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Problem 4.1 (120 points): Steady state unidirectional fully developed incompressible laminar flow in 
a rectangular pipe 

a)	 Write down the Navier-Stokes equation for the fully developed incompressible 
laminar flow in a pipe with arbitrary constant cross section and simplify the 
equations1. Furthermore simplify the equation for the case when the pressure gradient 
is fixed. Explain when your assumption holds. 

b)	 What is the name of this equation? Categorize that and give at least five examples of 
other cases (possibly from other physical domains) where we encounter the same 
equation. 

2b 

2a 

x 

y 

Now consider the upper rectangular pipe where . 
c) Find an analytical solution by separation of variables. 
d) (EXTRA CREDIT 10 Points) Explain how your solution (method) changes if we had 

a pulsating flow. You do not need to solve it thoroughly. 

1 If you have difficulty in deriving the equations you can look at different basic textbooks. In particular 
“Analysis of Transport Phenomena” by W. M. Deen can be suggested. 

a ! b
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e)	 Compute the maximum shear stress and the net volumetric flow rate. 
f)	 Compare the maximum shear stress and the pressure gradient in a square pipe with a 

circular pipe with the same area and the same flow rate. 

By now we have solved the equation analytically for our simple cross section, but in general it 
will be very hard or almost impossible to solve it analytically for arbitrary cross sections. Indeed 
we usually have to rely on numerical methods and here we will develop a finite difference 
method to solve the equation. 

g)	 Develop a finite difference scheme to solve the equation for the square pipe. Start by 
a mesh consisting of 2 elements (3 nodes) in each directions and refine it in each step 
by a factor of two until your net flow rate computed has a relative error of less than 
0.1% compared to the previous step. Use the proper integration for computing the 
flow rate. 

h)	 Compare the flow rate computed above with the analytical solution. 
i)	 Plot the flow rate as a function of mesh size and discuss the curve slope. 
j)	 Plot the numerical and analytical velocity contours. 
k)	 Due to Laplacian operator in the equations it sounds appealing to use a uniform grid. 

However, it is not always possible to use a uniform grid, especially in extreme cases 

like when 
a

b
! 0 . To manipulate those cases it is very good to nondimensionalize the 

equation. So nondimensionalize the equation with ! =
x

a
, " =

y

b

(!,")

. 

l)	 Solve the finite difference equation of previous part in domain for the case 
where “b=10a”. Use the same number of elements as the last step of part g. 

m)	 Compute the flow rate of previous part and compare it to the analytical solution. Also 
plot the velocity contours as well as shear stress contours. 

n)	 Use the MATLAB PDE tool and solve the equation of part k with a mesh preferably 
as much refined as part “l”. Explain clearly how you compute the volumetric flow 
rate and repeat part “m”. 

o)	 (EXTRA CREDIT 10 Points) Now consider the case where . Compute the 

volumetric flow rate normalized by “b” (flow rate per unit of depth) from analytical 
solution. Compare it with similar 1D problem and discuss whether they are 
equivalent or not. Also discuss what happens in the numerical solution and how it 
changes. 

a

b
! 0
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Solution: 

a) 

The axis of channel is described by “z” coordinate. In general we have 
 

r
V =

r
V (x, y, z,t) . 

However: 
• Laminar Flow: Vx = Vy = 0 . We are assuming that we have a unidirectional flow, 

and this is true provided that there is no rotational (swirling) component of flow 
introduced from upstream. This is also consistent with assuming a constant cross 
section for the pipe provided that we have a constant curvature and torsion (which 
holds for fully developed flow). 

• Steady Flow: 
 

r
V =

r
V (x, y, z)

Fully developed flow: 
 

r
V =

r
V (x, y,t)• 

•	 Ignore gravity effect or include it into hydrostatic pressure. From here forward we 
only deal with dynamic pressure. 

