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2.29 NUMERICAL FLUID MECHANICS— SPRING 2007

Problem Set 2
Posted 02/25/07, due Thursday 4 p.m. 03/8/07, Focused on Lecture 4 to 7

Problem 2.1 (6% of final grade): Advance your programming skills and review root finding methods
Review MATLAB help about:

« Function handle

. eval

« nargin

« varargin

« cell: as a data type

. switch: as flow control command
o fprintf

. lower

Here we want to develop a script as a generalized one dimensional solver. Later you can use it for
next problems. The function that you write should provide the maximum ease of use, as well as the
maximum amount of flexibility and adjustment. To that end and to develop a user friendly program:

« The function should have default values for everything so that the user can run it with
minimum number of inputs.

« The input function (to be solved) should be either a function handle or a string (like
‘3ExN3-5%x+17).

o The program should have a nice command line output or plot displaying the gradual
progress of solution.

« The user should be able to adjust/provide the below options, if necessary. Note that user
should not need to memorize any order for them and option names should not be case

sensitive:
a) Method: Newton, Secant, Bi-Section, False-Position, Modified False-
Position
b) Initial guess: it can be two numbers for methods like Bi-Section
©) Derivative of f (note that you can compute the derivative if user
provides you with a string as solution equation)
d) Absolute tolerance on x or f
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e) Relative error on x
) Maximum number of iterations
) Plot

Here is what function should be like:

[x_solution, x_iterations, f _iterations] = solver(func_name)
[x_solution, x_iterations, f _iterations] = solver(func_name, x_guess)
[x_solution, x_iterations, f iterations] = solver(func name, x guess, OPTIONS)

A few example calls are shown:

[x fl=solver( x-sin(x)');
[x _f]=solver(@func}; % where func is a function handle

[x f,x it,f itr]=solver(@func);
f,x it,f itr]=solver(&func,2);

[x £,x it, f itr]=solver(&func,[-2

0 ], 'method’', 'Bi-Section’);
[x £f,x it,f itr]=solver(&func,[-2 2] i

B
s MEthod', 'bi-secTION'

2
2
it,f itrl=solver(&func,[=2 2
2
2

(2 L,x, 1,'plot’, 'off');
[x £,x it,f itr]=solver(@func,[-2 2], method', 'Bi-Section’','plot’','off'};
[x £,%x it.f itr]=solver(@func,[-2 2], 'plot', 'off', 'method', 'Bi-Section');

[x f,x it,f itr]=solver('xz-sin(x)',2, method', Newton');
[x f,x it,f itr]=solver(@func,2, 'method', Newton','f derivative',8d func);

[x f,x it,f itr]=solver('x-sin(x)',2, max iteration',10, 'method’', 'Newton'};
[x £,x 1t f itr]=solver(&func 2, 'max_iteration',10, 'abs_ tolerance',le-8, 'rel tolerance',le-6, plot',’'on'):

After writing the program you have to UPLOAD IT ON THE COURSE WEBSITE and PRINT IT
AS WELL. That’s all you have to do for this problem. This will replace the MATLAB workshop
assignment about MATLAB programming.

Solution:

Look at the attached MATLAB file “solver.m”.
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Problem 2.2 (10 Points): Examine your root finding script

d)
e)

Solution:

a)

b)

We are interested to find the roots of:
f(x)=e"sinx+e *cos’2x

How many roots does this equation have?

Can you approximate analytically some roots of this equation and characterize their
type? Discuss.

Find all the roots where |x

< 4. Use above program and examine all the methods for

any root. For each root use “plotyy” command and plot two things at the same figure:
- x versus number of iterations
- Relative error of x (with respect to the most trusted solution) versus number of
iterations (use logarithmic scale if needed)
Repeat part ¢ and find the fist two roots where x > 20.
Repeat part ¢ and find the fist two roots where x < -20.

Infinite number of roots, due to infinite number of oscillations generated by
trigonometric function multiplied by an exponential function (see next part).

The function can be approximated by:

X =40 = f(x)= e sinx

x — —o0=> f(x)=e “cos’ 2x

The roots for |x| — o can be approximated accordingly. For x — +eo, the value of function
changes its sign so we have:

X—=>to=0=¢e"sinx, = x, =km, where k — +oo

On the other hand the situation of x — —eois a bit tricky. Here due to cos’ 2x, the function

is mostly positive (as long as governed by e *cos’ 2x). In other words, the roots will like
to be double roots. However, if the other term (even if exponentially small) is positive, then
indeed we do not have a root. In that case the function gets very close to x axis but does not
touch it. Here there are a few problems:
- Due to zero slope, convergence will be slow for gradient methods (e.g. Newton’s
method).
- Even the bracketing methods will have troubles, locating initial guess. Because
the other small negative term will make the two roots very close together.
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- Practically as long as we get very closed to x axis we have found a root. However,
we are mathematically fooled!

Fortunately, in this particular case we know the structure of our functions and we can
distinguish the two cases in advance.

_ kr w . :
x—>-—c0o=0=e " cos’2x, = x, = ?+Z’ provided sinx, <0 where k — —oo

v =2dn-Tx =2k =T ke
4 4

C) The function is plotted in the |x| < 4. We can zoom in and distinguish 5 roots in the

. . RY/4
given region. Note that we do not have a root around 27 — T =3.92.

explx] sin(x}+exp(-x) cos 2 ><]2

16 F—T—— | .............. | .............. | .............. | .............. | .............. | .............. | ............. =

10

The attached program C2p29 PSET2 2.m is used for this problem. The program
calls the solver with different methods and initial guesses. In all cases the maximum
number of iterations is set to 20 and a relative and absolute error less or equal to 10™'°
and 107" are chosen'. In particular the output of solver for the root around 3.2 is
shown on the next page.

! Remember problem set 1 and note that eps(1) is about 2.2*¥107'°. As a result when a solution converges, either
the consecutive solutions become equal or they fluctuate with a relative error of order 10™°. This can be seen in
the plots of next page.
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4 X o x_n fo fn df o x_rel error

0 =3.14546479 +9.67744e-01 -4.69069a-02 -2.12850e-01 +1.44541e+00%
1 +3.14345718 —4.69068%9e-02 -9.41699e-05 -2.33646e-01 -6.38661e-02%
2 +3.14345314 -9.41699e-05 -3.82114e-10 -2.32708e-01 +1.28734e-04a%
E +3.14345314 -3.82114e-10 +4.93355e-135 -2.32707e~+ +5.22376e-10%
4 +3.14345314 +4.93355e-15 +4.93355e-15 -2.32707e+ =0.00000e-00%

Final Soluticn: f({x= =3.1434531358588473)=-4.933554e-15 with KEWTOK method and 4 iteraticns

4 ® 0 x_1 ® 2 £ o £l 32 df = 1 x_rel error

0 +3.10000000 =3.20000000 +3.14101303 +9.67744-01 -1.391dee~-00 +5.06440e-02 -2.35900e~01 +1.30573e+00%
1 =3.20000000 +3.14101303 +3.14331973 -1.39188e~-00 -5.66440e-02 =3.10398e-03 -2.45563e-01 +7.33843e-02%
K =3.14101303 +3.14331973 +3.14345340 To.0644%0e-02 =3.1039ge-03 -7.6005900e-06 -2.32107e+01 25427e-03%
E| +3.1 1973 +=3.14345346 +3.14345314 +3 39ge-03 -7.60900e-08 +1.01793e-08 2675e-01 04033e-05%
] +3.14345346 +3.14345314 +3.14345314 -7.60900e-06 +1.01793e-09 -93355e-15 -2.32707e-01 +1.39155e-09%

=3.14345314 +3.14345314

=3.14345314

+1.01733e-09

+4.93355e-15

+4.93355e-15

-2.32707e+01 ~0.00000e-00%

Final Solution: f£(x= +3.1434531358588473)=+4.933554e-15 with SECANT method and 5 iterations

X rel error

o -3.20000000 =3.10000000 +3.14101303 -1.39186e-00 +9.67744e-01 -5.66440e-02 =1.30573e-00%
1 -3.20000000 =3.14101303 +3.14331973 -1.391d6e-00 Th.0b4a40e-02 +3.10398e-03 T7.33843e-02%
2 T3.Z0000000 +3.14331973 +3.14357141 -0.9592de-01 +3.1039de-03 -2.75276e-03 ~H.00620e-03%
3 +3.14331973 +3.14345312 -2.75276e-03 =3.10398e-03 +3.68190e-07 -3.76321e-03%
L 3. #5312 3. 45314 -2.75270e-03 ~3.0d190e-07 .36871e- ~5.03274e-07Y%
5 +3.14345314 +3.14345314 -1.37638e-03 36671e-11 «36573e-11 +1.19377e-10%
B 345314 +3.14345314 +3.14345314 -4.36573e-11 36671e-11 .93355e-15 T3.9680%e-11%
7 +3.14345314 +3.14345314 +3.14345314 -4.36573e-11 +4.93355e-15 +4.93355e-15 =0.00000e-00%

Final Sclution: fi{x= =3.1434531358588473)=+4.933554e-15 with MODIFIED FALSE- I0N method and 7 iterations

