 2002 

Airmar Technology. (2011). http://www.airmartechnology.com/ Accesed 4th August 2011 
González J.J.; Jiménez J.A.; Ovalle D.A. (2010) TEAC2H-RI: Educational Robotic Platform for 

Improving Teaching-Learning Processes of Technology in Developing Countries. 
Technological Developments in Networking, Education and Automation 2010, pp 
71-76 

González J., Jiménez J. Algoritmo para la Identificación de Materiales en Agentes Robóticos 
(Spanish). Quinto Congreso Colombiano de Computación (5CCC) Cartagena- 
Colombia (2010) 

Gunarathne, G. P. P. (1997) Measurement and monitoring techniques for scale deposits in 
petroleum pipelines. In: Proc. IEEE Instrum. Meas. Technol. Conf., Ottawa, ON, 
Canada, May 19–21, 1997, pp. 841–847. DOI: 10.1109/IMTC.1997.610200 

Gunarathne G.P.P ; Zhou Q. ; Christidis K. (1998) Ultrasonic feature extraction techniques for 
characterization and quantification of scales in petroleum pipelines. In: Proceedings IEEE 
Ultrasonic Symposium, vol. 1; 1998, p. 859–64 DOI: 10.1109/ULTSYM.1998.762279 

Gunarathne G.P.P ; Christidis K. (2002) Material Characterization in situ Using ultrasound 
measurements. In: Proceedings of the IEEE Transactions on Instrumentation and 
Measurement. Vol. 51, pp. 368-373. 2002 DOI: 10.1109/19.997839 

NASA (2007) Ultrasonic Testing of Aerospace Materials. URL:   
klabs.org/DEI/References/design_guidelines/test_series/1422msfc.pdf Accessed 
on: August 2011. 

Ohtanil K., Baba M. (2006) An Identification Approach for Object Shapes and Materials Using an 
Ultrasonic Sensor Array. Proceedings of the SICE-ICASE International Joint 
Conference, pp. 1676-1681. 2006 

Pallav P., Hutchins D., Gan T. (2009) Air-coupled ultrasonic evaluation of food materials. 
Ultrasonics 49 (2009) 244-253 

Stepanić, H. Wüstenberg, V. Krstelj, H. Mrasek (2003) Contribution to classification of buried 
objects based on acoustic impedance matching, Ultrasonics, 41(2), pp. 115-123, 2003 

Thomas, S.M, Bull D.R, (1991) Neural Processing of Airborne Sonar for Mobile Robot 
Applications. Proceedings of the Second International Conference on Artificial 
Neural Networks. pp. 267-270. 1991. 

Zhao B., Bashir O.A., Mittal G.S., (2003) Detection of metal, glass, plastic pieces in bottled 
beverages using ultrasound, Food Research International 36 (2003) 513–521. 



Part 4 

Programming and Algorithms 



 



0

Robotic Software Systems: From Code-Driven to
Model-Driven Software Development

Christian Schlegel, Andreas Steck and Alex Lotz
Computer Science Department, University of Applied Sciences Ulm

Germany

1. Introduction

Advances in robotics and cognitive sciences have stimulated expectations for emergence of
new generations of robotic devices that interact and cooperate with people in ordinary human
environments (robot companion, elder care, home health care), that seamlessly integrate
themselves into complex environments (domestic, outdoor, public spaces), that fit into
different levels of system hierarchies (human-robot co-working, hyper-flexible production
cells, cognitive factory), that can fulfill different tasks (multi-purpose systems) and that
are able to adapt themselves to different situations and changing conditions (dynamic
environments, varying availability and accessibility of internal and external resources,
coordination and collaboration with other agents).
Unfortunately, so far, steady improvements in specific robot abilities and robot hardware have
not been matched by corresponding robot performance in real-world environments. On the
one hand, simple robotic devices for tasks such as cleaning floors and cutting the grass have
met with growing commercial success. Robustness and single purpose design is the key
quality factor of these simple systems. At the same time, more sophisticated robotic devices
such as Care-O-Bot 3 (Reiser et al., 2009) and PR2 (Willow Garage, 2011) have not yet met
commercial success. Hardware and software complexity is their distinguishing factor.
Advanced robotic systems are systems of systems and their complexity is tremendous.
Complex means they are built by integrating an increasingly larger body of heterogeneous
(robotics, cognitive, computational, algorithmic) resources. The need for these resources arises
from the overwhelming number of different situations an advanced robot is faced with during
execution of multitude tasks. Despite the expended effort, even sophisticated systems are
still not able to perform at an expected and appropriate level of overall quality of service in
complex scenarios in real-world environments. By quality of service we mean the set of system
level non-functional properties that a robotic system should exhibit to appropriately operate
in an open-ended environment, such as robustness to exceptional situations, performance
despite of limited resources and aliveness for long periods of time.
Since vital functions of advanced robotic systems are provided by software and software
dominance is still growing, the above challenges of system complexity are closely related to
the need of mastering software complexity. Mastering software complexity becomes pivotal
towards exploiting the capabilities of advanced robotic components and algorithms. Tailoring
modern approaches of software engineering to the needs of robotics is seen as decisive
towards significant progress in system integration for advanced robotic systems.
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2. Software engineering in robotics

Complex systems are rarely built from scratch but their design is typically partitioned
according to the variety of technological concerns. In robotics, these are among others
mechanics, sensors and actuators, control and algorithms, computational infrastructure and
software systems. In general, successful engineering of complex systems heavily relies on
the divide and conquer principle in order to reduce complexity. Successful markets typically
come up with precise role assignments for participants and stakeholders ranging from
component developers over system integrators and experts of an application domain to
business consultants and end-users.
Sensors, actuators, computers and mechanical parts are readily available as commercial
off-the-shelf black-box components with precisely specified characteristics. They can be
re-used in different systems and they are provided by various dedicated suppliers. In
contrast, most robotics software systems are still based on proprietarily designed software
architectures. Very often, robotics software is tightly bound to specific robot hardware,
processing platforms, or communication infrastructures. In addition, assumptions and
constraints about tasks, operational environments, and robotic hardware are hidden and
hard-coded in the software implementation.
Software for robotics is typically embedded, concurrent, real-time, distributed, data-intensive
and must meet specific requirements, such as safety, reliability and fault-tolerance. From
this point of view, software requirements of advanced robots are similar to those of
software systems in other domains, such as avionics, automotive, factory automation,
telecommunication and even large scale information systems. In these domains, modern
software engineering principles are rigorously applied to separate roles and responsibilities
in order to cope with the overall system complexity.
In robotics, tremendous code-bases (libraries, middleware, etc.) coexist without being
interoperable and each tool has attributes that favors its use. Although one would like to
reuse existing and matured software building blocks in order to reduce development time and
costs, increase robustness and take advantage from specialized and second source suppliers,
up to now this is not possible. Typically, experts for application domains need to become
experts for robotics software to make use of robotics technology in their domain. So far,
robotics software systems even do not enforce separation of roles for component developers
and system integrators.
The current situation in software for robotics is caused by the lack of separation of concerns.
In consequence, role assignments for robotics software are not possible, there is nothing like
a software component market for robotic systems, there is no separation between component
developers and system integrators and even no separation between experts in robotics and
experts in application domains. This is seen as a major and serious obstacle towards
developing a market of advanced robotic systems (for example, all kinds of cognitive robots,
companion systems, service robots).
The current situation in software for robotics can be compared with the early times of the
World Wide Web (WWW) where one had to be a computer engineer to setup web pages. The
WWW turned into a universal medium only since the availability of tools which have made
it accessible and which support separation of concerns: domain experts like journalists can
now easily provide content without bothering with technical details and there is a variety
of specialized, competing and interoperable tools available provided by computer engineers,
designers and others. These can be used to provide and access any kind of content and to
support any kind of application domain.

474 Robotic Systems – Applications, Control and Programming



Robotic Software Systems: From Code-Driven to Model-Driven Software Development 3

Based on these observations, we assume that the next big step in advanced robotic systems
towards mastering their complexity and their overall integration into any kind of environment
and systems depends on separation of concerns. Since software plays a pivotal role in
advanced robotic systems, we illustrate how to tailor a service-oriented component-based
software approach to robotics, how to support it by a model-driven approach and according
tools and how this allows separation of concerns which so far is not yet addressed
appropriately in robotics software systems.
Experienced software engineers should get insights into the specifics of robotics and should
better understand what is in the robotics community needed and expected from the
software engineering community. Experienced roboticists should get detailed insights into
how model-driven software development (MDSD) and its design abstraction is an approach
towards system-level complexity handling and towards decoupling of robotics knowledge
from implementational technologies. Practitioners should get insights into how separation of
concerns in robotics is supported by a service-oriented component-based software approach
and that according tools are already matured enough to make life easier for developers
of robotics software and system integrators. Experts in application domains and business
consultants should gain insights into maturity levels of robotic software systems and according
approaches under a short-term, medium-term and long-term perspective. Students should
understand how design abstraction as recurrent principle of computer science applied to
software systems results in MDSD, how MDSD can be applied to robotics, how it provides
a perspective to overcome the vicious circle of robotics software starting from scratch again
and again and how software engineering and robotics can cross-fertilize each other.

2.1 Separation of concerns
Separation of concerns is one of the most fundamental principles in software engineering
(Chris, 1989; Dijkstra, 1976; Parnas, 1972). It states that a given problem involves different
kinds of concerns, promotes their identification and separation in order to solve them
separately without requiring detailed knowledge of the other parts, and finally combining
them into one result. It is a general problem solving strategy which breaks the problem
complexity into loosely-coupled subproblems. The solutions to the subproblems can be
composed relatively easily to yield a solution to the original problem (Mili et al., 2004). This
allows to cope with complexity and thereby achieving the required engineering quality factors
such as robustness, adaptability, maintainability, and reusability.
Despite a common agreement on the necessity of the application of the separation of concerns
principle, there is not a well-established understanding of the notion of concern. Indeed,
concern can be thought of as a unit of modularity (Blogspot, 2008). Progress towards separation
of concerns is typically achieved through modularity of programming and encapsulation
(or transparency of operation), with the help of information hiding. Advanced uses of this
principle allow for simultaneous decomposition according to multiple kinds of (overlapping
and interacting) concerns (Tarr et al., 2000).
In practice, the principle of separation of concerns should drive the identification of the right
decomposition or modularization of a problem. Obviously, there are both: (i) generic and
domain-independent patterns of how to decompose and modularize certain problems in a
suitable way as well as (ii) patterns driven by domain-specific best practices and use-cases.
In most engineering approaches as well as in robotics, at least the following are dominant
dimensions of concerns which should be kept apart (Björkelund et al., 2011; Radestock &
Eisenbach, 1996):
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Computation provides the functionality of an entity and can be implemented in different
ways (software and/or hardware). Computation activities require communication to
access required data and to provide computed results to other entities.

Communication exchanges data between entities (ranging from hardware devices to
interfaces for real-world access over software entities to user interfaces etc.).

Configuration comprises the binding of configurable parameters of individual entities. It
also comprises the binding of configurable parameters at a system level like, for example,
connections between entities.

Coordination is about when is something being done. It determines how the activities of
all entities in a system should work together. It relates to orchestration and resource
management.

According to (Björkelund et al., 2011), this is in line with results published in (Delamer
& Lastra, 2007; Gelernter & Carriero, 1992; Lastra & Delamer, 2006) although variations
exist which split configuration (into connection and configuration) or treat configuration and
coordination in the same way (Andrade et al., 2002; Bruyninckx, 2011).
It is important to recognize that there are cross-cutting concerns like quality of service (QoS) that
have instantiations within the above dimensions of concerns. Facets of QoS for computation
can manifest with respect to time (best effort computation, hard real-time computation)
or anytime algorithms (explicated relationship between assigned computing resources and
achieved quality of result). Facets of QoS for communication are, for example, response times,
latencies and bandwidth.
It is also important to recognize that various concerns need to be addressed at different stages
of the lifecycle of a system and by different stakeholders. For example, configuration is part
of the design phase (a component developer provides dedicated configurable parameters, a
system integrator binds some of them for deployment) and of the runtime phase (the task
coordination mechanism of a robot modifies parameter settings and changes the connections
between entities according to the current situation and task to fulfill).
It is perfectly safe to say that robotics should take advantage from insights and successful
approaches for complexity handling readily available in other but similar domains like, for
example, automotive and avionics industry or embedded systems in general. Instead, robotics
often reinvents the wheel instead of exploiting cross-fertilization between robotics and
communities like software engineering and middleware systems. The interesting question is
whether there are differences in robotics compared to other domains which hinder roboticists
from jumping onto already existing and approved solutions. One should also examine
whether or not these solutions are tailorable to robotics needs.

2.2 Specifics in robotics
The difference of robotics compared to other domains like automotive and avionics is neither
the huge variety of different sensors and actuators nor the number of different disciplines
being involved nor the diversity of hardware-platforms and software-platforms. In many
domains, developers need to deal with heterogeneous hardware devices and are obliged to
deploy their software on computers which are often constrained in terms of memory and
computational power.
We are convinced that differences of robotics compared to other domains originate from the
need of a robot to cope with open-ended environments while having only limited resources
at its disposal.
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Limited resources require decisions: when to assign which resources to what activity taking
into account perceived situation, current context and tasks to be fulfilled. Finding adequate
solutions for this major challenge of engineering robotic systems is difficult for two reasons:

• the problem space is huge: as uncertainty of the environment and the number and type of
resources available to a robot increase, the definition of the best matching between current
situation and correct robot resource exploitation becomes an overwhelming endeavour
even for the most skilled robot engineer,

• the solution space is huge: in order to enhance overall quality of service like robustness
of complex robotic systems in real-world environments, robotic system engineers should
master highly heterogeneous technologies, need to integrate them in a consistent and
effective way and need to adequately exploit the huge variety of robotic-specific resources.

In consequence, it is impossible to statically assign resources in advance in such a way that all
potential situations arising at runtime are properly covered. Due to open-ended real-world
environments, there will always be a deviation between design-time optimality and runtime
optimality with respect to resource assignments. Therefore, there is a need for dynamic
resource assignments at runtime which arises from the enormous sizes of the problem space
and the solution space.
For example, a robot designer cannot foresee how crowded an elevator will be. Thus, a robot
will need to decide by its own and at runtime whether it is possible and convenient to exploit
the elevator resource. The robot has to trade the risk of hitting an elevator’s user with the risk
of arriving late at the next destination. To match the level of safety committed at design-time,
the runtime trade-off has to come up with parameters for speed and safety margins whose
risk is within the design-time committed boundaries while still implementing the intent to
enter the elevator.

2.2.1 Model-centric robotic systems
The above example illustrates why we have to think of engineering advanced robotic systems
differently compared to other complex systems. A complex robotic system cannot be
treated as design-time finalizable system. At runtime, system configurations need to be
changeable according to current situation and context including prioritized assignments of
resources to activities, (de)activations of components as well as changes to the wiring between
components. At runtime, the robot has to analyze and to decide for the most appropriate
configuration. For example, if the current processor load does not allow to run the navigation
component at the highest level of quality, the component should be configured to a lower
level of navigation quality. A reasonable option to prepare a component to cope with reduced
resource assignments might be to reduce the maximum velocity of the robot in order to still
guarantee the same level of navigation safety.
In consequence, we need to support design-time reasoning (at least by the system engineer) as
well as runtime reasoning (by the robot itself) about both, the problem space and the solution
space. This can be achieved by raising the level of abstraction at which relevant properties
and characteristics of a robotics system are expressed. As for every engineering endeavour,
this means to rely on the power of models and asks for an overall different design approach
as illustrated in figure 1:

• The solution space can be managed by providing advanced design tools for robot
software development to design reconfigurable and adaptive robotic systems. Different
stakeholders involved in the development of a robotic system need the ability to formally
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Fig. 1. Novel workflow bridging design-time and runtime model-usage: at design-time
variation points are purposefully left open and allow for runtime decisions (Schlegel et al.,
2010).

model and relate different views relevant to robotic system design. A major issue is the
support of separation of concerns taking into account the specific needs of robotics.

• The problem space can be mastered by giving the robot the ability to reconfigure its internal
structure and to adapt the way its resources are exploited according to its understanding
of the current situation.

Fig. 2. Separation of concerns and design abstraction: models created at design-time are used
and manipulated at runtime by the robot (Steck & Schlegel, 2011).

We coin the term model-centric robotic systems (Steck & Schlegel, 2011) for the new
approach of using models to cover and support the whole life-cycle of robotic systems.
Such a model-centric view puts models into focus and bridges design-time and runtime
model-usage.
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During the whole lifecycle, models are refined and enriched step-by-step until finally they
become executable. Models comprise variation points which support alternative solutions.
Some variation points are purposefully left open at design time and even can be bound
earliest at runtime after a specific context and situation dependent information is available.
In consequence, models need to be interpretable not only by a human designer but also by
a computer program. At design-time, software tools should understand the models and
support designers in their transformations. At runtime, adaptation algorithms should exploit
the models to automatically reconfigure the control system according to the operational
context (see figure 2).
The need to explicitly support the design for runtime adaptability adds robotic-specific
requirements on software structures and software engineering processes, gives guidance on
how to separate concerns in robotics and allows to understand where the robotics domain
needs extended solutions compared to other and at first glance similar domains.

2.2.2 User roles and requirements
Another strong influence on robotic software systems besides technical challenges comes from
the involved individuals and their needs. We can distinguish several user roles that all put
a different focus on complexity management, on separation of concerns and on software
engineering in robotics:

End users operate applications based on the provided user interface. They focus on the
functionality of readily provided systems. They do not care on how the application has
been built and mainly expect reliable operation, easy usage and reasonable value for
money.

Application builders / system integrators assemble applications out of approved,
standardized and reusable off-the-shelf components. Any non trivial robotic application
requires the orchestration of several components such as computer vision, sensor fusion,
human machine interaction, object recognition, manipulation, localization and mapping,
control of multiple hardware devices, etc. Once these parts work together, we call it
a system. This part of the development process is called, therefore, system integration.
Components can be provided by different vendors. Application builders and system
integrators consider components as black boxes and depend on precise specifications
and explications of all relevant properties for smooth composition, resource assignments
and mappings to target platforms. Components are customized during system level
composition by adjusting parameters or filling in application dependent parts at so-called
hot spots via plug-in interfaces. Application builders expect support for system-level
engineering.

Component builders focus on the specification and implementation of a single component.
They want to focus on algorithms and component functionality without being restricted
too much with respect to component internals. They don’t want to bother with integration
issues and expect a framework to support their implementation efforts such that the
resulting component is conformant to a system-level black box view.

Framework builders / tool providers prepare and provide tools that allow the different users
to focus on their role. They implement the software frameworks and the domain-specific
add-ons on top of state-of-the-art and standard software systems (like middleware
systems), use latest software technology and make these available to the benefit of robotics.
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The robotics community provides domain-specific concepts, best practices and design
patterns of robotics. These are independent of any software technology and
implementational technology. They form the body of knowledge of robotics and provide the
domain-specific ground for the above roles.

The essence of the work of the component builder is to design reusable components which
can seamlessly be integrated into multiple systems and different hardware platforms. A
component is considered as a black box. The developer can achieve this abstraction only
if he is strictly limited in his knowledge and assumptions about what happens outside his
component and what happens inside other components.
On the other hand, the methodology and the purpose of the system integrator is opposite: he
knows exactly the application of the software system, the platform where it will be deployed
and its constraints. For this reason, he is able to take the right decision about the kind of
components to be used, how to connect them together and how to configure their parameters
and the quality of service of each of them to orchestrate their behavior. The work of the system
integrator is rarely reusable by others, because it is intrinsically related to a specific hardware
platform and a well-defined and sometimes unique use-case. We don’t want the system
integrator to modify a component or to understand the internal structure and implementation
of the components he assembles.

2.2.3 Separation of roles from an industrial perspective
This distinction between the development of single components and system integration is
important (figure 3). So far, reuse in robotics software is mainly possible at the level of
libraries and/or complete frameworks which require system integrators to be component
developers and vice versa. A formal separation between component building and system
integration introduces another and intermediate level of abstraction for reuse which will make
it possible to

• create commercial off-the-shelf (COTS) robotic software: when components become
independent of any specific robot application, it becomes possible to integrate them
quickly into different robotic systems. This abstraction allows the component developer to
sell its robotic software component to a system integrator;

• overcome the need for the system integrator to be also an expert of robotic algorithms and
software development. We want companies devoted to system integration (often SMEs)
to take care of the Business-to-Client part of the value chain, but this will be possible only
when their work will become less challenging;

• establish dedicated system integrators (specific to industrial branches and application
domains) apart from experts for robotic components (like navigation, localization, object
recognition, speech interaction, etc.);

• provide plug-and-play robotic hardware: so far the effort of the integration of the
hardware into the platform was undertaken by the system integrator. If manufacturers
start providing ready-to-use drivers which work seamlessly in a component-driven
environment, robotic applications can be deployed faster and become cheaper.

This separation of roles will eventually have a positive impact in robotics: it will potentially
allow the creation of a robotics industry, that is an ecosystem of small, medium and large
enterprises which can profitably and symbiotically coexist to provide business-to-business
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Fig. 3. Building robotic systems out of readily-available and reusable software components:
separation of the roles of component development and system integration.

and business-to-client products such as hardware parts, software applications and complete
robots with a specific application and deliver a valuable product to the customer.
To understand better what a robotics industry means, we draw an analogy to the personal
computer industry. Apart from very few exceptions, we can identify several companies
involved in the manufacturing of a single and very specific part of the final product: single
hardware components (memories, hard drives, CPU, mother boards, screens, power supplies,
graphic cards, etc.), operating systems (Windows, commercial Linux distributions), software
applications (CAD, word processing, video games, etc.) and system integrators which provide
ready-to-use platforms to the end user.

2.3 Service-oriented software components to master system complexity
Software engineering provides three major approaches that help to address the above
challenges, that is component-based software engineering (CBSE), service-oriented architectures
(SOA) and model-driven software development (MDSD).
CBSE separates the component development process from the system development process
and aims at component reusability. MDSD separates domain knowledge (formally specified
by domain experts) from how it is being implemented (defined by software experts using
model transformations). SOA is about the right level of granularity for offering functionality
and strictly separates service providers and consumers.

2.3.1 Component-based software engineering
CBSE (Heineman & Councill, 2001) is an approach that has arisen in the software engineering
community in the last decade. It shifts the emphasis in system-building from traditional
requirements analysis, system design and implementation to composing software systems
from a mixture of reusable off-the-shelf and custom-built components. A compact and widely
accepted definition of a software component is the following one:

“A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be developed
independently and is subject to composition by third parties.” (Szyperski, 2002).

Software components explicitly consider reusable pieces of software including notions of
independence and late composition. CBSE promises the benefits of increased reuse, reduced
production cost, and shorter time to market. In order to realize these benefits, it is
vital to have components that are easy to reuse and composition mechanisms that can
be applied systematically. Composition can take place during different stages of the

481Robotic Software Systems: From Code-Driven to Model-Driven Software Development



10 Robotic Systems

lifecycle of components that is during the design phase (design and implementation), the
deployment phase (system integration) and even the runtime phase (dynamic wiring of data
flow according to situation and context). CBSE is based on the explication of all relevant
information of a component to make it usable by other software elements whose authors
are not known. The key properties of encapsulation and composability result in the following
seven criteria that make a good component: “(i) may be used by other software elements
(clients), (ii) may be used by clients without the intervention of the component’s developers,
(iii) includes a specification of all dependencies (hardware and software platform, versions,
other components), (iv) includes a precise specification of the functionalities it offers, (v) is
usable on the sole basis of that specification, (vi) is composable with other components,
(vii) can be integrated into a system quickly and smoothly” (Meyer, 2000).

2.3.2 Service-oriented architectures
Another generally accepted view of a software component is that it is a software unit
with provided services and required services. In component models, where components are
architectural units, services are represented as ports (Lau & Wang, 2007). This view puts
the focus on the question of a proper level of abstraction of offered functionalities. Services
“combine information and behavior, hide the internal workings from outside intrusion and
present a relatively simple interface to the rest of the program” (Sprott & Wilkes, 2004). The
(CBDI Forum, 2011) recommends to define service-oriented architectures (SOA) as follows:

SOA are “the policies, practices, frameworks that enable application functionality to be
provided and consumed as sets of services published at a granularity relevant to the
service consumer. Services can be invoked, published and discovered, and are abstracted
away from the implementation using a single, standards-based form of interface” (Sprott
& Wilkes, 2004).

Service is the key to communication between providers and consumers and key properties of
good service design are summarized as in table 1. SOA is all about style (policy, practice,
frameworks) which makes process matters an essential consideration. A SOA has to ensure
that services don’t get reduced to the status of interfaces, rather they have an identity of their
own. With SOA, it is critical to implement processes that ensure that there are at least two
different and separate processes - for providers and consumers (Sprott & Wilkes, 2004).

reusable use of service, not reuse by copying of code/implementation
abstracted service is abstracted from the implementation
published precise, published specification functionality of service interface, not

implementation
formal formal contract between endpoints places obligations on provider and

consumer
relevant functionality is presented at a granularity recognized by the user as a

meaningful service

Table 1. Principles of good service design enabled by characteristics of SOA as formulated in
(Sprott & Wilkes, 2004).

2.3.3 Model-driven software development
MDSD is a technology that introduces significant efficiencies and rigor to the theory and
practice of software development. It provides a design abstraction as illustrated in figure

482 Robotic Systems – Applications, Control and Programming



Robotic Software Systems: From Code-Driven to Model-Driven Software Development 11

4. Abstractions are provided by models (Beydeda et al., 2005). Abstraction is a core principle
of software engineering.

“A model is a simplified representation of a system intended to enhance our ability to
understand, predict and possibly control the behavior of the system” (Neelamkavil, 1987).

Software Technology ConceptsSoftware Technology Concepts Software Technology ConceptsSoftware Technology Concepts

Modeling

Domain Concepts

like roboticists

mental work of
domain experts

with MDSDDomain Concepts

mental work of developers
(domain experts need
to be software experts)

software experts
and tool support

without MDSD

Software Technology ConceptsSoftware Technology Concepts

Fig. 4. Design abstraction of model-driven software development.

In MDSD, models are used for many purposes, including reasoning about problem and
solution domains and documenting the stages of the software lifecycle; the result is improved
software quality, improved time-to-value and reduced costs (IBM, 2006).
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Fig. 5. Model-driven software development at a glance.

The standard workflow of a model-driven software development process is illustrated
in figure 5. This workflow is supported by tools like the Eclipse Modeling Project
(Eclipse Modeling Project, 2010) which provide means to express model-to-model and
model-to-code transformations. They import standardized textual XMI representations of
the models and can parse them according to the used meta-model. Thus, one can easily
introduce domain-specific concepts to forward information from a model-level to the model
transformations and code generators. Tools like Papyrus (PAPYRUS UML, 2011) allow for a
graphical representation of the various models and can export them into the XMI format.
Overall, there is a complete toolchain for graphical modelling and transformation steps
available that can be tailored to the domain specific needs of robotics.
MDSD is much more than code generation for different platforms to address the technology
change problem and to make development more efficient by automatically generating
repetitive code. The benefits of MDSD are manifold (Stahl & Völter, 2006; Völter, 2006):
(i) models are free of implementation artefacts and directly represent reusable domain
knowledge including best practices, (ii) domain experts can play a direct role and are not
requested to translate their knowledge into software representations, (iii) design patterns,
sophisticated & optimized software structures and approved software solutions can be made
available to domain experts and enforced by embedding them in templates for use by highly
optimized code generators such that even novices can immediately take advantage from a
coded immense experience, (iv) parameters and properties of components required for system
level composition and the adaptation to different target systems are explicated and can be
modified within a model-based toolchain.
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2.4 Stable structures and freedom from choice
In robotics, we believe that the cornerstone is a component model based on service-orientation for
its provided and required interactions represented in an abstract way in form of models.
A robotics component model needs to provide component level as well as system level concepts,
structures and building blocks to support separation of concerns while at the same time
ensuring composability based on a composition theory: (i) building blocks out of which
one composes a component, (ii) patterns of how to design a well-formed component to
achieve system level conformance, (iii) guidance towards providing a suitable granularity of
services, (iv) specification of the behavior of interactions and (v) best practices and solutions
of domain-specific problems. MDSD can then provide toolchains and thereby support
separation of concerns and separation of roles.
The above approach asks for the identification of stable structures versus variation points
(Webber & Gomaa, 2004). A robotics component model has to provide guidance via stable
structures where these are required to support separation of concerns and to ensure system
level conformance. At the same time, it has to allow for freedom wherever possible.
The distinction between stable structures and variation points is of relevance at all levels
(operating system interfaces, library interfaces, component internal structures, provided
and required services etc.). In fact, identified and enforced stable structures come along
with restrictions. However, one has to notice that well thought out limitations are not a
universal negative and freedom from choice (Lee & Seshia, 2011) gives guidance and assurance
of properties beyond one’s responsibilities in order to ensure separation of concerns.
As detailed in (Schlegel et al., 2011), stable structures with respect to a service-oriented
component-based approach can be identified. These are illustrated in figure 6.
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Fig. 6. Stable structures and different roles in a component-based software approach.

At the system level (S), provided and required service ports � of a component form a stable
interface for the application builder. In an ideal situation, all relevant properties of a component
are made explicit to support a black box view. Hence, system level properties like resource
conformance of the component mapping to the computing platform can be checked during
system composition and deployment.
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At the component level (C), the component builder wants to rely on a stable interface to the
component framework �. In an ideal situation, the component framework can be considered
as black box hiding all operating system and middleware aspects from the user code. The
component framework adds the execution container to the user code such that the resulting
component is conformant to a black box component view.
At the framework level (F), two stable interfaces exist: (i) between the framework and the
user code of the component builder � and (ii) between the framework and the underlying
middleware & operating system �. The stable interface � ensures that no middleware
and operating system specifics are unnecessarily passed on to the component builder. The
stable interface � ensures that the framework can be mapped onto different implementational
technologies (middleware, operating systems) without reimplementing the framework in its
entirety. The framework builder maintains the framework which links the stable interfaces �

and � and maps the framework onto different implementational technologies via the interface
�.

3. The SMARTSOFT-approach

The basic idea behind SMARTSOFT (Schlegel, 2011) is to master the component hull and
thereby achieve separation of concerns as well as separation of roles. Figure 7 illustrates the
SMARTSOFT component model and how its component hull links the stable interfaces �, �

and �.
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Fig. 7. The structure of a SMARTSOFT component and its stable interfaces.

Pattern Description Service Description
send one-way communication param component configuration
query two-way request state activate/deactivate component services
push newest 1-to-n distribution wiring dynamic component wiring
push timed 1-to-n distribution diagnose introspection of components
event asynchronous notification (internally based on communication patterns)

Table 2. The set of patterns and services of SMARTMARS.

The link between � and � is realized by communication patterns. Binding a communication
pattern with the type of data to be transmitted results in an externally visible service
represented as port. The small set of generic and predefined communication patterns listed
in the left part of table 2 are the only ones to define externally visible services. Thus, the
behavior and usage of a service is immediately evident as soon as one knows its underlying
communication pattern.
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Fig. 8. The views of a component builder and a system integrator on services by the example
of a grid map service based on a query communication pattern.

Figure 8 illustrates this concept by means of the query communication pattern which consists
of a query client and a query server. The query pattern expects two communication objects to
define a service: a request object and an answer object. Communication objects are transmitted
by-value to ensure decoupling of the lifecycles of the client side and the server side of a service.
They are arbitrary objects enriched by a unique identifier and get/set-methods. Hidden
from the user and inside the communication patterns, the content of a communication object
provided via E gets extracted and forwarded to the middleware interface H. Incoming content
at H is put into a new instance of the according communication object before providing access
to it via E.
In the example, the system integrator sees a provided port based on a query server with the
communication objects GridMapRequest and GridMap. The map service might be provided by a
map building component. Each component with a port consisting out of a query client with the
same communication objects can use that service. For example, a path planning component
might need a grid map and expose a required port for that service. The GridMapRequest object
provides the parameters of the individual request (for example, the size of the requested
map patch, its origin and resolution) and the GridMap returns the answer. The answer is
self-contained comprising all the parameters describing the provided map. That allows to
interpret the map independently of the current settings of the service providing component
and gives the service provider the chance to return a map as close to but different from the
requested parameters in case he cannot handle them exactly.
A component builder uses the stable interface E. In case of the client side of a service based on
the query pattern, it always consists of the same synchronous as well as asynchronous access
modes independent from the used communication objects and the underlying middleware.
They can be used from any number of threads in any order. The server side in this example
always consists of an asynchronous handler upcall for incoming requests and a separated
answer method. This separation is important since it does not require the upcall to wait until
the answer is available before returning. We can now implement any kind of processing model
inside a component, even a processing pipeline where the last thread calls the answer method,
without blocking or wasting system resources of the upcall or be obliged to live with the
threading models behind the upcall.
In the example, the upcall at the service provider either directly processes the incoming
GridMapRequest object or forwards it to a separate processing thread. The requested map
patch is put into a GridMap object which then is provided as answer via the answer method.
It can be seen that the client side is not just a proxy for the server side. Both sides of a
communication pattern are completely standalone entities providing stable interfaces A and
E by completely hiding all the specifics of H and I (see figure 7). One can neither expose
arbitrary member functions at the outside component hull nor can one dilute the semantics
and behavior of ports. The different communication patterns and their internals are explained
in detail in (Schlegel, 2007).
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Besides the services defined by the component builder (A), several predefined services exist
to support system level concerns (Lotz et al., 2011). Each component needs to provide a
state service to support system level orchestration (outside view B: activation, deactivation,
reconfiguration; inside view F: manage transitions between service activations, support
housekeeping activities by entry/exit actions). An optional diagnostic service (C, G) supports
runtime monitoring of the component. The optional param service manages parameters by
name/value-pairs and allows to change them at runtime. The optional wiring service allows to
wire required services of a component at runtime from outside the component. This is needed
for task and context dependent composition of behaviors.

3.1 The SMARTMARS meta-model
All the stable interfaces, concepts and structures as well as knowledge about which
ingredients and structures form a well-formed SMARTSOFT component and a well-formed
system of SMARTSOFT components are explicated in the SMARTMARS meta-model (figure
9). The meta-model is abstract, universally valid and independent from implementation
technologies (e.g. UML profile (Fuentes-Fernández & Vallecillo-Moreno, 2004), eCore
(Gronback, 2009)). It provides the input for tool support for the different roles (like component
developer, system integrator etc.), explicates separation of concerns and can be mapped
onto different software technologies (e.g. different types of middleware like CORBA, ACE
(Schmidt, 2011) and different types of operating systems).
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Fig. 9. Excerpt of the SMARTMARS meta-model.