The above assumptions lead to 	Vx = Vy = 0, Vz = Vz (x, y) . So we can use the Navier-Stokes 
equation: 

 

!(
"

r
V

"t
+

r
V .#

r
V ) = $#P + µ#2

r
V

However, to proceed from here we ADDITIOANLLY assume that the channel axis is 
straight (otherwise think of e.g. fully developed steady state flow in a pipe with constant 
curvature and torsion). As a result of this extra assumption we can apply Navier-Stokes 
equation in Cartesian coordinate. For example the “x” coordinate equation will be: 

!(
"V

x

"t
+V

x

"V
x

"x
+V

y

"V
x

"y
+V

z

"V
x

"z
) = #

"P

"x
+ µ(

"2V
x

"x2
+
"2V

x

"y2
+
"2V

x

"z2
)

Insert velocity into Navier-Stokes (while initially ignoring steady flow assumption): 

 

x axis: 0 = !
"P

"x

y axis: 0 = !
"P

"y

z axis: 0 = !
"P

"z
function!of!z,t
{

!#
"V

z

"t
+ µ(

"2V
z

"x2
+
"2V

z

"y2
)

function!of!x,y,t
1 24444 34444

The first two equations lead to P = P(z,t) . However, from the 3rd equation we can see that 
!P

!z
can only be a function of time (not “z”). Furthermore, if we incorporate the steady flow 

assumption we will have: 
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!P

!z
= constant =

dP

dz
=

µ(
!
2
Vz

!x
2
+
!
2
Vz

!y
2
) =

dP

dz

So the equation can be represented as: 

!
2
Vz

!x
2
+
!
2
Vz

!y
2
=
1

µ

dP

dz

"
2
Vz (x, y) =

1

µ

dP

dz
= constant

b) 

This is a special case of Poisson’s equation with constant source in 2D domain. It can be 
also categorized as a 2D elliptic partial differential equation with homogeneous Dirichlet 
boundary condition. Some other cases where we have the same equation include2: 

•	 Electrostatic potentials: !2
V = "

#

$
0

!
0

!2
V = 4"G#

, where “V” is the electrostatic potential, ! is 

the charge density and is the electrical permittivity. 
•	 Gravitational potentials: , where “V” is the gravitational potential, 

is the mass density and “G” is the gravitational constant. 
!

•	 Heat transfer: !
2
T = "

H
v

k
, where “T” is the temperature, “k” it thermal 

conductivity and “Hv” is the rate of energy input per unit volume from external 
power sources (for example from a reaction). 

•	 Diffusion: !2
C = "

R
v

D
, where “C” is total molar concentration of a species, “D” 

it the diffusion coefficient of that and “Rv” is the rate of formation of that species 
per unit volume (for example from a reaction). 

•	 Transverse deflection of elastic membrane: , where “z” is the 

deflection, “p” is pressure load and “N” is the constant tension force per unit 
length. 

2 Other examples can be found at: "Introduction to the Finite Element Method", J.N. Reddy, McGraw Hill 
Publishers, 2nd Edition, Page 7 or http://math.nist.gov/mcsd/savg/tutorial/ansys/FEM/. 

!
2
z(x, y) = "

p

N
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• Torsion of arbitrary cross sections: !2"(x, y) = #2G$ , where “ ! ” is the stress 

function ( ! zx =
"#

"x
, !

zy
=
"#

"y
), “G” is shear modulus load and “ ! ” is the angle of 

twist per unit length. 

• Transverse deflection of plate: !4
z(x, y) =

"
4
z

"x
4
+ 2

"
4
z

"x
2
"y

2
+
"
4
z

"y
4
=
q

D
, where “z” 

is the deflection, “q” is pressure load and “D” is a constant called flexural rigidity 
of the plate (related to plate thickness, modulus of elasticity and Poisson’s ratio). 

to two Poisson’s equations: This equation can be broken 

!
2
z(x, y) = u, !

2
u(x, y)=

q

D
. 