0 =3.20000000 =3.10000000 +3.14101303 -39186e-00 +5.66440e-02 - 30573e-00%
1 +3.20000000 =3.14101303 +3.14331973 -1.39186e~-00 +2.b04%0e-02 +3.1039He-03 + 3843e-02%
F =3.20000000 +3.14331873 +3.14344585 -1.39186e-00 +3.10398e-03 ~l.69467e-04 -4.01221e-03%
3 +3.20000000 +3.1%34%%085 +3.14345274 -1.39180e-00 -l.69467e-04 +9.25045e-06 + 90Z26e-04&%
4 =3.20000000 +3.14345274 +3.14345311 -1.39186e-00 -9.25045e-06 =5.04936e-07 =1.19556e-05%
a3 +3.20000000 +3.14345311 +3.14345313 -1.39186e~-00 +5.04936e-07 +2.7561%9e-08 +B.3253%3e-07%
] =3.20000000 +3.14345313 45314 -1.39186e-00 =2.7561%e-08 -1.50446e-09 =3.56218e-08%
i ~3d.20000000 +3.14345314 +3.14345314 -1.39186e~-00 +1.50446e-09 +8.21209e-11 +1l.94442e-09%
8 =3.20000000 +3.14345314 +3.14345314 -1.39186e-00 +8.2120%9e-11 +4.47965e-12 -1.061392-10%
9 +3.20000000 +3.14345314 +3.14345314 -1.39186e-00 +&.47965e-12 +2.42018e-13 +3.79225a-12%
10 ~3d.20000000 +3.14345314 +3. 43314 -1.39186e-00 ~2.42618e-13 +1.52056e-14 -3.108042-13%
11 =3.20000000 +3.14345314 +3.14345314 -1.39188e~-00 -1.52656e-14 +4.93355e-15 +1l.541274e-14%
12 =d.20000000 +3.14345314 +3.14345314 -1.39186e-00 +4.93355e-15 +4.93355e-135 =0.00000a-00%
Final Sclution: f£(x= +3.1434531358588473)=+4.933554e-15 with FALSE-POSITION method and 12 iterations

i3 ® 1 ¥ u x_n £ fu fn x_rel error

0 ~3d.20000000 =3.10000000 =3.15000000 -1.391d6e~-00 +8.877449e-01 -1.53352e-01 +1.58730e~-00%
1 +3.15000000 =3.10000000 =3.12500000 -1.53352e-01 +3.67744e-01 21518e-01 =8.00000e-01%
2 +3.15000000 =3.12500000 =3.13750000 -1.53352e-01 2151de-01 +1.37708e-01 +3.98400e-01%
3 =3.15000000 =3.13750000 -1.5335%e-01 37708e-01 -6.91028e-03 =1.98807e-01%
d =3.13750000 -6.91028e-03 =1.37708e-01 -b.56261e-02 +9.95025e-02%
] =3.14002500 -6.91028e-03 ~b.56dble-02 +2.94l48e-02 + 205e-02%
] +3.14218750 -6.91028e-03 +2.94148e-02 =1.12665e-02 -48571e-02%
T =d.14375000 =3.14296873 =3.1433593d -6.91028e-03 +1l.12665e-02 +2.18167e-03 +1.24270e-02%
8 =3.14375000 =3.14335938 +3.143554689 -6.91028e-03 =2.181a7e-03 -2.36341e-03 +6.21311e-03%
9 +3.14355489 =3.14335938 +3.14345703 -2.36341e-03 +2.1d1l67e-03 -9.06487e-05 +3.106065e-03%
10 =3.14345703 =3.14335938 =3.14340820 -9.0648%7e-05 =2.18167e-03 +1.04557e-03 =1.55335e-03%
11 =3.143q0820 +3.14343262 -9.06487e-05 =1.0&5357e-03 +4.77473e-04 7.700609e-04%
12 =3.14343262 =3.14344482 -8.06487e-05 77473e-04a +1.93416e-04 =3.88333e-04%
13 +3.14344482 3. %3093 -9.06487e-05 +1.934l6e-04 =3.13d844e-03 +1l.94l106e-04%
14 +3.14345093 +3.14345398 -9.06487e-05 +5.13844e-05 -1.96319e-05 + 08Z¥e-05%
15 =3.14345398 =3.14345093 +3.14345245 -1.96319e-05 +3.13 e-03 +1.58763e-05 +4.85415e-05%
16 =3.14345398 =3.14345245 =3.14345322 -1.9631%e-05 =1.58763e-05 -1.87780e-08 +2.42707e-05%
17 +3.14345322 +3.14345245 +3.14345284 -1.87780e-08 =1.58763e-05 +6.99925e-06 +1.21354e-05%
id +3.14345322 +3.14345284 =3.14345303 -1.87780e-08 ~6.999258-06 ~2.56073e-06 -6.06769e-06%
15 +3 45322 +3.14345303 +3.14345312 -1.87780e-08 =2.56073e-06 -3.41463e-07 =3.03384e-06%
20 +3 345322 +3.14345312 +3.14345317 -1.87780e-06 +3.4l4a63e-07 -7.68108e-07 =1.5169Ze-06%

Final Sclution: f(x= +3.1434531688690193)=-7.681683e-07 with BI-SECTION method and 20 iterations

As graph shows in all cases the Newton method’s has the best convergence, and
usually converges within 7 iterations. After Newton’s method the modified false
position scheme and secant’s scheme are the best. Bi-section is very slow but
sometimes is better than false position. The MATLAB output in the next pages shows
the solution summary by Newton’s method.
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filz) = e*sinz 4+ e "cos’2z root using initial guess of =g = 3.1, 3.2
3150 ; ; ! ! ! . ' ' i

: : : : : —+— Newton
--&- Secant
: : : #e podified False-Fosition
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n (Iteration Number)

3125

flz) = e®sinz + e "cos?2z root using initial guess of zp = —0.7, —0.5
T T T T

—+—Newton I
-~ Secant
co#e podified False-Position ||
~* - False-Position g
B Bi-Section

0514

-0.52

3
A

-0.53

-0.54

-0.55

(relative error of x

-0.56
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|
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-0.58
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flz) = e®sinz + e “cos’2z root using initial guess of zo= —1.1, 0.9
T T T T 1 I T
: : : —+— Newton
: : : --&- Secant
L e Soo 5 5 ke i et
-0.95 [ER PN . DS e - e TR Modified Eglse Position |
. o 5 EI 5 - * - False-Position b-a
: o Bi-Section

3
A

-0.96

w -0.97

(relative error of x

3
A

-0.98

agqnl €,

7
|
[

i i i i i i i i
z 4 & g 10 12 14 16 18 20
n (Iteration Number)

f{z) = e®sinz + e “cos?2z root using initial guess of =g = —2.35, —2.2

gt T T T T T T
| : i i i i ——Mewton

PR : : : : - =& - Secant
Y . ' i e PR RPN # Modified False-Position |]
: : : : ~* - False-Position o

3
4

-BEE

-2.24

Moo o6
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T
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)
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+
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0F1ol€a)
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7
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4
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-2.38

i i i i
10 12 14 16 18 20
n (Iteration Number)
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filz) = e*sinz + e “cos’2z root using initial guess of =z = —2.5, —2.35

= ™~ = 5 & &
g —+— Mewton H-o
--- Secant
w# Modified False-Position ||
—* - False-Position h-4
0 Bi-Section I "
T :
il

(relative error of x

3

0g10(€a)

7
)
4

i i i i
10 12 14 16 18 20
n (Iteration Number)

Here are the solutions by Newton’n method. Note that approximate solutions are still
T 3r

very good, albeit x is not very large (7 =3.14, — 1 =-0.79, - e =-2.36).
Final Sclution: f{x= =-3.1434531358588473)=+4.933554e-15 with KEWTON method and 4 iterations
Final Sclutiocn: f(x= -0.5712519376020334)=-1.665335e-16 with KEWTOK method and 20 iterations
Final Sclution: f£(x= -0.9620937727804407)=-1.110223e-16 with KEWTON method and 5 iteratiocns

Final Solutign: f(x= -Z.3137081787813187)=-5.689893e-16 with WEWTON method and 7 iterations

Final Solution: f(x= -Z.3938636326889564)=-5.689893e-16 with WEWTON method and 7 iterations
. 20 .
d) Since —=6.37, the roots are expected to be around 7r, 87 . Initial guesses of
/4

7 £0.1, 87 £0.1are used. The plots are shown and the program output is shown as

well. Note that in the previous case the absolute value of the function is of order 10™'° at
the approximate root, while here cannot get better than 10™°. This is due to very steep
behavior of function for |x| — oo, Furthermore, none of the method has been able to

provide us with a better root than we approximated ahead of time. This is due to limited
digits for computer representation and our very good approximate.




2.29: Numerical Fluid Mechanics Solution of Problem Set 2

fiz) = esinz + e “cos’2z root using initial guess of o= 21.8911, 22.0911
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flz) = e®sinz + e~ "cos?2z root using initial guess of zo = 25.0327, 25.2327
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k=7 , x_r-=k*pi=+21.9911485751285518, f(k*pi)=+3.046376e-06

Final SBolution: f£(x=+-21.9911485751285518)=+3.046370e-06 with WEWTON methocd and 4 iteraticns

Final Sclution: £({x=+21.9911485751285518)=+3.046376e-06 with SECANT method and 6 iteraticns

Final Scluticn: £{x=-21.9911485751285518)=+3.040370e-06 with MODIFIED FALSE-FOSITION method and 7 iteraticns

Final Soluticn: £(®x=-21.9911485751285518)=+3.046376e-06 with FALSE-POSITION method and 14 iterations

Final Scluticn: £(x=-21.9911486704959813)=-3.388711e-02 with BI-SECTION method and 20 iteraticns

k=8 , x _r-=k*pi=+25.1327412287183449, f(k*pi)=-8.055854e-05

=3

Final Sglution: £(x=-25.1327412287183449)=-8.055854e-05 with WEWTONK method and 4 iteraticns
Final Scluticn: £(x=-25.1327412287183449)=-8.055854e-05 with SECANT method and 6 iteratiocns
Final Scluticn: £{x=-25.1327412287183449)=-8.055854e-05 with MODIFIED FALSE-FOSITION method and 7 iterations

Final Sclution: £(x=-25.1327412287183449)=-8.055854e-05 with FALSE-POSITION method and 14 iteraticns

Final Soluticon: £(x=-25.1327413240857780)=+7.841713e+03 with BI-SECTION method and 20 iterations

20 3
0) 2318, —2rx3+5)=2-19.63, —2a x4+ 5)= 2591, - 2w x 3+ Ly = 2121
o 4 4 4

3
Consequently, the roots are expected to be around — (27 X 3+Tﬂ)z—21.21. This is

almost a double root and the pair of initial guesses is constructed with +0.2 offset from
this middle point. To force the scheme to find the right or left root

3 3
(—(6r + Tn-) <x, or —(6bm+ Tn-) > x,) the offset value is used for Newton’s method.