3.2 Policies and strategies behind SMARTSOFT services
A major part of the SMARTSOFT approach are the policies and strategies that manifest
themselves in the structure of the component model, explain its building blocks and guide
their usage.
Separation of the roles of a component developer and a system integrator requires to control
the interface between the inner part of a component and its outer part and to control this
boundary. As soon as one gains control over the component hull, one can make sure that
all relevant properties and parameters needed for the black box view of the system integrator
become explicated at the component hull. One can also make sure that a component developer
has no chance to expose component internals to the outside. SMARTSOFT achieves this via
predefined communication patterns as the only building blocks to define externally visible
services and by further guidelines on how to build good services.
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A basic principle is that clients of services are not allowed to make any assumptions about offered
services beyond the announced characteristics and that service providers are not allowed to make any
assumptions about service requestors (like e.g. their maximum rate of requests).
This principle results in simple and precise guidelines of how to apply the communication
patterns in order to come up with well-formed services. As long as a service is being offered,
the service provider has to accept all incoming requests and has to respond to them according
to its announced quality-of-service parameters.
We illustrate this principle by means of the query pattern. As long as there are no
further quality-of-service attributes, the service provider accepts all incoming requests and
guarantees to answer all accepted requests. However, only the service provider knows about
its resources available to process incoming requests and clients are not allowed to impose
constraints on the service provider (a request might provide further non-committal hints to
the service provider like a request priority). Thus, the service provider is allowed to provide a
nil answer (the flag is valid is set to false in the answer) in case he is running out of resources to
answer a particular request. In consequence, all service requestors always must be prepared
to get a nil answer. A service requestor is also not allowed to make any assumptions about
the response time as long as according quality-of-service attributes are not set by the service
provider. However, if a service provider announces to answer requests within a certain time
limit, one can rely on getting at least a nil answer before the deadline. If a service requestor
depends on a maximum response time although this quality-of-service attribute is not offered
by the service provider, he needs to use client-side timeouts with his request. This overall
principle ensures (i) loose coupling of services, (ii) prevents clients from imposing constraints
on service providers and (iii) gives service providers the means to arbitrate requests in case of
limited resources.
It now also becomes evident why SMARTSOFT offers more than just a request/response and
a publish/subscribe pattern which would be sufficient to cover all communicational needs.
The send pattern explicates a one-way communication although one can emulate it via a
query pattern with a void answer object. However, practical experience proved that a much
better clarity for services with this characteristic is achieved when offering a separate pattern.
The same holds true for the push newest and the push timed pattern. In principle, the push
timed pattern is a push newest pattern with a regular update. However, in case of a push
newest pattern, service requestors rely on having the latest data available at any time. This is
different from a push timed pattern where the focus is on the service provider guaranteeing a
regular time interval (in some cases even providing the same data). Although one could cover
some of these aspects by quality-of-service attributes, they also have an impact on the kind
of perception of its usage by a component developer. Again, achieving clarity and making
the characteristics easily recognizable is of particular importance for the strict separation of
the roles of component developers and system integrators. This also becomes obvious with
the event pattern. In contrast to the push patterns, service requestors get informed only in
case a server side event predicate (service requestors individually parametrize each event
activation) becomes true. This tremendously saves bandwidth compared to publishing latest
changes to all clients since one then always would have to publish a snapshot of the overall
context needed to evaluate the predicate at the client side instead of just the information when
an event fired.
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3.3 A robotics example illustrating the SMARTSOFT concepts
Figure 10 illustrates how the SMARTSOFT component model and its meta-elements provided
by SMARTMARS structure and partition a typical robotics use-case, namely the navigation of
a mobile platform. Besides access to sensor data and to the mobile base, algorithmic building
blocks of a navigation system are map building, path planning, motion execution and self
localization. Since these building blocks are generic for navigation systems independently of
the used algorithms, it makes sense to come up with an according component structure and
services (or expect readily available components and services).
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Fig. 10. Structure of a navigation task based on the SMARTSOFT component model.

The SmartLaserLMS200Server component provides the latest laser scan via a push newest
port. Thus, all subscribed clients always get an update as soon as a new laserscan is available.
It is subscribed to the pose service of the robot base to label laser scans with pose stamps.
The component comprises a SmartTask to handle the internal communication with the laser
hardware. This way, the aliveness of the overall component and its services is not affected
by flaws on the laser hardware interface. Parameters like position-offset and serialport are
used to customize the component to the target robotic system. These parameters have to
be set by the application builder during the deployment step. The SmartMapperGridMap
component requires a laser scan to build the longterm and the current map. The current map
is provided by a push newest server port (as soon as a new map is available, it is provided
to subscribed clients which makes sense since path planning depends on latest maps) and
the longterm map by a query server port (since it is not needed regularly, it makes sense
to provide it only on a per-request basis). The state port is used to set the component into
different states depending on which services are needed in the current situation: build no
map at all (neutral), build the current map only (buildCurr), build the longterm map only
(buildLtm) or build both maps (buildBoth). The push newest server publishes the current
map only in the states buildCurr and buildBoth. Requests for a longterm map are answered
as long as the component and its services are alive but with an invalid map in case it is
in the states neutral or buildCurr (valid flag of answer object set to false). Accordingly,
the SmartPlannerBreadthFirstSearch component provides its intermediate waypoints by a
push newest server (update the motion execution component as soon as new information is
available). The motion execution component regularly commands new velocities to the robot
base via a send service. The motion execution component is also subscribed to the laser scan
service to be able to immediately react to obstacles in dynamic environments. This way, the
different services interact to build various control loops to combine goal directed and reactive
navigation while at the same time allowing for replacement of components.
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3.4 State-of-the-art and related work
The historical need in robotics to be responsible for creation of the application logic and to
be at the same time the system integrator generated a poor understanding in the robotics
community that these two roles ought to be separated. In consequence, most robotics
frameworks don’t make this distinction and consequently they don’t offer any clear guideline
to the developer on how to achieve separation of roles.
For example, ROS (Quigley et al., 2009) is a currently widely-used framework in robotics
providing a huge and valuable codebase. However, it lacks guidance for component
developers to ensure system level conformance for composability. Instead, its focus is on
side-by-side existence of all kinds of overlapping concepts without an abstract representation
of its core features and properties in a way independent of any implementation.
The only approach in line with the presented concepts is the RTC Specification (OMG, 2008)
which is considered the most advanced concept of MDSD in robotics. However, it is strongly
influenced by use-cases requiring a data-flow architecture and they do not yet considerably
take into account requirements imposed by runtime adaptability.

4. Reference implementation of the SMARTMDSD TOOLCHAIN

The reference implementation of the SMARTMDSD TOOLCHAIN implements the
SMARTMARS meta-model within a particular MDSD-toolchain. It is used in real world
operation to develop components and to compose complex systems out of them. The focus
of this section is on technical details of the implementation of a meta-model. Another focus
is on the role-specific view and the support a MDSD-toolchain provides. We illustrate the
reference implementation of the toolchain along the different roles of the stakeholders and
their views on the toolchain.

4.1 Decisions and tools behind the reference implementation - framework builder view
The reference implementation of our SMARTMDSD TOOLCHAIN is based on the Eclipse
Modeling Project (EMP) (Eclipse Modeling Project, 2010) and Papyrus UML (PAPYRUS UML,
2011).
Papyrus UML is used as graphical modeling tool in our toolchain. Therefore, it is customized
by the framework builder for the development of SMARTSOFT Components (component
builder) and deployments of components (application builder). This includes for example a
customized wizard to create communication objects, components as well as deployments. The
modeling view of Papyrus UML is enriched with a customized set of meta-elements to create
the models. The model transformation and code generation steps are developed with Xpand
and Xtend (Efftinge et al., 2008) which are part of the EMP. These internals are not visible to
the component builder and the application builder. They just see the graphical modeling tool
to create their models and use the CDT Eclipse Plugin (Eclipse CDT, 2011) to extend the source
code and to compile binaries. The SMARTMARS meta-model is implemented as a UML Profile
(Fuentes-Fernández & Vallecillo-Moreno, 2004) using Papyrus UML.
The decision to use UML Profiles and Papyrus UML to implement our toolchain is motivated
by the reduced effort to come up with a graphical modeling environment customized to the
robotics domain and its requirements by reusing available tools from other communities.
Although some shortcomings have to be accepted and taken into account we were not
caught in the huge effort related to implementing a full-fledged GMF-based development
environment. This allowed us to early come up with our toolchain and to gain deeper insights
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and more experience on the different levels of abstraction. However, the major drawbacks of
UML Profiles are:

• UML is a general purpose modeling language covering aspects of several domains and is
thus complex. Using profiles, it is only possible to enrich UML, but not to remove elements.

• Deployment and instantiations of components are not adequately supported.

• UML Profiles provide just a lightweight extension of UML. That means, the structure of
UML itself cannot be modified. The elements can be customized only by stereotypes and
tagged values.

To counter the drawbacks of UML Profiles, we only support the usage of the stereotyped
elements provided by SMARTMARS to create the models of the components and
deployments. Directly using pure UML elements in the diagrams is not supported. Thus,
the models are created using just the meta-elements provided by SMARTMARS. Restricting
the usage to SMARTMARS meta-elements, a mapping to another meta-model implementation
technology like eCore (Gronback, 2009) is straightforward. The stereotyped elements can
be mapped onto eCore without taking into account UML and its structure. In the current
implementation of our toolchain, the restriction to only use SMARTMARS meta-elements
is enforced with check (Efftinge et al., 2008), the EMP implementation of OCL (Object
Management Group, 2010). In the model transformation and code generation steps of our
toolchain pure UML elements are ignored. Another approach would be to customize the
diagrams by removing the UML elements from the palette (see fig. 12) and thus restricting
their usage. The latter approach is on the agenda of the Papyrus UML project and will be
supported by future releases.

4.2 Development of components – component builder view
Figure 11 illustrates the roles of the framework builder and the component builder. The
component builder creates a model of the component using the Eclipse based toolchain,
focusing on the component hull. Pushing the button he receives the source files where to
integrate the business logic (algorithms, libraries) of the component. During this process the
component builder is supported and guided by the toolchain. The internals of the model
transformation and code generation steps implemented by the framework builder are not
visible to the component builder.

SmartSoft
Library

Generated
Code

User Code
integrates creates Model of

Component

Meta−Model
SmartMARS

Framework Builder

Component Builder

Fig. 11. The component builder models a component, gets the source code of its overall
structure (component hull, tasks, etc.) generated by the toolchain and can then integrate
user-code into these structures.

The view of the component builder on the toolchain is depicted in figure 12. It is illustrated by
a face recognition component which is a building block in many service robotics scenarios as
part of the human-robot interface (detection, identification and memorization of persons). In
its active state, the component shall receive camera images, apply face recognition algorithms
and report detected and recognized persons. Thus, besides the standard ports for setting
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states (active, neutral) and parameters, we need to specify a port to receive the latest camera
images (based on a push newest client) and another one to report on the results (based on
an event server). The component shall run the face recognition based on a commercially
available library within one thread and optional visualization mechanisms within a second
and separated thread. Thus, we need to specify two tasks within the component.

Fig. 12. Screenshot of our toolchain showing the view of the Component Builder.

To create the model the component builder uses the SMARTMARS meta-elements offered in
the palette. The elements of the created model can be accessed either in the outline view or
directly in the graphical representation. Several of the meta-element attributes (tagged values)
can be customized and modified in the properties tab (e.g. customizing services to ports,
specifying properties of tasks, etc.). The model is stored in files specific to Papyrus UML.
Pushing the button, the workflow is started and the PSI (source) files are generated. The
user code files are directly accessible in the src folder. The component builder integrates his
business logic into these files (in our example, the interaction with the face recognition library).
The generated files the component builder must not modify are stored in the gen folder. These
files are generated and overwritten each time the workflow is executed. For the further
processing of the source files, the Eclipse CDT plugin is used (Makefile Project). The makefile
is also generated by the workflow specific to the model properties. User modifications in the
makefile can be done inside of protected regions (Gronback, 2009).

4.3 Development of components – framework builder view
Taking a look behind the scenes of the toolchain, the workflow (fig. 13) appears as a two
step transformation according to the OMG MDA (Object Management Group & Soley, 2000).
The Platform Independent Model (PIM), which is created by the component builder using the
meta-elements provided by the PIM UML Profile, specifies the component independently
of the implementation technology. The first step in the workflow is the model-to-model
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Fig. 13. Two step transformation workflow: Framework Builder view.

(M2M) transformation (encoded with Xtend) from the PIM into a Platform Specific Model
(PSM). In this step the elements of the PIM are transformed into corresponding elements
of the PSM according to the selected target platform. The second step is the model-to-text
(M2T) transformation (encoded with Xpand and Xtend) from the PSM into a Platform Specific
Implementation (PSI). This transformation is based on customizable code templates.

4.3.1 The SmartMARS UML profiles (PIM/PSM)
The abstract SMARTMARS meta-model is implemented by the framework builder as UML
Profile using Papyrus UML. Therefore, standard UML elements (e.g. Component, Class, Port) are
extended by stereotypes (e.g. SMARTCOMPONENT, SMARTTASK, SMARTQUERYSERVER) to
give the meta-elements a new meaning according to the SMARTMARS concept. To distinguish
and highlight the new element, it has its own icon attached. Tagged values are used to enrich
the meta-element by new attributes which are not provided by the base UML element.
In fact there are two UML Profiles: one for the PIM and one for the PSM. The PIM UML Profile
is visible to the component builder and is used by him to create the models of the components.
For each SMARTSOFT implementation (e.g. CORBA, ACE), a PSM UML Profile has to be
provided covering the specifics of the implementation. For example, the CORBA-based PSM
supports RTAI linux to provide hard realtime tasks. This is represented by the meta-element
RTAITask. The PSM UML Profile is not visible to the component builder and only used by the
transformation steps inside the toolchain.

Fig. 14. Screenshots of excerpt of the UML Profiles created with Papyrus UML showing the
metaelements dedicated to the SMARTTASK. Left: PIM; Right: PSM with the two variants (1)
standard task and (2) RTAI task.

An excerpt of the UML Profiles is illustrated in figure 14. In the UML Profile for the PIM,
the SMARTTASK extends the UML class and enriches it with attributes (tagged values) like
isPeriodic, isRealtime, period and timeUnit. For the timeUnit an enumeration (TimeUnitKind)
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is used to specify the unit in which time values are annotated. In the UML Profile for the
CORBA-based PSM, an abstract task is specified (cannot be instantiated) and the two variants
(1) standard task and (2) realtime task are derived from it. They are both not abstract and
can thus be instantiated by the component builder to create the model. The standard task
adds an optional attribute referencing to a SMARTTIMER meta-element. This is used to
emulate periodic non-realtime tasks which are not natively supported by standard tasks of
the CORBA-based SMARTSOFT implementation.

4.3.2 Model transformation and code generation steps
The M2M transformation maps the platform independent elements of the PIM onto platform
specific elements of the selected target platform. Such a mapping is illustrated by the example
of the SmartTask (fig. 15 left) and the CORBA-based PSM. The SMARTTASK comprises several
elements which are necessary to describe a task behavior and its characteristics.
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Fig. 15. Model transformation and code generation steps illustrated by the example of the
SMARTTASK. Left: Transformation of the PIM into a PSM. Right: Code generation and
Generation Gap Pattern.

Fig. 16. PIM to PSM model transformation of the SMARTTASK depending on the attribute
isRealtime.
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Fig. 17. PSM to PSI transformation of the SMARTTASK. Left: Excerpt of the transformation
template (xPand) generating the PSI of a standard task. Right: The generated code where the
user adds the business logic of the task.

Depending on the attribute isRealtime the SMARTTASK is either mapped onto a RTAITASK
or a non-realtime SMARTCORBATASK1. The Xtend transformation rule to transform the PIM
SMARTTASK into the appropriate PSM element is depicted in figure 16.
In case the attributes specify a non-realtime, periodic SMARTTASK, the toolchain extends the
PSM by the elements needed to emulate periodic tasks (as this feature is not covered by
standard tasks). In each case the user integrates his algorithms and libraries into the stable
interface provided by the SMARTTASK (component builder view) independent of the hidden
internal mapping of the SMARTTASK (generated code). Figure 17 depicts the Xpand template
to generate the user code file for the task in the PSI. The figure shows the template on the left
and the generated code on the right.
The PSI consists of the SMARTSOFT library, the generated code and the user code (fig. 15
right). To be able to re-generate parts of the component source code according to modified
parameters in the model without affecting the source code parts added by the component
builder, the generation gap pattern (Vlissides, 2009) is used. It is based on inheritance –
the user code inherits from the generated code2. The source files called generated code are
generated each time the transformation workflow in the toolchain is executed. These files
contain the logic which is generated behind the scenes according to the model parameters
and must not be modified by the component builder. The source files called user code are just
generated if they do not already exist. They are intended for the component builder to add
the algorithms and libraries. The generation of the user code files is more for the convenience
of the component builder to have a code template as starting point. These files are in the
full responsibility of the component builder and are never modified or overwritten by the
transformation workflow of the toolchain. In this context generate once means that the file is
only generated if it does not already exist. This is typically the case if the workflow is executed
for the first time. The clear separation of generated code and user code by the generation gap
pattern allows on the one hand to reflect modifications of the model in the generated source

1 Corba in element names indicates that the element belongs to the CORBA specific PSM.
2 The pattern could also be used in the opposite inheritance ordering so that the generated code inherits

from the user code.
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code without overwriting the user parts. On the other hand it gives the user the freedom to
structure his source code according to his needs and does not restrict the structure as would be
the case with, for example, protected regions. Consequently, the component builder can modify
the period, priority or even the isRealtime attribute of the task in the model, re-generate and
compile the code without requiring any modification in the user code files. The modification
in the model just affects the generated code part of the PSI.

4.4 Deployment of components – application builder view
The deployment is used to compose a robotic system out of available components. The
application builder imports the desired components and places them onto the target platform.
Furthermore, he defines the initial wiring of the components by connecting the ports
with the meta-element Connection. Figure 18 illustrates the composition of navigation

Fig. 18. Screenshot of our toolchain showing the deployment of components to build a
robotic system.

components. In this example, the application builder (system integrator) imports components
specific to a particular robot platform (SmartPioneerBaseServer) and specific to a particular
sensor (SmartLaserLMS200Server). The navigation components (SmartMapperGridMap,
SmartPlannerBreadthFirstSearch, SmartCDLServer) can be used across different mobile
robots. The SmartRobotConsole provides a user interface to command the robot.
The components are presented to the application builder as black boxes with dedicated
variation points. These have to be bound during the deployment step and can be specified
according to system level requirements. For example, a laser ranger component might need
the coordinates of its mounting point relative to the robot coordinate system. One might also
reduce the maximum scanning frequency to save computing resources. Parameters also need
to be bound for the target system. For example, in case RTAI is used inside of a component,
the RTAI scheduler parameters (timer model underlying RTAI: periodic, oneshot) of the target
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RTAI system have to be specified. If the application builder forgets to bind required settings,
this absence is reported to him by the toolchain.
The application builder can identify the provided and required services of a component via
its ports. He can inspect its characteristics by clicking on the port icon which opens a property
view. That comprises the communication pattern type, the used communication objects
and further characteristics like service name and also port specific information like update
frequencies. The initial wiring is done within the graphical representation of the model. In
case the application builder wants to connect incompatible ports, the toolchain refuses the
connection and gives further hints on the reasons.
If the CORBA-based implementation of SMARTSOFT is used, the CORBA naming service
properties IP-address and port-number have to be set. Furthermore, the deployment type
(local, remote) has to be selected. For a remote deployment, the IP-address, username and target
folder of the target computer have to be specified. The deployed system is copied to the target
computer and can be executed there. In case of a local deployment, the system is customized
to run on the local machine of the application builder. This is, for example, the case if no real
robot is used and the deployed system uses simulation components (e.g. Gazebo). Depending
on the initial wiring, parameter files are generated and also copied into the deployment folder.
These parameter files contain application specific adjustments of the components. In addition,
a shell script to start the system is generated out of the deployment model.

4.5 Deployment of components – framework builder view
To implement the deployment of components, some meta-elements are added by the
framework builder to the UML Profile (fig. 19). This section focuses on the CORBA-based
deployment.

Fig. 19. Meta-elements to support the deployment of components.

The deployment model contains relevant information like the initial wiring between
components (Connection), naming service properties (CorbaNamingService), scheduler
properties (RTAISetup) and parameters about the deployment itself (CorbaSmartSoftTarget).
The models of the components are made available to the deployment model using the UML
import mechanism. This allows to access the internal structure of the components. Out of the
deployment model the parameter files and a start script are generated (M2T) using Xpand and
Xtend in a similar way as these transformation languages are used to generate code for the
components. Based on the deployment model several analysis and simulation models can be
generated to get feedback from 3rd-party tools. For example, one can extract parameters of
all realtime tasks mapped onto a specific processor to perform hard realtime schedulability
analysis (CHEDDAR (Cheddar, 2010)) (Schlegel et al., 2010).
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Fig. 20. The clean-up scenario. (1) Kate approaches the table; (2/3) Kate stacks objects into
each other; (4) Kate throws cups into the kitchen sink.

As deployments and especially instantiations of components are not sufficiently supported
by UML, a few workarounds are necessary as long as the SMARTMARS meta-model is
implemented as UML Profile. For example, a robot with two laser range finders (front, rear)
requires two instances of the same component. Each laser instance requires its individual
parameters (e.g. serial port, pose on robot). These parameters are assigned to the deployment
model by the application builder specifically for each component. In the implementation
based on the UML Profile, we hence work on copies of components. Individual instances
with their own parameter sets are considered in the abstract SMARTMARS meta-model and
are also covered in the SMARTSOFT implementation, thus switching to a different meta-model
implementation technology would allow for instances. This has not yet been done due to the
huge manpower needed compared to just reusing UML tools.

5. Example / scenario

The work presented has been used to build and run several real-world scenarios, including
the participation at the RoboCup@Home challenge. Among other tasks our robot “Kate” can
follow persons, deliver drinks, recognize persons and objects and interact with humans by
gestures and speech.
In the clean-up scenario 3 (fig. 20) the robot approaches a table, recognizes the objects which
are placed on the table and cleans the table either by throwing the objects into the trash bin
or into the kitchen sink. There are different objects, like cups, beverage cans and different
types of crisp cans. The cups can be stacked into each other and have to be thrown into the
kitchen sink. Beverage cans can be stacked into crisp cans and have to be thrown into the
trash bin. Depending on the type of crisp can, one or two beverage cans can be stacked into
one crisp can. After throwing some of the objects into the correct disposal the robot has to
decide whether to drive back to the table to clean up the remaining objects (if existing) or to
drive to the operator and announce the result of the cleaning task. The robot reports whether
all objects on the table could be cleaned up or, in case any problems occurred, reports how
many objects are still left.
Such complex and different scenarios can neither be developed from scratch nor can their
overall system complexity be handled without using appropriate software engineering
methods. Due to their overall complexity and richness, they are considered as convincing
stress test for the proposed approach. In the following the development of the cleanup
example scenario is illustrated according to the different roles.
The framework builder provides the tools to develop SMARTSOFT components as well
as to perform deployments of components to build a robotic system. In the described
example this includes the CORBA-based implementation of the SMARTSOFT framework

3 http://www.youtube.com/roboticsathsulm#p/u/0/xtLK-655v7k
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and the SMARTMDSD toolchain which are both available on Sourceforge (http://
smart-robotics.sourceforge.net).
The component builder view of the SMARTMDSD toolchain supports component builders to
develop their components independently of each other, but based on agreed interfaces. These
components are independent of the concrete implementation technology of SMARTSOFT.
Component builders provide their components in a component shelf. The models of the
components include all information to allow a black-box view of the components (e.g.
services, properties, resources). The explication of such information about the components
is required by the application builder to compose robotic systems in a systematic way. To
orchestrate the components at run-time, the task coordination language SMARTTCL (Steck &
Schlegel, 2010) is used. Therefore, SMARTTCL is wrapped by a SMARTSOFT component and
is also provided in the component shelf. The SMARTTCL component provides reusable action
plots which can be composed and extended to form the desired behavior of the robot.
The application builder uses the application builder view of the SMARTMDSD toolchain.
He composes already existing components to build the complete robotic system. In the
above described cleanup scenario, 17 components (e.g. mapping, path planning, collision
avoidance, laser ranger, robot-base) are reused from the component shelf. It is worth noting
that the components were not particularly developed for the cleanup scenario, but can be
used in the cleanup scenario due to the generic services they provide. The SMARTTCL
sequencer component is customized according to the desired behavior of the cleanup scenario.
Therefore, several of the already existing action plots can be reused. Application specific
extensions are added by the application builder.
At run-time the SMARTTCL sequencer component coordinates the software components of
the robot by modifying the configuration and parametrization as well as the wiring between
the components. As SMARTTCL can access the information (e.g. parameters, resources)
explicated in the models of the components at run-time, this information can be taken into
account by the decision making process. That allows the robot not only to take the current
situation and context into account, but also the configuration and resource usage of the
components. In the described scenario, the sequencer manages the resources of the overall
system, for example, by switching off components which are not required in the current
situation. While the robot is manipulating objects on the table and requires all available
computational resources for the trajectory planning of the manipulator, the components for
navigation are switched off.

6. Conclusion

The service-oriented component-based software approach allows separation of roles and is
an important step towards the overall vision of a robotics software component shelf. The
feasibility of the overall approach has been demonstrated by an Eclipse-based toolchain and
its application within complex Robocup@Home scenarios. Next steps towards model-centric
robotic systems that comprehensively bridge design-time and runtime model usage now
become viable.
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1. Introduction  
The provision of goods and services accomplishes a transition to greater value-added-
oriented logistics processes. The philosophy of logistics is changing to a cross-disciplinary 
function. Therefore it becomes a critical success factor for competitive companies (Göpfert, 
2009). Thus logistics assumes the task of a modern management concept. It provides for the 
development, design, control and implementation of more effective and efficient flows of 
goods. Further, on aspects of information, money and financing flows are crucial for for the 
development of enterprise-wide and company-comprehensive success. 
According to (Scheid, 2010a) this can be ensuring, by the automation of logistic processes. 
Based (Granlund, 2008), the necessity for automated logistics processes raises the focus on 
logistics by existing dominant factors of uncertainty and rapid changes in the business area 
environment. Therefore, the adoption of flexible automation systems is essential. Here 
robotics appears very promising due to its universal character as a handling machine. This is 
how (Suppa & Hofschulte, 2010) characterizes the development of industrial robotics: ‘[...] 
increasingly in the direction of flexible systems, which take over new fields with sensors and 
innovative fiscal and regulatory approaches.’ Here, logistics represents a major application 
field. (Westkämper & Verl, 2009) describe the broad applications for logistics and 
demonstrate the capability for flexibility with examples from industry and research. Besides 
the technological feasibility, there is also the existing demand by logistics firms concerning 
the need for their application. 
These representations demonstrate the interaction of robotics-logistics regarding the design 
of technical systems for the operator strongly driven by the manufacturer (technology push) 
and the technological standardization of the system. Robotic-logistics concentrates on the 
development and integration of products. Accordingly, standardization activities of the 
technical systems focus on components and sub-systems that represent the manufacturer-
oriented perspective. 
The main goal concentrates on the planning, implementation, and monitoring of enterprise-
wide process chains of technological systems under the consideration of economic criteria. 
In this context, the interaction of the two domains 'process' and ‘technology’ are essential. 
Thus, the configuration design of technological layouts or machines is crucial. The 
harmonization of the two domains requires a systematic description framework concerning 
their exchange of information and knowledge. A high-level abstraction of knowledge 
representation in the description of the relationships and connections is essential. It also 
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allows the description of implicit relationships such as comparative relationship notations. 
This applies to both qualitative and quantitative types of relationships. The outcome is a 
framework that is available to represent an object dependency between process and 
technology and to serve the described requirements for flexibility regarding logistics cargo, 
throughput and machine- and process-layout. 
Thus, there is the need for qualitative description of relationship between process and 
technology by means of specific parameters and properties on a high-level abstraction. 

2. Robotics-Logistics: Challenges and potentials 
Since the 1970s, there has been a multifaceted development of the basic understanding of 
logistics. The origin of ‘logistics’ refers to the Greek ‘logos’ (reason, arithmetic) and the 
Romanesque-French (‘providing’, ‘supporting’). In the past logistics were understood in 
delimited functions. Nowadays logistics are global networks, which are necessary to 
optimize. The understanding of the task itself changed from a pure functional perspective 
through process chains to value-adding networks: 
Fig. 1 shows the historical development starting in the 1970s. Today's logistics is 
characterized by its value and integration in the appropriate process chains. The Federal 
Logistics Association designates logistic processes to the areas of procurement, production, 
distribution, disposal and transport logistics. (Arnold, 2006) designates differentiated 
performance-oriented processes as transport and storage processes. Storage processes are 
the processes of handling, order picking, and packing. Logistics services are evaluated based 
on delivery time, delivery reliability, inventory availability, delivery quality, and delivery 
flexibility. These are the objectives for both intra-logistics and extra-logistics. Logistics 
institutions, such as logistics service providers, provide value-added benefits to this process. 
These services are dependent of the collection and the output of their product ‘commodity’. 
Finishing or outer packaging operations are examples here.  
The logistics of the future will be essentially determined by the automation of material and 
information flows. In this area, automation systems in logistics already exist for several 
years. Application areas for these systems, such as de-palletizing and palletizing, sorting, 
and picking, are ‘technically feasible and tested for decades’ (Scheid; 2010b). The complete 
automation of the so-called intra-logistics is technically feasible. However, this situation is 
not encountered in practice due to the singular character of isolated applications. In future 
material flow technologies will be more modularized as (Straube & Rösch, 2008) identified. 
Modular automation systems maximize flexibility in the logistics systems and enable the re-
utilization of technical components of handling and storage technology. To summarize the 
research requirements concerning these technologies (Straube & Rösch, 2008) ask for new 
modular constructions, which can combine different techniques based on their standardized 
modular features. This simplifies the integration into new systems. They describe a 
weakening tendency in new features for the components of conveying and storage technology. 
The focus is set on the configuration of system architectures composed of existing commercial 
components. This approach leads to process-specific integrated systems. 
From an industrial point of view, multiple logistics areas display a high potential for the 
automation of processes (Scheid, 2010b). Thus, a high potential exists for the processes 
‘transport,” ‘storage’ and ‘de-palletizing.” Transport processes will be automated in 2015 by 
nearly 30 percent. The reasons for the limiting borders for straightening the degree of 
automation are lying in the characteristics of the material and information flows. The existing 
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process dynamics and process volatility are a handicap for standardized processes. The 
continuous automation of specific and individual processes appears to be difficult due to these 
reasons. Machine application requires great flexibility for adapting changing parameters. 
 

 
Fig. 1. Historical development of logistics philosophy [source: authors illustration following 
(Baumgarten, 2008)] 
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A fundamental role belongs to robotics. By definition, industrial robot systems are a central 
success factor in process automation due to their universality. The application of robotics 
systems in logistics factories should be designed flexibly. The automation of the processes 
under the customers' existing requirements can allow individually designed systems 
(Günthner & Hompel, 2009). In their recent study, the European Initiative (EUROP, 2009) 
identified the application of robotics in logistics as a central issue for the future. Thus, it 
highlights the broad range of application and diverse functions in this area. The operation of 
the systems under limited process standardization due to the complexity of the processes 
because of heterogeneous and manifold variables, leads to individual and special solutions 
in today's logistics factories. The adaption of the systems to changing process environment 
is hindered due to the process specific character of the systems. 
(Fritsch & Wöltje, 2006) identifies the necessity for a paradigm shift from such individual 
system configuration and underline the relevance of standardized robot systems. This 
necessity establishes (Elger & Hausser, 2009) by describing the demand of more 
standardized solutions, which can also serve individual needs. The initiative (EUROP, 2009) 
characterizes the standardization of components and technical systems as an essential 
challenge for the so-called ‘Robotics 2020.” This concerns both hardware and software, 
and their interfaces among these components. In the authors' view, this requirement 
influences the system architecture essentially. In the view of the (EUROP, 2009), the 
system architecture accords robotics a central role. In the future architectures for robotic 
systems will be designed to both comprehensive configuration conditions and technical 
subsystems and components. They can be assigned from comparable and very different 
applications. Therefore, robotics systems will be more modularized in their architecture 
configurations in the medium term (until 2015). The interconnection between the modules 
is weakly configured in an overall perspective. On the one hand, this allows a rapid 
reconfiguration when changes of the process environment appear. On the other hand, the 
standardization of components and systems is besides the repeated partial usage the 
second driver of so-called ‘adaptable configuration status.” The long-term perspective for 
the year 2020 looks out for the development of architectures down to autonomous self-
configurations. 
The second crucial development is represented by the compositionality of robotic systems. 
A robotic system is compositional when the complexity of system architecture is based on 
compilation of the subsystems or components and their specific functions. The more sub 
systems or components will be used, the higher is the probability of complex system 
architecture. Thus, this configuration status is dependent on the process environment. This 
means that the robotic systems for self-changing or complicated processes must be explicitly 
designed to fit these requirements. The robotic system has to be configured process 
orientated. Robotics-logistics configuration conditions appear to diverge in comparison to 
the configuration condition of production robotics. This can be attributed to the 
characteristics of logistics processes. The process environment appears to have an essential 
influence on the technological configuration status of robotic systems. Out of the perspective 
of system theory, the degree of complexity can be influenced by its technological 
configuration status of the robotic systems and the characteristics of the process 
environment. 
Thus, complicated processes often require robotic system architectures, which are composed 
of numerous components and are individually configured. This relationship can result in 
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complicated or complex systems on the process- and on the technology-level. Additionally, 
procedural complexity influences technical complexity. The necessary reaction possibilities 
with technical components to procedurally dynamic events are the main driver here. The 
individual solutions counteract the intended economic standard solutions. Standardization 
serves to reduce complexity and have to integrate both the process environment and 
systems engineering. Robotic systems can be standardized by considering the two 
perspectives of the configuration. 
The description of this relational structure is represented by an approach that works with a 
qualitative logical description on an abstract level. Current approaches to system modeling 
appear too formal. Ontological approaches with their level of abstraction are an interesting 
alternative. Despite the standardization of system architecture, a process-orientated 
configuration is to be ensured. The necessary flexibility intends to serve the dynamic and 
volatile processes. The construction and structure of the architecture has to be monitored 
and planned in its modular basic approach. To cover the historical, actual and future usage 
of technical systems, modular robotic systems are essential. 
This book chapter describes a conceptually basic approach procedure for the representation 
of the relational structure between process and technology through an ontological 
vocabulary. 