• Pressure Poisson’s equation: 
 
!
2
P = f (

r
V ,") , where “P” is the pressure, “V” is the 

!velocity and “ ” is the kinematics viscosity. This equation is derived by taking 
the divergence of the momentum equation (only applicable for an incompressible 
flow field). 

c) 

!
2
Vz

!x
2
+
!
2
Vz

!y
2
=
1

µ

dP

dz

We define a new variable u =
V
z

1

2µ

dP

dz

. So we have the new equation: 

!
2
u(x, y) =

"
2
u

"x
2
+
"
2
u

"y
2
= 2

The BC (boundary condition) for the above equation comes from the zero velocity of fluid 
particle at the pipe wall: 

u(x = ±a, y ) = 0

u(x , y = ±b) = 0

While the BCs are homogenous (equal to zero), the Poisson equation itself is not 
homogenous. So we need to homogenize it (transform it to the Laplace equation) to be able to 
utilize the method of separation of variables. Since the equation and the BCs are linear we can 
achieve this easily by assuming u = v + w , where “v” is a particular solution and “w” is the 
solution of the Laplace equation: 

5




2.29: Numerical Fluid Mechanics Solution of Problem Set 4 

!
2
v(x, y) =

"
2
v

"x
2
+
"
2
v

"y
2
= 2

!
2
w(x, y) =

"
2
w

"x
2
+
"
2
w

"y
2
= 0

The “v” solution should be chosen cleverly such that at least one set of boundary conditions 
on “w” will be homogenous (otherwise we cannot apply the method of separation of variables 
on “w”). 

Two appealing choices are v = x2 ! a2 or v = y2 ! b2 . However, we chose v = x2 ! a2

because “a<b” and this will represent the dominant term of solution for ideal cases where 
a

b
! 0 . So now we can recalculate the BC values for “w”: 

w(x = ±a, y ) = 0

w(x , y = ±b) = !(x
2
! a

2
)

To solve the equation on “w” we assume w(x, y) = X(x)Y (y) . So we have: 

X(±a) = 0

X"

X
+
Y "

Y
= 0

X"

X
= !

Y "

Y
= constant= ! "

X"+ "X = 0

Y "! "Y = 0

#
$
%

To find the conditions on “ ! ”, we start with “X” equation because that is the one whose 
BCs are separated: 

X"+ !X = 0, X(±a) = 0

! = "# 2
< 0$ X = C

1
e
# x

+ C
2
e
"# x

! = 0 $ X = C
1
+ C

2
x !!!!!!!!!!!!!!!!!!!!!!

! = +# 2
> 0$ X = C

1
cos(#x) + C

2
sin(#x)

%

&
'

(
'

(1)

(2)

(3)

The only nontrivial (nonzero) solution corresponds to the case when “ ! ” is greater than 
zero. To do so we have: 
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X(+a) = C
1
cos(!a) + C

2
sin(!a) = 0

X("a) = C
1
cos(!a) " C

2
sin(!a) = 0

For the nontrivial solution we have: 

det
cos(!a) sin(!a)
cos(!a) " sin(!a)
#

$
%

&

'
(

)

*+
,

-.
= 0

sin(2!a) = 0" 2!a = k# k = 1,2,3,....

This leads to two series of solutions: 

1) cos((n +
1

2
)!
x

a
) corresponding to 

2) sin(n!
x

a
) corresponding to 

! = (n +
1

2
)
"

a
, n = 0,1,2,....

! = n
"

a
, n = 1,2,3,....

However, due to the symmetry, only the 1st series of solution exists for this problem. As a 
result we have: 

!
n
= "

n

2
= (n +

1

2
)
#
a

$
%&

'
()
2

, X
n
(x) = cos("

n
x)

The Y(y) can be obtained accordingly: 

Y "! "Y = 0#Y
n
(x) = C

1
cosh($

n
x) + C

2
sinh($

n
x)

The symmetry on “Y” implies that C2 is zero so: 

!
n
= (n +

1

2
)
"

a
, X

n
(x) = cos(!

n
x), Y

n
(y) = cosh(!

n
y)

The “w” solution will be obtained from the weighted series summation: 

w
n
(x, y) = X

n
(x)Y

n
(y)

w(x, y) = Cnn=0

n=!