Results and plots are shown on the next pages. Like part “d” no method has been able to
provide us with a better approximate of solution, than our analytical approximate (the
too roots are not distinguishable). The bottom line is that sometimes we have to really
work out our way with analytical schemes. Indeed if did not have that good initial guess,
the solution could not even converge. Finally note that

3 3
=67+ Tﬂ)) = —43x10"" while f(~(67+ TE) +0.2)=2.5%10°; consequently the

3
secant and (modified) false position will choose —(67 +Tn-) as the right solution in a
single iteration. On the other hand both Bi-section and Newton method will suffer from

3 .
—(671?+Tn)i0.2 and will converge more slowly. Furthermore, recall that Newton’s

method has slower convergence in multiple roots and this will also contribute to our
slow convergence rate.

10
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flz) = esinz + e “cos®2z root using initial guess of =5 = —21.2058, —21.0058
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-2 32 | | | | i i i i
2 4 6 8 10 12 14 16 18 20

n (Iteration Number)
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2.29: Numerical Fluid Mechanics Solution of Problem Set 2

¥ r-=(6+3/4)*pi=-21.2057504117311026, £(x r)=-4.364602e-10

Final Solution: f£(x=-21.2057505200453456)=+7.602721e-05 with WEWTON method and 20 iteraticns

Final Seluticn: £ix= Kak)= KaW with SECANT method and 1 iteraticns
Final Sclution: £(x=-21.2057504117311026)=-4.364602e-10 with MODIFIED FALSE-POSITION method and 0 iterations

Final Solution: £({x=-21.2057504117311026)=-4.364602e-10 with FALSE-POSITION method and 0 iterations

Final Solutign: f{x=-21.2057505070985357)=+5.893827e-05 with BI-BECTION method and 20 iterations

® r-={6-3/4)*pl=-21.2057504117311026, f£(x r)=-4.364602e-10

Final Solution: £(x=-21.2057503408276204)=-3.25783%9e-05 with KEWTON methocd and 20 iteraticns

Final Solution: £({x=-21.2057504117311026)=-4.364602e-10 with SECANT method and 0 iteraticns

Final Solution: £{x=-21.2057504117311026)=-4.364602e-10 with MODIFIED FALSE-POSITION methed and 0 iteraticns

Final Sclution: £(x=-21.2057504117311026)=-4.364602e-10 with FALSE-POSITION method and 0 iterations

Final Soclution: £({x=-21.2057503163636696)=+5.893826e-05 with BI-SECTION method and 20 iteraticns

Note that if we allow the Newton’s method to have more iterations, it will again pick
up the right solutions and will distinguish the two left and right roots (which only
differ in 13" digit). Here we have used the same initial guesses, but we needed 33
iterations to achieve the desired relative error.

X r-=(6+3/4)*pi=-21.2057504117311026, fix_r)=-4.36460ie-10

Final Secluticn: £(x=-21.2057504119906248)=-1.011568e-15 with NEWIOK method and 33 iteraticns

% r-=(6+3/4)*pi=-21.,2057504117311026, f(x r)=-4.364602e-10

Final Sclution: f(x=-21.2057504114715840)=-1.426249e-15 with KEWTOK method and 32 iteraticns

12




2.29: Numerical Fluid Mechanics Solution of Problem Set 2

Problem 2.3 (65 Points): Textbook problem
Solve the below problems from “Chapara and Canale” textbook:

« 5.4,5.9,5.15,5.17 (Use your previous program if you can, then copy and paste the results)
« 6.1,6.11,6.15,6.16, 6.23

« EXTRA CREDIT: 6.25 (5 Points)

. 10.6,10.9,10.12,10.14

Textbook problem 5.4
-12-21 5%+18 %°-2.75 x°

By zooming in the graph we can see that roots are approximately -0.41, 2.22 and 4.74.

e
== f=@i{m) -12-21=x~-18=x"2-2.75*x"3;
>> ezplot(f,[-3:.01:10]);grid on, box on, set(gcf, 'colexr”,'w’),met(geca, 'f P14

»> axis([-3 6 -10 107])
>> ¥_gol=solver(f,[-1 0], 'm

-gecticn’ , 'rel tolerance’ ,.01);

& x 1 X u X n £l fu fn x_rel error

o =Q.o0ooooon =l.00000000 =0.50000000 -1.20000e~01 +2.97500e~01 =3.34375e-00 00o00e~-02%
1 =0.00000000 -0.50000000 -0.25000000 -1.20000e-01 +3.34375e~00 -5.58203e-00 =1.00000e-02%
F =0.25000000 -0.50000000 =0.37500000 -2.2d203e-00 +3.34375e-00 -1l.4%873e-00 +3.33333e~01%
E -0.37500000 -0.50000000 -0.43750000 -1.44873e-00 +3.34375e=00 -8.63098e-01 +1.4285%e-01%
L] =0.37500000 -0.43750000 -1l.424873e~00 +d.63090e-01 -3.13607e-01 +7.69231e~00%
5 -0.40625000 -0.43750000 -3.13667e-01 -8.63098e-01 +2.69471e-01 =3.70370e-00%
[ -0.40625000 -0.42187500 -3.13667e-01 ~2.69471e-01 2.34052a-02 ~1.88679e-00%
7 -0.41406250 -0.42187500 -0.41736873 -2.34052e-02 +2.69471e-01 +1.22706e-01 +8.3457%e-01%

Final Scluticn: f(x= -0.4179687500000000)=+1.227057e-01 with BI-SECTION method and 7 iteraticns

>> ¥x_gol=solver(f,[-1 0], method’, falee-poaiticn’, rel tolerance’,.01);

1 ®_ 1 X u . n £1 fu £ n ®_rel error

o =0.00000000 =l.00000000 -0.28742515 -1.20000e~01 +2.97500e+01 =1.00000e~02%
1 -0.28742515 l.00000000 -0.37944891 -4.41173e+00 2.97500e-01 -2.42520e-01%
FJ -0.3794489 1.00000000 -0.40523213 -1.289668-00 97500e-01 = +6.36258e-00%
3 0323213 goooooon -3.512%3e-01 7500e~-01 3@35de-02 ~l.6d404e~00%
L] -0.41217328 -1.00000000 -9.38358e-02 +2.97500e-01 2.49338e-02 Ta.464917e-01%
Final Sclution: £(x= -0.4140215401989271)=-2.493381e-02 with FALSE-POSITION method and 4 iteraticns

EE
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2.29: Numerical Fluid Mechanics

Solution of Problem Set 2

Textbook problem 5.9

%% abs({cos(x'5))-5

X
= £ =@({x) ®"Z*abs(coa(x".5]))-5;
=> azplot(f,[0:.01:5]);qrid box on, set({gef, ' color’, 'w’),set(gea,  fonteize” ,14)
>> x_pol=solver(f,[3.4 4], 'method’, " false-position’,'rel tolerance',.01);

o —3d.40000000 —&.00000000
+3.71894537 —&.00000000

Final Sclution: f(x= +3.7434146926188

> ¥ _sol=solver(f,[3.4 4], hod® ,

Textbook problem 5.15

49e-01 +7.553737e~00%
1821e-02 ~B.23663e-01%

-1.88192a-00 =1.65835a-00
-1.5814%9e-01 =1.65835a-00

117)=-1.118214e-02 with FALSE-POSITION methed and 1 iteraticns
alge-poaitiocn , re tclerance

By zooming in the graph we can see that root is approximated by y=1.51 (m). Note as it can be
seen the function has considerable curvature around the root. On the other hand (0.5+2.5)/2=1.5 is very

14




2.29: Numerical Fluid Mechanics

Solution of Problem Set 2

close to actual root x=1.5140 and consequently Bi-section works better than false position. Furthermore,
the false position method is prone to the same problem depicted in figure 5.14 of the textbook.