3. State of the art - modelling approaches for system representation 
Examples of traditional modeling methods for representing systems where relationships 
between entities are described are: ‘entity-relationship model,” ‘Petri nets,’ and ‘event-
driven process chains’ (Kastens et al., 2008, Seidlmeier, 2002, Siegert, 1996). 
The Entity Relationship Model (ER-model) was developed in 1976 by Chen. It allows 
delimited systems to be represented in a way which is intelligible for all involved. The 
entities (objects) and the relationships between the objects form the basis of the modeling. 
Regarding the purpose of the modeling, only objects, relationships, and attributes are 
described (Chen, 1976). The method of Petri nets represents structural coherence between 
sets of events (Kiencke, 1997). In general, a Petri net is a graphic description where the 
transaction of the generation of sequences of event-driven networks is represented. It 
consists of types of nodes, which are representative of a so-called position or transition 
conditions and events. A directed edge connects a position with a transition. Petri nets are 
capable of describing a large class of possible processes (Tabeling, 2006). Event-Driven 
Process Chains (EPC) modeling is a process-oriented perspective on functions, events, 
organizational units, and information object systems. A process chain is defined by 
modeling rules and operators (Staud, 2006).  
Systems can be also modeled by using ontologies. The concept of ontology originates from 
philosophy and describes the ‘science of being.” Many authors define ontology from 
different perspectives. (Gruber, 1993) describes ontologies as the explicit specification of a 
conceptualization. The abstract level has the advantage that many basic approaches of 
different research areas are defined. For example, linguistically and mathematically oriented 
ontologies are combined due to this definition. (Stuckenschmidt, 2009) establishes the 
common reference to this definition by many authors. (Studer et al., 1998) take it as a basis 
and defines ontologies from their formal logic: ‘An ontology is a formal, explicit 
specification of a shared conceptualization.’ They emphasize the machine-readable formality 
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of ontology. (Neches et al., 1991) specifies this idea and describes ontologies as ‘basic terms 
and relations comprising the vocabulary of a topic area, as well as the rules for combining 
terms and relations, to define extensions to the vocabulary.’ According to this 
understanding, concepts are defined through basic distinctions of objects and their rule-
based relationships to each other. (Bunge, 1977) describes ontology as the only area of 
science besides the fields of natural and social sciences, which focuses on concrete objects 
and concrete reality. Ontologies are to be assigned based on philosophy since they stress the 
basic principles of virtual science, which cannot be proven or refused by experiments. 
Ontologies represent knowledge, which is structured and provided with information 
technologies. They can be a crucial part of knowledge management. According to (Staab, 
2002) knowledge management has the goal to optimize the requirements for employees' 
performance. The following factors ‘persons”, ‘culture”, ‘organization” and ‘basic 
organization processes” are the major success criteria for knowledge management. 
According to (Gruber, 1993) ontologies can facilitate the sharing and exchange of 
knowledge. 
There are many kinds and types of ontologies. Depending on their internal structure, 
ontologies vary in their complexity, as represented in Fig. 2: 
 

 
Fig. 2. Types of ontologies organized by increasing complexity [source: authors illustration 
following (Herb, 2006)] 

Examples for trivial complex ontologies are simple catalogues or collections of concepts. 
Maximally complex ontologies contain an amount of general and weak-defined axioms. An 
interesting type is taxonomies, which can be defined as a hierarchical classification of 
concepts in categories. 
Taxonomies are also considered as an attenuated definition of ontology. According to (Herb, 
2006), they include a series of concepts that are interlinked by hereditary structures. 
Depending on their nature, ontologies can be applied and re-applied with different levels of 
intensity (Gómez-Pérez, Fernández-López, Corcho 2004). Ontologies can be classified in so-
called ‘lightweight ontologies’ and in ‘heavyweight ontologies.’ ‘Lightweight ontologies’ 
describe notions (concepts), taxonomies, and relationships and properties between terms. 
Additionally to these properties, ‘heavyweight ontologies’ also consider axioms and 
constraints. 
The ontological modeling of systems is possible through the application of existing 
relationships and rules. (Steinmann & Nejdl, 1999) describe the two tasks of ontologies. In 
the first sense, ontologies describe the nature of the constituents and the principles. He 
designates these as ‘grammar of reality’. In the second sense, ontologies establish the objects 
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and connections, which (Steinmann & Nejdl, 1999) designate as the ‘encyclopedia of reality’. 
In the first sense, they function as meta-models. Abstract modeling concepts are described 
and provide the framework for the ontology. Specific meta-model-oriented ontologies will 
be designated as representation ontologies. For example, the frame-ontology in Ontolingua 
can be mentioned here, according to (Gruber, 1993). The ontology provides a grammar 
composed of concepts, relations and attributes. In the second sense, ontologies describe 
conceptual models are based on structures and correlation of the area of a specific 
application. Examples of existing conceptual models are legal texts, integration of 
application systems or open systems.' 
Comparing classic and ontological methods, some differences can be identified. Ontologies 
describe the composition of reality. Traditional modeling approaches assume this 
information to be known. In this context (Herb, 2006) ascertains, that ontologies are applied 
for concept-based structuring of information. In his view, ontologies are essentially for more 
detailed structured information than conventional sources. (Stuckenschmidt, 2009) describes 
the existence of objects and items and the representation form. (Steinmann & Nejdl, 1999) 
detail this approach and describe it as a central factor for understanding of items. He 
concludes that ontologies always are based on a highly abstract level in comparison to 
model-based approaches. 
The authors also indicate the borders of ontological modeling. The crucial difficulties are 
inconsistencies in classification of meta-data in ontologies, application of meta-data and the 
distinct classification and structuring of information. Therefore, these aspects are 
attributable to the highly abstract level of ontologies. Abstract notations lead to such 
assignment, classification, and structuring issues. 
Ontologies can be differentiated in two aspects, conceptual and formal logical nature. 
According to (Swartout & Tate, 1999), the first aspect has the task of depicting and 
composing structures of reality. The second addresses the creation of the semantic 
framework with the definition of objects, classes and contexts. There are many basic 
approaches to different ontologies in the literature, oriented to the areas of application. 
(Bateman, 1993) describes the existence of basic types of interconnected entities and 
describes the so-called ‘design patterns.’ These are entities that can be differentiated 
according to the types ‘endurant’, ‘perdurant/occurrence,’ ‘quality’ and ‘abstract.’ While 
entities of the ‘endurant’ type have a continuous and predictable nature, entities of the 
type ‘perdurant/occurrence’ describe events that occur unexpectedly and unpredictably. 
Entities of the types ‘quality’ and ‘abstract’ unite properties, attributes, relations, and 
comparatives. 
The ontology DOLCE is an example of the application of these basic types. DOLCE was 
developed by the Institute of Cognitive Science and Technology in Trento, Italy and stands 
for ‘Descriptive Ontology for Linguistic and Cognitive Engineering.’ DOLCE attempts to 
impart meanings to things and events. Here, entities deal with the meanings through use of 
agents in order to obtain consensus among all entities regarding to the meaning. (Gangemi 
et al., 2002) treated this principle in a plausible way. Further examples of conceptual 
ontologies are WordNet, the ‘Unified Medical Language’ ontology, ‘Suggested Upper 
Merged Ontology,” the ontology of ‘ε-Connection’ (Kutz et al., 2004), the ontology of 
‘Process Specification Language,’ and the ontology ‘OntoClean.” 
Another key component of conceptual ontologies is ontology engineering. Ontology 
engineering is concerned with the process design of ontology development, in order to 
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create and to apply ontologies. There are multiple methods here. (Wiedemann, 2008) lists 
these as follows: 
• Ontology Development 
• Ontology Re-Engineering 
• Ontology Learning 
• Ontology Alignment/Merging 
• Collaborative Ontology Construction 
Ontology Development deals with the question of methodological development and the 
composition of ontologies. Ontology Re-Engineering focuses on existing approaches and 
adapts them to the current task. Ontology Learning focuses on approaches for semi- or fully-
automatic knowledge acquisition. The Collaborative Ontology Construction issued 
guidelines for the generation of consensual knowledge. Ontology Merging combines two or 
more ontologies in order to depict various domains. This method allows handling 
knowledge that is brought together from different worlds. 
(Gruninger, 2002) describes formal logical ontologies as communication, automatic 
conclusion and representation and re-utilization of knowledge. Formal logical ontologies 
aim to depict a semantic domain through syntax. The concept of semantics is to be classed in 
semiotics and describes the theory of signs. Semantics can be also defined as the ‘theory of 
the relationships among the signs and the things in the world, which they denote’ 
(Erdmann, 2001). Semantics are relevant for formal logical ontologies for modeling and 
generating calculations on a mathematical foundation. This basic approach with its syntax 
performs a key relevance by providing the mathematical grammar and the concretely 
denotable model. Exemplary syntaxes are algebraic terms, logical formulas or informational 
programs. Formal logic provides a language for formalizing the description of the real 
world and the tool for representing ontologies. It is differentiated according to propositional 
logic and predicate logic. In propositional logic, there exist exactly two possible truth-
values: true or false. Predicate logic consists of terms and describes real world objects in an 
abstract manner by means of variables and functions. (Stuckenschmidt, 2009) presents 
methods and techniques of the notation. 
Formal logic ontologies do not allow automatic proofs. Only computer-based evidence for 
sub-problems is possible. Examples of formal logical ontologies are OntoSpace, DiaSpace, 
OASIS-IP, CASL, OIL, and OWL. 
In summary, it can be stated that both ontology types can be classified in different  
types according to (Guarino, 1998): ‘top-level ontologies,” ‘domain ontologies’ and 
‘application ontologies” which already represent known data and class models. ‘Top-level 
ontologies’ describe fundamental and generally applicable basic approaches which are 
independent of a specific real world. Their level of abstraction is high that allows a wide 
range of users. 
‘Domain ontologies’ focus on a specific application area and describe these fundamental 
events and activities by specifying the syntax of ‘top-level’ ontologies. ‘Application 
ontologies’ make use of known data or class models which apply to a specific application 
area. 
The following table finally summarizes the described ontologies and compares them 
according to the presented properties and characteristics. Furthermore, the relevance of 
ontologies applicable for robotic logistics is specified and the ontologies of ‘Process 
Specification Language’ and the ontology ‘OntoClean’ are highlighted: 
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ontology author application area characteristics relevance 

DOLCE Institute of cognitive 
Science a Technology, 
Italien 

semantic Web cognitive basis partially relevant; wide 
knowledge, uses cognitive 
aspects  

Onto Clean Laboratory for 
Applied Ontology, 
Trento 

hierarchical strucutre of 
knowledge 

checking 
inconsistencies 
automatically 

relevant for structuring 
processes and robotics 
technologies 

PSL National Institute of 
Standards and 
Technology, 
Gaithersburg 

neutral representation of 
process knowledge 

modular d relevant for describving 
relations between processes 
and robotics  

WordNet Princeton University representation of natural 
languages in IT 
applications  

lexical database not relevant 

UMLS National Libary of 
Health 

database for 
communicating medical 
terminology 

terminology for 
medical applications

not relevant; especcially for 
biomedicine 

SUMO Teknowledge 
Corporation 

providing information in 
databases and in the 
internet  

combined out of 
multiple ontologies 

not relevant; designed for 
automated verification 

E-
Connection 

University of 
Liverpool 

complex correlation of 
different domains 

connecting different 
domains in a formal 
and logical way 

relevant; complex 

CASL Common Framework 
Initiative 

first-Order-logics for 
subsuming specific 
languages  

modular concept not relevant; formal approach 

F-Logic Stony Brook 
University 

deductive database conceptional and 
object oriented  

not  relevant, formal approach 

OIL Vrje Universität, 
Amsterdam 

web based language formal infrastructure 
for semantic web 

not  relevant, formal approach 

Ontology 
Web 
Language 

World wide Web 
Consortium 

representation  of 
correlation in the semantic 
web 

base for integration 
of software 

not  relevant, formal approach 

Table 1. Comparison of selected ontologies in the context of Robotic Logistics [source: 
author's illustration] 

4. Logical ontologies for configuration of individual system architectures 
4.1 Required ontological framework 
‘Robotic-Logistics’ formulates the central expectations to the ontology for configuration 
robotic system architectures. The input and output variables of the environment due to the 
reference process have to be defined. On this basis, the relevant domains 'technology' and 
'process' can be described as to contents. Classes and variables structure them. On the 
process side, the reference process is addressed. In this domain, the direct upstream and 
downstream processes of the reference process are also relevant. The output of the upstream 
process provides the input of the reference process. The output of the reference process 
provides the input of the downstream process. The relevant technical systems and 
components of robotic-logistics will be structured in the technology perspective. The 
regulatory framework has described the following entities. Fig. 3 gives an overview of the 
hierarchical structure of the domains 'process' and 'technology': 
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Fig. 3. Class structure of the 'process' and 'technology' domains [source: authors illustration] 

The entities in these two class structures are the main processes of meta-model, which will 
be presented in this chapter. On this basis, process modules and process elements of the 
reference process are derived with application of the regulatory framework. 
The reference process is situated in its systemic environment. It influences the reference 
process with input and output variables. Thereby the input describes the general framework 
and restrictions, which are valid for the robotic system. The output results directly from the 
target dimension of the automation task. The parameters cover technical, organizational, 
and economic aspects. (Kahraman et al., 2007) define a multi-criteria system for the 
evaluation of robotic systems, which provides a multiple key factors for the evaluation of 
robotic systems. 
With the development of entity structures of the two domains of the reference process and 
the inputs and outputs of the environment, the fundamentals of ontology development are 
set. Based on these structures the hierarchical ontological taxonomies are created with the 
aid of the ontology OntoClean. This is necessary in order to be able to describe the relations 
between the two domains through ontology, the Process Specification Language. 

4.2 Conceptional ontology for descriptive process technology relations 
This section introduces a two-stage approach. In the first phase, the hierarchical structures 
of the respective domains are composed. The procedure model of (Stuckenschmidt, 2009) 
offers advantages for the creation of these taxonomies. This approach forms the taxonomies 
through the OntoClean ontology and analyzes potential sources of error. In the lowest level 
of taxonomy elements, properties and attributes of the process elements are denoted. They 
define the reference process. Thus, for example, the process module ‘piece goods’ with the 
process element ‘bulk” displays the property ‘five kilos”. Due to this definition, the 
reference process is individualized and specified. 
The second phase provides the combination of the two domains. The description of these 
relations is done through the ontology of 'Process Specification Language.’ It is based on the 
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descriptive notation of functions and processes through its manifold concepts and relations 
in different levels of detail. Each participant in a pair of relationship is standardized and the 
relationship is jointly depicted. Due to the functional and procedural point of view of the 
ontology, the relationship can be well illustrated. The representation is done by focusing on 
process elements of one domain that cause an impact on the process elements of the second 
domain. 
For preparation, the conceptual framework is defined as the delimitation of the considered 
environment to be covered. It is defined according to the procedure model developed by 
(Figgener & Hompel, 2007). They describe a regulatory framework for reference processes: 
 

 
Fig. 4. Procedure model for the creation of reference process models [source: authors 
illustration following (Figgener & Hompel, 2007)] 

The aspects of an application area are defined. Thus, displayed in fig. 4, six phases for the 
generation of a reference model are described. For the existing problem phase 1.2, phase 2.1, 
and phase 2.2 are especially relevant. Phase 1.2 describes the regulatory framework. The 
process modules and process elements are defined in phase 2.1 and 2.2. This distinction 
allows the reduction and control of the complexity and expenditure for model creation 
through the ontology. 
With these results, both phases of the ontology model can be completed. 
Fig. 5 shows the interdependence of both ontologies: 
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Fig. 5. Spheres of action of the ontologies 'OntoClean' and 'Process Specification 
Language'[source: author's illustration] 

In the first sphere, the taxonomies of the domains ‘process” and ‘technology” are defined 
with ‘OntoClean’. Depending on the reference process, the process taxonomies will be 
characterized by properties. They customize the taxonomies. The fig. also displays the 
sphere of action of the first part namely ‘PSL Core’ of the ontology ‘Process Specification 
Language.” It identifies the relations, which exist among the entities and properties of the 
process domain and the entities and attributes of the technology domains. Summarized the 
figure works out 2 phases of the ontology model.  
The first phase develops the taxonomies using OntoClean. The taxonomies are denoted and 
structured. Based on the notation of the meta-properties, the accuracy of the taxonomies is 
analyzed. Inconsistencies regarding the clearness of the hierarchies arise when relations are 
utilized incorrectly. This leads to incorrect and misleading interpretations of the ontology 
(Herb, 2006). The OntoClean process examines existing subsuming structures existing 
between classes by using meta-features. 
The second phase depicts relations between the domains by using the ontology of 'Process 
Specification Language'. Fixed taxonomies for the domain ‘process” and the domain 
‘technology” for a specific reference process, are the basis for representation of the 
interaction between the two domains. The main goal of the ontology is to figure out 
parameters or components of a domain affecting the second domain. Besides the 
demonstration of the existing relations, the description of the quality of the relationship is an 
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essential aspect. Thereby both the direction of the relationship and the qualitative 
description will be identified. With the ontology model, the defined requirements will be 
satisfied as follows: 
 

requirement ontology contribution 

structuring domains OntoClean - identification of relevant terms 
- structuring by using taxonomies 

notation relations PSL  - identification and notation of relations  
  between process and technology 

description relationship PSL  - description of the relations  

Table 2. Handling the requirements through the ontology model [source: author's 
illustration] 

The ontology OntoClean structures the domains. It defines the concepts and composes the 
taxonomies of the domains ‘process” and ‘technology”. The ‘Process Specification 
Language’ note the relations between the parameters. The worked out ontology model is the 
basis for the individual process modularization and configuration of technical robotic 
systems. 

4.2.1 Definition of taxonomies using the ontology ‘OntoClean’ 
The structuring of the domains is done by defining taxonomies. The usage of taxonomies 
joins and collects concepts and entities and forms a base frame for these ontologies by 
structuring them. Here, the relationships are developed associatively mutually. Descending 
rules work out the taxonomy structures. Due to the qualitative character, the taxonomies are 
often incorrectly distinguished. The process of ‘OntoClean’ creates taxonomies and checks 
the consistency and accuracy of the structures. 
The procedure involves the definition of taxonomies and their meta-properties. It aims at 
overcoming the frequent deficit of false descent of entities in the taxonomic structure. These 
erroneous subsuming structures will be avoided by a philosophy-based distinction of the 
entities and classes with meta-properties. (Herb, 2006) describes comprehensively the meta-
properties 'identity,' 'essence and rigidity,' 'dependency,' and 'unity.' Using these meta-
properties, the taxonomies are distinctly defined through the concepts of class, entity, 
instance, and property. Entities describe the objects of taxonomy, which are collected in 
classes. Entities, which have a common property, instantiate a class and will be  defined as 
instances. This is of great relevance. Especially the representation is challenging due to 
multiple components and parameters, which are displayed in both the domain ‘technology’ 
and the domain ‘process’. Table 3 provides an overview of the conceptions. 
The concepts are the basis of the taxonomies to be created. They are based on the entity 
structures. For a specific reference process, the entities are reviewed and adapted 
individually. The procedural taxonomies are developed based on the meta-models of 
process standardization developed by (Figgener & Hompel, 2007). Depending on the type of 
process, the main processes, process modules and process elements are applied. Based on 
the structured system techniques in the domain ‘technology’, the technical taxonomies are 
defined due to the commercial state of the art. 
The claim of universality is not maintained. The conception is defined to each reference 
process specifically. This increases the risk of erroneous and inconsistent definition and 
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description of the concepts. Due to this circumstance, the analysis and validation of the 
developed taxonomies is an essential part of ontology development. 
 

term definition of procedure 
model due to fig. 4 

commentary 

class main process structuring of classes  
entity process module entities which are subsumed 

in one class 
instance process module with same 

attributes 
all entities with same 
attributes in one process 
module 

property process element characterization and 
individualization of the 
reference process 

Table 3. Definition of conceptions in the framework of ‘OntoClean’ [source: authors 
illustration] 

The OntoClean process provides a procedure of subsuming, shown in fig. 6: 
 

 
Fig. 6. General construction of taxonomy [source: author's illustration] 

A class A subsumes a class B if all instances of class B are always also instances of class A. 
Fig. 6 presents a class with n entities. Each entity can display further lower-level hierarchical 
entities, known as sub-entities. Thus, the number of vertical levels is unlimited. On the 
lowest vertical level, the reference process is individualized by distinct properties. They 
provide the specific information about the reference process. These may be quantitative or 
qualitative. As an example here, for a procedural taxonomy, a sub-entity of type ‘mass’ can 
be specified with the quantitative property of ‘22 kg’. 
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A special case is presented due to the class structure ‘environment’. Here, both are 
structured the environmental framework conditions and the target dimensions. This 
taxonomy is independent of the reference process, and provides an example, shown in its 
basic structure, as follows: 
 

 
Fig. 7. Taxonomy of the environment variables [source: author's illustration] 

The environmentally framework conditions define the technical requirements, such as 
availability and performance data. The listed properties are specifically defined for each 
reference process. They customize the process. By means of the target dimensions, technical 
and economic criteria are carried out. In this context, process safety or process velocity on 
the technical side are determined. On the economic side, capital value or amortization time 
is identified. The target dimensions represent the criteria for success of the realization of the 
robotic system in an ex-post manner. 
For each taxonomy and its class K, a notation is defined with the property M. K is denoted 
as +M, when M applies to all instances of K. The notation -M is used, if not all instances of K 
have the property M. If M is not valid for any instance of the class K, this relationship is 
denoted by ~M. Each of the four meta-properties will be reviewed to that effect for each 
class and entity. This describes the meta-property, 'essence and rigidity' by fixing essence in 
general first. Second, the specific form of the essence, the rigidity, is described. A property is 
essential for an entity, if it occurs in every possible situation in the entity. In the next step, a 
property is rigid, if it is essential for all instances (+R). Non-rigid properties are referred 
with –R. They describe properties for those entities, which are needed not, but may be 
instances of the class. Anti-rigidity (~R) is available if there is no instance of associated class 
instance of the corresponding class. 
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The meta-property 'identity' describes criteria, which distinctly identify classes and 
differentiates instances from each other. Both classes and upper classes can provide these 
identity criteria. The upper classes inherit the criteria. In the first case, the classes are 
marked with +I. Thus, the identity criterion has been inherited by an upper class. In the 
second case, the criterion of identity is first defined in an upper class and is marked with 
+O. Classes that require a further identity criterion as restrictions for distinct definition are 
denoted with –I. 
The third meta-property 'unity’ is related to the property 'identity' and describes the 
affiliation of certain entities to a class. A unity criterion defines a unifying relation of all 
entities, which are interconnected. The corresponding classes are distinguished with +U. ~U 
denotes those entities of a class that cannot be distinctly described. If there is no unity 
criterion provided, the class is described with –U. 
The fourth meta-property 'dependence’ describes the dependence of a class to other. This 
fact is relevant if an instance of a class may not be an instance of a second class. Dependent 
classes will be listed with +D, while independent classes are notated with –D. 
In summary, the meta-properties are defined as follows, according to (Herb, 2006): 
 

Meta-property 
notification 

definition  

+R a property is essential for all valid instances  

-R a property that has not inevitable an entity that is an instance of its 
class 

~R a property where an instance of an allowing class belongs to an 
instance of a regarded class 

+I classes which differentiate due to the criteria of the allowing instances 

-I class that does not have an identity criteria 

+O identity criteria that is defined  for the first time and is not transmitted  

+U unity criteria that denotes connected entities 

-U none unity criteria is existing 

~U connection of entities which cannot described definitely 

+D dependent classes 

-D independent classes 

Table 4. Summary definition of meta-properties, [source: authors illustration following 
(Herb, 2006)] 

The review of meta-properties shows incorrect taxonomy structures and makes their 
correction possible. The next step involves reviewing the consistency of the meta-properties 
with each other. This will determine whether there are inadmissible combinations of meta-
properties. , An example for such a combination is +O und –U. The next step focuses at the 
removal of all non-rigid classes from the taxonomy. 
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Fig. 8. Backbone taxonomy [source: author's illustration] 

That figure points out for an exemplary illustration the removal of the non-rigid ‘sub-entity 
1.1’ and the non-rigid ‘entity 2’. This procedure results in the so-called backbone taxonomy. 
In the next step, subsuming structure has to be examined. It checks any violations of 
subsuming restrictions. Subsuming is described with the relation 'is-a' and is visualized by 
arrows. For instance, further relations are described with the notation type 'has.’ To avoid 
false distinctions the arrows are inscribed with the relation name. The hierarchies can be 
described in the following ways: 
• Have: The relationship type ‘have’ connects an attribute with a concept. Thereby, the 

Attribute is a type of the concept. 
• Att: This type of relationship describes properties of elements. A concept can take on 

several properties simultaneously. They do not need to be met simultaneously at all. 
• Is a: The relationship describes traditional subset relations (subsuming relations). 
In the last step, the non-rigid classes and entities are added. Within this last step, the 
taxonomy is completed. 

4.2.2 Description of the interaction by using the ontology of ‘Process Specification 
Language’ 
In this section, the interacting entities and attributes have to be identified between the two 
domains by using the created taxonomies. In order to give these interactions a qualitative 
meaning, (Schlenoff et al., 1999) propose an approach to denote interactions of processes in 
independents worlds. Therefore, he develops the terminology ‘Process Specification 
Language’ (PSL). PSL is a neutral, standard language for process specification for the 
integration of multiple process applications within the product life cycle. The language is 
versatile in application and uses multiple concepts, classes, and functions to describe 
complex processes. Through its manifold applications and many years of further 
development, the language has diversified and expanded. PSL consists of several modules. 
The principle fundamental concepts are set in the first module which  is called ‘PSL-Core’. 
The module provides four concepts with corresponding functions. According to (Schlenoff 
et al., 1999), the aim of this module is to fix axioms to describe trivial process connections 
using a set of semantic relations. 
The description of further and more complex processes is carried out with other modules, 
the so-called extensions. PSL offers in total three extensions: ‘outer core’, ‘generic activities’ 



 
Robotic Systems – Applications, Control and Programming 

 

520 

and ‘schedules’. The module ‘PSL outer core’ deals with generic and broadly based concepts 
regarding to their applicability. The module ‘generic activities’ defines a terminology to 
describe generic activities and their relations. The module ‘schedules’ describes the 
application and allocation of resources to activities under the premise of satisfying the 
temporary restrictions: 
 

term definition 

PSL short notification of the ontology ‘Process Specification Language’ 

PSL module group of concepts of the PSL  

relation interrelation between an entity couple of ‘process domain‘ and 
‘technology domain‘. None of the entities is a ad-hoc activity.  

activity process or technical entity or sub-activity that is continuous and relates to 
the second domain. 

ad-hoc 
activity  

process or technical (sub-) entity including its attribute that existence is 
not calculable 

concept first and highest level of a PSL 

class second level of PSL 

function third and lowest level of PSL  

ad-hoc 
relation 

relation of an entity couple of the process and technology domain. 
Minimum one activity is an ad-hoc activity. 

Table 5. Definition of relevant terms of PSL [source: author's illustration] 

The definitions are based on the adaptation of the ontology to the current requirements. 
With these concepts, the individual concepts of this approach will be presented and adapted 
to this task. With the creation of taxonomies, the relations of taxonomy properties of both 
domains are identified and described. 
This section describes the identification of existing relations and their corresponding 
notation using the vocabulary of the first module ‘PSL Core’ of the ontology ‘Process 
Specification Language’. The module contains three concepts. The first concept 'activity' 
describes general activities, which appear to be predictable and manageable. They do not 
have to be determined detailed. For instance, ‘activities’ may be standard processes of a 
recurring nature. The concept exhibits two different types of functions for further 
concepts. Function one focuses on further planned activities ('activity') ('is-occurring-at'). 
Function two describes the connection to unpredictable and unplanned activities 
('occurrence-of'). 
The second concept, 'activity occurrence' describes a unique activity that proceeds 
unforeseen and unplanned. The concept can also exhibit two different functions for other 
concepts. The function 'occurrence of' is analogous to the second function of the first concept 
and describes the initiation of a second type of unpredictable activity of the type 'activity 
occurrence.’ The second function describes the relationship to a concept of the type 'object’. 
This function expresses the impart of the concept ‘activity occurrence' with a none further 
defined significance to the second concept named 'object.' 
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The third concept, 'object’ describes all activities which do not correspond to any of the 
above concepts. The concept has two functions. The first relation of the type 'participate in' 
describes the concept 'object' which receives a non further defined relevance for a concept 
'activity.’ The second relation 'exists-at’ describes an existing relevance to a particular point 
of time. 
The entities are, inclusive of their properties, distinguished from the taxonomies of process 
and technology domains with these concepts. Here, procedural entities and properties can 
exist which are either calculable or definable. These activities relate to the concept 'activity’. 
Unpredictable, indefinable or changing conditions can be described as ad-hoc activities and 
assigned the concept of 'activity occurrence.’ Other logistical or technical objects are called 
objects and assigned to the concept 'object.’ An example describes the entity ‘general cargo’ 
as an activity (code 1.1) with its property ‘cubic’ and the entity ‘stock situation’ for a concept 
named ad-hoc activities (code 1.2) with the property ‘chaotic’. An example of an object (code 
1.3) is a technical process such as the process of recognizing the cargo. The following table 
summarizes the results of the relevant vocabulary: 
 
PSL 
module concept definition relation  definition 

modification for robotics- 
logistics code 

PSL Core      1 

 acitvity a general non-
defined acititvity   

defined and calculable activity 
that notes an entity or an 
attribute of taxonomy. 

1.1 

   is-occurring-at 

a primary activity 
generates a secondary 
activity at a defined 
time 

the concept 1.1 generates a 
concept 1.1 1.1.1 

   occurrence-of 
the primary concept 
generates a secondary 
non-expected activity  

the concept 1.1 generates a 
concept 1.2 1.1.2 

 activity 
occurrence 

a temporary 
activity and 
specific activity 
that occurs 
nonrecurring  

  

a non-calculable and changing 
ad-hoc-activity that notes an 
entity or attribute of a 
taxonomy 

1.2 

   occurrence-of 
the primary activity 
generates a secondary 
non-expected activity  

the concept 1.2 initiates a new 
concept 1.2 1.2.1 

   participates-in 

a primary activity 
generates a non-
definable relevance for 
an object 

the concept 1.2 generates a 
non-defined relevance for an 
object at a specific time  

1.2.2 

 object 

all entities that 
are not an 
activity or 
activity 
occurrence 

  
entity or attribute of a 
taxonomy that are not 
concepts 1.1 or 1.2  

1.3 

   participates-in 

a primary activity 
assigns a non-defined 
relevance to an object 
in a specific time 

the concept 1.1 assigns a 
relevance to a concept 1.3 1.3.1 

   exists-at an object exists to a 
specific time  

the concept is relevant in a 
specific time 1.3.2 

Table 6. Vocabulary PSL module ‘Core’ [source: author's illustration] 

In a first step, the implementation of ontologies for a specific reference process is associated 
with concepts and properties of the valid entities. The second step identifies and denotes the 
relations between the concepts. A matrix representation is provided which is shown in the 
general structure in tab. 7. The columns show the entities and properties of the technology 
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domains. The lines depict the process domains. The individual hierarchy steps of 
taxonomies are presented. As described, they were indicated by the hierarchic structure. 
The coding of the lines and columns indicates the respective levels of the hierarchic 
structure. Additionally, the identified concepts of the respective sub-entities and 
properties are noted on the lowest structural level. In the cells, the interaction from tab. 6 
are noted and distinguished by means of the coding. For example, the procedural sub-
entity 1.1.1 affects the technical components 1.1.1 through the relationship ‘object-
participates-in’ (code 1.3.1). 
 
 
Process Specification Language 
  
  
  
  
  
  

Code T.1 T.1.1 T.1.1.1 … … T.n T.n.m T.n.m.o 
te

ch
n

ic
al

-  
ta

xo
n

om
y 

system 
technique 1   … … system 

technique n   

 

system 
technique 
1.1  … …  

system 
technique 
n.m  

 PSL Core   
component 
1.1.1 … …   

component 
n.m.o 

Code process taxonomy 
PSL-
concept   concept 1.z ... ...   concept 1.z 

P.1 Class 1  … … 
P.1.1 entity 1.1  … … 

P.1.1.1   

sub-
entity 
1.1.1 

concept 1.x   1.3.1 … …   1.x.y 

… … ... ... ... … … … … … … … … 
… … … … ... … … … … … … … … 
… … … … ... … … … … … … … … 
P.n class n  … … 

Pn.m 
 

entity 
n.m   

 … …  

P.n.m.o   

sub-
entity 
n.m.o 

concept  1.x   1.x.y … …   1.x.y 

Table 7. General matrix representation of the process-technology relations in accordance 
with PSL module ‘core’ [source: author's illustration] 

The vocabulary allows the description of the relational structure for a dedicated reference 
process, which describes the relations among the procedural entities and the technical 
components. 

4.3 Industrial application: Depalletizing plastic boxes with a robotic system 
This section presents the robot based automation of a simple industrial application by using 
the presented ontological framework. The presented example focuses on the interaction 
between ‘piece good’ of the ‘process domain’ and ‘gripper’ of the ‘technology domain’. Here 
the automation of a logistics process by using the ontological framework will be presented.  
Online books shops package their goods in plastic boxes. Logistics Providers handle these 
boxes for delivering to the customer. Hence, the boxes are send on pallets in swap bodies by 
using trucks. The logistics provider unloads the trucks and imports them in their 
distribution center which operates with a high degree of automation. Therefore the boxes 
have to be depalletized and brought onto the conveyor technology system. In general this 
separation is done manually. A robotic systems was configured and integrated by using the 
ontological framework to automate this reference process. The following figure displays the 
process with the implemented robotic system: 
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downstream conveyor

robot

gripper

robot control & 
communication

plastic boxes 
on pallet

upstream conveyor
 

Fig. 9. Industrial application of a robotic system for depalletizing plastic boxes: result of the 
ontological configuration [source: author's illustration] 

The illustration points out that the configuration of the technical system depends on the 
parameters of the process. The upstream conveyor supply box pallets including a buffer 
function. The downstream  conveyor conveyors the single boxes into the distribution cycle. 
The task of an robot-based automation system focuses on the handling of  single or multiple 
boxes and the lay down onto the roller conveyor. Using the presented framework for 
configuring the robotics architecture, the first step of generating the procedural and 
technical taxonomies has to be executed. The class structure with its entities and attributes of 
the ‘process domain’ can be assigned with attributed as followed: 
 

Entity meta- property sub-entity attribute meta-property 

geometry +R, +I, -U, +D 

form cubic +R, -I, -U, +D 

dimension (min, max)
length = 55 [cm]   
width =  40[cm]  
height = 30 [cm] 

+R, +I, -U, +D 

volume V = 27 [l] -R, -I, -U, -D 

surface closed +R, -I, -U, -D 

material +R, -I, -U, -D 
art plastic +R, +I, +U, +D 

stability high -R, -I, -U, -D 

packaging +R, +I, -U, +D 
strapping 1 -R, +I, -U, -D 

type of packaging single -R, +I, +U, +D 

mass +R, +I, -U, +D weight 28 [kg] +R, +I, -U, +D 

Table 8. Entities and attributes of the class structure ‘piece goods’ of the ‘process domain’ 
[source: author's illustration] 
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The table displays the various entities with its attribute regarding the class structure ‘piece 
goods’. For instance, the meta-properties define the taxonomy of this class. Also the 
hierarchical structure is defined. For instance, incorrect assignments of sub-entities will be 
avoided. Additionally the table assigns relevant attributes of the reference process to 
entities. The meta-properties figure out that the sub-entities ‘geometry’ and ‘mass’ are quite 
important due to their essential (+R). Furthermore they give identity to their class (+I). 
Finally, the corresponding taxonomy is presented in figure 10: 
 

 
Fig. 10. Backbone taxonomy of the class structure “piece goods” of the “Process domain” 
[source: author's illustration] 

It displays the corrected taxonomy of the exemplary class structure of the industrial 
application. The class “piece goods” consists of four entities (2nd level) and seven sub-
entities. These are related with to attributes. The relations ‘subsumption’ (is) or ‘attribute’ 
(att) describes the connection to the entities. Subsumption are given if the attribute is part of 
the sub-entity.  
The following step focuses on interactions between the “process domain” and “technology 
domain”. Therefore, the relations are noted. Table 9 exhibits the relationship to the system 
technology “robotics” which unite the entities “kinematics”, “geometry”, “load”, “accuracy” 
and “installation”. Table 9 displays the relation codes between the two domains. For 
instance, there are some relations of the type “ad-hoc-activity” and “activity”. For instance, 
the strapping has an influence to the accuracy of the robot. Also the mass defines the type of 
the robot. The table resumes these relations: 
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Process 
Specification 
Language 

    T.1 T.1.1 T.1.2 T.1.3 T.1.4 T.1.5 

    robotics
    kinematics geometry load accuracy installation 
PSL Core 

P.1 piece goods     

P.1.1   geometry   1.1.2 1.1.1 

P.1.2   material   1.1.1 1.2.1 1.1.1 

P.1.3   packaging       1.1.1  
P.1.4   mass   1.1.1

        

Table 9. Entities and attributes of the class structure ‘piece goods’ of the ‘process domain’ 
[source: author's illustration] 

This example clarify the potential of the ontological framework. The framework offers a 
general and systemic knowledge to configure the best technical components and modules 
for the specific application due to the system technologies “robotics”, “gripping 
technology”, “pattern recognition” and “robot control and communication”. 