" wn (x, y) = Cnn=0

n=!

" cosh(#ny)cos(#nx)

The C
n

weights have to be calculated from boundary conditions: 

w(x, y = ±b) = !(x
2
! a

2
) = Cnn=0

n="

# cosh($nb)cos($nx)
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The weights can be computed from Fourier expansion by cos(!
n
x) : 

w(x, y = ±b) = !(x
2
! a

2
) = Cnn=0

n="

# cosh($nb)cos($nx)

C
n
cosh(!

n
b) =

"(x2 " a2 )cos(!
n
x)dx

"a

+a

#

cos
2
(!

n
x)dx

"a

+a

#
=
2

a
"(x2 " a2 )cos(!

n
x)dx

0

+a

#

C
n
cosh(!

n
b) =

4

a

cos(n" )

!
n

3
=
4

a

(#1)
n

!
n

3

So the solution will be in this form: 

u(x, y) = v + w = (x
2
! a

2
) +

4

a

(!1)
n

"n

3n=0

n=#

$
cosh("ny)

cosh("nb)
cos("nx)

d) 

The equation can be rather complicated because in general even the nonlinear terms have to 
be included in the Navier-Stokes equation. 

!(
"V

z

"t
+V

z

"V
z

"z
) = #

"P

"z
+ µ(

"2V
z

"x2
+
"2V

z

"y2
+
"2V

z

"z2
)

For low Reynolds numbers we will have: 

!(
"V

z

"t
) = #

"P

"z
+ µ(

"2V
z

"x2
+
"2V

z

"y2
+
"2V

z

"z2
)

The above equation is linear and we can apply the method of separation of variables for 

general case of arbitrary driving pressure. Particularly, the “ 
!P

!z
= constant ” part will generate 

the same solution as before. 

However, now consider the case where 
!P

!z
= Ae

iwt 3. Now if the pressure wave is too long 

(compared to channel size so that 
!V

z

!z
<<

!V
z

!x
,
!V

z

!y

4), then we have: 

3 Here we are looking at a particular z. However, the velocity of other axial locations will have some phase 
lag with respect to this particular z (look at below note for further details). 
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!(
"V

z

"t
) = #

"P

"z
+ µ(

"2V
z

"x2
+
"2V

z

"y2
)

 
Vz (x, y, z,t) =

%V (x, y)e
iwt

The steady solution to this system can be easily obtained by plugging 
into the equation so we have: 

 

!("iw %V ) = "A + µ(
#2 %V

#x2
+
#2 %V

#y2
)

This equation can be solved by separation of variables. However, it will be rather much 
more complicated due to newly added imaginary term. Consequently here 

 
%V (x, y) will be a 

complex number and includes some phase lag 5. 

e) 

The volumetric flow rate can be computed from velocity integration: 

Q = VzdA =
A

!
1

2µ

dP

dz
" 4 udydx

0

b

!
0

a

!

Q =
2

µ

dP

dz
! "

2

3
a
3
b +

4

a

("1)n

#n

5n=0

n=$

%
sinh(#nb)

cosh(#nb)
sin(#na)

&
'
(

)
*
+

Q =
2

µ

dP

dz
! "

2

3
a
3
b +

4

a

("1)n

#n

5n=0

n=$

% tanh(#nb)("1)
n

&
'
(

)
*
+

Q =
2

µ

dP

dz
! "

2

3
a
3
b +

4

a#n

5n=0

n=$

% tanh(#nb)
&
'
(

)
*
+

4 Otherwise note that for example: 

 

V
z
(x, y, z,t) = V

z
(x, y) + %V

z
(x, y,t ±

z

c
) = V (x, y) + %V (x, y)cos(w(t ±

z

c
))

 

!
2
V
z

!z
2
= "(

w

c
)
2 %V (x, y)cos(w(t ±

z

c
)) = "(

2#

L
)
2 %V

z

Where “c” is the speed of pressure wave and “L” is its wavelength. However, note that due to rather 
incompressible behavior of fluids, the “L” is too large and we can ignore above term (e.g. in water the 
sound\pressure wave speed is about 1.5 Km/sec). 