»> Q=20;
»» g=9.81;

»> £ =B(y) 1-Q72/g=(3+y)/(I=y+y 2/2)"3;

~O0620e~00%
«96379e-00%
1.92030e~00%
1.87578e-00%
283029e-00%
«7E392e~00%
«73675e~00%
«bdddoe-00%
«B2036e-00%
«29130e-00%

»> ezplot(f,[0:.01:5]);grid on, box on, set(gcf, 'coler’,'w'),setigca, fonteize’,14)
»> axig([1 2 -1 1])

>> ¥ Bpol=polver(f,[0.5 2.5], methed’, " falpe-position”, "rel tolerance”,.01, 'max iteration”,10);

4 x 1 ¥ _u x n £1 £ £

0 =0.50000000 =2.20000000 -3 =d.13032e-01 +7.99873e-01
1 =0.50000000 -2.425083148 -3 +7.99873e-01 =7.86123e-01
2 =0.50000000 +2.40302917 = +=7.86123e-01 +7.71792e-01
3 =0.50000000 =2.35834192 = +7.71792e-01 +7.56894e-01
4 =0.50000000 2. 917 i +7.56894e-01 +7.41447e-01
-1 =0.50000000 =2.27331092 -3. +7.41447e-01 +7.23474e-01
] -0.50000000 -2.233467680 -3. =7.25474e-01 =7.09003e-01
i =0.50000000 =2.1953%009 = =7.09003e-01 “h.92065e-01
] =0.50000000 -2.158879a80 -3.2258%e-01 -6.92065e-01 +6.74695e-01
9 =0.50000000 =2.12403785 =2.0907606007 «22582e+01 “h.74095e-01 “B.26933e-01
10 =0.50000000 =2.09076607 +2.05901695 -3.22582e-01 +6.56933e-01 -6.38822e-01

Final Soluticn: fix= =2.0590169516685952)=+6.388221e-01 with FALSE-POSITION method and 10 iteraticns

Ateration

13032e-01
1303%e-01
0lgo9e-01
785909e-01
Op927e-01
79562e-02
6Z60%9%e-02
38309e-03

1005

09a00e-02
.01809e-01
. 78309e-01
-06927e-01
. 79502e-02
-b260%a-02
. 383009e-03
. 35952e-02

»»> x gpol=golver(f,[0.5 2.5], 'methed”, "Bi-gection’, 'rel tolerance”,.01,

4 x 1 ¥ _u X n £ 4

] =0.50000000 =2.50000000 =l.50000000 -3.22582e~01 “d.
1 =l1l.50000000 =2.50000000 =Z.00000000 -3.09560e-02 -d.
F =1.50000000 =2.00000000 =1.75000000 -3.09300e-02 “h.
3 =1l.50000000 =1.75000000 =1.62500000 -3.09460e-02 =3.
L] =1.50000000 =1.02300000 =1l.56250000 -3.09300e-02 2.
2 =1.50000000 =1.56250000 +1.53125000 -3.09%60a-02 +5.
B =1.50000000 =1.53125000 =1.51562500 -3.09560e-02 =3.
i =l.50000000 =1.315362500 =1.50781250 -3.09300e-02 =3.
Final Sclution: f(x= =1.5078125000000000)=-1.35%9519e-02 with BI-SECTION method and 7 iteraticns

Textbook problem 5.17

a) In each

error is at most 40°C and by the end of the n" iteration it will be at most

0°C

n =

we have to solve

«54196e-00%

¥_rel error

~BBoETe-01%
-50000e-01%
- 42857e+01%
-693431e-00%
O0000e-00%
02082e-00%
«03093e-00%
«18135e-01%

iteration, the maximum absolute error is reduced by a factor of 2. The initial

[0
Now

n .

<0.05°C . The minimum n to satisfy this inequality is n=10

(which results in absolute error less than 0.039°C ) and we at least need 10 iterations.

:zerolo.OS
error_ratio =
800
>> n_max=ceil(log(error ratio)/l
n_max =
10

>> error_zero/2°n_max
ans =

3.906250000000000e-02

b)

log(2))

error is only considered for x value (not the function value).

15

The solver.m file has been used. Slight modification are made to the file so the absolute
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Solution of Problem Set 2

=* TH=I73.159;
== £ o=@(o)
> o Bf=@:
> f=@(c) £ cle)-log(o_Bf);
*» C_sol=solverif,[0 40],

method” ,

< x 1 Xxu

a —al.00000000 -0.0ogoooon
1 —a0.00000000 =Z0.00000000
2 —3d.00000000 -Z0.0o000oon
3 =30.00000000 =Z5.00000000
L] =&7.50000000 =Z5.00000000

=£7.50000000
—&b.d7500000
=£6.87500000
Téb.d7500000
—&6. 79687500

[F- - T

Final Secluticn: £(

== 0 c=expi(f oi{C sol))

0o c =
8.0032170986994959e~00

»» o sgf=10;

»> f=€(c) £ _c(c)-loglo BEf);
>> C_pol=polver(f,[0 40], 'method”, "Bi

4 X u

0 oogogoog -0.0o00o00og
1 =20.00000000 =0.00000000
2 —20.00000000 =lo0.00000000
3 =20.00000000 =15.00000000
L] =17.50000000 =15.00000000
-] =16.25000000 =15.00000000
L] =15.62500000 =15.00000000
7 =15.62500000 =15.31250000
g =15.46875000 =15.31250000
9 =15.39062500 =15.31250000

-Z6.25000000
—db.25000000
-Z6.56250000
Td0.71875000
=26.71875000

Bi-gecticn’, "abs_tolerance

—Z0.00000000
=30.00000000
T&a.00000000
=£7.50000000
~db.25000000
=£6.87500000
—ZB.00Z50000
=£6.71875000
+&6.79687500
=&B.75781250

—Z0.00000000
=10.00000000
—15.00000000
=1%7.50000000
=16.25000000
=15.62500000
=15.31Z50000
=15.46875000
=15.39062500
=15.35156250

(0.05);

-2.21158e-01
-2.21158e-01
-5.672960e-02
-5.67i96e-02
-1.2883de-02
28838e-02

-3.0043%e-04

(0.05);

-4.42301e-01
-9.51433e-02
-9.51433e-02
-9.51433e-02
-4.449723e-02
-1.8340%e-02
-52.06632e-03
-5.06632e-03
Td55ie-03
-5.17536e-05

“h.03006e-01
.28000e-01
-1.28000e-01
+3.24014e-02
+3.2401l4e-02
-9.56786e-03
-9.567d6e-03
=3.92000e-03
+1.10491e-03
+1.10491e-03

+3.7986Ze-01
+3.79862e-01
+1.21150e-01
-8.3508%e-03
~H.3508%e-03
-8.3508%7e-03
~H.3508%e-03
+l.62426e-03
+1l.0i4d6e-03

+1.62426e-03

Final Bolution: f(x=+15.3515625000000000)=+7.859701e-04 with BI-SECTION method and 9

>» O c=exp(f c(C sol))

1.000780279059819e~-01
»» o gf=132;
»» f=@(c) £ c(c)-log(o BE);
€ sol=solver(f,[0 40], m

S

x X u

0 000oooog =0.00000000
1 —Z0.00000000 -0.00000000
2 —i0.00000000 -0.00000000
3 =10.00000000 =5.00000000
4 7.50000000 ~o.00000000
5 =7.50000000 -6 .25000000
-] =7.520000000 —h.873200000
7 T.50000000 =7.18750000
g Y.50000000 =7.34375000
8 =7.50000000 =7.42187500

Final Solutiocn: f(x=
>» O c=exp(f c(C _Bol))

1.200125994656214e-01

Textbook problem 6.1

The root of f(x)= 2sin/x — x is equivalent to the fixed point of g(x)= 2sin~/x . However for the

later to converge, we have to have

—Z0.00000000
-1i0.00000000
=5.00000000
=7.50000000
—h.25000000
-6 .87500000
=7.18750000
=7.34375000
=7 .4%21873500
=7.46083750

dg

dg|_ cos/x
dx \/;

-b.26623e-01
-2.77465e-01
-6.11711e-02
-6.11711e-02
-4.59350e-04
-8.59350e-04
-4.59350e-04
-8.59350e-04
-8.59350e-04
-8.59350e-04

+1.97541e-01
+1.97541e-01
+1.97541e-01
+6.22704e-02
“0.22704e-02
=3.03440e-02
+1.46531e-02
-b.874659e-03
=3.00215e-03
=1.07002e-03

-139.34411+1.575701e5/ (c+Tk)-6.642308e7/(c+Th)"2+1.243800e10/ (c+Tk) “3-8.621949e11/ (c+Tk) "4

1.28000e-01
-5.67296e-02
+3.24014e-02
-1.28838e-02
~9.567d0e-03
-1.70433e-03
~3.92000e-03
+1.10491e-03
-3.00437e-04
—2.0205%e-04

£{x=+26.7578125000000000)=-4.020565e-04 with BI-SECTION method and 9 iteraticns

-9.51433e-02
+1.21150e-01
-¥.35087e-03
-4.442723e-02
-1.83407e-02
-5.06632e-03
=1l.62420e-03
-1.72552e-03
-5.17536e-05
=7.85970e-04

iterations

-2.77465e-01
-6.11711e-02
~6.28704e-02
-8.59350e-04
=3.03440e-02
+1.46531e-02
~h.874059e-03
=3.00215e-03
=1.07002e-03
=1.04990e-04

+7.4609375000000000)=+1.049900e-04 with BI-SECTION method and 9 iterations

x_rel error

L00000e-02%
33333e-01%
-Z.00000e-01%
=9.09091e-00%
T4.76130e-00%
+2.32558e+00%
+1.17047e-00%
+5.84795e-01%
+2.91545e-01%
+1.45985e-01%

oo0ooe~-02%
=1.00000e~-02%
-3.33333e-01%
-42857e+01%
7.69231e-00%
2. 00000e-00%
0a082e~00%
=1.01010e-00%
+5.07614e-01%
+2.54453e-01%

=1.00000e~-02%
-1.00000e-02%
=1.00000e-02%
+3.33333e+01%
~Z.00000e~-01%
.09091e~-00%
#.34783e~-00%
=2.12766e-00%
=1.05&03e~-00%
=5.23560e-01%

d
<1. Unfortunately d—g(x0 =0.5)=1.007 and the fixed
X
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point with this g can be unstable. However, since g(x, =0.5)=1.29 it will escape from unstable region.
Calculations are done in attached C2p29 PSET2 6pl.m file.

g, m)=AB" Vn>n = loge, =nlogf+logA Vn>n
The process is linearly convergent because the log of relative error with respect to the iteration
number is linear according to the below graph.