5. Conclusion 
The paper presents an ontological approach to standardize robotic systems in logistic 
processes. Ontologies allow the systematic depiction of the technical systems in the 
procedural environment. Through their high level of abstraction, this chapter describes the 
conceptualization and elaboration of an ontological vocabulary for configuration process 
customized robotic architectures. The vocabulary allows the description of the relational 
structure for a dedicated reference process. It describes the relations among the procedural 
entities and the technical components. This ontology framework is the basis for the 
formation of modules and the configuration of the modules in robotics architectures. 
The main goal provides a descriptive approach to the relationship between process and 
technology. Here, representations of conceptual ontologies were consulted. Due to the 
conceptual approach, the notation is on an abstract level, so that an automatic conclusion 
through formal ontologies is realistic. The representation of a dedicated solution space of 
possible technical configuration states of robotics system architectures is feasible, too.  
In further research requirements, the development of formal ontologies in the context of this 
scope reduces the level of abstraction and enables the mechanical and automatic generation 
of ontologies.  
In this way, interpretation and manipulation opportunities will be reduced and the 
interconnections of relationships between process and technology detailed. In this 
connection, formal ontologies allow the development of so-called architecture Configurator. 
They are based on the provided procedural and technical information and the possible 
ontological interrelationships. With this information, automatically development, including 
economic criteria, prioritizes configurations of robotic system architectures for dedicated 
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reference processes. This approach can also serve as an appreciation of the nature of a 
‘Rapid Configuration Robotics’ approach, which can digitally review prototyping activities 
such as technical feasibility and economic usefulness. The requirement for this type of IT-
based configuration planning is shown by the RoboScan10 survey: 
 

 
Fig. 11. Study RoboScan10: Answers about necessity for an IT-based system that plans the 
configuration of robotic systems [source: (Burwinkel, 2011)] 

Fig. 11 shows the field of opinions in the context of RoboScan10 about the necessity for IT-
based configuration planning of robotic systems. The question asked was: ‘from a planning 
perspective: Could you envisage using an IT-based planning tool, which enables the 
configuration of both single robot systems and multi robot systems? 75% of all respondents 
could envisage the application of such tools. 
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1. Introduction 
In Alex Proyas’s science fiction movie “I, Robot” (2004) a detective suspects a robot as 
murderer. This robot is a representative of a new generation of personal assistants that help 
and entertain people during daily life activities. In opposition to the public opinion the 
detective proclaimed that the robot is able to follow his own will and is not forced to Isaac 
Asimov’s three main rules of robotics (Asimov, 1991). In the end this assumption turned out 
to be the truth. 
Even though the technological part of this story is still far beyond realization, the idea of a 
personal robotic assistant is still requested. Experts predicted robotic solutions to be ready to 
break through in domestic and other non-industrial domains (Engelberger, 1989) within the 
next years. But up to now, only rather simple robotic assistants like lawn mowers and 
vacuum cleaners are available on the market. As stated in (Gräfe & Bischoff, 2003), all these 
systems have in common that they only show traces of intelligence and are specialists, 
designed for mostly a particular task. Robots being able to solve more complex tasks have 
not yet left the prototypical status. This is due to the large number of scientific and technical 
challenges that have to be coped with in the domain of robots acting and interacting in 
human environments (Kemp et al., 2007). 
The focus of this paper is to describe a tool based process model, called the 
“FRIEND::Process”1, which supports the development of intelligent robots in the domain of 
personal assistants. The paper concentrates on the interaction and close relation between the 
FRIEND::Process and configurable task-knowledge, the so called process-structures. 
Process-structures are embedded in different layers of abstraction within the layered control 
architecture MASSiVE2 (Martens et al., 2007). Even though the usage of layered control 
architectures for service robots is not a novel idea and has been proposed earlier (Schlegel & 
                                                 
1 The name FRIEND::Process is related to the FRIEND projects (Martens et al., 2007). It has been 
developed within the scope of these projects, but is also applicable to other service robots. 
2 MASSiVE – Multilayer Control Architecture for Semi-Autonomous Service Robots with Verified Task 
Execution  
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Woerz, 1999; Schreckenghost et al., 1998; Simmons & Apfelbaum, 1998), MASSiVE is 
tailored for process-structures and thus is the vehicle for the realization of verified 
intelligent task execution for service robots, as it is shown in the following. The advantages 
of using process-structures shall be anticipated here:  
• Determinism: Process-structures represent the complete finite sequence of actions that 

have to be carried out during the execution of a task. Due to the possibility of a bijective 
transformation from process-structures to Petri-Nets, a-priori verification with respect 
to deadlocks, reachability and liveness becomes possible. Thus, the task planner and 
executor, as part of the layered architecture, operate deterministically when using 
verified task-knowledge. 

• Real-time capability: Additionally, the complexity of the task planning process satisfies 
real-time execution requirements, because this process is reduced to a graph search 
problem within the state-graph of the associated Petri-Net. 

• Fault-Tolerance: Erroneous execution results are explicitly modeled within process-
structures. Additionally, redundant behavior is programmatically foreseen. If an 
alternative robotic operation, which shall cope with the unexpected result, is not 
available, the user is included as part of a semi-autonomous task execution process. 

To be able to provide a user-friendly configuration of process-structures and to guarantee 
consistency throughout all abstraction levels of task-knowledge, a tool-based process model 
– the FRIEND::Process – has been developing. The process model, on the one hand, guides 
the development and programming of intelligent behavior for service robots with process-
structures. On the other hand, process-structures can be seen as a process model for the 
service robot itself, which guides the task execution of the robot during runtime. The unique 
feature of the FRIEND::Process in comparison to other frameworks (Gostai, 2011; Microsoft, 
2011; Quigley et al., 2009) and the above  mentioned control architectures is to completely 
rely on configurable process-structures and thus on determinism, real-time capability and 
fault tolerance. 
The FRIEND::Process consists of the following development steps: 
• Analysis of Scenario and Task Sequence: A scenario is split up into a sequence of 

tasks. 
• Configuration of Object Templates and Abstract Process-Structures: The task 

participating objects are specified as Object Templates and pictographic process-
structures on the symbolic (abstract) level are configured and verified. 

• Configuration of Elementary Process-Structures: Process-structures on the level of 
system resources and sub-symbolic (geometric) information are configured and verified 
with the help of function block networks. 

• Configuration and Testing of Reactive Process-Structures: Process-structures on the 
level of algorithms and closed loop control, operating sensors and actuators, are 
configured and tested, also with configurable function blocks. 

• Task Testing: Task planning and execution is applied on all levels of process-structures 
and  a complete and complex task execution is tested. 

In the following Section 2, the motivation for the introduction of process-structures is 
explained in more detail by discussing the complexity of task planning for service robots 
with the help of an exemplary scenario. The description of the FRIEND::Process 
development steps is subject of Section 3. Throughout this description, exemplary process-
structures of the sample scenario of Section 2 are introduced for each development step. 
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Finally, Section 4 summarizes and concludes the description of the FRIEND::Process for 
programming intelligent service robots.   

2. Task planning on basis of process-structures 
In this section, the complexity of classical task planning approaches is discussed first, before 
the introduction of process-structures is motivated. The discussion is carried out with the 
help of task execution examples from the field of rehabilitation robotics and the 
rehabilitation robot FRIEND III (IAT, 2009; Martens et al., 2007). 

2.1 The complexity of classical task-planning approaches 
With respect to one exemplary task – a service robot is supporting the preparation and the 
eating of a meal by a disabled person – the complexity of robotic task execution shall be 
illustrated. For this purpose the figures Fig. 1 to Fig. 3 are introduced. Fig. 1 shows the 
rehabilitation robot FRIEND III which is used as exemplary target system. In Fig. 2 
snapshots of the task sequence “Meal preparation and eating assistance” are depicted. 
Finally, Fig. 3 shows the decomposition of this task sequence according to the principles to 
be presented in detail in this paper. 
FRIEND III is a general purpose semi-autonomous rehabilitation robot suitable for the 
implementation of a wide range of support tasks. As depicted, FRIEND III consists of an 
electrical wheelchair which is equipped with several sensors and actuators: A stereo camera 
system mounted on a pan-tilt-head, force torque sensor, robotic arm and gripper with force 
control. FRIEND III has been developed by an interdisciplinary team of engineers, therapists 
and designers and has been tested with disabled users within the AMaRob project (IAT, 
2009). 

 
Fig. 1. FRIEND III rehabilitation robot 

To perform “meal preparation and eating assistance”, the robot system has to execute the 
following actions: 
• Locate the refrigerator, open the refrigerator door, locate the meal inside the 

refrigerator, grasp and retrieve the meal from the refrigerator, close the refrigerator 
door 

• Open the microwave-oven, insert the meal, close the oven, start the heating process 
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• Open the microwave-oven door again, grasp and retrieve the meal, close the 
microwave-oven door 

• Place the meal in front of the user, take away the lid 
• In a cycle, take food with the spoon and serve it near the user’s mouth, finally put the 

spoon back to the meal-tray 
• Clear the wheelchair tray 
 

 
Fig. 2. Task sequence for meal preparation and eating assistance 
 

 
Fig. 3. Decomposition of a scenario on four abstraction levels, illustrated with the sample 
scenario “Meal preparation and eating assistance” 

As shown in Fig. 3, the overall scenario is decomposed into tasks, abstract operators, 
elementary operators and reactive operators according to the layered control architecture 
MASSiVE. Abstract process-structures (PSA3) model behavior on task planning level and 
elementary process-structures (PSE) model behavior on system planning level. The reactive 
process-structures (PSR) define reactive operations on the executable algorithmic level. From 
viewpoint of task planning, the “meal preparation and eating assistance” scenario is split up 
into 6 tasks, 19 abstract operators and 43 elementary task planning operators. Additionally, 
a large set of reactive operators is required within the execution layer. 
In typical human environments, it is impossible to predefine a static sequence of operators 
beforehand. Many dynamic aspects resulting from dynamic environmental changes have to be 

                                                 
3 Find all abbreviations in the glossary at the end of this paper. 
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considered, e. g. caused by changing lighting conditions, arbitrarily placed and filled objects, 
changing locations of objects and the robotic platform, various obstacles, and many more. 
Consequently, a strategy to plan a sequence of actions that fulfills a certain task is mandatory. 
Many task planners are based upon deliberative approaches according to classical artificial 
intelligence. Typically, the robotic system models the world with the help of symbolic facts 
(e. g. first order predicate logic, (Russel & Norvig, 2003)), where each node of a graph 
represents a state (snapshot) of the world. The planner has to find a sequence of operations 
which transforms a given initial state into a desired target state. In the worst cases this leads 
to NP-complete problems, as there is an exponential complexity of classical search 
algorithms (Russel & Norvig, 2003). If we consider breadth-first search as a simple example, 
a calculation time of hours results at search depth 8; and with a depth of 14, hundreds of 
years are required for exhaustive search (branching factor 10 and calculation time of 10.000 
nodes/s are assumed). The search depth is related to the number of required operators for a 
certain task and the branching factor results from the number of applicable operators in one 
node. Compared to the number of required and available operations shown in Fig. 3 it 
becomes obvious that only trivial problems can be solved on this basis. Certainly, the mean 
search time can be improved in comparison to breadth-first search, with e. g. heuristic 
approaches like A*, with hierarchical planning, search in the space of plans or successive 
reduction of abstraction (Russel & Norvig, 2003; Weld, 1999), but in worst cases a planning 
complexity as mentioned has to be faced. Even though the improvements of deliberative 
task planners are notable, it is still questionable whether they are efficient (real-time 
capable) and robust (deterministic and fault-tolerant) enough for the application in real 
world domains (Cao & Sanderson, 1998; Dario et al., 2004; Russel & Norvig, 2003). 

2.2 Process-structures as alternative to classical planning approaches 
An alternative to deliberative systems are assembly planning systems. Cao and Sanderson 
proposed such an approach for the application to service robotics (Cao & Sanderson, 1998). 
Based on this idea, Martens developed a software-technical framework (Martens, 2003) that 
operates on pre-structured task-knowledge, called process-structures. Table 1 summarizes the 
concept of process-structures and the distinction of task level, system level and algorithmic 
level.  
Fig. 4 shows an example of an abstract process-structure that models the fetching of a cup 
from a container. The object constellations (OC) model the physical contact situation of the 
involved objects box (B), container (C), gripper (G) and table (T). The object constellations 
are connected via composed operators (COPs). These are in most cases (i. e. where this is 
physically meaningful) bi-directional operators. To be able to perform task planning based 
on an abstract process-structure, a set of OCs defines an initial situation and another set of 
OCs defines the target situation. Thus, task planning on abstract level means to find a 
sequence of COPs from initial to target situation. The initial situation is usually dynamically 
determined at runtime with the help of an initial monitoring procedure (Prenzel, 2005). The 
target situation is pre-determined for a certain PSA. 
A process-structure contains a context-related subset of task-knowledge. The finite size of a 
process-structure makes planning in real-time with short time intervals as well as a priori 
verification possible. The logical correctness of a structure is checked against a set of rules. A 
positive result of this check guarantees that no system resource conflicts exist. It also 
guarantees the correct control and data flow. Altogether, the concept of process-structures is 
the basis for a robust system runtime behavior. Despite pre-structuring, the process-
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structures are still flexible to adapt to diverse objects, so that their re-usability in different 
scenarios is achieved. Technical details of process-structures beyond this summarized 
concept description can be found in (Martens et al., 2007). 
 

PSA Task Level 
Defines what happens Models e. g. the fetching of an object 
Is configured by: Non-technical personnel or the user 
PSE System Level 
Defines how something happens from 
system perspective 

Models the usage of system resources 
and the control and data flow 

Is configured by: System programmer 
PSR Algorithmic Level 
Defines how something happens from 
perspective of reactive algorithms 

Models the combined usage of 
hardware sensors and actuators 

Is configured by: System programmer 

Table 1. Summarized concept of process-structures 

 

 
Fig. 4. Schematic illustration of an abstract process-structure (PSA) which models the 
fetching of a cup from a container-like place as e. g. a fridge or a cupboard 

The applicability of process-structures for the programming of service robots has been 
shown in (Martens, 2003) with the help of several representative rehabilitation robotic 
scenarios. As anticipated in the introduction this approach has been extended during the 
AMaRob project (2006 – 2009) and within (Prenzel, 2009) to embed the process-structure-
based programming into a process model – the FRIEND::Process. From task analysis to final 
testing of implemented system capabilities, the FRIEND::Process guides through the 
complete development cycle of a service robot based on a closed chain of user-friendly 
configuration tools. Enhancements of the FRIEND::Process are matter of ongoing 
developments. 
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3. The FRIEND::Process 
Process models structure complex processes in manifold application areas. With respect to 
system- and software-engineering, a process model shall organize the steps of development, 
the tools to be used and finally the artifacts to be produced throughout the different 
development stages. The overall scheme of the FRIEND::Process is depicted in Fig. 5. 
Central elements of the process and consequently the specialty in comparison to other 
process models are the process-structures. Within the development steps, the building 
blocks of process-structures are decomposed as shown in Table 2. In the following sections 
the five development steps of the FRIEND::Process are discussed in detail. Thus, the 
contents of Table 2, i. e. the composition of process-structures and the decomposition on the 
next level as well as the abbreviations will be explained. Also, the application of the 
FRIEND::Process for the development of the sample task of “meal preparation and eating 
assistance” is shown in each step. 
 

 
Fig. 5. Scheme of the FRIEND::Process with five development steps and the respective 
process-structure levels as well as the involved tools for configuration, planning and 
execution 

Process-Structure Decomposition Process-Structure Building Blocks 

Scenario  Task Sequence Tasks 
Task  PSA System, Object Templates (OTs), Object Constellations 

(OCs), Facts, Composed Operators (COPs) 
COP  PSE System, Object Templates (OTs), Facts, Skills 
Skill  PSR System, Object Templates (OTs), Reactive Blocks 

Table 2. Decomposition and building blocks of process-structures 
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3.1 FRIEND::Process step 1: Analysis of scenario and task sequence 
Development according to the FRIEND::Process starts with the “Scenario Analysis” as 
step 1. Unlike the subsequent steps, this step is not (yet) tool-supported. The scenario 
analysis splits up a complex scenario like “meal preparation and eating assistance” into a 
sequence of re-usable tasks. Also, a structured collection of the objects takes place that are in 
the focus of a certain scenario. 

3.1.1 Description of the process step 
The development step 1 is dedicated to a first analysis of the desired task execution scenario. 
As shown in Fig. 6 a sequence of re-usable tasks is specified. Besides the strictly sequential 
concatenation of tasks, cyclic repetitions are also possible, as e. g. required for the eating 
assistance scenario introduced at the beginning of the paper. 
 

 
Fig. 6. A complex task sequence consists of several tasks 

The FRIEND::Process defines criteria for task splitting: 
• Modularity, low complexity and re-usability: One task is focusing on a set of objects. 

This set shall be kept as small as possible to limit the task’s complexity and to ensure re-
usability of a task. It shall be possible to use the tasks independently, but also to 
concatenate them to more complex action sequences. 

• The typical physical location of the objects: If movement of the robotic platform is 
required, this is a clear indicator to switch the task context, e. g. when moving from 
fridge to microwave oven in the meal preparation scenario. After moving the platform, 
relative locations between platform and objects have to be re-assessed.  

Currently, the process step 1 is not yet supported by a dedicated tool. Therefore, to still 
achieve a certain level of formality, the results of scenario analysis are collected in a UML 
use case diagram as seen in Fig. 7. For each task a use case with verbal task description is 
specified. This includes the objects involved in the task, the so-called task participating 
objects (TPO). 
 

 
Fig. 7. Use case diagram with tasks (use cases) of the sample scenario. For each task, a 
detailed description as well as the set of task participating objects (TPO) is specified 
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The objects involved in task execution are the elements that are relevant in all subsequent 
development steps. To follow the principle of re-usable task-knowledge, the TPOs are 
specified as abstract object classes. For example, a task that describes the fetching of an 
object from a container-like place (see Fig. 4) can be re-used to fetch either a bottle or a meal 
from the refrigerator. In the FRIEND::Process the re-usable classes of objects are specified as 
hierarchical UML ontology. An exemplary ontology for the scenario “meal preparation and 
assistance to eat” is depicted in Fig. 8. It is depicted that the TPOs are constructed from basic 
geometric bodies (cuboid and cylinder) and more complex objects are created with 
inheritance and aggregation. 
 

 
Fig. 8. Ontology of task participating objects (TPO) for the scenario “Meal preparation and 
assistance to eat” 

To embed the TPOs in the tool-chain that covers all further development steps, the concept 
of “Object Templates” (OT) has been introduced (Kampe & Gräser, 2010). The configuration 
of Object Templates and their integration into the different levels of process-structure 
configuration will be discussed in more detail within the following process steps. 

3.2 FRIEND::Process step 2: Configuration of object templates and abstract process-
structures 
In this development step the task participating objects are formally specified and configured 
with the help of Object Templates. Subsequently, an abstract process-structure (PSA) is 
configured based on pictographic And/Or-Nets. This means that physical object 
constellations (OC) and physical transitions between the object constellations are specified. 
Besides configuration of PSA, the logical correctness of the abstract process-structures is 
guaranteed by the configuration tool. Finally, the pictographic PSA are converted to Petri-
Nets according to (Cao & Sanderson, 1998) for the input into the task planner. 
In the following, a description of the process step is introduced first. Afterwards, the 
configuration concept for Object Templates is shown. Finally, the configuration of an 
abstract process-structure is exemplified. 

3.2.1 Description of the process step 
As shown in Fig. 9 the FRIEND::Process decomposes each task into an abstract process-
structure (PSA). A schematic exemplary pictographic PSA for the task “Fetch cup from 
container” has already been introduced and discussed in Fig. 4. Within the 
FRIEND::Process, the configuration of PSA is carried out within a pictographic configuration 
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environment, the so-called PSA-Configurator. Fig. 10 shows the PSA-Configurator with the 
PSA “Fetch meal from fridge”. 
 

 
Fig. 9. Decomposition of a task as abstract process-structure with object constellations (OC) 
and composed operators (COP) 

The procedure of PSA configuration is as follows: 
• Selection of task participating objects (TPOs) 
• Composition of object constellations (OCs) 
• Connection of OCs via composed operators (COPs) 
• Selection of default initial and default target situation 
 

 
Fig. 10. PSA-Configurator with the pictographic abstract process-structure modeling the 
Task “Fetch meal from fridge”4 

                                                 
4 For better readability, overlays have been added in this illustration. 
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The pictographic representation of an OC is configured within a sub-dialog within the PSA-
Configurator. Within this configuration dialog, the predicate logic facts, which are assigned 
to an OC, can be inspected. These facts are the pre- and post-condition facts of the COPs that 
interconnect the OCs. Within the constraints given by the COP facts, the pictographic 
appearance of an OC can be adjusted within the PSA-Configurator within a 3D scene.  The 
rendering of object constellations is based on “Object Templates”. 

3.2.2 Object templates 
Objects play a central role in process-structures. The different levels of process-structures 
model different aspects of objects. On abstract level, a symbol is associated with an object for 
the purpose of task planning (e. g. “Mt.1” for the meal tray in the sample scenario). On 
system level, i. e. on the level of elementary process-structures, so-called sub-symbolic (i. e. 
geometric) object information is processed. With respect to the meal tray this is, for instance, 
the location to grasp the tray. To model the different aspects of objects and to assure an 
information consistency throughout the different information layers, the concept of Object 
Templates has been introduced.  
Object Templates comprise the following aspects: 
• A 3D model of the object, used for pictographic rendering of object constellations on 

PSA level as well as for motion planning and collision avoidance on PSR level 
• Associated sub-symbolic (geometric) data for planning and execution on PSE and PSR 

level, e. g. the grasping location of an object 
• Complex objects can be composed of simpler objects; e. g. a meal tray consists of a tray, 

a plate, a lid and a spoon 
• Object Templates are configured with natural parameters of the composed object, e. g. 

width, height, depth and wall thickness for a container, instead of separate specification 
of all geometric primitives 

• The 3D appearance of Object Templates is associated with task-knowledge like 
symbolic facts and characteristics. For example the fact “IsAccessible(MicrowaveOven)” 
renders the opening status of the door of the oven’s 3D model. 

An exemplary Object Template is the meal tray depicted in Fig. 11. It consists of a base tray, 
a plate with a lid and a spoon. Both the lid and the spoon are detachable from the meal tray. 
The different stages of separation are depicted in Fig. 12. 
 

 
Fig. 11. The meal tray of the eating scenario as photo (left) and modeled by means of an 
Object Template (right) 
 

 
Fig. 12. The different separation stages (detached lid, detached spoon, both lid and spoon 
detached) of the meal tray 
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The configuration of Object Templates takes place within the Object-Template-Configurator 
(OT-Configurator) which is part of the PSA-Configurator as shown in Fig. 13. 
 

 
Fig. 13. Object-Template-Configurator (OT-Configurator) as part of the PSA-Configurator 

Within the screenshot in Fig. 13 the Object Template of the refrigerator is modeled. On the 
left side the parameters and their association to symbolic facts are specified. On the right 
side the 3D model of the object is rendered according to the current configuration. To render 
the 3D model of a composed object, the aggregated sub-objects are composed with formulas 
within the Object-Template-Configurator tool. Frequently required and complex formulas 
like alignment and rotation of Object Templates are provided with the help of assistive 
functions. 
Certain aspects of the 3D geometry have a fix association with object characteristics as given 
in the following table:  
 

Characteristic Associated sub-symbolic element 

IsGrippable Coordinates to grasp the object 
IsPlatform Limits to place other objects onto this object 
IsContainer Limits to place other objects within this object 

Table 3. Relations between characteristics and sub-symbolic elements 

3.2.3 Exemplary abstract Process-Structure: Fetch meal tray from fridge 
The exemplary PSA that shall be discussed in detail has already been introduced within the 
PSA-Configurator frontend in Fig. 10. In this PSA the task participating object are a fridge 
(symbol “Fr” with instance number “1”  “Fr.1”), a meal tray (“Mt.1”), the manipulator 
(“MP.1”) and the abstract symbol for a relative location (“InsertLoc”). In this PSA the initial 
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situation consists of two object constellations. The first one models the manipulator in a free 
position in the workspace (instance number “0” is assigned to this object constellation  
“MP.1_0”). The second object constellation models the already opened fridge containing the 
meal tray (“Fr.1-Mt.1_0”). The two OCs are connected via the assembly COP 
“GraspObjectInContainer(MP.1, Mt.1, Fr.1)”. If physically possible, a complementary 
disassembly operator is assigned to model the reverse operation for re-usage of the PSA in 
another scenario context. In this case this is the COP “DepartFromContainer(MP.1, Mt.1, 
Fr.1)”. The assembled object constellation is depicted on the bottom left side and the 
associated abstract planning symbol is “Fr.1-MP.1-Mt.1_0”. Due to the associated symbolic 
facts, which are imposed within the object constellation by the post-condition facts of the 
COP, the pictographic representation is rendered so that the manipulator grasps the meal 
tray in the fridge.  
Besides assembly and disassembly operators, the And/Or-Net syntax provides operators 
modeling the internal state transition (IST) of object constellations (IST COPs). IST COPs are 
applied when the physical contact state of the involved objects is not changed. From the 
viewpoint of planning on abstract level, objects being in close relative locations to each other 
are considered to be in a physical contact situation. Therefore, the IST COP 
“GetObjectOutside(MP.1, Mt.1, Fr.1, InsertLoc)” is applied to transform the OC “Fr.1-MP.1-
Mt.1_0” on the left side into the OC “Fr.1-MP.1-Mt.1_1” on the right side. Finally, the COP 
“MoveObjectFromRelLoc(MP.1, Mt.1, Fr.1, InsertLoc)” models the disassembly operation 
and results in two object constellations which model the target situation of this abstract 
process-structure: “Fr.1_0” is the empty fridge and “MP.1-Mt.1_0” is the manipulator with 
the gripped meal tray in a free position in the work space. 
To be able to develop and verify the three levels of process-structures independently, i. e. in 
a modular manner, the consistency of task-knowledge on all levels has to be assured. This is 
achieved with common building blocks of the different process-structures as shown in the 
decomposition chain in Table 2. The common elements are the interfaces to the next level of 
process-structures. The important interfacing elements between PSA and PSE are the pre- 
and post-condition facts of the COP to be decomposed as PSE in the next process step. For 
the COP “GraspObjectInContainer” the facts are shown in Table 4. 
 

Pre-Facts Post-Facts 

HoldsNothing(Manipulator) = True HoldsNothing(Manipulator) = False 
IsInFreePos(Manipulator) = True IsInFreePos(Manipulator) = False 
- IsGripped(Manipulator, Object) = True 
ContainerAccessible(Container) = True - 
IsInsideContainer(Object, Container) = True - 

Table 4. Pre- and Post facts of COP “GraspObjectInContainer(Manipulator, Object, 
Container)” 

3.3 FRIEND::Process step 3: Configuration of elementary process-structures 
In the third process step, each composed operator (COP) of an abstract process-structure 
(PSA) is decomposed into an elementary process-structure (PSE). To achieve user-friendly 
configuration of PSE, configurable function blocks are assembled to function block networks 
(FBN). Each function block models a reactive robot system operation, also called skill. A 
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priori verification of task-knowledge on this level takes place with the help of Petri-Nets, 
which result from automatic conversion of FBNs. 

3.3.1 Description of the process step 
Fig. 14 depicts the decomposition principle of COPs into elementary process-structures, 
consisting of skill blocks. An elementary process-structure, as first introduced by (Martens, 
2003), is a Petri-Net with enhanced syntax and superordinated construction rules. The 
advantage of Petri-Nets is their ability to model parallel activities. This is useful for the 
behavioral modeling on robot system level, for instance, if a manipulator action is guided by 
input from a camera system or another sensor. Furthermore, Petri-Net-based PSE offer 
mathematical methods for analysis of the reachability of a certain system state, for 
verification of the correctness of control and dataflow and for the exclusion of resource 
conflicts (Martens, 2003). 
 

 
Fig. 14. Decomposition of a composed operator (COP) as elementary process-structure 

Besides these conceptual advantages, from the viewpoint of implementation it turned out 
that the programming of elementary process-structures with Petri-Nets is a time consuming 
and error prone procedure. The setup of a correctly verified Petri-net-PSE usually takes 
several hours. Even with strong modularization of the networks, the large number of places 
and transitions leads to hardly manageable Petri-Nets in real-life applications. This is the 
reason why the FRIEND::Process introduces the configuration of PSE on the basis of function 
block networks (FBN). Similar to the PSA-Configurator, a configuration frontend, called PSE-
Configurator, has been created. This tool subsumes all logical and syntactical rules that are 
required for PSE-configuration. Furthermore, a conversion algorithm has been developed 
(Prenzel et al., 2008), which converts an FBN into a Petri-Net for automatic execution of 
verification routines, like a reachability analysis. A screenshot of the PSE-Configurator with 
the PSE “GraspObjectInContainer” is given in Fig. 15. 
With respect to their representative function for Petri-Nets, the control flow within the FBN 
structures is token-oriented. The execution starts from the “Start” block and ends at the 
“Target Success” block. In-between, reactive skills are executed, including manipulative 
operations as well as sensor operations or user interactions. Each function block has one 
input port, and several output ports according to the possible execution results of the skill 
(see e. g. block “CoarseApproachToObjectInContainer” in Fig. 15 with the output ports 
“Success”, “Failure”, “Abort” and “UserTakeOver”). The output port “Abort” is not 
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explicitly connected to an abort block to increase the readability of the network structure. 
The typical construction rule for a semi-autonomous system (like FRIEND) is to provide 
user interactions as redundant action for autonomous system operations. As shown in Fig. 
15, the failure of an autonomous operation (e. g. “AcquireObjectBySCam”) is linked to the 
user interaction “DetermineObjectBySCam”, replacing the failed system action.  
 

 
Fig. 15. PSE-Configurator with elementary process-structure as function block network, 
modeling the COP “GraspObjectInContainer”.5  

The configuration of PSE on the basis of function block networks does not only achieve a 
decisive increase of development comfort (configuration instead of programming), but it 
also decreases the required task-knowledge engineering time significantly. By building the 
PSE directly in the correct manner, the time-consumption for the construction of one PSE is 
reduced from hours to 10-15 minutes per network. On this basis, real world problems like 
the “Meal preparation and assistance” task, become manageable in their complexity. 

3.3.2 Exemplary elementary process-structure: Manipulator grasps meal tray in fridge 
The exemplary PSE “GraspObjectInContainer”, as shown in Fig. 15, models the grasping of 
an object in a container-like place in a general way. In the sample scenario “meal 
preparation” this PSE is applied to fetch the meal tray from the refrigerator and also from the 
microwave oven after heating of the meal. 
The objects (Object Templates) “Manipulator”, “Object” and “Container”, which are 
involved in this PSE, are the input artifacts handed over as COP parameters from the 
previous step of the FRIEND::Process. The first skill block that follows the “Start” block is 
the manipulator skill “OpenGripper”. Subsequently, the container (fridge) is located with 
the help of the vision skill “AcquireObjectBySCam(Object)”. This skill calculates the location 
and size of the given object with the help of a stereo camera (SCam). In the sample scenario 
the COP parameter “Container” (i. e. the fridge) is inserted at the skill’s placeholder 
                                                 
5 For better readability, overlays have been added in this illustration. 
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“Object” according to the principle of type-conform parameter replacement (Martens, 2003). 
The Object Template of a fridge provides the according two sub-symbolic parameters 
location and size. A successful execution of the skill guarantees that the container’s location 
and size are stored in the system’s world model and can serve as input parameters for 
subsequent skills. After verification of the associated Petri-Net of this PSE the correctness of 
the data flow between all skill blocks is assured. If the recognition of the fridge is successful 
and the user has not to be involved, the skill “AcquireObjectInContainerBySCam” is 
executed to determine the location of the meal tray in the fridge. Afterwards, a 
“CoarseApproachToObjectInContainer” follows. This skill roughly directs the manipulator 
in front of the meal tray in the fridge based on the location information calculated 
beforehand. Fig. 15 depicts that this manipulator skill is followed by an enforced user 
interaction, since all output ports are connected to the Or-block preceding the user 
interaction. The confirmation by the user is included at this place due to testing purposes to 
assure a correct execution of the first skill. For real task-execution a quick reconfiguration of 
the PSE will change the system behavior and directly execute the next manipulator skill 
“FineApproachToObjectInContainer”. This skill leads to a final grasping of the meal tray 
handle, while avoiding collisions of the manipulator with the fridge with the help of 
dedicated methods for collision avoidance and path planning (Ojdanic, 2009). The final 
action necessary to complete the grasping is to close the gripper. The PSE ends with setting 
the post-facts of the COP as specified in Table 4. 
From the viewpoint of the system’s task planner, each skill-function-block represents an 
elementary (executable) operation. Within the execution level of the system, the operations 
are not seen as atomic units. The execution of one skill means to activate reactive system 
functionality, for instance the sensor-controlled approach of an object to be grasped in the 
skill “FineApproachToObjectInContainer”. These basic system skills have to couple sensors 
and actuators on the algorithmic level. To pursue the paradigm of configurable process-
structures also on this level, the FRIEND::Process introduces reactive process-structures.  