5 A very similar problem is solved in following publication: “S. Tsangaris and N. W. Vlachakis”, “Journal 
of Fluids Engineering”,“Exact Solution of the Navier-Stokes Equations for the Fully Developed, Pulsating 
Flow in a Rectangular Duct With a Constant Cross-Sectional Velocity ”, 2003. 
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Numerical evaluation of the above summation for square channel (a=b case) leads to: 

Q !
"0.5623

µ

dP

dz
a
4

Note that the 1st term of the summation is equal to 0.3836 ! a4 (comparable with out of the 

summation term !
2

3
a
4
= !0.6667 " a

4 ), while the 2nd term is equal to 0.0017 ! a4 . 

Consequently the 1st term will suffice very well for calculation of flow rate (due to sharp drop 
of terms by inverse fifth power). 

Note that evaluation of above series with MATLAB is very simple and can be done very 
quickly: 

Rather than pressure, the only nonzero components of stresses are: 

!
yz
= µ

"V
z

"y

!
xz
= µ

"V
z

"x

Note that at each point there is a direction attributed to the maximum shear stress. The 
maximum shear stress is related to the maximum directional gradient of velocity which is equal 
to the absolute value of the gradient of the velocity: 

!MAX (x, y) = µ "Vz (x, y)

!MAX (x, y) = ! xz
2
+ ! yz

2

To compute the shear we need “u” derivatives: 

!u(x, y)

!x
= 2x "

4

a

("1)
n

#n

2n=0

n=$

%
cosh(#ny)

cosh(#nb)
sin(#nx)

!u(x, y)

!y
=

4

a

("1)
n

#n

2n=0

n=$

%
sinh(#ny)

cosh(#nb)
cos(#nx)

So the shear stress at wall y=b will be: 
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! yz (x, y = b) =
1

2

dP

dz

4

a

("1)
n

#n

2n=0

n=$

% tanh(#nb)cos(#nx)

And the shear stress at wall x=a will be: 

! xz (x = a, y) =
1

2

dP

dz
2a "

4

a

("1)n

#n

2n=0

n=$

%
cosh(#ny)

cosh(#nb)
sin(#na)

&
'
(

)
*
+

! xz (x = a, y) =
1

2

dP

dz
2a "

4

a#n

2n=0

n=$

%
cosh(#ny)

cosh(#nb)

&
'
(

)
*
+

The nature of problem suggest that due to symmetry and due to the fact that a<b, the 
maximum shear will happen at “x=a, y=0” 6: 

!
max

= ! xz (x = a, y = 0) =
1

2

dP

dz
2a "

4

a#n

2n=0

n=$

%
1

cosh(#nb)

&
'
(

)
*
+

However, other than physical intuition, it is rather hard to make a clear comparison between 
shear stress at “x=a” and “y=b” walls (to find the maximum shear stress). So we indeed 
compare them by plotting their values, shown on the next page. As a result for a=b case the 
maximum shear will be: 

!
max a=b

" 0.675 # a
dP

dz

Note that for special case of a=b, the shear profile at both walls should be the same, as well 
as the velocity profile at x=0 and y=0 planes. Indeed this is a very good point to check our 
solution and we utilize that in the attached file “C2p29_PSET4_1a.m”. From here forwards, we 
utilize the dimensionless variables for plots and discussions and they are defined accordingly: 

V
z

*
=

V
z

!
a
2

µ

dP

dz

!
*
=

!