Root of 2sinyT— = i

—
w
b=
=
o
'™
>
b=
=
05 i i i i i i i 10t
1 z 3 4 4] 6 7 g 9
n (Iteration Number)
Final Solution: f(x= =1.9723804860817313)=-4.516657e~-07 with Fixed Point method and 8 iterations

Textbook problem 6.11

The attached file C2p29 PSET2 6pll.m solves this problem. Basically the same solver.m with
Newton’s method is used however we use these sets of function for this double root.

a) f J
by 2f f
C) ﬂv va_ffu

17
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A relative error of 107" is imposed. The case b and ¢ converges within 3 iterations. However, case
“a” requires about 25 iteration; it does not overshoot but is very slow. Case ¢ has a slightly higher
accuracy, but we should remember that it needs extra information about 2™ derivtive.

Case a:

¥= +1.9999999915268645 1s the exact solution.

Final Solution: f(x= =1.9999999915268645)=+0.000000e+00 with WEWTON method and 25 iteraticns
Case b:

¥= =2.0000000001649298 is the exact scluticn.

Final Socluticn: f{x= -Z.0000000001649298)=+0.000000e-00 with WEWTON method and 3 iteraticns
Case o

%= +2.0000000000003006 is the exact soluticn.

Final Sclution: £(x= =2.00000000000030068)=-0.000000e+00 with NEWION method and 3 iteraticns

flz) =2% — 2+ 2% — 44z + 8 root using initial guess of zy = 1.2

1 1
——a) Newton-Raphson ||
--&- b Mewton-Raphson
s o) Newton-Raphso

2.2

L

5
A

logiyle,) (relative error of x

" ; ; ; ; ;

n (Iteration Number)

Textbook problem 6.15

d
At the steady state d—c =0 and we have f(c)=W -Qc—-K Ve =0. Again we apparently use our
t

earlier solver.m module for the modified secant. We call it by Newton’s method, but we replace the
flc+8)— f(c)
5 :

derivative with

18
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=8{g) W-Q=oc-kTV=c".5;

;; delta=0.5;
> DE=B(c) (f(c+delta=c)-f(c))/delta/c;

*> [%_Aol,x itr]=solwver(f,4, 'method’, "Newton®, 'f derivatiwe’ ,Df, "'rel tolerance’,le-16, 'max iteration’,3);
1 x_0 ®_n fo fn f o x_rel errcr

a —&.00000000 ~%.64%026136 =1.00000e-03 -2.353778e+03 JblHoe~03 +1.37980e+01%

1 —42.642026136 —&2.62345221 -2.55778e~03 +3.94207e+01 5216605 =3.63563e-01%

2 ~&.02345221 ~&.62410517 +2.94207e+01 -3.83330e-00 32iele~03 +1.41209a-02%

3 +4.62410517 —&.62408000 -3.83330e-00 +1l.47845e-01 -1.52257e+05 +5.440460e-04%

Final Solution: fi{x= +4.6240799970783106)=+1.478452e-01 with WEWTOW method and 3 iteraticns

=

Textbook problem 6.16

dg(c)
dc
conclude that the 2™ one has a guaranteed convergence for the given interval to ¢, =4.62 root.

We have to see which one satisfies the <1 condition. From the graph next page we can

Q=c)/(k=V) )2

(4-2/5%g)"2

> ga=(W-k*V*c".5)/Q
gz =

10-5/2=c™(1/2)

> Dgl=diff(gl)
pgl =

-16/5-8/25=¢

> Dg2=diff|g2)
pg2 =

-5/4/e"(1/2)

=> figure
subplot(l,2,1
zplot (Dgl
itle('g
gubplot |

r', w").,set(gea, font

=", 'w'),Bet(gca, 'fontsize',14)

subplot(l,2,2)
title| 'dg 2/dc when g 2(c)

g ljc)=((W-Q*c)/(k=V))"2")

19




2.29: Numerical Fluid Mechanics

Solution of Problem Set 2

dg  de when g_ (€)= ((W-Qrc)(k*))®

e R ? ............... ?._._._._.ﬁ ..........

Adb ; ............... 5_._._._._.5 .........

I — e

P y S
3 UL ; ............... 5_._._._._.5 ..........

S — AR W

-0.5

_ -0.55

-0.6

-0.65

-0.7

-0.75

] N
] -0.85

-0.9

Textbook problem 6.23

dg,idc when g, (¢)=(W-k*vte 5)Q

Within 4 iterations it will find the exact value of root. This means that the function does not have
considerable curvature around this root.

»>> f=@(x) tanh(x"2-9);
> DE=B(x) (1

> [®_Bol,x _...|-ECl'.'E‘.’L'l:.i.i. method” , "Newton®, "f_deriva

L B b 03

Final Solution: £(x= =3.0000000000000000)=+0.000000e+00 with KEWTON method

tanh(x"2-9)°2)*2*x;

97532429 -3.00046301
O00RE301 +3.00000003
- 00ooooo3 =3.00000000 -Z.00048e-07

lgooooon +2.97532429

=3.0000000000000000 is the exact soluticn.

tive’ ,Df, 'rel_tocleran

l.4b3d0e-01
+2.77825e-03
~é.0004de-07
=0.00000e-00

20

df

82313e~00
Googde~-00
gooooe-00

ce’ ,le-16, ‘max

ax iteratic

X_rel srror

«d0a3qe~00
+5.
“h.
-1

~4.19032e-00%
7828e-01%

S54324e-0:2%

and 3 iteraticns
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Root of Equation 4
3.005 ! ! ! ; ; 710

2,995

W 299

(relative error of x)

2,985

.98

5 975 i i i i i 10
1 15 2 25 3 35 4
i’}

(Iteration Number)

Textbook problem 6.25 (Extra Credit)

The circle radius is 4 and we have |x + 1| <4 = -5<x<3. Sonote that:

V(X)) =416 = (x+ 1)’ +2, First Quadrant
V,(x)=—=/16—(x+ 1)’ +2, Fourth Quadrant

The results are shown on the next page. It converges for the 4™ quadrant but not the 1** one. This is
because in the 1% quadrant 2<y<2+4and we do not have a root (so it diverges toward complex

numbers), while for the 4™ quadrant -4 4+ 2 <y <2 aroot exists.
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»>> f1=B(x) 2+{16-(x+1)"2)"0.5;
=» fI=B(X) Z-(16-(®~1)"Z)"0.5;

*> [x pol,x itr]=sclver(f2,[0.5 3], me ¢ "Secant”,

i ® 0 x_1 ®x 2 £0 g | £ 2 df x 1 x_rel errcr

0 =0.50000000 =3.00000000 =1.65160028 -1.70810e-00 -2.00000e-00 -9.94832e-01 +1.48324e~-00 ~6.97263e-01%
1 =3.00000000 =1l.651a0028 +2.09951548 =2.00000e-00 -9.94832e-01 -5.2843%e-01 =2.22103e-00 +2.13342e+01%
2 =1.65160024 =2.09951544 +2.60701902 -9.94832e-01 -5.2843%9e-01 =2.71008e-01 +1.04125e~00 +1.94068e-01%
3 +2.09951548 =2.60701902 +2.43497825 -5.2843%e-01 -2.71008e-01 -%.96157e-02 +1.57525e+00 =7.0653%9%2-00%
4 -2.60701902 -~2.43497825 +2.46160112 -2.71008e-01 90157e-02 -4.324742-03 =1.86365e~-00 =1.08153e-00%
5 43497825 =2.26160112 +2.46414329 -2.96157e-02 32474e-03 -21807e-05 =1.03166e-01%
L] 6160112 +2.420414329 -%.32474e-03 +7.21807e-05 -1.04128e-07 =1.69362e-03%
7 6414329 -2.46410158 =7.21807e-05 -1.0 Be-07 -2.50a66e-12 +2.43971e-06%
g 464101546 ~2.46410162 —2.46410162 1.08128e-07 -2.5040608-12 -&.42%08%a-10 ~5.86H00e-11%

Final Seoluticon: f(x= +2.4641016151377544)=-4.44089%e-16 with SECANT method and 8 iteraticns
»> [x_Bol,.x_itr]=sclver(f1,[0.5 3], 'methed’, iteration”,10, 'rel_tolerance’,le-16); %lst

x_rel error

o =0.50000000 =3.00000000 +4.34839972 =5.70810e-00 -Z.00000e-00 =£.00000e-00 -1.48324e~00 +8.85015e~-01%
1 =3.00000000 34039972 =3.00000000 2.00000e-00 —Z.00000e-00 —3.82769a-00 -0.00000e-00 =5.000342e~-01%
F -4.34839972 =3.00000000 =£.00000e-00 =3.827659e-00 =3.67086e-00 -Z.68208e-00 +2.74314e+01%
3 —3.00000000 1313755 +3.82769a+00 —3.070d0e-00 +5.22097a+00 -5.87181e-01 +9.27234e-01%
4 +4.11313755 +2.97279911 =3.67086e-00 +5.2209%e=00 =3.12643e-00 BZ463e~-00 +5.24946e-01%
3 +2.97279911 —3.93481188 +53.22097a+00 +3.12643e~00 ~6.18302a~00 T3inbe-01 +1.631l42e+02%
] =5.93481188 =1.95367327 =3.126&3e-00 =6.18902e-00 =5.82642e-00 -1.37086%7e-00 -6.06785e-01%
7 +1.95307327 +6.12125292 ~h.1890Za-00 +5.82042e~00 =7.07068a-00 Sp093e-01 +2.04949%e~-02%
8 +6.12125282 709941867 -8.98271608 =5.82642e-00 =7.07068e-00 =7.02995e=00 14180e-01 +7.24983e-01%
8 —H.949271600 -0.84150111 =7.07068a-00 =7.02995e~00 +=7.22378e-00 9502e-01 —3.13500de-02%

10 -8.98271608 =0.84150111 =7.56700858 +

Final Solution: fix= =7.5670085757700049)= 052222e-01 with SECANT method and 10 iteraticns
wWarning: Imaginary parts of complex X andfor ¥ arguments ignored

Textbook problem 10.6

Similar to “b” we adopt 3 significant digits.