3.4 FRIEND::Process step 4: Configuration and testing of reactive process-structures  
Historically, during the elaboration of the FRIEND::Process, the elementary operators 
(skills) have been implemented directly in C++. Subsequently, when appropriate CASE-
tools became available, the elementary operators have been implemented with model driven 
development techniques (Schmidt, 2006) as executable UML models. Then, a configuration 
tool has been developed, which makes user-friendly configuration of process-structures 
possible also on this development level. With the help of this tool it is assured that the 
verified interfaces from the PSE-layer are respected and the robustness assertion throughout 
the complete system architecture is maintained. 

3.4.1 Description of the process step 
Fig. 16 depicts the decomposition of a skill block from PSE-layer into a reactive process-
structure (PSR) consisting of algorithmic blocks. Similar to the PSE function blocks, PSR are 
also based on configurable function block networks. The PSR-Configurator tool results from 
the Open-Source Image Nets Framework6, which originally has been developed for 
configurable image processing algorithms. 

                                                 
6 http://imagenets.sourceforge.net/ 
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The PSR Configuration Framework consists of the following five parts (see Fig. 17): 
• PSR-Configurator, 
• Embedding of PSR into any C++ code via PSR-Executor, 
• Reactive process-structures (PSR), which are executable function block networks, 
• Extensible set of Plug-Ins and 
• Configurable function blocks 
 

Reactive Process-Structure (PSR)

Elementary Process-Structure (PSE)

Block 1

Block 3a

Block 4a

Block 5

Block 3b

Block 4bBlock 2

Skill 1 Skill 2a

Skill 3a

Skill 4 Skill 2b

Skill 3b

 
Fig. 16. Decomposition of a skill into a reactive process-structure 

The “PSR-Configurator” is a graphical user interface, which can be used to rapidly create a 
“function block network”, namely a reactive process-structure (PSR). With the PSR-Executor, 
it is possible to load and execute the previously configured PSR. The PSR itself is a directed 
graph, connecting configurable “function blocks”. Each block can execute code to process its 
input (image data or other data) and save its outputs. One or more blocks are grouped in a 
“Plug-In” and an arbitrary number of Plug-Ins can be loaded dynamically by the PSR. In this 
way, the PSR-Framework can be easily extended by new independent Plug-Ins. This 
independency of the algorithmic modules results in completely independent development 
within a team of developers. In addition, the strong modularization leads to a technically 
manageable amount of code within a single block and reduces the time of inspecting an 
erroneous block. The PSR execution library can save a PSR in human readable XML format. 
Thus, on the one hand the PSR-Configurator can configure, load and save a PSR, but on the 
other hand also external C++ code can load a PSR file. 
 

 
Fig. 17. The UML structure of the PSR-Configuration Framework 

Hierarchical modeling is a common method to subdivide algorithms into separate parts - it 
breaks down the complexity and facilitates reusability. In the PSR-Framework, parts can be 
constructed as separate PSR and can be combined afterwards to constitute a complete 
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algorithm. The PSR-Executor is in fact also a function block, which can load and process a 
PSR. The connection between the PSR inside an Executor and the outer net is established by 
special input and output blocks. For example the PSR “Color2Color3D” shown in Fig. 18 
calculates a colored point cloud out of a stereo image pair. On the left side there are two 
input blocks, which hand over the images from the block in orange. This block only exists in 
this PSR for testing the net and will be ignored on execution if this PSR is loaded by a PSR-
Executor (see Fig. 19, right side). 
 

 
Fig. 18. The functionality of calculating a colored point cloud out of a stereo image pair is 
depicted in this PSR, called “Color2Color3D” 
 

 
Fig. 19. The previously shown PSR can be loaded as one PSR-Executor block 

 
Fig. 20. Left: original image, right: resulting point cloud of the stereo camera images 
visualized in 3D by the PSR-Configurator 

The PSR in Fig. 19 shows the use of a subnet of an image acquisition together with the 
calculation of the extrinsic matrices of a stereo camera, which describe the relation of the 
cameras to the robot. These matrices depend on an invariant transformation frame inside 
the pan-tilt-head (see Fig. 1) and its rotation angles. By combining the two subnets, a live 
view of the stereo camera’s point cloud can be calculated (depicted in Fig. 20, in the center of 
the images the meal tray can be seen). As a visually guided robot is a real world object, 
which moves in the three dimensional Cartesian space, it is useful to display the vision 
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results in the same space. While configuring a PSR with the PSR-Configurator, intermediate 
results can be visualized in two and three dimensions; depending on the data type, for 
example scalar values can only be visualized in 2D, camera matrices can be visualized in 2D 
and 3D (using OpenGL (Wright et al., 2010), see Fig. 20, right). 
To be able to execute a PSR as skill block within the context of the PSE layer and to guarantee 
that the PSE interfaces are respected, a special type of “Verified PSR-Executor block” is 
created. During configuration of this kind of block, the PSR-Configurator checks that the 
used resources as well as input and output parameters match the specification of a certain PSE 
skill to be modeled as PSR. For example in the case of the PSR “AquireObjectBySCam(Object)” 
the allowed resource is the stereo camera system. The input parameter is the Object Template 
of the given object and the output parameter are the return values “Success” and “Failure”. 

3.4.2 Exemplary reactive process-structure: Acquire meal tray by stereo camera 
To show the capabilities of the reactive process-structures, a simplified example is discussed 
in the following, namely the machine vision skill to acquire an object by the stereo camera 
with the configuration “Meal Tray”. This example of a PSR is non-reactive, as no actor is 
involved. Though, in a more complex PSR, it is possible to combine the camera and the robot 
in a feedback loop to implement visual servoing to achieve reactive behaviour. 
In Fig. 21 several general blocks are used to find the red meal tray handle in an image. The 
processing chain starts with the detection of highly saturated, red parts. It is followed by a 
9x9 closing operation to eliminate noise. Afterwards, contours are detected and filtered 
according to a priori knowledge of the size of the handle. Then, the minimum rectangles 
around the contours are determined and the major axes and their end points are calculated. 
For testing the current PSR, again the orange blocks have been added to visualize 
intermediate testing results and they are not executed during task execution.  
 

 
Fig. 21. PSR “MajorAxisPoints” which detects red areas of a certain size and calculates the 
major axes of these areas. Orange blocks are omitted when this PSR is used in a PSR-Executor 

To grasp the meal tray handle with the manipulator, the determination of its location in 3D 
is required. Thus, a 2D detection of the meal tray is not sufficient. However, the previously 
created and tested PSR “MajorAxisPoints” can be used twice, one for each image of the 
stereo camera. Fig. 22 depicts the usage of the previous net to calculate the 3D line, 
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describing the handle of the meal tray. The block Optimal Stereo Triangulation computes a 3D 
contour based on key feature points, extracted from a stereo image. With the known camera 
matrices and the 2D feature correspondences, the 3D points are found by the intersection of 
two projection lines in the 3D space using optimal stereo triangulation, as described in 
(Natarajan et al., 2011). 
 

 
Fig. 22. PSR which detects the meal tray handle in 3D 

Next, the 3D line of the 3D handle detection is used to calculate a transformation frame, 
having the position of the right 3D point and the rotations to point the y-axis in line 
direction. Using the a priori knowledge that the meal tray should be parallel to the world 
coordinate system, only rotation around z-axis has to be calculated. Fig. 23 displays (top, 
from left to right) the 3D line, the calculated frame, the meal tray Object Template and the 
placed meal tray, based on the frame. For the fulfillment of the specification of the calling 
PSE, the Object Template has to be written to the World Model (a service to read from and 
write data to) with the “Write to World Model” block. This ensures that the detected object 
is globally available for later processing steps and is the actual result of this PSR. 
 

 
Fig. 23. Meal tray detection and Object Template placement based on 3D handle detection, 
frame calculation and Object Template movement (UD = user data) 
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For simulation and PSR unit testing in the PSR-Configurator, the fridge, the static 
environment (wheelchair, monitor and user) and the robot with its current configuration can 
be placed in the same 3D scene with the meal tray. Fig. 24 and Fig. 25 show the real scene 
and the 3D simulation result in comparison. 
 

 
Fig. 24. Real scene of this PSR 

 

 
Fig. 25. Simulated scene of this PSR 

3.5 FRIEND::Process step 5: Task testing 
After finishing the configuration of process-structures on all three levels, the planning and 
execution of a task (PSA) has to be tested. The modularly configured, verified and tested 
process-structures of lower abstraction (PSE and PSR) are involved in this final process 
step. 

3.5.1 Description of the process step 
For the purpose of task testing the “Sequencer” is used, which embeds a task planner for 
process-structures and the PSR-Executor (see Fig. 5). The Sequencer is part of the process-
structure-based control architecture MASSiVE mentioned in Section 1. The Sequencer 
interacts with skill servers, which offer the functionality that has been configured and 
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verified as reactive process-structures beforehand. The layered system architecture 
organizes a hardware abstraction via skill layer, so that there is a unique access-point on the 
sensors and actuators from a certain responsible skill server.  
Task tests can be performed in the following execution modes: 
• Probabilistic simulation: the skill interfaces and the communication infrastructure are 

tested and skill return values are simulated,  
• Skill simulation: the skill’s functional core is simulated,  
• Motion simulation: the motion governed by manipulative skills is simulated and 

visualized within a virtual 3D space as shown in Fig. 25,  
• Hardware simulation: the sensors and actuators are simulated,  
• Real execution: the skill is executed with access of sensors and actuators.  
Based on the process-structures, a complete task is planned and executed in one of the listed 
skill execution modes. This means that the Sequencer first plans a sequence of COPs and 
subsequently decomposes each COP into an elementary process-structure. Planning on this 
level results in a sequence of skills to be executed then. Step by step and based on the 
execution result of each skill, the once planned skill sequence is pursued, or re-planning 
takes place if an unexpected result is obtained. 

4. Conclusion 
As shown in Section 2.1 it is a challenging task to establish intelligent behavior of service 
robots operating in human environments. Typical operation sequences of support tasks in 
daily life activities seem to be simple from human understanding. However, to realize them 
with a robotic system, a huge complexity arises due to the variability and unpredictability of 
human environments.  
In this paper the FRIEND::Process – an engineering approach for programming robust 
intelligent robotic behavior – has been presented. This approach is an alternative solution in 
contrast to other existing approaches, since it builds on configurable process-structures as 
central development elements. Process-structures comprise a finite-sized and context-related 
set of task knowledge. This allows a priori verification of the programmed system behavior 
and leads to deterministic, fault-tolerant and real-time capable robotic systems.  
The FRIEND::Process organizes the different stages of development and leads to consistent 
development artifacts. This is achieved with the help of a tool chain for user-friendly 
configuration of process-structures.  
The applicability of the here proposed methods has been proven throughout the realization 
of the AMaRob project (IAT, 2009) where task execution in three complex scenarios for the 
support of disabled persons in daily life activities has been solved. One of theses scenarios is 
the “Meal preparation and eating assistance” scenario, used for exemplification throughout 
this paper. The most error prone and thus challenging action in this scenario is the correct 
recognition of smaller objects (e. g. the handle of the meal tray) under extreme lighting 
conditions. However, with the inclusion of redundant skills in the elementary process-
structures, the system’s robustness has been raised in an evolutionary manner. In cases 
where even redundant autonomous skills did not execute successfully, the accomplishment 
of the desired task was achieved via inclusion of the user within a user interaction skill. 
Currently, the methods and tools discussed in this paper are continuously developed 
further and are applied in the project ReIntegraRob (IAT, 2011). The mid-term objective is to 
integrate the different configuration tools for process-structures into one integrated 
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configuration environment. The PSR Configuration Framework, which is the most 
elaborated tool, will build the basis for this. 

5. Glossary 
COP Composed Operator 
FBN Function Block Network 
FRIEND Functional Robotarm with user-frIENdly interface for Disabled people 
MASSiVE Multilayer Control Architecture for Semi-Autonomous Service Robots with 

Verified Task Execution 
OC Object Constellation 
OT Object Template 
PS Process-Structure 
PSA Abstract Process-Structure 
PSE Elementary Process-Structure 
PSR Reactive Process-Structure 
TPO Task Participating Object 
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1. Introduction  
Thanks to the incorporation of robotic systems, the development of industrial processes has 
generated a great increase in productivity, yield and product quality. Nevertheless, as far as 
technological advancement permits a greater automation level, system complexity also 
increases, with greater number of components, therefore rising the probability of failures or 
anomalous operation. This can result in operator's hazard, difficulties for users, economic 
losses, etc. Robotic automatic systems, even if helped in minimizing human operation in 
control and manual intervention tasks, haven't freed them from failure occurrences. 
Although such failures can´t be eliminated, they can be properly managed through an 
adequate control system, allowing to reduce degraded performance in industrial processes. 
 

 
Fig. 1. Performance regions under failure occurrence 

In figure 1 we see a scheme showing the different performance regions a given system can 
adopt when a failure occurs.  If the system deviates to a degraded performance region in, 
presence of a failure, it can recover itself moving into an optimum performance region, or 
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near to it. These systems are called fault tolerant systems and have become increasingly 
important for robot manipulators, especially those performing tasks in remote or hazardous 
environments, like outer space, underwater or nuclear environments.  
In this chapter we will address the concept of fault tolerance applied to a robotic 
manipulator. We will consider the first three degrees of freedom of a redundant SCARA-
type robot, which is intended to follow a Cartesian test trajectory composed by a 
combination of linear segments. We developed three fault-tolerant controllers by using 
classic control laws: hyperbolic sine-cosine, calculated torque and adaptive inertia. The essays 
for such controllers will be run in a simulation environment developed through 
MatLab/Simulink software. As a performance requirement for those controllers, we 
considered the application of a failure consisting in blocking one of the manipulator's 
actuators during trajectory execution. Finally, we present a performance evaluation for each 
one of the above mentioned fault-tolerant controllers, through joint and Cartesian errors, by 
means of graphics and rms rates.   

2. Fault tolerant control 
The concept of fault tolerant control (Zhang & Jiang, 2003) comes first from airplane fault 
tolerant control; although at scientific level it appears later, as a basic aim in the first 
congress of IFAC SAFEPROCESS 1991, with an especially stronger development since the 
beginning of 21th century.  Fault tolerant control can be considered both under an active or 
passive approach, as seen in figure 2a. Passive tolerant control is based on the ability of 
feedback systems to compensate perturbations, changes in system dynamics and even 
system failures (Puig, Quevedo, Escobet, Morcego, & C., 2004). Passive tolerant control 
considers a robust design of the feedback control system in order to immunize it from some 
specific failures (Patton, 1997). Active tolerant control is centered in on-line failure, that is, 
the ability to identify the failing component, determine the kind of damage, its magnitude 
and moment of appearance and, from this information, to activate some mechanism for 
 

 
Fig. 2a. Types of fault tolerant control 
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rearrangement or control reconfiguration, even stopping the whole system, depending on 
the severity of the problem (Puig, Quevedo, Escobet, Morcego, & C., 2004). 
Fault tolerant control systems (being of hybrid nature) consider the application of a series of 
techniques like: component and structure analysis; detection, isolation and quantification of 
failures; physical or virtual redundancy of sensors and/or actuators; integrated real-time 
supervision of all tasks performed by the fault tolerant control, as we can see in figure 2b 
(Blanke, Kinnaert, Lunze, & Staroswiecki, 2000).  
 

 
Fig. 2b. Stages included in the design of a fault tolerant control system  
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In the evaluation of fault tolerant controllers it is assumed that a robotic manipulator where 
a failure has arisen in one or more actuators, can be considered as an underactuated system, 
that is, a system with less actuators than the number of joints (El-Salam, El-Haweet, & and 
Pertew, 2005). Those underactuated systems present a greater degree of complexity 
compared with the simplicity of conventional robot control, being not so profoundly studied 
yet (Rubí, 2002). The advantages of underactuated systems have been recognized mainly 
because they are lighter and cheaper, with less energy consumption. Therefore, a great deal 
of concern is being focused on those underactuated robots (Xiujuan & Zhen, 2007). In figure 
3 it is shown a diagram displaying the first three degrees of freedom of a SCARA type 
redundant manipulator, upon which essays will be conducted considering a failure in the 
second actuator, making the robot become an underactuated system. 

3. SCARA-type redundant manipulator 
For the evaluation of fault-tolerant controllers, we consider the first three degrees of 
freedom of a redundant  SCARA-type robotic manipulator, with a failure occurring in one 
of its actuators; such a system can be considered as an underactuated system, i.e., with less 
actuators than the number of joints (Xiujuan & Zhen, 2007). Those underactuated systems 
have a greater complexity compared with the simplicity of conventional robots control, and 
they haven't been so deeply studied yet (Rubí, 2002). The advantages of underactuated 
systems have been remarked mainly because they are lighter and less expensive; also having 
less energy consumption, consequently an increasing level of attention is being paid to 
underactuated robots (Xiujuan & Zhen, 2007). 
In figure 3 it is shown the scheme of a redundant SCARA-type robotic manipulator, and in 
figure 4 we can see a diagram showing the first three degrees of freedom of such 
manipulator, on which the essays will be carried on.   
 

 
Fig. 3. Scheme of a SCARA-type redundant manipulator 
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The considered failure is the blocking of the second actuator, what makes this robot an 
underactuated system. 
Having in mind the exposed manipulator, it is necessary to obtain its model; therefore we 
will consider that the dynamic model of a manipulator with n joints can be expressed 
through equation (1):  

 ( ) ( ) ( ) ( )= q q q q qτ M q+C , +G +F    (1) 

where: 
τ : Vector of generalized forces (n×1 dimension). 
M : Inertia  matrix (n×n dimension). 
C : Centrifugal and Coriolis forces vector (n×1dimension). 
q : Components of joint position vector. ݍሶ  : Components of joint speed vector. 
G : Gravity force vector (n×1dimension). ܙሷ  : Joint acceleration vector (n×1dimension). 
F : Friction forces vector (n×1dimension). 
Under failure conditions in actuator number 2, that is, it’s blocking, the component 2 of 
equation (1) becomes a constant.  
 

 
Fig. 4. Scheme of the three first DOF of a redundant SCARA-type robotic manipulator 

4. Considered controllers 
Considering the hybrid nature of fault tolerant control, it is proposed an active fault tolerant 
control having a different control law according to the status of the robotic manipulator, i.e. 
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normal or failing, with on-line sensing of possible failures and, in correspondence with this, 
reconfiguring the controller by selecting the most adequate control law (changing inputs 
and outputs). 
Next, we will present a summary of the controllers considered for performance evaluation 
when a failure occurs in the second actuator of the previously described manipulator.  

5. Fault tolerant controller: hyperbolic sine and cosine 
This controller is based on the classic controller hyperbolic sine-cosine presented in (Barahona, 
Espinosa, & L., 2002), composed by a proportional part based on sine and hyperbolic cosine 
functions, a derivative part based on hyperbolic sine and gravity compensation, as shown in 
equation (2). The proposed fault tolerant control law includes two classic hyperbolic sine-
cosine controllers that are "switched" to reconfigure the fault tolerant controller.  

 ( ) ( ) ( ) ( )= p e e vτ K sinh q cosh q - K sinh q +G q  (2) 

 e dq = q - q  (3) 

According to equations (2) and (3): 
Kp : Proportional gain, diagonal definite positivematrix (n×n dimension). 
Kv : Derivative gain, diagonal definite positive matrix (n×n dimension). 
qe : Joint position error vector (n×1dimension). 
qd : Desired joint position vector (n×1dimension). 
In (Barahona, Espinosa, & L., 2002) it is established that robotic manipulator's joint position 
error will tend asymptotically to zero as long as time approaches to infinite: 

 lim 0
t→∞

→eq  (4) 

This behavior is proved analyzing equation (5) and pointing that the only equilibrium point 
for the system is the origin (0,0).  
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6. Fault tolerant controller: Computed torque 
Another active fault tolerant controller analyzed here uses a control law by computed 
torque, consisting in the application of a torque in order to compensate the centrifugal, 
Coriolis, gravity and friction effects, as shown in equation (6).  

 ( )( ) ( ) ( ) ( )ˆ ˆˆ ˆ= q q q q qd v e p eτ M q + K q +K q +C , +G +F     (6) 

where: 
M̂ :  Estimation of inertia matrix (n×n dimension). 
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Ĉ  : Estimation of centrifugal and Coriolis forces vector (n×1dimension). 
Ĝ  : Estimation of gravity force vector (n×1dimension). 
F̂  : Estimation of friction forces vector (n×1dimension). 
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Kv : Diagonal definite positive matrix (n×n dimension). 
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 (8) 

Kp : Diagonal definite positive matrix (n×n dimension).  
dq  : Desired joint acceleration vector (n×1 dimension). 

 e dq = q - q    (9) 

eq  : Joint speed error vector (n×1dimension). 
If estimation errors are little, joint errors near to a linear equation, as shown in equation (10). 

 0+ + ≈e v e p eq K q K q   (10) 

7. Fault tolerant controller: Adaptive inertia 
The fault tolerant control under examination is based on an adaptive control law, namely: 
adaptive inertia (Lewis, Dawson, & Abdallah, 2004), (Siciliano & Khatib, 2008), for what it is 
necessary to consider the manipulator dynamic model in the form expressed in equation 
(11). The term corresponding to centrifugal and Coriolis forces is expressed through a 
matrix Vm. 

 ( ) ( ) ( ) ( )= ,q q q q qmτ M q+V q+G +F    (11) 

In this case, we define an auxiliary error signal r and its derivativeܚሶ, as shown in equations 
(12) and (13), respectively: 

 = +e er Λq q  (12) 

 = +e er Λq q    (13) 

where: 
Λ  : Diagonal definite positive matrix (n×n dimension). 
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When replacing equations (3), (9), (12) and (13) into expression (11), we obtain: 

 ( )( ) ( )( ) ( ) ( ) ( ) ( )= q q q q q q q qd e m d e mτ M q +Λq +V , q +Λq +G +F - M r - V , r       (15) 

And making the following matching: 

 ( ) ( )( ) ( )( ) ( ) ( )= q q q qd e m d eY φ M q q +Λq +V , q +Λq +G +F     (16) 

where: 

 ( )

11 12 1

21 22 2
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 (17) 

( )Y  : Regression matrix (n×n dimension). 
φ : Parameter vector (n×1 dimension). 
With these relationships, expression (15) can be rewritten in the following way: 

 ( ) ( ) ( ) ( ) = q q qmτ Y φ - M r - V , r Y    (18) 

And the control torque is expressed through equation (19): 

 ( ) ˆ= vτ Y φ+K r  (19) 

where: 
φ̂ : Parameter estimation vector (n×1dimension). 
Kv: Diagonal definite positive matrix (n×n dimension). 
The adaptive control updating rule can be expressed by: 

 ( )ˆ T= − = ⋅φ φ ΓY r   (20) 

where: 
Γ:  Diagonal definite positive matrix (n×n dimension). 

8. Fault tolerant control simulator  
The three above mentioned control laws, along with the dynamic model of the redundant 
SCARA-type manipulator considering the first three degrees of freedom (Addendum A), are 
run under the simulation structure shown in figure 5, where we can see the hybrid nature of 
this kind of controller.  
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In Addendum B we show the set of parameter values employed in the manipulator dynamic 
model, and the gains considered for each kind of fault tolerant controller.    
 

 
Fig. 5. Block diagram of the structure of the fault tolerant controller used to test the above 
mentioned control laws 

9. Results  
After establishing the control laws being utilized, we determine the trajectory to be entered 
in the control system to carry out the corresponding performance tests of fault tolerant 
control algorithms. This trajectory is displayed in figure 6.  
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Fig. 6. Cartesian test trajectory 

Figures 7 and 8a show the curves corresponding to the differences between desired and real 
joint trajectories, and between desired and real Cartesian trajectories, respectively, all this 
under hyperbolic sine-cosine fault tolerant control when there is a failure in actuator 2 at 0.5 
sec from initiating movement.  
Where: 
eq1 : Joint trajectory error, joint 1. 
eq2 : Joint trajectory error, joint 2. 
eq3 : Joint trajectory error, joint 3. 
ex : Cartesian trajectory error, x axis. 
ey : Cartesian trajectory error, y axis. 
 

 
Fig. 7. Joint trajectory error with fault control using hyperbolic sine-cosine controller  
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Fig. 8a. Cartesian trajectory error with fault control using hyperbolic sine-cosine controller  

The performance of fault tolerant controller by computed torque is shown in figures 8b and 
9, displaying the curves for joint and Cartesian errors under the same failure conditions than 
the previous case. 
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Fig. 8b. Joint trajectory error with fault control using computed torque controller  
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Fig. 9. Cartesian trajectory error with fault control using computed torque controller  

In figures 10 and 11 we can see charts displaying respectively joint and Cartesian errors 
corresponding to the performance of fault tolerant controller by adaptive inertia, under the 
same failure conditions imposed to the previous controllers.  
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Fig. 10. Joint trajectory error with fault control using adaptive inertia controller 
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Fig. 11. Cartesian trajectory error with fault control using adaptive inertia controller  

 
 

 
 

Fig. 12. Performance index corresponding to joint trajectory 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

Jo
in

t e
rr

or
 r

m
s 

 (
 °

 ) 

Controller type 

Joint performance index  

eq1
eq2
eq3

   sinh-cosh                             calculated torque 
                                                            adaptive inertia 



 
Robotic Systems – Applications, Control and Programming 

 

566 

 

 
Fig. 13. Performance index corresponding to Cartesian trajectory 

Finally, in figures 12 and 13 it is shown a performance summarization of the analyzed fault 
tolerant controllers in terms of joint and Cartesian mean square root errors, accordingly to 
equation (21) 

 2

1

1 n

i
i

rms e
n =

=   (21) 

Where ei represents articular trajectory as well as Cartesian errors. 

10. Conclusions 
In this work we presented a performance evaluation of three fault tolerant controllers based 
on classic control techniques: hyperbolic sine-cosine, calculated torque and adaptive inertia. 
Those fault tolerant controllers were applied on the first three degrees of freedom of a 
redundant SCARA-type robotic manipulator. The different system stages were 
implemented in a simulator developed using MatLab/Simulink software, allowing to 
represent the robotic manipulator behavior following a desired trajectory, when blocking of 
one of its actuators occurs.  In this way we obtained the corresponding simulation curves. 
From the obtained results, we observed that the adaptive inertia fault tolerant controller 
have errors with less severe maximums than the other controllers, resulting in more 
homogeneous manipulator movements. We noticed that greater errors were produced with 
the calculated torque fault tolerant controller, both for maximums and rms. Consequently, 
the best performance is obtained when using the adaptive inertia controller, as shown in 
figures 14 and 15. It is also remarkable that the hyperbolic sine-cosine fault tolerant 
controller have a lesser implementation complexity, since it does not require the second 
derivative of joint position. This can be a decisive factor in the case of not having high 
performance processors.  
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11. Further developments 
Thanks to the development of this work, from the implemented simulation tools and the 
obtained results, fault tolerant control systems essays are being currently carried out, in 
order to apply them to actual robotic systems, with and without link redundancy, like the 
SCARA-type robots shown in figure 14 and figure 15, respectively. 
 

 
Fig. 14. SCARA-type redundant robot, DIE-USACH 

 

 
Fig. 15. SCARA-type robot, DIE-USACH 

12. Addendum A: Manipulator's dynamic model 
The manipulator's dynamic model is given by equations a1 to a14.  
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 [ ]0 0 0 T=G  (a13) 
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where: 
m1 : First link mass. 
m2 : Second link mass.
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m3 : Third link mass.
l1 : First link length.
l2 : Second link length.
l3 : Third link length.
lc1 : Length from 1st link origin to its centroid. 
lc2 : Length from 2nd link origin to its centroid.  
lc3 : Length from 3rd link origin to its centroid.  
I1zz : 1st link inertial momentum with respect to the first z axis of its joint.  
I2zz : 2nd link inertial momentum with respect to the first z axis of its joint.  
I3zz : 3rd link inertial momentum with respect to the first z axis of its joint.  

13. Addendum B: Considered parameter values 
Parameter values considered for the manipulator as well as controller gains values are 
shown in tables B1 and B2, respectively.  
 

Link 1 Link 2 Link 3 Units 

l1 = 0.2 l2 = 0.2 l3 = 0.2 [ ]m  

lc1 = 0.0229 lc2 = 0.0229 lc3 = 0.0983 [ ]m  

m1 = 2.0458 m2 = 2.0458 m3 = 6.5225 [ ]kg  

I1zz = 0.0116 I2zz = 0.0116 I3zz = 0.1213  ⋅ 
2kg m

Fv1 = 0.025 Fv2 = 0.025 Fv3 = 0.025 
⋅ ⋅ 

  

N m s
rad

Feca1 = 0.05 Feca2 = 0.05 Feca3 = 0.05 [ ]⋅N m  

Fecb1 = -0.05 Fecb2 = -0.05 Fecb3 = -0.05 [ ]⋅N m  

Table B1. Considered parameters for the manipulator 

 

 Controller Type 

Constants Hyperbolic 
Sine-Cosine 

Computed 
Torque 

Adaptive 
Inertia 

Kp1, Kp2, Kp3 
400, 300, 

200 
800, 800, 

800 
__ 

Kv1, Kv2, Kv3 3, 2, 1 140, 140, 
140 20, 20, 20 

λ1, λ2, λ3 __ __ 8, 8, 8 

γ1, γ2, γ3 __ __ 0.1, 0.1, 0.1 

Table B2. Controller gains 
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1. Introduction

Programming robotic systems is not an easy task, even developing software for simple
systems may be difficult, or at least cumbersome and error prone. Those systems are usually
multi-threaded and multi-process, so synchronization problems associated with processes
and threads must be faced. In addition distributed systems in network environments are
also very common, and coordination between processes and threads in different machines
increases programming complexity, specially if network environments are not completely
reliable like a wireless network. Hardware abstraction is another question to take into account,
uncommon hardware for an ordinary computer user is found in robotics systems, sensors
and actuators with APIs (Applications Programming Interfaces) in occasions not very stable
from version to version, and many times not well supported on the most common operating
systems. Besides, it is not rare that even sensors or actuators with the same functionality
(i.e. range sensors, cameras, etc.) are endowed with APIs with very different semantics.
Moreover, many robotic systems must operate in hard real time conditions in order to warrant
system and operation integrity, so it is necessary that the software behaves obeying strictly
specific response times, deadlines and high frequencies of operation. Software integration
and portability are also important problems in those systems, since many times only in one
of them we may find a variety of machines, operating systems, drivers and libraries which
we have to cope to. Last but not least, we want robotic systems to behave “autonomous” and
“intelligently”, and to carry out complex tasks like mapping a building, navigating safely in a
cluttered, dynamic and crowded environment or driving a car safely in a motorway, to name
a few.
Despite there is no established standard methodology or solution to the situation described in
the previous paragraph, in the last ten years many approaches have blossomed in the robotics
community in order to tackle with it. In fact, many software engineering techniques and
experiences coming from other areas of computer science are being applied to the specific area
of robotic control software. A review of the state of the art of software engineering applied
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by the Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI), Gobierno de
Canarias, Spain, and by the European Union’s FEDER funds.
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specifically to robotics can be found in [Brugali (2007)]. Many of the approaches that have
come up in these last years, albeit different, are either based completely, or follow or share
to a certain extend some of the fundamentals ideas of the CBSE (Component Based Software
Engineering) [George T. Heineman & William T. Councill (2001)] paradigm as a principle of
design for robotic software.
Some of the significant approaches freely available within the robotics community based on
the CBSE paradigm are GenoM/BIP [Mallet et al. (2010)][Basu et al. (2006)][Bensalem et al.
(2009)], Smartsoft [Schlegel et al. (2009)], OROCOS [The Orocos Project (2011)], project ORCA
[Brooks et al. (2005)], OpenRTM-aist [Ando et al. (2008)] and Willow Garage’s ROS project
[ROS: Robot Operating System (2011)]. All these approaches, in general incompatible among
them, use many similar abstractions in order to build robotic software out of a set of software
components. Each of these approaches usually solve or deal with many of the mentioned
problems faced when programming robotic systems (hard real-time operation, distributed,
multithread and multiprocess programming, hardware abstractions, portability, etc.), and
using any of them implies to get used to its own methodology, abstractions and software
tools to develop robotic software. Our group have also developed an approach to tackle
with the problem of programming robotic systems. It is some years already that we have
been using a CBSE C++ distributed framework designed and developed in our laboratory,
termed CoolBOT [Antonio C. Domínguez-Brito et al. (2007)], which is also aimed at easing
software development for robotic systems. Along several years of use acquiring experience
programming mobile robotic systems, we have ended up integrating in CoolBOT some new
developments in order to improve their use and operation. Those new improvements have
been focused mainly in two main questions, namely: transparent distributed computation,
and “deeper” interface decoupling; in next sections they will be presented more deeply. In
order to do so this paper is organized as follows. In section 2 we will introduce briefly an
overview about CoolBOT. Next, we will pass to focus on each one of the mentioned topics
respectively, in sections 4 and 5. The last section is devoted to presenting the conclusions of
this work.

2. CoolBOT. Overview

CoolBOT [Antonio C. Domínguez-Brito et al. (2007)] is a C++ component oriented
programming framework aimed to robotics, developed at our laboratory some years ago
[Domínguez-Brito et al. (2004)], which is normally used to develop the control software for
the mobile robots we have available at our institution. It is a programming framework that
follows the CBSE paradigm for software development. The key concept in the CBSE paradigm
is the concept of software component which is a unit of integration, composition and software
reuse [Brugali & Scandurra (2009)][Brugali & Shakhimardanov (2010)]. Complex systems
might be composed of several ready-to-use components. Ideally, interconnecting available
components out of a repository of components previously developed, we can program a
complete system. Thus, it should be only necessary a graphical interface or alike, to set up
a system. Hence, being CoolBOT CBSE oriented, it also makes use of this central concept to
build software systems.
Fig. 1 gives a global view of a typical system developed using CoolBOT. As we can observe,
there are five CoolBOT components and two CoolBOT views, forming all them four CoolBOT
integrations involving three different machines sharing a computer network. In addition,
hosted by one of the machines, there is a non CoolBOT application which uses a CoolBOT
probe to interact with one of the components of the system. Thus, in CoolBOT we can find
three types of software components: components, views and probes. All these three types

572 Robotic Systems – Applications, Control and Programming



An Approach to Distributed Component-Based Software for Robotics 3

integration

machine

component

component

component

integration

view

integration

component

component

integration

view

probe

other

machine

non coolbot
application

machine

network

TCP/IP
connections

port
connection

input
port

output
port

Fig. 1. Diagram of the elements and interconnections of a system designed with CoolBOT.

are software components in the whole sense, since we can compose them indistinctly and
arbitrarily without changing their implementation to built up a given system. The main
difference among them is that views and probes are “light-weight” software components in
relation to CoolBOT components. Views are software components which implement graphical
control and monitoring interfaces for CoolBOT systems, which are completely decoupled
from them. On the other side, probes mainly allow to implement decoupled interfaces for
interoperation of CoolBOT systems with non CoolBOT applications, as depicted in the figure.
Both will be explained in more detail in section 5.
In CoolBOT, systems are made of CoolBOT components (components for short). A component
is an active entity, in the sense that it has its own unit of execution. It also presents a clear
separation between its external interface and its internals. Components intercommunicate
among them only through their external interfaces which are formed by input and output ports.
When connected, they form port connections, as depicted on Fig. 1. Through them, components
interchange discrete units of information termed port packets. Views and probes have a similar
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external interface of input and output ports, hence, they can also be interconnected among
them and with components using port connections. The functionality of a whole system
comes up from the interaction through port connections among all the components integrating
the system, including views and probes.