a
dP

dz

Q
*
=

Q

!
a
3
b

µ

dP

dz

6 Note that cosh(!ny)

cosh(!nb)
" 1 and 4

a!
n

2n=0

n="

# =2a, so clearly the maximum shear stress at x=a wall happens at 

y=0. 
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Note that velocity profiles at x=0 and y=0 planes can be computed from below relations: 

u(x = 0, y) = !a
2
+

4

a

(!1)
n

"n

3n=0

n=#

$
cosh("ny)

cosh("nb)

u(x, y = 0) = (x
2
! a

2
) +

4

a

(!1)
n

"n

3n=0

n=#

$
1

cosh("nb)
cos("nx)

The dimensionless velocity plot is shown here and as we expected for a=b case, both 
velocity profiles match together (while they both reach a maximum about max(V

z

*
) ! 0.3 ). 

However as long as ( 
b

a
) ratio increases: 

• The velocity peak very quickly reaches max(V
z

*
) ! 0.5 (which means that effective 

friction has decreased). 
• The velocity profile at x=0 plane becomes almost flat (like 1D case). 

V
z

*
=
1

2
(1! (

x

a
)
2
)• The velocity profile at y=0 tends to the ideal 1D solution of 
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The dimensionless shear stress is plotted below and again as we expected the wall shear 

stress at both walls match for a=b case. On the other hand, as long as ( 
b

a
) ratio increases, the 

!
xz

value tends to ideal 1D value equal to !
xz
= a

dP

dz
. 

f) 

For a circular pipe with similar conditions and a radius equal to “R” the velocity profile will 
be equal to: 

V
z!circular

=
1

4µ

dP

dz
(r
2
! R

2
)
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Qcircular =
!"R

4

8µ

dP

dz

!
max"circular

=
R

2

dP

dz

Now note that if the square pipe and the circular pipe have the same area, then we have 
4a

2
= 4b

2
= !R

2 . Also as problem states they have the same flow rate: 

Qcircular = Qsquare

!0.5623

µ

dP

dz
a
4
(
dP

dz
)square =

!"R
4

8µ
(
dP

dz
)circular

(
dP

dz
)square

(
dP

dz
)circular

=
!R

4

0.5623" 8a
4
=

!R
4

0.5623" 8(
!R

2

4
)
2

=
2

0.5623" !
# 1.1322

So we can see that the square channel has a rather higher friction for flow compared to 
circular channel. Also we can compare the maximum shear stress: 

!max" square

!max"circular

=

0.675 # a(
dP

dz
)square

R

2
(
dP

dz
)circular

= 1.1322 # 0.675 #

$
R

2
R

2

% 1.354

g) 

The o(h2 ) formulas are utilized for Laplacian approximation and shear stress evaluation: 

!
2
fi, j "

fi#1, j + fi+1, j + fi, j#1 + fi, j+1 # 4 fi, j

h
2

dfi, j

dx
!
3 fi, j " 4 fi"1, j + fi"2, j

2h

Symmetry can be incorporated to limit the unknowns to only one quadrant of channel. The 
attached file “C2p29_PSET4_1b.m” is used to solve the equations. Note that by modulating the 
program we can simplify our task a lot. As a general advice, it is very good to define two 
modules to relate double indexes unknowns (i,j) to single indexes (I) and inversely. 

The 1st attempt is based only on one central node at x=y=0 and its corresponding flow rate is 
computed by trapezoidal rule. For finer meshes, the Simpson’s 1/3 rule is utilized for flow rate 
computation. 
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2.29: Numerical Fluid Mechanics Solution of Problem Set 4 

The program output is shown here and as can be checked for n =
a

h
equal to 32 ( 322

unknown nodal velocity), the relative error in flow rate has decreased below desired value equal 
to 0.1%. At the same time, the shear stress has reached the analytical value. 

h) 
The numerical value corresponding to the previous step is equal to Q

num

*
= 0.56219 . The 

analytical value is equal to Qanalytical

*
= 0.562308 and as a result the numerical value has a 

relative error about 0.02%. 

i) 
The below graph is computed by the previous file. As it can be seen, the absolute error in 

the flow rate is proportional to h2 (the slope can be checked in the logarithmic plot). This 
indeed corresponds to the o(h2 ) accurate solution of velocity field, followed by an o(h4 )
accurate integration. 