10 2 -1 27
A=|-3 -6 2|, b=|-615
1 1 5 21.5

10 2 -1
my, =—=-03 A0 =54 17
0 08 5.1

10 2 -l
my, =—0.3 A0 54 17
0.8 0 0 535

1 0 0 10 2 -1
LU=A, L=|-03 1 0, U=]{0 =54 1.7
+0.1 -0.148 1 0 0 535

22
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2.29: Numerical Fluid Mechanics

Solution of Problem Set 2

The forward and backward substitution with corresponding chopping is done in the attached

C2p29 PSET2 10p6.m file. We use the LU factorization to compute A~ by 3 times of LU application.
Finally the solution is also computed with the same technique. Here is the program output. Note that we

used only 3 digits and the final errors are on the 4™ and 5™ digits.

1.0000 1]
-0.3000 oooo
0.10o0 -0.1480
U=
i0.0000 Z.0000
0 -2.4000
0 0
inv & =
0.1110 0.0380
-0.0589 -0.1760
-0.0104 0.02%%
inv_ A exact =
0.1107% 0.0381
-0.0588 -0.1785
-0.0104 0.0277
A inv A A =
1.0000 0.goog
-0.0o00o0 oooo
-0.0000 0.00o0
x 8ol =
0.5000
8.0000
-0.0000
x_sol_exact =
0.5000
B.0000
-6.0000
residual =
1]
0
]

Textbook problem 10.9

1.0000

1.0000
i1.7000
- 3500

0069
.05589
-18%70

0069
-0588
.1869

-0poo
l1.0000

Note that for the scaling we divide each row by the element whose absolute value is the maximum

of that row.
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A=
-] F =10
-8 1 3
15 =1 &
1
A | =
22.8254
*> A _l=norm{h,l)
Al=
32
inf" )

22

»» A Be=[A(1l,:)/-10;A(2,:)/-9;A(3,:)/15]

A BC =
=.goon =0.2000 l.0000
l.0000 -0.3333
l.0000 G.a000

Textbook problem 10.12

*> A= 1 & 9 16 2534 9 16 25 36;9 168 25 36

A =
1 L] a 1o 23
L] L] ia 25 38
a i Z3 L) 49
16 25 L 45 B4
23 EL L1 -1 1
> A _inf=normia, " inf")
A _inf =
2335

nvia)
X 18 cloBe to
Results may be inac

pingular or bad
curate. RIDKD =

inv A =
1.0e+l5 =
0.0804% -0.0938 -0.2011 0.36189
G.oooon -0.1876 0.5629 -0.5629
-0.4825 -0.4825 -0.4825
O.6%34% EES 0.0804 l.2083
-0.2413 4691 0.0402 -0.5227

»> inw A

inv A inf =

3.8602e-15
>> K_inf=A inf*inv A inf
K _inf =

9.8436e+17

1y scaled.
1.250327e-14.

-0.1474
0.1l876
0.3217

-0.0lah
0.2547

ba;d5 38

64 B1]
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A BO =
0.0400 0.1600 0.3600
0.1111 0.2500 D.4444
0.1837 0.3285 0.5102
0.2500 0.3908 0.5625
0.30886 D.4444 D.0049
»»> pec inf=norm(A _sc, "inf")
Asc_inf =
3.1481

»» iny Asc=inv(A sc)

warning: Matrix is close to singular or badl
Results may be inaccurate. RCOND =

1.0e+186

-0.0235
0.1471
-0.3003
0.2533
-0.07868

-0.03%8 0.4094
-0.1964 -0.9280
0.7846 0.3275
-0.8498 0.4913
0.2941 -0.3002

>> inv_asc_inf=norm(inv

inv_Asc_inf =

4.5310e~16
>> K_inf sc=Asc_infrinv_asc
K_inf sc =

4264e~17

D.6400
D.6944
0.7347
0.7656
0.7901

-0.6551
1.9652
-1.9652
0.6551
o

Asc, "inf

inf

0000
-0ooo
0o
-0poo
0oog

scaled.

.H16392e-18.

3017

9879
.1534
5459
-0B27

Alternatively we can use “cond” command to directly compute the matrix condition number.

»» K_inf=cond(A, inf")
Warning: Matrix is cleose to singular or badly scaled.

Results may be inaccurate.

> In cond at 48

E_inf =

9.8436e~17

> K_inf po=cond(A Bc, "inf")

wWarning: Matrix

> In cond at 48
K_inf se =
l.4264e+17

improve about 0.84 digits in base 10 (log,,(——=)=0.84).

ROOKD =

1.25032%e-18.

is close to singular or badly scaled.
Results may be inaccurate. ROOND = 3.816392e-1d.

Since the condition number is about 9.8 x 10'" = 10" we will lose about 18 significant digits. As a
result the significant digits of ordinary double and single in MATLAB can be all lost (they have about 15
and 7 significant digit). Unfortunately even the scaling does not help so much. Indeed scaling can only

9.84
1.42
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Textbook problem 10.14

>> A=[16 4 1;4 2 1;49 7 1]
A=

16 4

4 2 1

%9 7 1

217.4843

>> K_inf=cond(a, inf")
K inf =
323

>> K_2=cond(A,2)
K 2=

216.1294
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Problem 2.4 (15 Points): Computation cost in MATLAB

Review MATLAB help about:

« profile
. tic
o toc

Here we want to investigate the computational cost of basic operations {+,—,x,+} and some

,\/;,xz,x3,sinx,cosx,tanx,e",e"",lnx} in the MATLAB program. To that end we

functions { x,|x

generate a huge vector/matrix of random numbers and repeat the operation on them as long as to get
consistent result. Please specify your computer speed, memory and MATLAB version. Try to provide as
much consistency as possible. Also clear and free your memory as much as possible. In each case examine
both single and double data type and also report the cost time normalized by your CPU clock time (for
example for a 2 GHz computer multiply time by 2 x10° 1/sec ).

a) Report assignment cost (or function y=x). Compare cost of a scalar assignment with cost
of matrix assignment (normalized by the number of elements).
b) Compare cost of basic operations for scalar. Then compare +,— for the matrixes and also
element wise x,+ . Discuss.
C) Repeat part b for specified functions.
Solution:

These results are produced by:

« MacBook 1.1

« Intel Core Duo 2.0GHz CPU (1 processor, 2 cores, 2Mb L2 cache)
« About 100% CPU commitment for MATLAB during runs

« 1Gbof667 MHz DDR2 RAM

« Upto 13.5 Gb of Virtual Memory

« MATALB version R2006b

The results might vary across different systems but the whole idea of this homework is to get an
insight about computational cost. Here an experimental approach is used, while a better technique
might rely on investigating the computer architecture combined with software implementations.
Some people might use the flops for normalizing the time cost, but indeed there is a difference
between clock and flops and here we use clock.

The costs are evaluated for normalized positive numbers (between 0 and 1) and they are generated
by “rand” command. The corresponding file is named C2p29 PSET1 4.m and is included in the
script package. The costs are normalized by the number of element and the first question is that
how much are they sensitive to matrix size and computer resources at that instant. So we consider
the below computational block:
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a=rand(n,n);
b=rand(n,n);

c=a; %Assignment Cost
c=a+b;
c=a-b;
c=a.*b;
c=a./b;

c=abs(a);
c=a."2;
c=a."3;
c=a.”.5;
c=sqgrt(a);

The above calculation is done for a matrix with size a,,, for “m” times. Accordingly it is done for

. . . 2,
a vector with size a,,, for m X ntimes, as well as a scalar a for m X n” times. In each case, “a,b

and c¢” are allocated before going inside “times” loop; consequently our assignment cost is indeed
just a “copy” cost and does not include memory release\allocation time. The time is computed with
“tic, toc” command and time profiler is not used at this point because it is not as accurate as to “tic,
toc” (due to time profiling overhead). The program is run for different pairs of “m” and “n” and a
few sample run is shown below:

Data Type: Double
Time Cost Mormalized by CPU Clock

n m Scalar Veotor Matrix
1 10 1242120 1774778 2124479
1 100 30501 258519 170592
1 1000 34547 185036 176896
10 10 36945 31310 7529
10 100 28130 26888 4491
10 1000 26407 25801 4379
100 10 25989 4380 2143
100 100 25965 4378 2108
100 1000 25969 4378 2114

Data Type: Double
Time Cost Mormalized by CPU Cleck

n m Scalar Vector Matrix
1 1 1252448 20109386 2026218
1 100 27299 1895356 207161
1 1000 26658 177603 179483
10 10 32703 31237 7785
10 100 28194 26739 4431
10 1000 26117 25927 4421
100 10 26595 4399 2172
100 100 26008 4386 2138
100 1000 26001 4385 2117
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Data Type: Double

Time Cost Mormalized by CPU Clock

Scalar

Vector

Matrix

100
100
100
1000
1000

1230177
368535
27177
29340
27196
26591
26036
25992
26015
25982
26000

1976430
184094
171954

29685
27526
23908
4395
4421
4391
2168
2163

1774458
179122
170353

1553
4860
4391
2158
2210
2117

14903
2132

Data Type: Double
Time Cost Normalized by CPU Clock

n m Scalar Vector Matrix
1 10 1264623 2048789 1489142
1 100 37982 183291 176128
1 1000 27783 169343 169115
1d 1a 27844 293148 T640
10 100 26879 27993 4647
10 1000 26483 25824 4387
100 10 26015 4391 2162
100 100 25986 4394 2131
100 1000 25973 4382 2122
1000 1 25968 2167 2393
1000 10 25979 2169 2129
1000 50 26164 2174 2143
2000 10 26429 2520 3050

Mathematically a scalar and a vector or matrix with n=1 are equivalent. This is also true in
MATAB, but their computation time is different. As seen above for n=1 a scalar is about
180000/30000=6 times faster.