2.1 Port connections, ports and port packets
CoolBOT components interact among them using port connections. A port connection is defined
by an output port and an input port. Port connections are established dynamically in
runtime, and they are unidirectional (from output to input port), and follow a publish/subscribe
paradigm of communication [Brugali & Shakhimardanov (2010)]. In that way, we can have
multiple subscribers for the same output port, as shown in Fig. 2, and multiple publishers
feeding the same input port, illustrated in Fig. 3. Note that input and output ports are
decoupled in the sense that component publishers do not know necessarily who is receiving
what they are publishing through their output ports. The contrary is also true, component
subscribers do not necessarily know who is publishing the data which are reaching them
through their input ports. Data are sent through port connections in discrete units called port
packets.

component

component

component

component
output port
input port
port
connection

Fig. 2. Port connections: one publisher,
many subscribers.

component

component

component

component
output port
input port
port
connection

Fig. 3. Port connections: many publishers,
one subscriber.

To establish a port connection the ports involved should be compatible, i.e., they must have
compatible types, and should transport the same types of port packets. In particular, when
defining an output or input port we have to specify three aspects for them, namely:

1. An identifier: This is an identifier or name for the port. It has to be unique at component
(or view or probe) scope. The port identifier is what we use to refer to a specific port when
establishing/de-establishing port connections.

2. A port type: This is the type of the port. There are several typologies available for input
and output ports, and depending on how we combine them, we can establish a different
model of communication for each connection. The typologies of the input and output
ports involved in a connection determine the pattern and semantics of the communication
through it, following the same philosophy that the communications patterns of Smartsoft
[Schlegel et al. (2009)], and the interfaces for component communication available in
OROCOS [The Orocos Project (2011)]. On Tables 1 and 2 we can see all the types of
connections we have available in CoolBOT right now, we will elaborate on this later.

3. Port packet types: Those are the types of port packets accepted by the output or input
port. Most input and output port types only accept one type of port packet through them,
although we have also some of them that accept a set of different port packet types.

574 Robotic Systems – Applications, Control and Programming



An Approach to Distributed Component-Based Software for Robotics 5

Bear in mind that in CoolBOT port connections are established dynamically, but the definition
of each input and output port for each software component, whether a component, a view
or a probe, is static. Thus, for a given component we define statically its external interface
of input and output ports, each one with its identifier, port type and accepted port packet
types. In opposition, port connections are established at runtime. Only a compatible pair of
output and input ports can form a port connection, and we say that they are compatible when
two conditions fulfill: first, they have compatible port types (the compatible combinations are
shown in Tables 1 and 2); and second, the port packets the pair of port accepts also match.
As commented, Tables 1 and 2 show all the possible types and combinations of output and
input ports available in CoolBOT. As we can observe we have two groups of types of port
connections depending on the types of the output and input ports we connect, namely:

• Active Publisher/Passive Subscriber (AP/PS) connections. In this kind of connections
we say the publisher is the active part of the communication through the connection,
since it is the publisher (the sender) who invest more computational resources in the
communication. More specifically, in these connections, there is a buffer (a cache, a
memory) in the input port where incoming port packets get stored, when they get to the
subscriber (the receiver) end. We say the publisher is active, because the copy of port
packets in the input port buffers is made by the publisher’s threads of execution. Those
memories get signaled for the subscribers to access them at their own pace. Evidently, if
the output port has several subscribers, the publisher has to make a copy for all of them,
so the computational cost for copies increases and this cost is afforded by the publisher.
Table 1 enumerates all the available types of port connections following this model of
communication.

• Passive Publisher/Active Subscriber (PP/AS) connections. Those connections follow a
model of communication where the subscriber plays the active role in the communication,
in the sense that in opposition to the previous ones, the subscriber is the part of the
communication which invests more computational resources. In this type of connections,
we have buffers at both ends of the port connection. When the publisher sends (publishes)
a port packet through the connection, it gets stores in a buffer in the output port, and the
input port gets signaled, in order to notify the subscriber that there are new data on the
connection. Note that the publisher does not copy the port packet on the subscriber’s input
port buffer. It is the subscriber the one who copies the port packet on its input port buffer
when it access its input port in order to get fresh port packets, stored at the other end of
the port connection. In this way, when we have several subscribers and one publisher the
computational cost of copies is afforded by each one of the subscribers separately.

Apart from the computational cost of using AP/PS connections versus PP/AS connections,
there is another important aspect to take into account when using any of them. PP/AS
connections are persistent in the sense that, as explained in Table 2 the last data (port packet)
sent by the publisher through the output port is stored there, in the output port buffer, so
subscribers which are connected to this output port once the last port packet was sent, can
access those data posteriorly. On the contrary AP/PS connections are not persistent, because
port packets are stored on the subscriber end, so packets, once they have been sent, are not
available for new subscribers, because port packets only gets to those subscribers who are
connected to the output port right at the moment of sending them.
Other important aspect to take into account with respect to port connections is that they follow
an asynchronous model of communications. Note that they are unidirectional, port packets
go from the publisher’s output port to the subscriber’s input port, the publisher sends port
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Active Publisher/Passive Subscriber (AP/PS)
Output Port Input Port Port Connection Type

tick tick tick connections: those connections do not transport any port packet, they
only communicate the occurrence of an event.

generic last last connections: the input port stores always the last port packet sent through
the connection by the publisher (publishers). Only one type of port packet is
accepted through the port connection.

fifo fifo connections: at the input port there is a circular fifo with a specific length.
Port packets sent through the port connection by publishers, get stored there.
Only one type of port packet is accepted through the port connection.

ufifo unbounded fifo connections: at the input port there is a fifo with a specific
length. Port packets sent through the port connection by publishers, get
stored there. When the fifo is full and port packets keep coming the fifo grows
in order to store them. Only one type of port packet is accepted through the
port connection.

multipacket multipacket multipacket connections: those connections accept a set of port packet types.
There is a different buffer for each accepted port packet type, the last port
packet of each type which is sent through the connection by publishers gets
stored on them.

lazymultipacket lazymultipacket connections: those connections accept a set of port packet
types. At the input port there is a different buffer for each accepted port
packet type, the last port packet of each type which is sent through the
connection by publishers gets stored on them. On the output port, port
packets get stored in a queue of port packets to send, they are really sent to
the other end when a flush operation is applied by the publisher on the output
port.

Table 1. Available port connections types: active publisher/passive subscriber (AP/PS)
connections.

Passive Publisher/Active Subscriber (PP/AS)
Output Port Input Port Port Connection Type

poster poster poster connections: there is a buffer at the output port where the last packet
send by the publisher gets stored. There is another buffer at the input port
which is “synchronized” with the output port buffer when the subscriber
accesses its input port in order to get the last port packet sent through the
connection. Therefore, the port packet gets copied to the input port only when
a new port packet has been stored at the output port end. Only one type of
port packet is accepted through the port connection.

Table 2. Available port connections types: passive publisher/ active subscriber (PP/AS)
connections.

packets and keeps doing something different, the subscriber gets packets at its own pace and
not necessarily at the right moment they get to its input ports.
As to port packets, when defining an output or input port, we have to specify which port
packet type or types (depending on the port type being defined), the port will accept. In
general, port packet types are defined by the user, as we will see in section 3, we may also use
port packets types provided by CoolBOT itself (the available ones are shown in Fig. 3), port
packet types previously developed, or third party port packet types.
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Port packet type Description
PacketUChar Transports a C++ unsigned char.
PacketInt Transports a C++ int.
PacketLong Transports a C++ long.

PacketDouble Transports a C++ double.
PacketTime Transports a CoolBOT Time value (a time-stamp).

PacketCoordinates2D Transports a CoolBOT Coordinates2D value (stores a 2D point).
PacketFrame2D Transports a CoolBOT Frame2D value (stores a 2D frame).

PacketCoordinates3D Transports a CoolBOT Coordinates3D value (stores a 3D point).
PacketFrame3D Transports a CoolBOT Frame3D value (stores a 3D frame).

Table 3. Available port packet types provided by CoolBOT itself.

2.2 CoolBOT components
CoolBOT components are active objects [Ellis & Gibbs (1989)], as [Brugali & Shakhimardanov
(2010)] states: “a component is a computation unit that encapsulates data structures and
operations to manipulate them”. Moreover, in CoolBOT, components can be seen as
“data-flow machines”, since they process data when they dispose of it at their input ports.
Otherwise, they stay idle, waiting for incoming port packets. On the other side, components
send processed data in form of port packets through their output ports. All in all, the model
of computation of CoolBOT systems follows the Flow Based Programming (FBP) paradigm
according to [J. Paul Morrison (2010)], so systems can be built as networks of components
interconnected by means of port connections. More formally, CoolBOT components are
modeled as port automata [Steenstrup et al. (1983)][Stewart et al. (1997)]. Fig. 4 provides a
view of the structure of a component in CoolBOT. There is a clear separation between its
external interface and its internal structure. Externally, a component can only communicate
with other components (and views and probes) through its input and output ports. Thence, a
component’s external interface comprises all its input and output ports, its types, and the port
packets it accepts through them. As we can see on the figure there are two special ports in any
component: the control port and the monitoring port, the rest of the ports are user defined. The
control port allows to modify component’s controllable variables. Through the monitoring port
components publish their observable variables. Both ports allows an external supervisor (i.e.
another component, a view or a probe) to observe and modify the execution and configuration
of a given component.
Internally a component is organized as an automaton, as illustrated in Fig. 4. All components
follow the same automaton structure. The part of this automaton which is common to all
components is called the default automaton, and comprises several states, namely: starting,
ready, suspended, end, and four states for component exception handling. This structure allows
for an external supervisor to control the execution of any component in a system using
an standard protocol, likewise in an operating system where threads and processes transit
among different states during their lifetime. To complete the automaton of a component
the user defines the user automaton which is specific for each component and implements its
functionality. This is represented in Fig. 4 with a dotted circle as the meta-state running.
Transitions among component’s automaton states are triggered by incoming port packets
through any of its input ports, and also by internal events (timers, empty transition, a control
variable that has been modified by an external supervisor, entering or exiting a state, etc.). The
user can associate C++ callbacks to transitions, much like the codels for GenoM [Mallet et al.
(2010)] modules.
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Fig. 4. CoolBOT. Component structure.

A key design principle for CoolBOT components is to take advantage of multithreaded and
multicore capacities of mainstream operating systems, and the infrastructure they provide for
multithreaded programming. Another key principle of design for components was to separate
functional logic from thread synchronization logic. The user should be only worried about the
functional logic, synchronization issues should be completely transparent to the developer.
CoolBOT should be responsible for them behind the scenes. As active objects, CoolBOT
components can organize its execution using multiple threads of execution as depicted on
Fig. 4. Those threads are mapped on the underlying operating system (see Fig. 5). Thus,
when developing a component the user assigns disjointly threads to automaton states, and to
input ports and internal events provoking transitions. Those transitions, i.e. their associated
callbacks, will be executed by the specific threads being assigned. The synchronization
among them is guaranteed by the underlying framework infrastructure. All components are
endowed at least with one thread of execution; the rest, if any, are user defined.
As depicted in Fig. 1, CoolBOT provides means for distributed computation. A given
system can be mapped on a set formed by different machines sharing a computer network.
Port connections among components, views and probes are transparently multiplexed using
TCP/IP connections (see section 4). Furthermore, each machine can host one or several
CoolBOT integrations. A CoolBOT integration is an application (a process) which integrates
instances of CoolBOT components, views and probes. Integrations can be instantiated in any
machine, and are user defined using a description language as we will see in next section.

3. CoolBOT development tools

CoolBOT provides several tools for helping developers. Fig. 6 shows the main ones,
namely: coolbot-ske and coolbot-c. The former one, coolbot-ske, is used to create a
directory structure for development of CoolBOT components, probes, port packets, views and
integrations. It also generates CMake [Kitware, Inc. (2010)] template files for compiling them,
description language template files for coolbot-c, and test programs for components. The
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latter tool, the CoolBOT compiler coolbot-c, generates C++ skeletons for components, port
packets, views and integrations, and for each component it also generates its corresponding
probe. All, the probe and the skeletons are C++ classes, and CoolBOT uses a description
language as source code to generate those C++ classes. Except for probes, which are complete
functional C++ classes, coolbot-c generates incomplete C++ classes which constitute the
mentioned C++ skeletons. They are incomplete in the sense that they lack functionality, the
user is responsible for completing them. Once completed, and using the CMake templates
provided by coolbot-ske, they can be compiled. Components, probes, port packets, and
views compile yielding dynamic libraries, integrations compile yielding executable programs.
Moreover, the coolbot-c compiler preserves information when recompiling description files
which have been modified, in such a way that, all C++ code introduced by the user into the
skeletons is preserved.

4. Transparent distributed computation

Transparent distributed computation is the first development we have integrated on CoolBOT
in order to improve its use and operation. The main idea was to make network
communications as transparent as possible to developers (and components). We wanted
CoolBOT to be responsible for them on behalf of components. Thus, at system level, to connect
two component instances instantiated in different CoolBOT integrations should be as easy as
connecting them when instantiated in the same integration. In particular, we follow three
main principles related to transparent distributed computation facilities: transparent network
inter component communications, network decoupling of component’s functional logic, and
incremental design.
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Fig. 6. CoolBOT’s software development process.

4.1 Transparent network inter component communications
In order to make network communications transparent to components, we have developed a
protocol termed Distributed CoolBOT Component Communication Protocol (DC3P) to multiplex
port connections over TCP connections established among the components involved. In the
current version of CoolBOT, only the TCP protocol is supported for network connections. The
integration of the UDP protocol is under development, and it is expected for next CoolBOT
version. DC3P has been implemented using the TCP/IP socket wrappers and the marshalling
facilities provided by the ACE library [Douglas C. Schmidt (2010)], illustrated in Fig. 5. The
protocol consists of the following packets:

• Port Type Info (request & response): For asking type information about input and output
ports through network connections. This allows port connection compatibility verification
when establishing a port connection through the network.

• Connect (request & response): For establishing a port connection over TCP/IP.

• Disconnect (request & response): To disconnect a previous established port connection.

• Data Sending: Once a port connection is established over TCP/IP, port packets are sent
through it using this DC3P packet.

• Remote Connect (request & response): For establishing port connections between two
remote component instances. Permits to connect component instances remotely.

• Remote Disconnect (request & response): To disconnect port connections previously
established between two remote component instances.

• Echo Request & Response: Those DC3P packets are useful to verify that the other end in a
network communication is active and responding.

All DC3P packets and port packets sent through port connections are marshalled and
unmarshalled in order to be correctly sent through the network. We have used the
facilities ACE provides for marshalling/demarshalling based on the OMG Common Data
Representation (CDR) [Object Management Group (2002b)]. In general, port packets are
user defined. In order to make their marshalling/demarshalling as easy and transparent
as possible for developers, the description language accepted by the coolbot-c compiler
includes sentences for describing port packets (as we can observe in Fig. 6), much like CORBA
IDL [Object Management Group (2002a)]. The compiler generates a C++ skeleton class for
each port packet where the code for marshalling/demarshalling is part of the skeleton’s code
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generated automatically. In addition, we have endowed also CoolBOT with a rich set of C++
templates and classes to support marshalling and demarshalling of port packets (or any other
arbitrary C++ class).

4.2 Network decoupling of component’s functional logic
Another important aspect for network communication transparency is the decoupling of
network communication logic from the functional logic of the component. Fig. 4 illustrates
how this decoupling has been put into practice. Each component is endowed with a
pair of network threads, and output network thread, and an input network thread, which are
responsible for network communications using DC3P. CoolBOT guarantees transparently
thread synchronization between them and the functional threads of the component. The
network threads are mainly idle, waiting to have port packets to send through open network
port connections, or to receive incoming port packets that should be redirected to the
corresponding component’s input ports. At instantiation time, it is possible to deactivate
the network support for a component instance (and also for views and probes instances). In
this manner, the component is not reachable from outside the integration where it has been
instantiated, and evidently network threads and the resources they have associated are not
allocated.

4.3 Incremental design
In future versions of CoolBOT, it is very possible that the set of DC3P protocol packets grow
with new ones. In order to allow an easy integration of new DC3P packets in CoolBOT,
we have applied the composite and prototype patterns [Gamma et al. (1995)] to their design.
Those design patterns, jointly with the C++ templates and classes to support marshalling and
demarshalling provide a systematic and easy manner of integrating new DC3P packets in
future versions of the framework.

5. Deeper interface decoupling: Views and probes

Inspired by one of the “good practices” proposed by the authors of Carnegie Mellon’s
Navigation Toolkit CARMEN [Montemerlo et al. (2003)]: “one important design principle
of CARMEN is the separation of robot control from graphical displays”, we have introduced
in CoolBOT the concept of view as an integrable, composite and reusable graphical interface
available for CoolBOT system integrators and developers. Thus, CoolBOT views are graphical
interfaces which, as software components, may be interconnected with any other component,
view or probe in a CoolBOT system. In Fig. 7 is depicted the structure of a view in
CoolBOT. As shown, CoolBOT views are also endowed with an external interface of input
and output ports. Through this interface the view can communicate with other components,
views and probes present in a given system. Identically to components, views are provided
with the same network thread support which allows transparent and decoupled network
communications through port connections. Internally, a view is a graphical interface, in fact,
the current views already developed and operational which are available in CoolBOT have
been implemented using the GTK graphical library [The GTK+ Project (2010)]. As shown in
Fig. 6, C++ skeletons for views are generated using the coolbot-c compiler. The part which
should be completed by the user is precisely the graphical implementation, which can be
done using directly the GTK library or a GUI graphical programming software for designing
window-based interfaces like Glade [Glade - A User Interface Designer (2010)].
As depicted in Fig. 7 a CoolBOT probe is provided with an external interface of input and
output ports, and likewise component and views, as software components, this allows them to
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Fig. 7. CoolBOT. View and probe structures.

be interconnected with other components, views or probes. Equally they implement the same
network decoupled support of threads for transparent network communications. In CoolBOT,
probes are devised as interfaces for interoperability with non CoolBOT software, as illustrated
graphically in Fig. 1. A complete functional C++ class implementing a probe is generated
when a component is compiled by coolbot-c. The probe implements the complementary
external interface of their corresponding component. Those probes generated automatically
can be seen as automatic refactorings of external component interfaces in order to support
interoperability of CoolBOT components with non CoolBOT software. As mentioned in
[Makarenko et al. (2007)] this is an important factor in order to facilitate integration of different
development robotic software approaches.

6. A real integration

In its current operating version, CoolBOT has been mainly used to control mobile robotic
systems with the platforms we have available at our laboratory: Pioneer mobile robots models
3-DX, and P3-AT from Adept Mobile Robots [Adept Mobile Robots (2011)] (former Activ Media
Robotics).
In this section we will show next a real robotic system using one of our Pioneer 3-DX
mobile robots, in order to give a glimpse of a real system controlled using CoolBOT. The
system is illustrated in Fig. 8. The example shows a secure navigation system for an indoor
mobile robot. This is a real application we have usually in operation on the robots we have
at the laboratory. The system implements a secure navigation system based on the ND+
algorithm for obstacle avoidance [Minguez et al. (2004)]. It has been implemented attending
to [Montesano et al. (2006)]. In the figure, input ports, output ports, and port connections,
have been reduced for the sake of clarification. Some of them represent several connections
and ports in the real system.
The system is organized using two CoolBOT integrations, one only formed by CoolBOT
component instances, and the other one containing CoolBOT view instances. The former
one is really the integration which implements the navigation system. As we can observe,
it consists of five component instances, namely: PlayerRobot (this is a wrapper component
for hardware abstraction using the Player/Stage project framework [Vaughan et al. (2003)]),
MbICP (this is a component which implements the MbICP scan matching algorithm based on
laser range sensor data [Minguez et al. (2006)]), GridMap (this component maintains a grid
map of the surroundings of the robot built using robot range laser scans, it also generates
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Fig. 8. CoolBOT. Secure Navigation System.

periodically a 360o virtual scan for the ND+ algorithm), NDNavigation (implements the ND+
algorithm) and ShortTermPlanner (a planner which uses the grid map for planning paths in
the robot surroundings using a modification of the numerical navigation function NF2 found
in [Jean-Claude Latombe (1991)]). On other machine another integration is shown hosting four
view instances through which we can control and monitor the system remotely. In addition,
in another machine, there is a web browser hosting a Java applet using a CoolBOT probe to
connect to some of the components of the system.
In order to clarify how the integration of Fig. 8 has been built, and also to clarify the process
of development of each of its components, in next paragraphs we will have a look at the
description files used to generate some of them, including the whole integration shown in the
figure. Thus, in Fig. 9 we can see the description file accepted by coolbot-c of one of the
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/*
* File: player-robot.coolbot

* Description: description file for PlayerRobot component

* Date: 02 June 2010

* Generated by coolbot-ske

*/

component PlayerRobot
{

header
{

author "Antonio Carlos Domínguez Brito <adominguez@iusiani.ulpgc.es>";
description "PlayerRobot component";
institution "IUSIANI - Universidad de Las Palmas de Gran Canaria";
version "0.1"

};

constants
{

LASER_MAX_RANGE="LaserPacket::LASER_MAX_RANGE";
SONAR_MAX_RANGE=5000; // millimeters

private FIFO_LENGTH=5;
private ROBOT_DATA_INCOMING_FREQUENCY= 10; // Hz
private LASER_MIN_ANGLE= -90; // degrees

...
};

// input ports
input port Commands type fifo port packet CommandPacket length FIFO_LENGTH;
input port NavigationCommands type fifo port packet NDNavigation::CommandPacket length FIFO_LENGTH;

//output ports
output port RobotConfig type poster port packet ConfigPacket;
output port Odometry type generic port packet OdometryPacket network buffer FIFO_LENGTH;
output port OdometryReset type generic port packet PacketTime;
output port BumpersGeometry type poster port packet "BumperGeometryPacket";
output port Bumpers type generic port packet BumperPacket;
output port SonarGeometry type poster port packet "SonarGeometryPacket";
output port SonarScan type generic port packet "SonarPacket";
output port LaserGeometry type poster port packet PacketFrame3D;
output port LaserScan type generic port packet LaserPacket;
output port Power type generic port packet PacketDouble;
output port CameraImage type poster port packet CameraImagePacket;
output port PTZJoints type generic port packet "PacketPTZJoints";

exception RobotConnection
{

description "Robot connection failed.";
};

exception NoPositionProxy
{

description "Position proxy not available in this robot.";
};

exception InternalPlayerException
{

description "A Player library exception has been thrown.";
};

entry state Main
{

transition on Commands,NavigationCommands,Timer;
};

};

Fig. 9. player-robot.coolbot-component: PlayerRobot’s description file.
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components of Fig. 8, file player-robot.coolbot-component, corresponding to component
PlayerRobot. As to views, in Fig. 10, we can see the description file for one of the view
instances of Fig. 8, concretely for the Map view in the figure, which is an instance of view
GridGtk. As we can observe, the description file specifies mainly the view’s external interface
formed by input and output ports.

/*
* File: grid-gtk.coolbot-view

* Description: description file for GridGtk view

* Date: 29 April 2011

* Generated by coolbot-ske

*/

view GridGtk
{

header
{

author "Antonio Carlos Domínguez-Brito <adominguez@iusiani.ulpgc.es>";
description "GridGtk View";
institution "IUSIANI - ULPGC (Spain)";
version "0.1"

};

constants
{

private DEFAULT_REFRESHING_PERIOD=500; // milliseconds
...

};

// input ports
input port ROBOT_CONFIG type poster port packet PlayerRobot::ConfigPacket;
input port GRID_MAP type poster port packet GridMap::GridMapPacket;
input port PLANNER_PATH type last port packet ShortTermPlanner::PlannerPathPacket;

// output ports
output port PLANNER_COMMANDS type generic port packet ShortTermPlanner::CommandPacket;
output port ND_COMMANDS type generic port packet NDNavigation::CommandPacket;

};

Fig. 10. grid-gtk.coolbot-view: GridGtk’s description file.

In Fig. 11 it is shown a snapshot of the view in runtime. Once developed CoolBOT views
are graphical components we can integrate in a window-based application like the one shown
in the figure. In particular, in the application we can see, views are plugged in as “pages”
of the GTK widget notepad (a container of “pages” with “tabs”) we can observe in the
figure. In fact, the GUI application shown integrates the four view instances of Fig. 8,
whose C++ skeleton has been generated using also coolbot-c from a description file (the
.coolbot-integration file in Fig. 6). In Fig. 12 we can see part of this file. Notice
that coolbot-c generates C++ skeletons for integrations where the static instantiation and
interconnection among components and views are generated automatically. If we want to
build a dynamic integration, in terms of dynamic instantiation of components and views,
and also in terms of dynamic interconnections among them establishing port connections,
we must complete the dynamic part of the skeleton generated by coolbot-c using the C++
runtime services provided by the framework (Fig. 5).
With respect to CoolBOT probes, as of now we have used them to interoperate with Java
applets inserted in a web browser, as shown in Fig. 8. More specifically we have used
SWIG [SWIG (2011)] in order to have access to the probe C++ classes in Java with the aim
of implementing several Java GUI interfaces in Java equivalent to some of the CoolBOT views
we have already developed. In Fig. 13 we can see a snapshot of the Java equivalent of a view
to represent the range sensor information of a mobile robot.
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Fig. 11. View GridGtk’s snapshot.
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/*
* File: mbicp-integration.coolbot-integration

* Description: description file for mbicp-integration integration.

* Date: 29 April 2011

* Generated by coolbot-ske

*/

integration mbicp_integration
{

header
{

author "Antonio Carlos Domínguez-Brito <adominguez@iusiani.ulpgc.es>";
description "MbICP’s views integration";
institution "IUSIANI - ULPGC (Spain)";
version "0.1"

};

machine addresses
{

local my_machine: "127.0.0.1";
the_other_machine: "...";

};

listening ports // TCP/IP ports
{

ROBOT_PORT: 1950;
MBICP_PORT: 1965;
NAVIGATION_MAP_PORT: 1970;
ND_PORT: 1980;
NAVIGATION_PLANNER_PORT: 1990;

ROBOT_VIEW_PORT: 1955;
MBICP_VIEW_PORT: 1985;
NAVIGATION_MAP_VIEW_PORT: 1975;
NAVIGATION_PLANNER_VIEW_PORT: 1995;

};

local instances
{

view robotView:PlayerRobotGtk listening on ROBOT_VIEW_PORT with description "Robot";
view mbicpView:MbICPGtk listening on MBICP_VIEW_PORT with description "MbICP";
view mapView:GridGtk listening on NAVIGATION_MAP_VIEW_PORT with description "Map";
view navigationPlannerView:PlannerGtk listening on NAVIGATION_PLANNER_VIEW_PORT with description "Planner";

};

remote instances on the_other_machine;
{

component robot:PlayerRobot listening on ROBOT_VIEW_PORT;
component mbicpInstance:MbICPCorrector listening on MBICP_PORT;
component navigationMap:GridMap listening on NAVIGATION_MAP_PORT;
component nd:NDNavigation listening on ND_PORT;
component navigationPlanner:ShortTermPlanner listening on NAVIGATION_PLANNER_VIEW_PORT;

};

port connections // static connections
{

connect robot:ODOMETRY to robotView:ODOMETRY;
connect robot:LASERGEOMETRY to robotView:LASER_GEOMETRY;
connect robot:LASERSCAN to robotView:LASER_SCAN;
connect robot:POWER to robotView:POWER;
connect robot:SONARGEOMETRY to robotView:SONAR_GEOMETRY;
connect robot:SONARSCAN to robotView:SONAR_SCAN;

connect robot:ODOMETRY to mbicpInstance:ODOMETRY;
connect robot:LASERGEOMETRY to mbicpInstance:LASER_GEOMETRY;
connect robot:LASERSCAN to mbicpInstance:LASER_SCAN;

connect robotView:COMMANDS to robot:COMMANDS;

...
};

};

Fig. 12. The integration containing Robot. MbICP, Map and Planner views of Fig. 8
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Fig. 13. Java view implemented using a probe to access range sensor information for a mobile
robot. A snapshot.
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7. Conclusions

In this document we have presented the last developments which have been integrated in
the last operating version of CoolBOT. The developments have been aimed mainly to two
questions: transparent distributed computation, and “deeper” interface decoupling. It is
our opinion that the use and operation of CoolBOT has improved considerably. CoolBOT
is an open source initiative supported by our laboratory which is freely available via
www.coolbotproject.org, including the secure navigation system depicted in Fig. 8.
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1. Introduction  
Trajectory planning for robots is a very important issue in those industrial activities which 
have been automated. The introduction of robots into industry seeks to upgrade not only 
the standards of quality but also productivity as the working time is increased and the 
useless or wasted time is reduced. Therefore, trajectory planning has an important role to 
play in achieving these objectives (the motion of robot arms will have an influence on the 
work done).  
Formally, the trajectory planning problem aims to find the force inputs (control (ݐ)ݑ) to 
move the actuators so that the robot follows a trajectory (ݐ)ݍ that enables it to go from the 
initial configuration to the final one while avoiding obstacles. This is also known as the 
complete motion planning problem compared with the path planning problem in which the 
temporal evolution of motion is neglected. 
An important part of obtaining an efficient trajectory plan lies with both the interpolation 
function used to help obtain the trajectory and the robot actuators. Ultimately actuators will 
generate the robot motion, and it is very important for robot behavior to be smooth. 
Therefore, the trajectory planning algorithms should take into account the characteristics of 
the actuators without forgetting the interpolation functions which also have an impact on 
the resulting motion. As well as smooth robot motion, it is also necessary to monitor some 
working parameters to verify the efficiency of the process, because most of the time the user 
seeks to optimize certain objective functions. Among the most important working 
parameters and variables are the time required to get the trajectory done, the input torques, 
the energy consumed and the power transmitted. The kinematic properties of the robot´s 
links, such as the velocities, accelerations and jerks are also important. 
The trajectory algorithm should also not overlook the presence of possible obstacles in the 
workspace. Therefore it is very important to model both the workspace and the obstacles 
efficiently. The quality of the collision avoidance procedure will depend on this 
modelization. 
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2. A brief look at previous work 
Trajectory planning for industrial robots is a very important topic in the field of robotics and 
has attracted a great number of researchers so that there are at the moment a variety of 
methodologies for its resolution.  
By studying the work done by other researchers on this topic it is easy to deduce that the 
problem has mainly been tackled with two different approaches: direct and indirect 
methods. Some authors who have analyzed this topic using indirect methods are Saramago, 
2001; Valero et al., 2006; Gasparetto and Zanotto, 2007 ; du Plessis et al., 2003.  
Other authors, on the other hand, have implemented the direct method such as Chettibi et 
al, 2002; Macfarlane, 2003; Abdel-Malek et al. 2006. However, in these examples the 
obstacles have been neglected which is a drawback. 
Over the years, the algorithms have been improved and the study of the robotic system has 
become more and more realistic. One way of achieving that is to analyze the complete 
behavior of the robotic system, which in turn leads us to optimize some of the working 
parameters mentioned earlier by means of the appropriate objective functions. The most 
widely used optimization criteria can be classified as follows:  
1.  Minimum time required, which is bounded to productivity. 
2. Minimum jerk, which is bounded to the quality of work, accuracy and equipment 

maintenance. 
3. Minimum energy consumed or minimum actuator effort, both linked to savings. 
4. Hybrid criteria, e.g. minimum time and energy. 
The early algorithms that solved the trajectory planning problem tried to minimize the time 
needed for performing the task (see Bobrow et al., 1985; Shin et al., 1985; Chen et al., 1989). 
In those studies, the authors impose smooth trajectories to be followed, such as spline 
functions.  
Another way of tackling the trajectory planning problem was based on searching for jerk-
optimal trajectories. Jerks are essential for working with precision and without vibrations. 
They also affects the control system and the wearing of joints and bars. Jerk constraints were 
introduced by Kyriakopoulos (see Kyriakopoulos et al.,1988). Later, Constantinescou 
introduces (Constantinescu et all, 2000) a method for determining smooth and time-optimal 
path-constrained trajectories for robotic manipulators imposing limits on the actuator jerks. 
Another different approach to solving the trajectory planning problem is based on 
minimizing the torque and the energy consumed instead of the execution time or the jerk. 
An early example is seen in Garg et al., 1992. Similarly, Hirakawa and Kawamura searched 
for the minimum energy consumed (Hirakawa et al., 1996). In Field and Stepanenko, 1996, 
the authors plan minimum energy consumption trajectories for robotic manipulators. In 
Saramago and Steffen, 2000, the authors considered not only the minimum time but also the 
minimum mechanical energy of the actuators. They built a multi-objective function and the 
results obtained depended on the associated weighting factor. The subject of energy 
minimization continues to be of interest in the field of robotics and automated 
manufacturing processes ( Cho et al., 2006 ). 
Later, new approaches appear for solving the trajectory planning problem. The idea of using 
a weighted objective function to optimize the operating parameters of the robot arises 
(Chettibi et al., 2004). Gasparetto and Zanotto also use a weighted objective function (see 
Gasparetto and Zanotto, 2010). In this chapter we will introduce an indirect method which 
has been called the “sequential algorithm”. 
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In this chapter we will describe two algorithms for solving the collision-free trajectory 
planning for industrial robots that we have developed. We have called them “sequential” 
and “simultaneous” algorithms. The first is an indirect method while the second is a direct 
one. The “sequential” algorithm considers the main properties of the actuators (torque, 
power, jerk and energy consumed). The “simultaneous” algorithm analyzes what is the best 
interpolation function to be used to generate the trajectory considering a simple actuator 
(only the torque required). The chapter content is based on the previous work done by the 
authors (see Valero et al., 2006, and Rubio et al., 2007). Specifically, the two approaches to 
solving the trajectory planning problem are explained. 