Slope = 2 
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j) 
Plots are shown here and as can be seen, both match very well. 
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k) 

!
2
u(x, y) =

"
2
u

"x
2
+
"
2
u

"y
2
= 2

! =
x

a
, " =

y

b
# dx = ad!, dy = bd"

u(x, y) = u(a!,b") =U(!,")

1

a
2

!2U

!"2
+
1

b
2

!2U

!# 2
= 2

!2U

!"2
+
a
2

b
2

!2U

!# 2
= 2a

2

l) 

The previous file is used again to solve the above equation ( 
!2U

!"2
+
a
2

b
2

!2U

!# 2
= 2a

2 ). Note 

that we generate “n+1” nodes in (!,") domain in each direction, so we will have 

!" = !# = h
*
=
1

n
. Consequently: 

Define ! =
a
2

b
2
"

#2U

#$2
+
a
2

b
2

#2U

#% 2
&
Ui'1, j +Ui+1, j + !Ui, j'1 + !Ui, j+1 ' 2(1+ !)Ui, j

h
*2

The solution is shown on the next section. Note that plots correspond to n=32 unknown 
nodes (as previous part). 

m) 
The program output is shown here: 
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Accordingly, the numerical value corresponding to n=32 is equal to Q
num

*
= 1.2484 . The 

analytical value is equal to and as a result the numerical value has a relative Qanalytical

*
= 1.2493

error about 0.07%. The error is higher than previous case (which was equal to 0.02%) and this 
can be due to reduced element density in (x,y) domain (although we have the same element 
density in (!,") domain). 

Note that for numerical evaluation of series, we have to break the “cosh” or “sinh” terms 
(otherwise individual terms will tend to infinity and blow up): 

cosh(!ny)

cosh(!nb)
=
e
!n y + e

"!n y

e
!nb + e

"!nb
=
e
!n y

e
!nb

1+ e
"2!n y

1+ e
"2!nb

#
$%

&
'(

cosh(!ny)

cosh(!nb)
= e

!n (y"b)
1+ e

"2!n y

1+ e
"2!nb

#
$%

&
'(
, use!for y > 0 (note that y " b < 0)

Also note that: 

e
!n (y"b) = e

(n+0.5)#
(y"b)

a

Slowest Term due to n = 0 : e
!0 (y"b)

= e

#

2

(y"b)

a

e
!0 (y"b)

y=b"2a = e
"#

$ 0.04

Higher terms decay faster and the solution is governed by 1st term corresponding to n=0. 
Note that at a distance equal to “2a” from “y” wall (where y=b-2a), the exponential term has 
decayed from “1.0” to “0.04”. This means that at this distance, the “y” edge effect has almost 
totally decayed (problem is almost 1D). This can be also checked in all previous and next plots 

for 
b

a
= 10 . 

Velocity and shear stress contours are shown on the next page. As can be seen, both 
analytical and numerical values match very well. 
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n) 
The MATLAB “pdetool” is used for simulation and the settings are saved in attached 

“C2p29_PSET4_1c.m” file. A rectangle corresponding to the upper-right quadrant of the 
channel is drawn and it is meshed by triangular elements. We had 332 = 1089 nodes (but 322
unknowns) in the previous step, so the maximum edge size is set to the value of 0.13! a to 
achieve a similar number of nodes equal to 1085. While we have used almost the same number 
of nodes, there could be a noticeable error due to smaller number of nodes in more important 
direction of “x”. 