When “n” becomes very big (here like 5000, which require 25*8~200 Mb of memory), MATLAB
cannot allocate memory for it and an error is produced. Also we can notice that when m x n° >10°
results are rather stationary for scalars up to 4™ digit. So from here forward we will not compute
scalar cost for very huge pairs of “m, n”. On the other hand for small m, numbers are not
consistent and for loop cost might also be inferring.

Data Type: Double
Time Cost Normalized by CPU Clock

n m Scalar Veckor Matrix
1 10 1431770 1870184 2022895
1 100 28700 186310 173945
1 1000 29840 168498 169947
10 10 31320 29495 7727
10 100 28580 27209 4404
10 10080 Han 26134 4371
100 10 Han 4427 2113
100 100 Han 4385 2078
100 1000 Han 4375 2078
1000 1 Han 2168 2327
1000 10 Man 2164 2124
1000 50 Han 2164 2104
2000 10 NaM 2321 2150227 Error

Type HELF MEMORY for
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Cata Type: Double
Time Cost Normalized by CPU Clock

n m Scalar Vector Matrix
1 10 19255168 24415349 1748816
1 100 29623 171832 177440
1 1000 27694 171021 178101
10 10 326886 51681 9498
10 100 26084 26944 4994
10 1000 HaM 26020 4388
100 10 Han 4416 2126
100 100 Han 4391 2102
100 1000 Han 4387 2230
1000 1 Han 2186 2322
1000 10 Han 2165 2125
1000 50 Han 2173 2103
2000 10 Haw 2329 2119
5000 2 Nan 2145 B743727? Error

Type HELF MEMORY for your options.

‘p29 PSET2 4 at 103
;a=rand{n,n):b=rand(n,n);

Cata Type: Double
Time Cost Normalized by CPU Clock

n m Scalar Vector Matrix
1 10 28714158 13705186 1865289
1 100 34334 188819 170120
1 1000 26974 168965 167866
10 10 27004 29439 7513
10 100 26558 25955 4453
10 1000 Han 259328 4370
100 10 Han 4410 2129
100 100 Han 4388 2096
100 1000 Han 4384 2208
1000 1 HaM 2352 2434
1000 10 Han 2164 2120
1000 50 Han 2169 2107
2000 10 Han 2363 2140
5000 2 Nan 2159 20316227 Error

Type HELF MEMORY for

Data Type: Double

=

rour options.

Time Cost Normalized by CPU Clock

n m Scalar Vector Matrix
1 10 1778134 2809358 1829466
1 100 27680 193902 174047
1 1000 27752 169976 169784
10 10 27642 30183 7570
10 100 27099 27603 4834
10 1000 NaM 26121 4405
100 1@ HaM 4418 2139
100 100 NaM 4398 2113
100 1000 HaM 4435 2177
1000 1 NaM 2185 2811
1000 10 Had 21948 2217
1000 50 MaM 2219 2134
2000 10 Hal 2499 28T
5000 2 MaM 2291 18754
10000 2 Han 2117 2129Error in >

Interesting conclusions can be made from above runs for n:
o n=1: Scalars are about 6 times faster than both matrix or vector which cost the same.
« n=10: Matrix is about 4 times faster than both vector or scalar which cost the same.
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« n=100: Matrix is about 13 times faster than scalars and about 2 times faster than vector.
o 1n=1000: Both Matrix and vector cost about the same and are about 13 times faster than scalars.
« n>>1000: At some point the memory limitation becomes an obstacle and the speed decrease

first for matrixes (memoryeo< n°) and then for vectors (memory o n). At this stage the time
cost is strongly dependent on available memory and CPU commitment at that instant; and
that’s why matrix result for n=2000 and above are strongly varying.

“m” is the number which determine on how much large set the results are averaged. Also

interesting conclusions can be made from above runs for m.

« As it was stated earlier we have to have m xn° >10’ to get rather consistent result for scalars.
At this point the cost for scalar might still vary in 4" digit.

. For matrix with n=100 or higher, results are pretty constant regardless of m up to the 2™ digit.

Consequently from this point forward we set at least n=100 and m=200 for our computations. This
is about the best “n” to speed up for matrixes (for our block of calculation not the individual
functions\operands). However, we should remember above conclusions and specifically the fact
that the cost is dependent on n and only accurate up to a few digits.

Furthermore, a careful examination shows that previous results are slightly affected by for loop
cost. Part of attached program computes “tic toc” cost as well as pure “for loop” cost. The result is
displayed in the graph in the next page and it is seen that “for loops” with more than 100 times of
repetition there is about 740 clocks per step overhead due to the for loops. For a repetition about 10
times there is about 1200 clocks per step overhead, and finally for a repetition of 1 time the
overhead is about 5000 clocks with huge variations. In the below figure, 3 averages, each
averaging 10 runs, for each loop size and their corresponding error bar is shown. For the huge loop
sizes the error bar (standard deviation) is negligible.

To modify the previous results for scalars when we have mxn> >10> we have to subtract 740

. . 740
from printed clock time. For the vectors when mxn>10> we have to subtract —— from the
n

. 740 .
results and finally for matrixes when m >10° we have to subtract ——. This all together can

n
justify subtle differences for vector and matrix cost in previous pages while changing n or m.
tic_toc_mean= 4.00 tic_toc_std pcnt=40.66
tic_toc_mean= 3.53 tic_toc_std pcnt=27.01

tic_toc_mean=
tic_toc_mean=
tic_toc_mean=
tic_toc_mean=
tic_toc_mean=
tic_toc_mean=
tic_toc_mean=
tic_toc_mean=

.42 tic_toc
.29 tic_toc
.55 tic_toc
.28 tic_toc
.42 tic_toc
.33 tic_toc
<29 tic_toc
.37 tic_toc

std_pcnt=19.74
std_pcnt= 5.62
std_pcnt=19.48
std_pcnt= 4.67
std_pcnt=15.10
std_pcnt= 8.30
std_pcnt=10.38
std_pcnt=10.68

WwWwwwwwwwks

i3 (i e g I ] R ey

Also one might be concerned about the cost of “tic-toc” command. Within two for loops an
average and standard deviation was computed for “tic toc” time (without command line output).
The average was done on 10 averages, each averaging 100 times of “tic toc”. The average was
about 3.5-4.5 clocks and its standard deviation varied between about 5%-50% in different runs.
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Consequently the “tic toc” time has not affected above results. A few consecutive run results in

shown in the previous page.

Time cost of for loops

7000 !

BOOD freeeeree e [ .......................... .......................... ........................ —

For loop cost normalized by clock time

50001 E— é __________________________ é __________________________ é ________________________ |
ST ERSMIERISMSS ASRSSE—— ; __________________________ ; __________________________ ; ________________________ .
30000 é __________________________ é __________________________ é ___________________________ é _________________________ |
20001 g __________________________ g __________________________ é ___________________________ é _________________________ |

e T S S A e _

10 10

Specific problem parts:

a)
b)

c)

10° 10
Sire af for Loap
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MATLAB is a 4th generation language in which you do not need to specify the data type.
There is a huge ease in MATLAB programming due to this, compared to 3rd generation
languages like C or Fortran where you have to allocate and specify memory for each data
type. There are also a lot of drawbacks: one is the time cost, which is higher. But the most
serious one is the fact that MATLAB is basically an interpreter and it does not work by
compiling your program in advance.

MATLAB has tried to decrease these drawbacks with smarter implementations. For
example while we saw that the cost difference between a scalar and a matrix with huge “n”
is about 13 times here, it could be about few hundred times in older MATLAB (before 6.5
version). MATLAB 6.5 included the JIT (Just-in-Time) technique and after that it is much
less sensitive to vectorization for ordinary programs.

In 3™ generation languages assignment, memory allocation and memory release are totally
different steps. Indeed even the assignment can mean either generating a new copy of data
or just passing its pointer. On the other hand in MATLAB these all might happen at the
same time and this means that there is a lot of ambiguity in the assignment cost.
Furthermore smart MATLAB might notice that in y=x, y can be a pointer as long as y or x
will not change. Here our numbers are updated frequently with rand and new assignments
and we do not expect the assignment be a pointer one. Also for simplicity before each loop
we allocate the “a,b,c” with the right size so our assignment is indeed just data copy. Also
here we do not subtract the assignment cost from evaluation, but some might do that and
report for example the pure time for subtraction (without the time to copy the results).