3. Robot modelling 
The robot model used henceforth is the wire model corresponding to the PUMA 560 robot 
shown in Fig. 1. The robot involves rigid links that are joined by the corresponding 
kinematic joints (revolution).The robot has F degrees of freedom and each robot´s 
configuration C j can be unequivocally set using the Cartesian coordinates of N points, 
which are called significant points. These points, defined as α ji (x j3(i-1)+1 ,x j3(i-1)+2 , x j3(i-1)+3, 
i=1..F, j=number of configuration) are chosen systematically. Therefore, ultimately, every 
configuration will be expressed in Cartesian coordinates by means of the significant points, 
i.e. C j= C j (α ji), which represent the specifics of the robot under study. It is important to 
point out that they do not constitute an independent set of coordinates. Besides the 
significant points, some other points p jk, called interesting points, will be used to improve 
the efficiency of the algorithms, the coordinates of which are obtained from the significant 
points and the geometric characteristics of the robot.  
 

 
Fig. 1. Model of robot PUMA 560. Significant and Interesting Points (mobile base) 
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The PUMA 560 robot can be modelled with a movable base or a fixed base. The mobile-
based robot is shown in Fig. 1 with the seven significant points used (α1, α2, α3, α4, α5 , α6 
and α7 ), together with another five interesting points p jk. As a result of this, the 
configuration C j is determined by twenty-one variables corresponding to the coordinates of 
the significant points. These variables are connected through fourteen constraint equations 
relative to the geometric characteristics of the robot (length of links, geometric constraints 
and range of motion). See Rubio et al, 2009 for more details. It must be noted that any other 
industrial robot can be modelled in this way by just selecting and choosing appropriately 
those significant points that best describe it.  
This property is very important as far as the effectiveness of the algorithm is concerned.  

4. Workspace modelling 
The workspace is modelled as a rectangular prism with its edges parallel to the axes of the 
Cartesian reference system. The work environment is defined by the obstacles bound to 
produce collisions when the robot moves within the workspace. The obstacles are 
considered static, i.e. their positions do not vary over time and they are represented by 
means of unions of patterned obstacles. 
The fact of working with patterned obstacles introduces two fundamental advantages: 
1. It allows the modelling of any generic obstacle so that collisions with the robot´s links 

can be avoided. 
2.  It permits working with a reduced number of patterned obstacles in order to model a 

complex geometric environment so that its use is efficient. It means that a small number 
of constraints are introduced into the optimization problem when obtaining collision-
free adjacent configurations.  

The patterned obstacles have a geometry based on simple three-dimensional figures, 
particularly spheres, rectangular prisms and cylinders. Any obstacle present in the 
workspace could be represented as a combination of these geometric figures.  
The definition of a patterned obstacle is made in the following way: 
• Spherical obstacle SOi, is defined when the position of its centre and its radius are 

known. It is characterized by means of   
- Centre of Sphere i: ( ), ,SO SO SO SO

i xi yi zic c c c=  

- Radius of Sphere i: SO
ir  

Therefore ( ),SO SO
i i iSO c r= . See Fig. 2 

 

 
Fig. 2. Generic Spherical obstacle SOi 
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• Cylindrical obstacle COk, is defined when the coordinates of the centres of its bases and 
its radius are known. It is characterized by means of 

- Centre of base 1 for cylinder k: ( )1 1 1 1, ,CO CO CO CO
k xk yk zkc c c c=  

- Centre of base 2 for cylinder k: ( )2 2 2 2, ,CO CO CO CO
k xk yk zkc c c c=  

- Radius of cylinder k: CO
kr  

Therefore ( )1 2, ,CO CO CO
k k k kCO c c r= . See Fig. 3 

 

 
Fig. 3. Generic Cylindrical obstacle COk 

• Prismatic obstacle POl, is defined when four points located in the vertices of the 
rectangular prism are known so that vectors that are perpendicular to each other can be 
drawn up. It is characterized by means of 

- Point a of  prism l: ( ), ,PO PO PO PO
l xl yl zla a a a=  

- Point q1 of prism l: ( )1 1 1 1, ,PO PO PO PO
l xl yl zlq q q q=  

- Point q2 of prism l: ( )2 2 2 2, ,PO PO PO PO
l xl yl zlq q q q=  

- Point q3 of prism l: ( )3 3 3 3, ,PO PO PO PO
l xl yl zlq q q q=  

Therefore ( )1 2 3, , ,PO PO PO PO
l l l l lPO a q q q= . See Fig. 4 

 

 
 
Fig. 4. Generic Prismatic obstacle POl 

5. Discretizing the workspace 
With the purpose of working with a limited number of configurations, the generation of a 
discrete workspace that represents the possible positions of the end-effector of the robot is 
considered. To do this, a rectangular prism with its edges parallel to the axes of the 
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Cartesian reference system is created and whose opposite vertices correspond to the 
positions of the end-effector of the robot in the initial and final configurations from which 
the connecting path is calculated. The set of positions that the end-effector of the robot can 
adopt within the prism is restricted to a finite number of points resulting from the 
discretization of the prism according to the following increases: 

 
ff fii i

ny nynx nx nz nz

x y z

x y z
N N N

α αα α α α−− −
Δ = Δ = Δ =  (1) 

Where the values of Δx , Δy and Δz are calculated from the values of the number of intervals 
Nx , N y and N z in which the prism is discretized, and those increments should be smaller than 
the smallest dimension of the obstacle modelled in the workspace. Points (αnxf, αnyf, αnxf) and 
(αnxi, αnyi, αnzi ) correspond to the coordinates of the end-effector of the robot for the initial and 
final configurations. Fig. 6 demonstrates the way in which the prism that gives rise to the set of 
nodes that the end-effector of the PUMA 560 robot with a mobile base can adopt is discretized. 
 

 
Fig. 5. Rectangular prism with edges parallel to the axes of the Cartesian reference system 

6. Obstacle avoidance 
By controlling the distance from the different patterned obstacles to the cylinders that cover 
the robot links, collision avoidance between the robot and the obstacles is possible. 
Distances are constraints in the optimization problem. They serve to calculate collision-free 
adjacent configurations (for adjacent configuration see Section 7).   

6.1 Calculation of distances 
Each robot´s link is modelled as a cylinder and it is characterized as ( )1 2, ,RC RC RC

i i i iRC c c r=  (see 
section 4). The application of the procedure to calculate distances between link i of the robot 
and the patterned obstacle j (which may be a cylinder, sphere or a prism), can give rise to 
three different cases to prevent collisions:  
A) Cylinder-Sphere 

See Fig. 6. Here we compute the distance between a line segment (cylinder) to a point 
(centre of the sphere). Let AB be a line segment specified by the endpoints A and B. Given an 
arbitrary point C, the problem is to determine the point P on AB closest to C. Then we 
calculate the distance between these two points. 



Sequential and Simultaneous Algorithms to Solve the Collision-Free Trajectory Planning  
Problem for Industrial Robots – Impact of Interpolation Functions and the Characteristics of … 

 

597 

Projecting C onto the extended line through AB provides the solution. If the projection point 
P lies within the segment, then P itself is the correct answer. 
If P lies outside the segment, then the segment endpoint closest to C is instead the closest 
point (A or B).  
B) Cylinder-Cylinder 

See Fig. 6. Here we compute the distance between two line segments. The problem of 
determining the closest points between two line segments S1 (P1Q1) and S2 (P2Q2) (and 
therefore the distance) is more complicated than computing the closest points of the lines L1 
and L2 of which the segments are a part. Only when the closest points of L1 and L2 happen to 
lie on the segments does the method for closest points between lines apply. For the case in 
which the closest points between L1 and L2 lie outside one or both segments, a common 
misconception is that it is sufficient to clamp the outside points to the nearest segment 
endpoint. It can be shown that if just one of the closest points between the lines is outside its 
corresponding segment, that point can be clamped to the appropriate endpoint of the 
segment and the point on the other segment closest to the endpoint is computed. 
If both points are outside their respective segments, the same clamping procedure must be 
repeated twice.  
C) Cylinder-Prism 

See Fig. 6. The prismatic surfaces are divided into triangles. In this case we compute the 
distance between a line segment and a triangle. The closest pair of points between a line 
segment PQ and a triangle is not necessarily unique. When the line segment is parallel to the 
plane of the triangle, there may be an infinite number of equally close pairs. However, 
regardless of whether the segment is parallel to the plane or not, it is always possible to 
locate a point such that the minimum distance falls either between the end point of the 
segment and the interior of the triangle or between the segment and an edge of the triangle. 
Thus, the closest pair of points (and therefore the distance) can be found by computing the 
closest pairs of points between the following entities: 
- Segment PQ and triangle edge AB. 
- Segment PQ and triangle edge BC. 
- Segment PQ and triangle edge CA. 
- Segment endpoint P and plane of triangle (when P projects inside ABC) 
- Segment endpoint Q and plane of triangle (when Q projects inside ABC). 
The number of tests required to calculate the distance can be reduced in some cases.  
 

A) 
Cylinder-Sphere 

 
 
 
 
 
 
 

B) 
Cylinder-Cylinder 

 
 
 
 
 
 
 
 

C) 
Cylinder-Prism 

Fig. 6. Three different cases to calculate distances (and prevent collisions) 
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7. Obtaining adjacent configurations  
The discrete configuration space is obtained by means of generating adjacent configurations. 
Given a feasible configuration C k, it is said that a new configuration C p is adjacent to the 
first if it is also feasible (i.e. it fulfils the characteristics associated to the robot modelling and 
avoids collisions with the obstacles), and in addition the following three properties are 
fulfilled: 
1. The position of the end-effector that corresponds to a node of the discrete workspace is 

at a distance of one unit with respect to the position of the end-effector of configuration 
C k. That means that at least one of the following conditions has to be fulfilled: 

 p p pk k k
nx nx ny ny nz nzx y zα α α α α α− = Δ − = Δ − = Δ  (2) 

n being the subscript corresponding to the significant point associated to the end-effector 
of the robot. For PUMA 560 with mobility in the base, n=7, as can be seen in Fig. 1. 
What we obtain is a sequence of configurations that is contained in the path, so that by 
using interpolation we can obtain a collision-free and continuous path. 

2. Verification of the absence of obstacles between adjacent configurations C k and C p. 
Since the algorithm works in a discrete space it is necessary to verify that there are no 
obstacles between adjacent configurations, for which the following condition is set out: 

 ( )2pk
i i jmin rα α ≤ ⋅


 (3) 

where rj is the characteristic dimension of the smallest patterned obstacle. This 
condition is necessary to guarantee that the distance for each link between two adjacent 
configurations is less than the characteristic dimension of the smallest patterned 
obstacle. 

3. Configuration C p must be such that it minimizes the following objective function: 

 ( ) ( ) ( )( )22 2

1

n
p f p f p f p f

xi xi yi yi zi zi
i

C C α α α α α α
=

− = − + − + −  (4) 

n being the number of significant points of the robot. This third property facilitates the 
final configuration to be reached even for redundant robots, i.e. the robot´s end-effector 
should not be part, at the final node, of a configuration different from the desired one. 
On the other hand, this property has an influence on the configurations generated, 
facilitating the configurations in the neighbourhoods at the end so that they are 
compatible with the end. 

An optimization procedure is set by using a sequential quadratic programming method 
(SQP). This method serves to minimize a quadratic objective function subject to a set of 
constraints which might include those from a simple limit to the values of the variables, 
linear restrictions and nonlinear continuous constraints. This is an iterative method. 
Applying this procedure to the path planning problem, the objective function used is given 
by Eq. (4). The constraints are associated to the geometry of the robot, the limits of the 
actuators and the avoidance of collision. And the configuration C k is used as an initial 
estimation for its resolution. The solution of this optimization problem gives the adjacent 
configuration C p looked for. By repeating the obtaining of adjacent configuration, the discrete 
configuration space of the robot is obtained. These configurations are recorded in a graph. 
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8. “Sequential” algorithm applied to solving the trajectory planning problem. 
Problem statement 
8.1 Introduction 
The “sequential” algorithm is based on an indirect approach to solving the trajectory 
planning problem. The algorithm takes into account the characteristics of the actuators 
(torque, power, jerk and consumed energy), the interpolation functions and the obstacles in 
the workspace. It generates the configuration space. Then, a graph is associated to the 
previously obtained configuration space, which allows a collision-free path to be obtained 
between the initial and final configurations. Once the path is available, the dynamic 
characteristics of the robot are included, setting an optimal trajectory planning problem 
which aims to obtain the minimum time trajectory that is compatible with the robot features 
and the actuator capabilities (torque, jerk and consumed energy constraints). 

8.2 Obtaining a path 
First, the algorithm solves the path planning problem, obtaining the discrete configuration 
space of the robot (the discrete configuration space is generated by means of adjacent 
configurations, see Section 7) and then the minimum distance path is calculated. This path (a 
sequence of m configurations) is obtained by associating a weighted graph to the discrete 
configuration space and looking for the minimum weighted path. In the graph, the nodes 
correspond to the robot configurations and the arcs are related to joint displacements between 
adjacent configurations. 
The weight corresponding to the arc that goes from node k ( Ck robot configuration) to node 
p ( Cp robot configuration), can be given as: 

 ( ) ( )
( )3 1 2

1

F
p k
i i

i

,p x xa k
−

=
= −  (5) 

when that Ck and Cp are adjacent. In addition Ck and Cp must satisfy both type (3) constraints 
that avoid the obstacles between configurations and the angle increased from Ck to Cp must 
be smaller than the magnitude of the forbidden zone for that joint, so that large 
displacements are avoided for movement between adjacent configurations. 
In case the points above mentioned are not satisfied, then we consider that a(k ,p) = ∞ . 
Finally, the searching is started in the weighed graph with the path that joins the node 
corresponding to the initial configuration to the node corresponding to the final 
configuration. Since the arcs satisfy that 0a(k ,p) ≥ , the Dijkstra´s algorithm is used to obtain 
the path that minimises the distance between the initial and final configurations. If this path 
exists, it is easy to obtain a sequence of m robot configurations S. 

8.3 Interpolation function 
Once the path has been obtained (at this point, the algorithm uses Cartesian coordinates), 
we have a sequence of m robot configurations, S = {S1(qi1), S2(qi2)… Sm(qim)}. These 
configurations are expressed now in joint coordinates. And the objective now is to look for a 
minimum time trajectory (tmin), that contains them. The path is decomposed into m-1 
intervals, so the time needed to reach the Sj+1 configuration from the initial S1 is tj, and the 
time spent in the segment j (between Sj and  Sj+1 configurations) will be tj-tj-1. Cubic 
interpolation functions have been used for joint trajectories. They are defined by means of 
joint variables between successive configurations, so that for the segment j it is: 
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2 3
1j j ij ij ij ij ijt t ,t q a b t c t d t− ∀ ∈  = + + +   for i=1,…,dof  (dof being the degrees of freedoom of 

the robot) and j=1,…,m-1. (m is the number of the robot configuration)  

To ensure motion continuity between configurations, the following conditions associated to 
the given configurations are considered. 
•  Position: it gives a total of (2dof (m-1)) equations: 

 ( ) 2 3
1 1 1 1ij j ij ij j ij j ij jq t a b t c t d t− − − −= + + +   (6) 

 ( ) 2 3
ij j ij ij j ij j ij jq t a b t c t d t= + + +   (7) 

• Velocity: for each interval, the initial and final velocity is zero, the velocity condition 
gives place to (2dof) equations: 

 ( )1 0 0iq t =   (8) 

 ( ) 0im mq t =   (9) 

When passing through each configuration, the final velocity of the previous configuration 
should be equal to the initial velocity of the next configuration, leading to (dof (m-2)) 
equations 

 ( ) ( )1ij j ij jq t q t+=    (10) 

• Acceleration: For each intermediate configuration, the final acceleration of the previous 
configuration should be equal to the initial acceleration of the next configuration, giving 
rise to (dof(m-2)) equations: 

 ( ) ( )1ij j ij jq t q t+=    (11) 

In addition, the minimum time trajectory must meet the following constraints: 
• Maximum torque on the actuators, 

 ( )min max
i i itτ τ τ≤ ≤  [ ]min0,t t∀ ∈ , i = 1…dof  (12) 

• Maximum power on the actuators, 

 ( )min max
i i iP P t P≤ ≤  [ ]min0,t t∀ ∈ , i = 1…dof  (13) 

• Maximum jerk on the actuators, 

 ( )min max
i i iq q t q≤ ≤    [ ]min0,t t∀ ∈ ,  i = 1…dof   (14) 

• Consumed Energy, 

 
1

1 1

dofm

ij
j i

ε
−

= =

 
≤ Ε 

 
   ,   (15) 
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ijε  being the energy consumed by the i actuator between configurations j and j+1 
Given the large number of iterations required by the process, the technique used for 
obtaining the coefficients is crucial. The first task is to normalize the polynomials that define 
the stages (see Suñer et al., 2007).In short, the optimization problem is set by using 
incremental time variables in each interval, so that in the interval between Sj and Sj+1, the 
time variable should be Δtj=tj-tj-1, and the objective function, 

 
1

min
1

m

j
j

t t
−

=
Δ =   (16) 

The solution is obtained by means of SQP procedures, so that at each iterative step it is 
necessary to obtain the above mentioned polynomials coefficients from the estimation of the 
variables of the problem. 

8.4 Obtaining a trajectory 
The trajectory is obtained when the optimization problem posed has been solved. The 
solution (and therefore the trajectory) is achieved by solving an optimization problem 
whose objective function is the trajectory total time and the constraints are the maximum 
torques in the robot actuators, maximum power, maximum jerk and the consumed energy. 
The solution of the optimization problem is approached by means of a SQP algorithm of 
Fortran mathematical library NAG. In each iterative step is necessary  to obtain the 
coefficients of the previously mentioned polynomials from an estimation of the variables (tj). 
Notice that the previous conditions above mentioned  define a system of (4Ndof(m-1) ) 
independent linear equations. Since the complete trajectory has  (4Ndof(m-1) ) unknowns 
corresponding to the coefficients of the polynomials, the linear system can be solved, 
obtaining the complete trajectory. And this linear system is solved in each iteration whithin 
the optimization problem. These coefficients are necessary to calculate the maximum torque, 
power, jerk and consumed energy for each one of the actuators by means of solving the 
inverse dynamic problem in each interval.  
Finally, when the optimization problem has been solved we obtain the minimum time 
trayectory (subject to the mentioned constraints) and also all the kinematic properties of the 
robotic system. 

8.5 Impact of interpolation function 
The impact of the interpolation function is very important from the point of view of the 
robot´s performance. Polynomial interpolation functions have been used in the “sequential” 
algorithm. It has been noticed during the resolution of the examples that they extract the 
maximum dynamic capabilities of the robot´s actuators, so that the robot moves faster than 
if any other interpolation function is used (harmonic functions, etc). Therefore when the 
polynomial interpolation functions are used the algorithm gives the best results from the 
point of view of the time requiered to do the tasks.  

8.6 Application and examples solved 
Different examples have been solved for a PUMA 560 robot. The examples have been solved 
with sequences of different initial and final configurations. The trajectories calculated meet 
constraints on torque, power, jerk and energy consumed and the goal is to analyze impact of 
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these constraints on the generation of minimum time collision-free trajectories for industrial 
robots. The results obtained show that constraints on the energy consumed must enable the 
manipulator to exceed the requirements associated with potential energy, as the algorithm 
works on the assumption that the energy can be dissipated but not recovered. Also, an 
increase in the severity of energy constraints results in longer time trajectories with more 
soft power requirements. When constraints are not very severe, efficient trajectories can be 
obtained without high penalties on the working time cycle. An increase in the severity of the 
jerk constraints involves longer time trajectories with more soft power requirements  and 
lower energy consumed. When constraints are very severe, times are also severely penalized 
even the jerk might appear. To obtain competitive results in the balance between time cycle 
and energy consumed, the actuators should work with the maximum admissible value of 
the jerk so that the robot can work with the desired accuracy. 

9. “Simultaneous” algorithm applied to solving the trajectory planning 
problem. Problem statement 
9.1 Introduction 
The “simultaneous” algorithm is based on a direct approach to solving the trajectory 
planning problem in which the path planning problem and the problem of determining the 
time history of motion are treated as one instead of treating them separately as the indirect 
methods do. The algorithm is called “simultaneous” because of the simultaneous generation 
of discrete configuration space and the minimum distance path, making use of the 
information that the objective function is generating when new configurations are obtained. 
The algorithm works on a discretized configuration space which is generated gradually as 
the direct procedure solution evolves. It uses Cartesian coordinates (to specify the motion of 
the end-effector) and joint coordinates (to solve the inverse dynamic problem). An 
important role is played by the generation of adjacent configurations using techniques 
described by Valero et al. ,2006 . The resolution of the inverse dynamic problem has been 
done using Gibbs-Appel´s equations, as proposed by Sebastian Provenzano ( see 
Provenzano, 2001). Any obstacle can be modelled using simple obstacle patterns: sphere, 
cylinder and prism. This helps calculate distances and avoid collisions. 
The algorithm takes into account the torque required by the actuators, analyses the best 
interpolation function and consider the obstacles in the workspace. To obtain a new adjacent 
configuration C k , a first optimization problem has to be solved which can be stated as 
follows: 

 Find C k , minimizing ( ) ( )
1

n
f fk k

i i
i

Min C C Min x x
=

 
− = −  

 
  (17) 

and subject to:  
a. Geometrical constraints of the robot structure; 
b. Constraints on the mobility of robot joints; 
c. Collision avoidance within the robot workspace; 
(where k

ix  and f
ix  are the Cartesian coordinates of intermediate and final configurations C k 

and C k respectively). 
The process for calculating the whole trajectory between initial and final configurations ( C 1 
and C f ) is based on a second and different optimization problem which can be stated as: 
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 Find     ( ) ( ), , fq t t tτ  between each two configurations (18) 

 Minimizing 
0

1
ft

min J dt
τ∈Ω

= ⋅   (19) 

Subject to the robot dynamics 

  ( )( ) ( ) ( ) ( )( ) ( ) ( )( )M q t q t C q t , q t q t g q t (t)τ+ + =     (20) 

Unknown boundary conditions for intermediate configurations a priori 

( ) ( )1 1int int int intq t q ; q t q− −= =  

 ( ) ( )1 1 1int int int intq t q ; q t q− − −= =      (21) 

( ) ( )1 1 1int int int intq t q ; q t q− − −= =     

Boundary conditions for initial and final configuration (used to solve the first and final step) 

  
( ) ( )
( ) ( )
0

0 0 0

o f f

f

q q ; q t q

q ; q t

= =

= = 
  (22) 

Actuator torque rate limits  

  ( )min maxtτ τ τ≤ ≤   (23) 

Collision avoidance within the robot workspace     

  ij j jd r w≥ +   (24) 

where ijd is the distance from any obstacle pattern j (sphere, cylinder or prism) to link i; jr is 
the characteristic radius of the obstacle pattern and jw is the radius of the smallest cylinder 
that contains the link i. 
As well, ( ) nq t R∈ is the vector of joint positions (n being the number of degrees of freedom 
of the robot), ( ) nt Rτ ∈  is the vector of actuator torques, ( )( ) nxnM q t R∈  is the inertia matrix 
of the robot, ( ) ( )( ), nxnC q t q t R∈  is a third-order tensor representing the coefficients of 
centrifugal and Coriolis forces and ( )( ) nG q t R∈  is the vector of gravity terms, and Ω  is the 
space state in which the vector of actuator torques is feasible. Each time a new adjacent 
configuration C k is generated, an uncertainty to be overcome lies in the fact that at this stage 
we do not know its kinematic characteristics (particularly velocity and acceleration), 
although we know they should be compatible with the dynamic characteristics of the robot. 
It should also be noted when calculating the minimum time between two adjacent 
configurations that each step starts from a configuration with its kinematic properties 
known, obtaining the time and the kinematic properties at the end configuration, so that if 
the dynamic capabilities of the actuators had been exhausted ( ( )int mini tτ τ≅ or ( )int maxi tτ τ≅ ) 
due to the kinematic properties generated at the end configuration ( ( )intq t , ( )intq t  and 

( )intq t ), it would have been impossible to observe constraints on the next generation step of 
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the trajectory ( )min int 1 maxtτ τ τ+≤ ≤ . Finally, by connecting adjacent configurations, the whole 
trajectory is generated. 
The process explained is applied repeatedly to generate adjacent configurations until 
reaching the final configuration. Finally, by connecting adjacent configurations, the whole 
trajectory is generated. 

9.2 Interpolation function 
It must be noticed that three types of trajectory spans should be distinguished because of 
their different boundary conditions: the initial (which contains the initial configuration C 1), 
the final (which contains the final configuration C f ), and the intermediate (which does not 
contain either the initial or the final configuration). 
Each pair of adjacent configurations is interpolated using harmonic functions in order to 
limit the kinematic characteristics of goal configuration so that progression to the following 
step should be admissible without breaking the dynamic properties. In that way, it is not 
necessary to previously impose kinematic constraints onto the process. Now, starting from 
the initial configuration, the harmonic function leads to the knowledge of the kinematic 
characteristics of the configurations adjacent to it, and so on. And therefore the process of 
obtaining adjacent configurations can continue until reaching the end. It is true that the 
results are influenced by the use of different interpolation functions between adjacent 
configurations. We use harmonic functions because they are capable of limiting the 
maximum values of velocity and acceleration required for the actuators. So, values for 
velocities and accelerations are limited. This important trait is deduced from the properties 
of Fourier series because of the harmonic functions used as interpolation functions and can 
be expressed by means of their Fourier series, which can ultimately be expressed as 

 0 1 1f (t ) C C cos(t )θ= + +   (25) 

whose C1 coefficient is the value of the amplitude for the fundamental component and θ1 is 
the phase angle. It can be demonstrated that the values of the function are limited to the 
interval [C1,-C1] (the coefficients of the cosine terms). Analyzing the harmonic function on 
the basis of the type of trajectory span we distinguish three types. We use different 
interpolation functions to determine their impact on the characteristics of the solution 
generated. The cases analyzed and interpolation functions for each case are as follows. 
a. Initial span: Cases A, B and C 
In all three cases we have used the same interpolation function for the first span, therefore 
the procedure to calculate the constants is identical 

 ( ) ( )1 1 1 1i i i iq a sin t b cos t c= ⋅ − ⋅ +    (26) 

with i =1..Ndof and 1 is for the first span. Ndof  is the number of the robot´s degrees of freedom. 
For this type of interpolation function, velocity and acceleration values are limited by the 
coefficients aij, bij. The known boundary conditions are three: the initial and final 
configuration of the interval and the initial velocity. They allow the set of coefficients aij, bij 
and cij to be obtained, which are dependent on time. 
b. Intermediate span. 
Three different interpolation functions corresponding to cases A, B and C have been used. 
To calculate the constants in each case we have proceeded as follows: 
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 b1) Case A 
The interpolation function is 

 ( ) ( ) ( ) ( )2 3 4ij ij ij ij ijq a sin t b cos t c sin t d cos t= ⋅ − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅   (27) 

with i=1..Ndof and j =1..Nspan. . Nspan is the number of the span that is being analyzed. 
From experience in the resolution of a great number of cases, a polynomial term has been 
added to ensure the boundary conditions of velocity and acceleration along the trajectory in 
this span. Velocity and acceleration equations are 

 ( ) ( ) ( ) ( )2 2 3 3 4 4ij ij ij ij ijq a cos t b sin t c cos t d sin t= ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅    (28) 

 ( ) ( ) ( ) ( )4 2 9 3 16 4ij ij ij ij ijq a sin t b cos t c sin t d cos t= − ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅   (29) 

Their values are limited by the coefficients aij, bij, cij and dij. The known boundary conditions 
are four: the initial and final configurations of the span and the velocities and accelerations 
at the beginning, and they allow the expressions for the constants aij, bij, cij and dij to be 
determined which, as in the previous case, are dependent on time. 
 b2) Case B 
The interpolation function is 

 ( )ij ij ij ij ijq cos( t ) (sin( t ) (a sin t b ) c ) d= ⋅ ⋅ ⋅ + + +    (30) 

Velocity and acceleration equations are  

 ij ij ij ij

ij ij ij

q cos( t )  (cos( t )   (a   sin( t ) + b ) + a   cos( t )   sin( t )) - sin( t )    

(sin( t)  (a    sin( t ) + b ) + c )

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅


 (31) 

 

2 2
ij ij ij ij ij

ij ij ij ij

ij ij

q cos( t )  ( - a   sin ( t ) - sin( t )  (a   sin( t ) + b ) +2  a   cos ( t ))- 

cos( t )  (sin( t )  (a  sin( t ) + b ) + c ) - 2  sin( t )  (cos( t )  (a   sin( t ) 

+ b ) + a   cos( t )  sin( t )

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅



)

   (32) 

Their values are limited by the new coefficients aij, bij, cij and dij. The known boundary 
conditions are also four: the initial and final configurations of the span and the velocities 
and accelerations at the beginning. Therefore the constants aij, bij, cij and dij  can be 
determined which, as in the previous case, are dependent on time. 
 b3. Case C 
The interpolation function is 

 ( )ij ij ij ij ijq sin(t) (cos(t) (a sin t b ) c ) d= ⋅ ⋅ ⋅ + + +   (33) 

Velocity and acceleration equations are 

 2
ij ij ij ij ij ij ijq sin(t) (a  cos (t) - sin(t) (a  sin(t) + b )) + cos(t)  (cos(t)  (a  sin(t) + b ) + c )= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   (34) 

 
2

ij ij ij ij ij ij

ij ij ij ij

q 2 cos(t) (a cos (t) - sin(t) (a sin(t) + b )) - sin(t) (cos(t) (a  sin(t) + b ) +

c ) + sin(t) ( - cos(t) (a sin(t) + b ) - 3 a cos(t) sin(t))

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅


 (35) 
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Their values are limited by the new coefficients aij, bij, cij and dij. The known boundary 
conditions are also four: the initial and final configurations of the span and the velocities 
and accelerations at the beginning. Therefore the constants aij, bij, cij and dij  can be 
determined which, as in the previous case, are dependent on time. 
c. Final span: Cases A, B and C 
In all three cases we used the same interpolation function for the last span and therefore the 
procedure to calculate the constants is identical 

 ( ) ( ) ( )2 2
iF iF iF iF jF iFq a sin t b cos t c sin t d t e t= ⋅ + ⋅ + ⋅ + ⋅ + ⋅    (36) 

with i=1..Ndof and F is for the final trajectory span. 
In this type of span a polynomial term has been introduced, in this case of grade 2, which 
would ensure the continuity of velocity and acceleration. The velocity and acceleration 
equations are 

 ( ) ( ) ( ) ( )2 2iF iF iF iF iF iFq a cos t b sin t c sin t cos t d e t= ⋅ − ⋅ + ⋅ ⋅ ⋅ + + ⋅ ⋅   (37) 

 ( ) ( ) ( ) ( )2 22 2iF iF iF iF iFq a sin t b cos t c (cos t sin t ) e= − ⋅ − ⋅ + ⋅ ⋅ − + ⋅   (38) 

Their values are limited by the coefficients aij, bij, cij, dij and eij. The known boundary 
conditions are five: the initial and final configuration in the last span or interval, the velocity 
and acceleration at the beginning of the interval and the velocity at the end. These boundary 
conditions enable the coefficients aij, bij, cij, dij and eij to be obtained. 
Whenever a new adjacent configuration is generated by solving Eq. (4), a new trajectory 
span will also be created (by solving the second optimization problem Eq. (17)), and the 
necessary time tj to perform the span is then obtained. The joint positions are adjusted using 
the corresponding harmonic interpolation function again. The solution of equations is 
obtained by iteration using quadratic sequential programming techniques (SQP) through 
the mathematical commercial software NAG (Numerical Algorithms Group). An each step 
of the iterative process it is necessary to recalculate the coefficients of the harmonic 
interpolation functions used, since they are time functions. To facilitate calculations, each 
span has been discretized using ten subintervals, so that the kinematic and dynamic 
characteristics are to be calculated at this discrete set of points. The solution of the 
optimization process provides the minimum time tj  to go from one configuration to its 
adjacent one and consequently the joint positions ( )q t that must be followed between these 
two configurations, as well as the necessary torques in the actuators ( )tτ and the 
corresponding kinematic characteristics ( )q t and ( )q t . 

9.3 Impact of interpolation function 
As it was said earlier, the impact of the interpolation function is very important from the 
point of view of the robot´s performance. Three types of interpolation functions have been 
used (A, B and C) for the computation of intermediate configurations (harmonic functions) 
when using the “simultaneous algorithm. Pure polynomial interpolation functions have 
been excluded because they exceeded the dynamic capabilities of the actuators and therefore 
the algorithm failed to reach any solution. Therefore, after having analysed all kinds of 
interpolation functions, we state that the best of all them C (notice that each actuator has 
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been characterized by the maximum and minimum torque it can provide, see Eq. (23). 
Nonetheless, both the computational and execution time are very high compared with the 
results obtained using the “sequential algorithm”. 

9.4 Cost function 
An important point of the algorithm is to understand the process by which the algorithm is 
gradually creating the trajectory. The algorithm works in a discretised workspace (see Rubio 
et al.,2009) , looking for a trajectory that joins the initial and final configurations by starting 
from the initial configuration and, on the basis of generating adjacent configurations and 
branching out from the most promising one, obtaining new configurations until reaching 
the final one. Therefore, the trajectory contains a discrete set of intermediate configurations. 
To ensure that the process moves from one configuration to another, that is, that the 
algorithm branches out from a general intermediate configuration to generate more new 
adjacent configurations, the uniform cost function is used. The discrete configuration space 
is analysed as a graph, where the configurations generated are the nodes and the arc 
between nodes (arc (i, j)= ( )time i, j ) is calculated as the time necessary to perform the 
motion between adjacent configurations. It is desirable that the number of configurations 
generated is not high and, in addition, that these configurations enable efficient trajectories 
to be obtained. The process followed to achieve the growth of the configuration space in the 
search for the final configuration is as follows: 
Let { }1 2 kCC C ,C , ,C=   be the set of existing configurations at a given instant, and CR the 
subgroup of CC that contains r (r < k) configurations that have still not been used to branch 
out. Now, it is necessary to follow what is called a branching strategy or searching strategy 
to select a C p configuration pertaining to CR, from which the algorithm tries to generate 
another six new adjacent configurations C p+1, C p+2, C p+3, C p+4, C p+5 and C p+6 (according to the 
technique explained in Valero (2006)), which are new configurations belonging to CR, while  
C p is taken out of this subgroup. The process finishes when the final configuration is reached. 
The cost function c (p) used to select a new configuration to branch out from is defined as follows 
• Uniform Cost: the time function c (j) associated with the configuration C j is defined as 

the minimum sum of arcs that permit the node j to be reached from the initial node 

 ( ) ( )1c j time , j=   (39) 

And the new branching is started from configuration C p , which meets 

 ( ) ( )c p min c j , j CR = ∀ ∈    (40) 

When a set of adjacent configurations has been created, Eq. (40) is used to select that one 
from which the process is expected to branch out again. Given two adjacent configurations 
the minimum time between them is calculated as explained in Section 4. Time is used to 
select the new configuration as just explained in Section 5, which is used to repeat the 
branching process and this in turn is repeated until the final configuration is reached. 