Geometrical Domain and Boundary Edges: 

The heat transfer equation is similar to our equation and we use that instead which is already 
setup in MATLAB pdetool (alternatively we can setup a generic hyperbolic equation). The 
equation settings are shown in the MATLAB windows on the next page. Note the similarity 
between thermal domain and our problem: 

• Temperature (T) ! Velocity ( V
z
) 

• Conductivity (k) ! Viscosity ( µ ) 

• Heat Source (Q) ! Pressure Gradient ( 
dP

dz
) 

To find the normalized velocity solution the “k” and “Q” are set to “1” and “-1”. Next we 
set the boundary conditions. The boundary edges are shown on above right picture. The red 
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edges (number 1 and 2), are set to prescribed zero temperature, which is named as Dirichlet 
boundary condition. On the other hand, the blue edges (number 3 and 4) are set to zero 

temperature flux (symmetry implies that 
!V

z

!x
is zero for edge 4, as well as 

!V
z

!y
for edge 3). 

This is indeed named as Neumann boundary condition due to prescribed derivative with respect 

to the edge unit vector named as  
r
n (given value of 

 

!T

!
r
n
= "T .

r
n ). 

Equation Setting: 

Boundary Conditions for Edge 1-2: 

Boundary Conditions for Edge 3-4: 
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Finally we can solve the equation and attain the normalized velocity distribution as shown 
below. Note that the general appearance of solutions sounds OK and it is similar to our expected 
analytical solution. The peak normalized velocity is about 0.50 which is very close to expected 
value of 0.50 (this was achieved in our previous numerical scheme as well). 

Finally we compute the net flow rate. To do so we export the solution and mesh to the 
workspace and utilize attached “C2p29_PSET4_1d.m” file. The file simply calculates the area 
of each triangle, multiply it by average of nodal velocities of triangle vertices and sum it on all 
triangles. The function “pdetrg” is used to calculate the area of elements from triangulation data 
and nodal coordinates. 
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By running above program, we get Qpde

*
= 1.2460 . The analytical value is equal to 

and as a result the pdetool numerical value has a relative error about 0.27%. Qanalytical

*
= 1.2493

Shear stress contours are shown below and we have used “pdegrad” to compute the velocity 
gradients. Again shear stresses have small errors, while analytical value of max( !

xz

* ) is equal to 
1.0 but here we get 0.96. Also while analytical value of max( !

yz

* ) is equal to 0.73 but here we 
get 0.69 . As a result, we see that the error of MATLAB general pde solver is higher (using the 
same number of nodes) for our particular problem compared to our written codes. This could be 
possibly due to lower mesh density in “x” direction. Furthermore, note that the heat flux 
quantity corresponds to the previously defined maximum shear stress of arbitrary points 
( !MAX (x, y) = µ "Vz (x, y) ). 

o) 

Q =
2

µ

dP

dz
! "

2

3
a
3
b +

4

a#n

5n=0

n=$

% tanh(#nb)
&
'
(

)
*
+

Q =
2

µ

dP

dz
! "

2

3
a
3
b +

4a
4

# 5

1

(n + 0.5)
5n=0

n=$

% tanh(&nb)
'
(
)

*
+
,

Q
*
=

4

3
!
8

" 5
(
a

b
)

1

(n + 0.5)
5n=0

n=#

$ tanh(%nb)
&
'
(

)
*
+
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lim
a

b
!0

tanh("nb) = 1

lim
a

b
!0

Q
*
=
4

3

Note that the limiting value of Q* is not dependent on either “b” or “a”. Even for our 

previous case Q*
! 1.25 , which is rather closes to 

4

3
! 1.33 . 

While this approximation, favors 1D simulation it should be noted that edge effects are still 
present at “y” edges. This indeed presents a severe challenge to capture details around edges. So 
we have to solve the equation for a very large 2D domain while it is mostly a 1D problem. A 

remedy can be to solve the problem in a larger 
a

b
ratio. This unrealistic 

a

b
ratio depends on our 

required accuracy, but usually a ratio about 
1

5
is fine. 
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