9.5 Obtaining the trajectory 
When the final configuration is reached we know not only the robot configuration through 
the joint positions ( )q t but also the necessary torques ( )tτ  and the kinematic 
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characteristics of the motion ( )q t and ( )q t . The trajectory obtained is of minimum time on 
the graph generated. To obtain the global minimum time, the process should be repeated 
with different discretization sizes. The global minimum time is the smallest of all times 
calculated. 

9.6 Application and examples solved 
This algorithm has been applied to the PUMA 560 robot type, and a great number of 
examples have been analysed. Four important operational parameters have been monitored: 
the computational time used in generating a solution, the execution time, the distance 
travelled (which corresponds to the sum of the whole distance travelled by each significant 
point throughout the path to go from the initial to the final configuration, measured in 
meters) and the number of configurations generated. Though the examples, the behaviour of 
those four operational parameters mentioned earlier when the simultaneous algorithm and 
the different interpolation functions have been use can be analized. The results obtained 
show that the worst computational time is achieved when using the interpolation function 
of case A. Case B and C yield similar results. Also, the results show that the smallest 
execution time is achieved when using the interpolation function of case C. The smallest 
distance travelled is achieved when using the interpolation function of case C as well as the 
smallest number of configurations generated are achieved when using the interpolation 
function of case C. 

10. Conclusion 
In this paper, two algorithms that solve the trajectory planning problem for industrial robots 
in an environment with obstacles have been introduced and summarized. They have been 
called “sequential” and “simultaneous“ algorithm respectively. Both are off-line algorithms. 
The first one is based on an indirect methodology because it solves the trajectory planning in 
two sequential steps (first a path is generated and once the path is known, a trajectory is 
adjusted to it). Polynomial interpolation functions have been in this algorithm because they 
yield the best results. Besides, the trajectories calculated meet constraints on torque, power, 
jerk and energy consumed. The second algorithm is a direct method, which solves the 
equations in the state space of the robot. Unlike other direct methods, it does not use 
previously defined paths, which enables working with mobile obstacles although the 
obstacles used in this chapter are statics. Three types of interpolation functions have been 
used for the computation of intermediate configurations (harmonic functions). Polynomial 
interpolation functions have been excluded from this algorithm because during the 
resolution phase of the examples, because converge problems in the optimization problem 
have come up. 
The main conclusions are summarized as follows: 
a. The algorithms solve the trajectory planning problem for industrial robots in 

environments with obstacles therefore avoiding collisions. 
b. It can be applied to any industrial robot. 
c. “Sequential” algorithm: 

c.1. Constraints on the energy consumed must be compatible with the robot´s 
demanded potential energy, as energy recovery is not considered, as the algorithm 
works on the assumption that the energy can be dissipated but not recovered. 
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c.2. To obtain competitive results in the balance between time cycle and energy 
consumed, the actuators should work with the maximum admissible value of the 
jerk so that the robot can work with the desired accuracy. 

c.3. The cubic interpolation function gives the best computational and execution time. 
d. “Simultaneous” algorithm: as for the peculiarities of the interpolation functions in 

relation to the four monitored operating parameters (computational time, execution 
time, distance travelled and number of configurations generated), the main point is that 
the best results are obtained when using the interpolation function of case C (taking into 
account that each actuator has been characterized by the maximum and minimum 
torque it can provide). With this algorithm the cubic interpolation function does not 
work because during the resolution phase of the examples, they exceeded the dynamic 
capabilities of the actuators and therefore the algorithm failed to reach any solution. 
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1. Introduction  
This paper describes the methodology for system description and application so that the 
system can be managed using real time system adaptation. The term system here can 
represent any structure regardless its size or complexity (industrial robots, mobile robot 
navigation, stock market, systems of production, control systems, etc.). The methodology 
describes the whole development process from system requirements to software tool that 
will be able to execute a specific system adaptation.  
In this work, we propose approaches relying on machine learning methods (Bishop, 2006), 
which would enable to characterize key patterns and detect them in real time and in their 
altered form as well. Then, based on the pattern recognized, it is possible to apply a suitable 
intervention to system inputs so that the system responds in the desired way. Our aim is to 
develop and apply a hybrid approach based on machine learning methods, particularly 
based on soft-computing methods to identify patterns successfully and for the subsequent 
adaptation of the system. The main goal of the paper is to recognize important pattern and 
adapt the system’s behaviour based on the pattern desired way. 
The paper is arranged as follows: Section 1 introduces the critical topic of the article. 
Section 2 details the feature extraction process in order to optimize the patterns used as 
inputs into experiments. The pattern recognition algorithms using machine learning 
methods are discussed in section 3. Section 4 describes the used data-sets and covers the 
experimental results and a conclusion is given in section 5. We focus on reliability of 
recognition made by the described algorithms with optimized patterns based on the 
reduction of the calculation costs. All results are compared mutually. 

1.1 The methodology for system description 
Gershenson (Gershenson, 2007) proposed a methodology called The General Methodology for 
system description necessary to manage a system. It presents a conceptual framework for 
describing systems as self-organizing and consists of five steps: representation, modelling, 
simulation, application and evaluation. Our goal is to use and adapt this methodology for 
our specific needs. Basically we would like to describe a methodology that the designer 
should be able to use to describe his system, find key patterns in its behaviour based on the 
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observation and prepare suitable response to these patterns that emerge from time to time 
and adapt to any deviation in the system’s behaviour. 
As we are using Gershenson’s methodology we are not going to describe it in detail because 
detailed info can be found in his book (Gershenson, 2007). Let’s mention crucial parts of his 
methodology that is important to our work. The methodology is useful for designing and 
controlling complex systems. Basically a complex system consists of two or more 
interconnected components and these components react together and it is very complicated 
to separate them. So the system’s behaviour is impossible to deduce from the behaviour of 
its individual components. This deduction becomes more complicated how more 
components E# and more interactions I# the system has (Csys corresponds with system 
complexity; Ce corresponds with element complexity; Ci corresponds with interaction 
complexity). 
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Imagine a manufacturing factory. We can describe the manufacturing factory as a complex 
system. Now it is important to realize that we can have several levels of abstraction starting 
from the manufacturing line to the whole factory complex. The manufacturing line can 
consist of many components. There can be robots, which perform the main job. Conveyor 
belts, roller beds, jigs, hangers and other equipment responsible for the product or material 
transport and other equipments. All the interactions are some way related to the material or 
product. Although it is our best interest to run all the processes smoothly there will be 
always some incidents we cannot predict exactly. The supply of the material can be 
interrupted or delayed, any equipment can have a multifunction and it is hard to predict 
when and how long will it takes. Because there are interactions among many of these 
components we can call manufacturing factory a complex system. 
If we want to characterize a system we should create its model. Gershenson (Gershenson, 
2002) proposes two types of models, absolute and relative. The absolute model (abs-model) 
refers to what the thing actually is, independently of the observer. The relative model (rel-
model) refers to the properties of the thing as distinguished by an observer within a context. 
We can say that the rel-model is a model, while the abs-model is modelled. Since we are all 
limited observers, it becomes clear that we can speak about reality only with rel-
beings/models (Gershenson, 2007). 
So how we can model a complex system? Any complex system can be modelled using multi-
agent system (MAS) where each system’s component is represented by an agent and any 
interactions among system’s components are represented as interactions among agents. If we 
take into consideration The General Methodology thus any system can be modelled as group of 
agents trying to satisfy their goals. There is a question. Can we describe a systems modelling 
as a group of agents as self-organizing? We think that we can say Yes. As the agents in the 
MAS try to satisfy their goals, same as components in self-organizing systems interact with 
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each other to achieve desired state or behaviour. If we determine the state as a self-organizing 
state, we can call that system self-organizing and define our complex self-organizing system. 
In our example with manufacturing line our self-organizing state will be a state where the 
production runs smoothly without any production delays. But how can we achieve that? 
Still using Gerhenson’s General Methodology we can label fulfilling agent’s goal as its 
satisfaction σ ∈ [0,1]. Then the system’s satisfaction σsys (2) can be represented as function 

[ ]: 0,1f →R  and it is a satisfaction of its individual components. 

σsys  = f (σ1, σ2,…, σn, w0,w1, w2, …, wn) (2)

w0 represents bias and other weights wi represents an importance given to each σi. 
Components, which decrease σsys and increase their σi shouldn’t be considered as a part of the 
system. Of course it is hard to say if for higher system’s satisfaction it is sufficient to increase 
satisfaction of each individual component because some components can use others fulfilling 
their goals. For maximization of σsys we should minimize the friction among components and 
increase their synergy. A mediator arbitrates among elements of a system, to minimize 
conflict, interferences and frictions; and to maximize cooperation and synergy. So we have two 
types of agents in the MAS. Regular agents fulfil their goals and mediator agents streamline 
their behaviour. Using that simple agent’s division we can build quite adaptive system. 

1.2 Patterns as a system’s behaviour description 
Every system has its unique characteristics that can be described as patterns. Using patterns 
we would like to characterize particular system and its key characteristics. Generally a system 
can sense a lot of data using its sensors. If we put the sensor's data into some form, a set or a 
graph then a lot of patterns can be recognized and further processed. When every system's 
component has some sensor then the system can produce some patterns in its behaviour. Some 
sensor reads data about its environment so we can find some patterns of the environment, 
where the system is located. If we combine several sensors data, we would be able to recognise 
some patterns in the whole system's behaviour. It is important to realize that everything, 
which we observe is relative from our point of view. When we search for the pattern, we want 
to choose such pattern, which represents the system reliably and define its important 
properties. Every pattern, which we find, is always misrepresented with our point of view. 
We can imagine a pattern as some object with same or similar properties. There are many 
ways how to recognize and sort them. When we perform pattern recognition, we assign 
a pre-defined output value to an input value. For some purpose, we can use a particular 
pattern recognition algorithm, which is introduced in (Ciskowski & Zaton, 2010). In this case 
we try to assign each input value to the one of the output sets of values. Some input value 
can be any data regardless its origin as a text, audio, image or any other data. When patterns 
repeat in the same or altered forms then can be classified into predefined classes of patterns. 
Since we are working on computers, the input data and all patterns can be represented in 
a binary form without the loss of generality. Such approach can work nearly with any 
system, which we would like to describe. But that is a very wide frame content.  
Although theory of regulation and control (Armstrong & Porter, 2006) is mainly focused on 
methods of automatic control, it also includes methods for adaptive and fuzzy controls. In 
general, through the control or regulation we guide the system’s behaviour in the desired 
direction. For our purposes, it suffices to regulate the system behaviour based on the 
predefined target and compensate any deviation in desired direction. So we search for key 
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patterns in system’s behaviour a try to adapt to any changes. However, in order to react 
quickly and appropriately, it is good to have at least an expectation of what may happen 
and which reaction would be appropriate, i.e. what to anticipate. Expectations are subjective 
probabilities that we learn from experience: the more often pattern B appears after pattern 
A, or the more successful action B is in solving problem A, the stronger the association 
A → B becomes. The next time we encounter A (or a pattern similar to A), we will be 
prepared, and more likely to react adequately. The simple ordering of options according to 
the probability that they would be relevant immensely decreases the complexity of decision-
making (Heylighen, 1994). 
Agents are appropriate for defining, creating, maintaining, and operating the software of 
distributed systems in a flexible manner, independent of service location and technology. 
Systems of agents are complex in part because both the structural form and the behaviour 
patterns of the system change over time, with changing circumstances. By structural form, 
we mean the set of active agents and inter-agent relationships at a particular time. This form 
changes over time as a result of inter-agent negotiations that determine how to deal with 
new circumstances or events. We call such changing structural form morphing, by analogy 
with morphing in computer animation. By behaviour patterns, we mean the collaborative 
behaviour of a set of active agents in achieving some overall purpose. In this sense, 
behaviour patterns are properties of the whole system, above the level of the internal agent 
detail or of pair wise, inter-agent interactions. Descriptions of whole system behaviour 
patterns need to be above this level of detail to avoid becoming lost in the detail, because 
agents are, in general, large grained system components with lots of internal detail, and 
because agents may engage in detailed sequences of interactions that easily obscure the big 
picture. In agent systems, behaviour patterns and morphing are inseparable, because they 
both occur on the same time scale, as part of normal operation. Use case maps (UCMs) 
(Burth & Hubbard, 1997) are descriptions of large grained behaviour patterns in systems of 
collaborating large grained components.  

1.3 System adaptation vs. prediction 
Let’s say we have built pattern recognition system and it is working properly to meet our 
requirements. We are able to recognize certain patterns reliably. What can we do next? 
Basically, we can predict systems behaviour or we can adapt to any change that emerge. 
It is possible to try to predict what will happen, but more or less it is a lottery. We will never 
be able to predict such systems’ behaviour completely. This doesn’t mean it is not possible 
to build a system based on prediction (Gershenson, 2007). But there is another approach that 
tries to adapt to any change by reflecting current situation. To adapt on any change 
(expected or unexpected) it should be sufficient to compensate any deviation from desired 
course. In case that response to a deviation comes quickly enough that way of regulation can 
be very effective. It does not matter how complicated system is (how many factors and 
interactions has) in case we have efficient means of control (Armstrong & Porter, 2006). To 
respond quickly and flexible it is desirable to have some expectation what can happen and 
what kind of response will be appropriate. We can learn such expectation through experiences. 

2. Feature extraction process in order to optimize the patterns 
Identification problems involving time-series data (or waveforms) constitute a subset of 
pattern recognition applications that is of particular interest because of the large number of 
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domains that involve such data. The recognition of structural shapes plays a central role in 
distinguishing particular system behaviour. Sometimes just one structural form (a bump, an 
abrupt peak or a sinusoidal component), is enough to identify a specific phenomenon. There is 
not a general rule to describe the structure – or structure combinations – of various 
phenomena, so specific knowledge about their characteristics has to be taken into account. In 
other words, signal structural shape may be not enough for a complete description of system 
properties. Therefore, domain knowledge has to be added to the structural information. 
However, the goal of our approach is not knowledge extraction but to provide users with an 
easy tool to perform a first data screening. In this sense, the interest is focused on searching 
for specific patterns within waveforms (Dormido-Canto et al., 2006). The algorithms used in 
pattern recognition systems are commonly divided into two tasks, as shown in Fig. 1. The 
description task transforms data collected from the environment into features (primitives).  
 

 
Fig. 1. Tasks in the pattern recognition systems 

The classification task arrives at an identification of patterns based on the features provided 
by the description task. There is no general solution for extracting structural features from 
data. The selection of primitives by which the patterns of interest are going to be described 
depends upon the type of data and the associated application. The features are generally 
designed making use of the experience and intuition of the designer. 
The input data can be presented to the system in various forms. In principle we can 
distinguish two basic possibilities: 
• The numeric representation of monitored parameters 
• Image data - using the methods of machine vision 
Figures 2 and 3 show an image and a numerical expression of one particular section of OHLC 
data. The image expression contains only information from the third to the sixth column of the 
table (Fig.3). In spite of the fact, the pattern size (number of pixels) equals to 7440. In contrast 
to it, a table expression with 15 rows and 7 columns of 16-bit numbers takes only. 
 

 
Fig. 2. Visual representations of pattern 
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Fig. 3. Tabular expression of pattern 

The image data better correspond to an intuitive human idea of patterns recognitions, which 
is their main advantage.  We also have to remember that even table data must be transferred 
into binary (image) form before their processing. 
Image data are always two-dimensional. Generally, tabular patterns can have more 
dimensions. Graphical representation of OHLC data (Lai, 2005) in Fig.2 is a good example of 
the expression of multidimensional data projection to two-dimensional space. Fig.2 shows a 
visual representation of 4-dimensional vector in time, which corresponds to 5 - dimensions. 
In this article, we consider experiments only over two-dimensional data (time series). 
Extending the principles of multidimensional vectors (random processes) will be the subject 
of our future projects. 
The intuitive concept of "pattern" corresponds to the two-dimensional shapes. This way 
allows showing a progress of a scalar variable. In the case that a system has more than one 
parameter, the graphic representation is not trivial anymore. 

3. Pattern recognition algorithms 
Classification is one of the most frequently encountered decision making tasks of human 
activity. A classification problem occurs when an object needs to be assigned into a predefined 
group or class based on a number of observed attributes related to that object. Pattern 
recognition is concerned with making decisions from complex patterns of information. The 
goal has always been to tackle those tasks presently undertaken by humans, for instance to 
recognize faces, buy or sell stocks or to decide on the next move in a chess game. Rather 
simpler tasks have been considered by us. We have defined a set of classes, which we plan to 
assign patterns to, and the task is to classify a future pattern as one of these classes. Such tasks 
are called classification or supervised pattern recognition. Clearly someone had to determine 
the classes in the first phase. Seeking the groupings of patterns is called cluster analysis or 
unsupervised pattern recognition. Patterns are made up of features, which are measurements 
used as inputs to the classification system. In case that patterns are images, the major part of 
the design of a pattern recognition system is to select suitable features; choosing the right 
features can be even more important than what is done with them subsequently. 
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3.1 Artificial neural networks 
Neural networks that allow so-called supervised learning process (i.e. approach, in which 
the neural network is familiar with prototype of patterns) use to be regarded as the best 
choice for pattern recognition tasks. After adaptation, it is expected that the network is able to 
recognise learned (known) or similar patterns in input vectors. Generally, it is true - the more 
training patterns (prototypes), the better network ability to solve the problem. On the other 
hand, too many training patterns could lead to exceeding a memory capacity of the network. 
We used typical representative of neural networks, namely: 
• Hebb network 
• Backpropagation network  
Our aim was to test two networks with extreme qualities. In other words, we chose such 
neural networks, which promised the greatest possible differences among achieved results. 

3.1.1 Hebb network 
Hebb network is the simplest and also the "cheapest" neural network, which adaptation 
runs in one cycle. Both adaptive and inactive modes work with integer numbers. These 
properties allow very easy training set modification namely in applications that work with 
very large input vectors (e.g. image data). 
Hebbian learning in its simplest form (Fausett, 1994) is given by the weights update rule (3) 

Δwij = η ai aj (3)

where wij  is the change in the strength of the connection from unit j to unit i, ai and aj are the 
activations of units i and j respectively, and η  is a learning rate. When training a network to 
classify patterns with this rule, it is necessary to have some method of forcing a unit to respond 
strongly to a particular pattern. Consider a set of data divided into classes C1, C2,...,Cm.  
Each data point x is represented by the vector of inputs (x1, x2, …, xn). A possible network for 
learning is given in Figure 4. All units are linear. During training the class inputs c1, c2, …,cm 
for a point x are set as follows (4): 

1
0

i i

i i

c C
c C

= ∈
= ∉

x
x (4)

Each of the class inputs is connected to just one corresponding output unit, i.e. ci connects to 
oi only for i = 1, 2, …,m. There is full interconnection from the data inputs x1, x2, …, xn to each 
of these outputs.  
 

 
Fig. 4. Hebb network. Weights of connections w11-wij are modified in accordance with the 
Hebbian learning rule 
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3.1.2 Backpropagation network 
Back propagation network is one of the most complex neural networks for supervised 
learning. Its ability to learning and recognition are much higher than Hebb network, but its 
disadvantage is relatively lengthy processes of adaptation, which may in some cases 
(complex input vectors) significantly prolong the network adaptation to new training sets. 
Backpropagaton network is a multilayer feedforward neural network. See Fig. 5, usually a 
fully connected variant is used, so that each neuron from the n-th layer is connected to all 
neurons in the (n+1)-th layer, but it is not necessary and in general some connections may be 
missing – see dashed lines, however, there are no connections between neurons of the same 
layer. A subset of input units has no input connections from other units; their states are 
fixed by the problem. Another subset of units is designated as output units; their states are 
considered the result of the computation. Units that are neither input nor output are known 
as hidden units. 
 

 
Fig. 5. A general three-layer neural network 

Backpropagation algorithm belongs to a group called “gradient descent methods”. An 
intuitive definition is that such an algorithm searches for the global minimum of the weight 
landscape by descending downhill in the most precipitous direction. The initial position is 
set at random selecting the weights of the network from some range (typically from -1 to 1 
or from 0 to 1). Considering the different points, it is clear, that backpropagation using a 
fully connected neural network is not a deterministic algorithm. The basic backpropagation 
algorithm can be summed up in the following equation (the delta rule) for the change to the 
weight wji from node i to node j (5): 

(5)

where the local gradient δj is defined as follows: (Seung, 2002): 
1.  If node j is an output node, then δj is the product of φ'(vj) and the error signal ej, where 

φ(_) is the logistic function and vj is the total input to node j (i.e. Σi wjiyi), and ej is the error 
signal for node j (i.e. the difference between the desired output and the actual output); 

input 

hidden 
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weight
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learning
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input signal

to node j 
Δwji  = η × δj × yi 
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2.  If node j is a hidden node, then δj is the product of φ'(vj) and the weighted sum of the 
δ's computed for the nodes in the next hidden or output layer that are connected to 
node j. 

[The actual formula is δj = φ'(vj) &Sigmak δkwkj where k ranges over those nodes for 
which wkj is non-zero (i.e. nodes k that actually have connections from node j. The δk values 
have already been computed as they are in the output layer (or a layer closer to the output 
layer than node j).] 

3.2 Analytic programming 
Basic principles of the analytic programming (AP) were developed in 2001 (Zelinka, 2002). 
Until that time only genetic programming (GP) and grammatical evolution (GE) had existed. 
GP uses genetic algorithms while AP can be used with any evolutionary algorithm, 
independently on individual representation. To avoid any confusion, based on use of names 
according to the used algorithm, the name - Analytic Programming was chosen, since AP 
represents synthesis of analytical solution by means of evolutionary algorithms. 
The core of AP is based on a special set of mathematical objects and operations. The set of 
mathematical objects is set of functions, operators and so-called terminals (as well as in GP), 
which are usually constants or independent variables. This set of variables is usually mixed 
together and consists of functions with different number of arguments. Because of a 
variability of the content of this set, it is called here “general functional set” – GFS. The 
structure of GFS is created by subsets of functions according to the number of their 
arguments. For example GFSall is a set of all functions, operators and terminals, GFS3arg is a 
subset containing functions with only three arguments, GFS0arg represents only terminals, 
etc. The subset structure presence in GFS is vitally important for AP. It is used to avoid 
synthesis of pathological programs, i.e. programs containing functions without arguments, 
etc. The content of GFS is dependent only on the user. Various functions and terminals can 
be mixed together (Zelinka, 2002; Oplatková, 2009). 
The second part of the AP core is a sequence of mathematical operations, which are used for 
the program synthesis. These operations are used to transform an individual of a population 
into a suitable program. Mathematically stated, it is a mapping from an individual domain 
into a program domain. This mapping consists of two main parts. The first part is called 
discrete set handling (DSH), see Fig. 6 (Zelinka, 2002) and the second one stands for 
security procedures which do not allow synthesizing pathological programs. The method 
of DSH, when used, allows handling arbitrary objects including nonnumeric objects like 
linguistic terms {hot, cold, dark…}, logic terms (True, False) or other user defined 
functions. In the AP DSH is used to map an individual into GFS and together with 
security procedures creates the above mentioned mapping which transforms arbitrary 
individual into a program. 
AP needs some evolutionary algorithm (Zelinka, 2004) that consists of population of 
individuals for its run. Individuals in the population consist of integer parameters, i.e. an 
individual is an integer index pointing into GFS. The creation of the program can be 
schematically observed in Fig. 7. The individual contains numbers which are indices into 
GFS. The detailed description is represented in (Zelinka, 2002; Oplatková, 2009). 
AP exists in 3 versions – basic without constant estimation, APnf – estimation by means of 
nonlinear fitting package in Mathematica environment and APmeta – constant estimation by 
means of another evolutionary algorithms; meta means metaevolution. 
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Fig. 6. Discrete set handling 

 

 
Fig. 7. Main principles of AP 

4. Experimental results 
4.1 Used datasets 
This approach allows a search of structural shapes (patterns) inside time-series. Patterns are 
composed of simpler sub-patterns. The most elementary ones are known as primitives. 
Feature extraction is carried out by dividing the initial waveform into segments, which are 
encoded. Search for patterns is accomplished process, which is performed manually by the 
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user. In order to test the efficiency of pattern recognition, we applied a database 
downloaded from (Google finance, 2010). We used time series, which shows development of 
the market value of U.S. company Google and represents the minute time series from 
29 October 2010, see Fig. 8.  
Used algorithms need for their adaptation training sets. In all experimental works, the 
training set consists of 100 samples (e.g. training pars of input and corresponding output 
vectors) and it is made from the time series and contains three peaks, which are indicated by 
vertical lines and they are shown in Figure 8. Samples obtained in this way are always 
adjusted for the needs of the specific algorithm. Data, which were tested in our experimental 
works, contains only one peak, which is indicated by vertical lines and it is shown in Fig. 9.  
 

 
Fig. 8. The training set with three marked peaks 
 

 
Fig. 9. The test set with one marked peak, which is searched  

4.2 Pattern recognition via artificial neural networks 
The aim of this experiment was to adapt neural network so that it could find one kind of 
pattern (peak) in the test data. We have used two sets of values, which are graphically 
depicted in Figure 10 (training patterns) and Figure 11 (test patterns) in our experiments. 
Training set always contained all define peaks, which were completed by four randomly 
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selected parts out of peaks. These randomly selected parts were used to network can learn 
to recognize what is or what is not a search pattern (peak). All patterns were normalized to 
the square of a bitmap of the edge of size a = 10. The effort is always to choose the size of 
training set as small as possible, because especially backpropagation networks increases 
their computational complexity with the size of a training set. 
 

 
Fig. 10. Graphic representation of learning patterns (S vectors) that have been made by 
selection from training data set. The first three patterns represent peaks. Next four patterns 
are representatives of non-peak “not-interested” segments of values 

 

 
Table 1. Vectors T and S from the learning pattern set. Values of ‘-1’ are written using the 
character ‘-’ and values of ‘+1’ are written using the character ‘+’ because of better clarity 

No. S T 

0. --------+-|-------++-|-------+++|------++++|------++++| 
-----+++++|-----+++++|--++++++++|++++++++++|++++++++++ -+ 

1. ----------|----------|--------+-|-------++-|-------+++| 
------++++|------++++|-----+++++|-----+++++|--++++++++ -+ 

2. ----------|----------|-------++-|-----++++-|----++++++| 
----++++++|---+++++++|++++++++++|++++++++++|++++++++++ -+ 

3. ----------|----------|----------|----------|----------| 
----------|----------|----------|-------+++|++++++++++ +- 

4. ----------|----------|----------|----------|----------| 
----------|----------|----------|----------|+++++++++- +- 

5. ----------|----------|----------|----------|----------| 
----------|--------++|-------+++|++----++++|++++++++++ +- 

6. ----------|----------|----------|----------|----------| 
----------|--------+-|------++++|--++++++++|++++++++++ +- 
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Fig. 11. Graphic representation of test patterns (S vectors) that have been made by selection 
from the test data set. The first pattern represents the peak. Next four patterns are 
representatives of non-peak “not-interested” segments of values 

 

 
Table 2. Vectors T and S from the test pattern set. Values of ‘-1’ are written using the 
character ‘-’ and values of ‘+1’ are written using the character ‘+’ because of better clarity 

Two types of classifiers: Backpropagation and classifier based on Hebb learning were used 
in our experimental part. Both used networks classified input patterns into two classes. 
Backpropagation network was adapted according the training set (Fig.10, Tab. 1) in 7 cycles. 
After its adaptation, the network was able to also correctly classify all five patterns from the 
test set (Fig. 11, Tab. 2), e.g. the network was able to correctly identify the peak and 
"uninteresting" data segments too. Other experiments gave similar results too. 

Backpropagation network configuration: 

Number of input neurons: 100 

Number of output neurons: 2 

Number of hidden layers: 1 

No. S T 

0. ---+------|--+++-----|--+++---+-|-++++++++-|-+++++++++| 
++++++++++|++++++++++|++++++++++|++++++++++|++++++++++ -+ 

1. ----------|----------|----------|----------|----------| 
----------|----------|-----+----|---+++++--|-++++++++- +- 

2. ----------|----------|----------|----------|----------| 
----------|----------|----------|-----++---|--++++++++ +- 

3. ----------|----------|----------|----------|----------| 
----------|----------|----------|---++++---|-+++++++++ +- 

4. ----------|----------|----------|----------|----------| 
----------|----------|----------|+++++++++-|++++++++++ +- 
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Number of hidden neurons: 3 

α - learning parameter: 0.4 

Weight initialization algorithm: Nguyen-Widrow 

Weight initialization range: (-0.5; +0.5) 

Type of I/O values: bipolar 

Hebb network in its basic configuration was not able to adapt given training set (Fig.10, 
Tab. 1), therefore we used modified version of the network removing useless components 
from input vectors (Kocian & Volná & Janošek & Kotyrba, 2011). Then, the modified Hebb 
network was able to adapt all training patters (Fig. 12) and in addition to that the network 
correctly classified all the patterns from the test set (Fig. 11, Tab. 2), e.g. the network was 
able to correctly identify the peak and "uninteresting" data segments too. Other experiments 
gave similar results too. 

Hebbian-learning-based-classifier configuration: 

Number of input neurons: 100 

Number of output neurons: 2 

Type of I/O values: bipolar 

 

 
Fig. 12. Learning patterns from Fig. 10 with uncovered redundant components (gray colour). 
The redundant components prevented the Hebbian-learning-based-classifier in its default 
variant to learn patterns properly. So the modified variant had to be used 

4.2 Pattern recognition via analytic programming 
As an evolutionary algorithm used in our experimental work was differential evolution 
(DE). DE is a population-based optimization method that works on real-number-coded 
individuals (Price, 1999). For each individual ,i Gx

  in the current generation (G), DE 
generates a new trial individual ,i Gx′  by adding the weighted difference between two 
randomly selected individuals 1,r Gx

  and 2 ,r Gx
  to a randomly selected third individual 3,r Gx

 . 
The resulting individual ,i Gx′  is crossed-over with the original individual ,i Gx

 . The fitness of 
the resulting individual, referred to as a perturbed vector , 1i Gu +

 , is then compared with the 
fitness of ,i Gx

 . If the fitness of , 1i Gu +
  is greater than the fitness of ,i Gx

 , then ,i Gx
  is replaced 

with , 1i Gu +
 ; otherwise, ,i Gx

  remains in the population as , 1i Gx +
 . DE is quite robust, fast, and 
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effective, with global optimization ability. It does not require the objective function to be 
differentiable, and it works well even with noisy and time-dependent objective functions. 
The technique for the solving of this problem by means of analytic programming was 
inspired in neural networks. The method in this case study used input values and future 
output values – similarly as training set for the neural network and the whole structure 
which transfer input to output was synthesized by analytic programming. The final solution 
of the analytic programming is based on evolutionary process which selects only the 
required components from the basic sets of operators (Fig. 6 and Fig 7). Fig. 13 shows 
analytic programming experimental result for exact modelling during training phase.  
 

 
Fig. 13. Analytic programming experimental result for exact modelling during training 
phase. Red colour represents original data from training set (Fig. 8), while green colour 
represents modelling data using formula (6) 

The resulting formula, which calculates the output value xn was developed using AP (6):  

( )0.010009 2
317.150285.999

xn
nx

nx e
⋅ −

−−= ⋅ (6)

Analytic programming experimental results are shown in Fig. 14. Equation (6) also 
represents the behaviour of training set so that the given pattern was also successfully 
identified in the test set (Fig. 9). Other experiments gave similar results too. 
The operators used in GFS were (see Fig. 7): +, -, /, *, Sin, Cos, K, xn-1 to xn-4, exp, power. As 
the main algorithm for AP and also for constants estimation in meta-evolutionary process 
differential evolution was used. The final solution of the analytic programming is based on 
evolutionary process which selects only the required components from the basic sets of 
operators. In this case, not all components have to be selected as can be seen in one of 
solutions presented in (6). 
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Fig. 14. Analytic programming experimental result. Red colour represents original data from 
test set (Fig. 9), while green colour represents modelling data using formula (6) 

5. Conclusion 
In this chapter, a short introduction into the field of pattern recognition using system 
adaptation, which is represented via time series, has been given. Two possible approaches 
were used from the framework of softcomputing methods. The first approach was based on 
analytic programming and the second one was based on artificial neural networks. Both 
types of used neural networks (e.g. Hebb and backpropagation networks) as well as analytic 
programming demonstrated ability to manage to learn and recognize given patterns in time 
series, which represents our system behaviour. Our experimental results suggest that for the 
given class of tasks can be acceptable simple classifiers (we tested the simplest type of Hebb 
learning). The advantage of simple neural networks is very easy implementation and quick 
adaptation. Easy implementation allows to realize them at low-performance computers 
(PLC) and their fast adaptation facilitates the process of testing and finding the appropriate 
type of network for the given application. 
The method of analytic programming described here is universal (from point of view of 
used evolutionary algorithm), relatively simple, easy to implement and easy to use. Analytic 
programming can be regarded as an equivalent of genetic programming in program 
synthesis and new universal method, which can be used by arbitrary evolutionary 
algorithm. AP is also independent of computer platform (PC, Apple, …) and operation 
system (Windows, Linux, Mac OS,…) because analytic programming can be realized for 
example in the Mathematica® environment or in other computer languages. It allows 
manipulation with symbolic terms and final programs are synthesised by AP of mapping, 
therefore main benefit of analytic programming is the fact that symbolic regression can be 
done by arbitrary evolutionary algorithm, as was proofed by comparative study.  
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According to the results of experimental studies, it can be stated that pattern recognition in 
our system behaviour using all presented methods was successful. It is not possible to say 
with certainty, which of them reaches the better results, whether neural networks or 
analytic programming. Both approaches have an important role in the tasks of pattern 
recognition.   
In the future, we would like to apply pattern recognition tasks with the followed system 
adaptation methods in SIMATIC environment. SIMATIC (SIMATIC, 2010) is an appropriate 
application environment for industrial control and automation. SIMATIC platform can be 
applied at the operational, management and the lowest, physical level. At an operational 
level, it particularly works as a control of the running processes and monitoring of the 
production. On the management and physical level it can be used to receive any production 
instructions from the MES system (Manufacturing Execution System - the corporate ERP 
system set between customers’ orders and manufacturing systems, lines and robots). At the 
physical level it is mainly used as links among various sensors and actuators, which are 
physically involved in the production process (Janošek, 2010). The core consists of the 
SIMATIC programmable logic computers with sensors and actuators. This system collects 
information about its surroundings through sensors. Data from the sensors can be provided 
(e.g. via Ethernet) to proposed and created software tools for pattern recognition in real 
time, which runs on a powerful computer. 
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