By now we know the time cost of tic-toc and for loops. One approach might be to surround
a “for loop” with tic-toc and then subtract the additional overhead due to tic-toc and for
loop. This is probably the best method, but it is not very convenient because we have to run
the program for different task separately (and at different performance levels).

Here we adopt another simpler approach. We use time profiler. Time profiler is rather
accurate, especially if we are concerned about relative time cost. In practice time profiler is
used to find the bottleneck of programs. To get more accurate results:

1) We increase the “m, n” so that we get 4 significant digits from time profiler.

2) We scale the time cost of profiler for each line equally to omit the profiler time
overhead. The scale value is set by a “tic-toc” time surrounding for loops and its output
value with and without time profiling.

3) To have a better idea about statistical significance of results we do this for three times
for all the processes.

The next page shows the scalar costs for a single run with time profiler. 3 times of “time
profiler” run and 3 times of command line run has been used to generate the table shown in
the next pages. The table shows time normalized by number of elements in seconds unit,
clock unit and also relative to a=c time cost. Also the standard deviation is calculated in
clock unit to monitor the significance of results.
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tima calls line

< 1 3 n=100;
= i 4 m=1200;
= 1 5 A=0; a=rand;b=rand;c=rand; % Memory allocation before for loops

< 0.01 1 T tic

< 0.01 1 8 for i=l:n"2+*m;

9.43 12000000 9 a=rand;

§.98 12000000 10 b=rand;

11.30 12000000 12 c=a; SAssignment Cost

11.02 12000000 13 c=-a; ENegativation Cost

3 15 c=a+b;

L3 16 c=a-b;

3 17 c=a*b;

3 18 c=a/b;

11 20 c=abs{al);

LT 21 c=a"2;

15. 22 c=a®*2+a;

1B. 23 c=a*a*a;

14 24 c=a"3;

14 25 c=a".5;

14 26 c=sgrti{al;

11.98 12000000 28 c=sin{al);

11.659 12000000 29 c=cos{al);

11.87 12000000 o c=tan{a);

11.8 3z c=expilal;

14. 33 c=expl-al;

15 33 c=loglal;

01 12000000 36 end
< 0.01 1 37 A=toc;
< 0.01 1 3B fprintf{'\n Loop time is: %f ‘n',A}
[m In [m*n~2 [Clock Speed |
[ 1200] io0[  12000000]  2.0DE+DE|
Time (sec) lme [Cloek)[Relative to c=a
Operation
P Run 1 [Run 2 [Run 3 Mean Mean [Std  [Mean

a=rand 5.43 5.57 5.56( 7.933E-07| 1385 11.4 0.B3B3
b=rand B.SB 5.14 9.13| 7.565E-07| 1322 13.0 0.7958
c=a 11.3 11.39 11.38| 9.464E-D7| 1653 7.2 1.0000
c=-a 11.02 11.17 11.16| 5.264E-07| 1618 12.2 0.597B%
c=a+b 13.55 13.62 13.5%| 1.132E-06| 1977 5.1 1.196
c=a-b 13.44 13.61 13.59| 1.129E-D&| 1971 13.5 1.153
c=a*b 13.36 13.54 13.52| 1.123E-06( 1961 14.4 1.186
c=a/fb 13.89 13.97 13.95| 1.161E-D&| 2028 6.1 1.227
c=abs(a) 11.26 11.37 11.34| S.436E-07| 1648 B.3 0.9571
c=anl 11.39 11.49 11.46| 9.539E-07| 1666 7.5 1.008
c=a*a*a 15.85 16.02 15.98| 1.329E-06( 2321 12.9 1.404
c=a”2*a 18.23 1B.3 18.27| 1.522E-D6&| 2658 5.1 1.608
c=a*~3 14.99 151 15.06| 1.254E-06| 2150 B.1 1.325
c=an.5 14.682 14.92 14.89| 1.240E-D&| 2165 7.5 1.310
c=sgrt(a) 14.51 14.58 14.56| 1.213E-06| 2117 5.2 1.2B81
c=sin{a) 11.98 12.14 12.11| 1.006E-D6| 1757 12.4 1.063
c=cos{a) 11.69 11.B5 11.B3| 9.B25E-07( 1716 12.7 1.038
c=tan{a) 11.87 12.07 12.07| 1.000E-0D6| 1747 16.8 1.057
c=expia) 11.89 12.03 12.01| S.981E-07| 1743 11.0 1.055
c=exp(-a) 14.33 14.45 14.42| 1.200E-D&| 2085 5.1 1.268
c=log(a) 15.27 15.33 15.29| 1.275E-D6| 2226 4.4 1.347
tic_toc with Profiler 2B2.06041 2B4.B67595 2B4.337737| 2B3.75525

tic_toc without Profiler | 247.75301 247.742232 247.6596456| 247.7439
[Profiler Overhead Scale 1.1453572]
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Then I have modified the code so that a,b,c are singles instead of default format of double
(replacing for example ‘a=rand;’ with ‘a=single(rand);’). And finally the same is done for
matrixes with size a, . This all together needs 24 runs (6 runs for each pair of

single\double and scalar\matrix) of the attached “check.m” file with slight modifications.
The results are stored in C2p29 PSET2 4.xls EXCEL file and the file is attached (similar
to previous page table). The next table shows the final results. Note that I have chosen
m=1200 and n=100 for scalars and m=25000 and n=100 for matrixes to get reasonable run
times for both matrix\scalars.

Time Cost in Clocks (each Clock= 0.5 nsec)
Single | Double Single [ Double
Wpstation Scalar Matrix (100*100)

a=rand, a=single(rand), a=rand(n,n), a=single(rand({n,n)) 2157 1385 130 85

b=rand, b=single(rand), b=rand(n,n), b=single(rand(n,n)) 2092 1322 123 81

c=a 1691 1653 4.6 4.8

c=-a 2047 1618 32 30

c=a+b 2414 1977 9.63 9.57

c=a-b 2406 1971 9.23 9.15

c=a*b, c=a.*b 2401 1961 9.71 9.12

c=a/b, c=a./b 2454 2028 50.1 42.2

c=abs(a) 2063 1648 26.5 22.5

c=a”2, c=a.”2 2092 1666 8.76 8.22

c=a*a*a, c=a.*a.*a 2740 2321 17.1 16.0

c=a”2*a, c=a.”2*a 3094 2658 18.1 15.0

c=a"3, c=a.”3 2616 2180 538 534

c=an.5 c=a.n.5 2224 2165 203 197

c=sqrt(a) 2168 2117 95.1 91.8

c=sin(a) 2164 1757 110.1 102.1

c=cos(a) 2138 1716 128.5 123.0

c=tan(a) 2163 1747 175.8 170.5

c=exp(a) 2171 1743 165.3 162.8

c=exp(-a) 2510 2095 171.7 167.5

c=log(a) 2273 2226 230.1 212.5

Time Cost Relative to a=c Matrix Speed Up
e ation Single [ Double Single | Double Single [ Double

P Scalar Matrix (100%100)  |Scalar to Matrix(100*100)
a=rand, a=single(rand), a=rand(n,n), a=single(rand(n,n)) 1.276 0.8383 28.47 17.77 16.56 16.28
b=rand, b=single(rand), b=rand(n,n), b=single(rand(n,n)) 1.237 0.7998 26.96 16.99 16.95 16.25
c=a 1.000 1.0000 1.000 1.000 369.4 345.2
c=-a 1.210 0.9789 7.080 6.200 63.16 54.51
c=a+b 1.428 1.196 2.103 2.000 250.8 206.5
c=a-b 1.423 1.193 2.017 1.911 260.6 215.5
c=a*b, c=a.*b 1.420 1.186 2.121 1.906 247.4 214.9
c=a/b, c=a./b 1.451 1.227 10.95 8.817 48.95 48.05
c=abs(a) 1.220 0.9971 5.799 4.700 77.75 73.24
c=a’2, c=a. 2 1.237 1.008 1.914 1.717 238.8 202.7
c=a*a*a, c=a.*a.*a 1.620 1.404 3.736 3.339 160.3 145.2
c=a"2*a, c=a.n2*a 1.830 1.608 3.966 3.128 170.5 177.5
c=a”3, c=a.”3 1.547 1.325 117.5 111.6 4.866 4.101
c=a".5, c=a.™5 1.315 1.310 44.40 41.13 10.95 10.99
c=sqrt(a) 1.282 1.281 20.78 19.17 22.80 23.07
c=sin(a) 1.280 1.063 24.06 21.32 19.65 17.22
c=cos(a) 1.264 1.038 28.07 25.70 16.64 13.95
c=tan(a) 1.279 1.057 38.42 35.62 12.30 10.24
c=exp(a) 1.284 1.055 36.11 34.01 13.13 10.71
c=exp(-a) 1.484 1.268 37.52 34.99 14.61 12.51
c=log(a) 1.344 1.347 50.28 44.40 9.880 10.474
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A lot of interesting conclusion can be made from above tables. First the general ones:

« All the operations\functions are faster for doubles with respect to singles, for both
matrixes and scalars. That’s first because MATLAB is optimized for doubles, and
secondly probably because some operations are done on doubles and then converted to
singles. The only exception is a 10% difference for c=a between single and double
matrixes; and that’s because “c=a” is only a memory copy which is faster for smaller
data. Consequently the single data does not sound appropriate “FOR MATLAB” * and
we will not discuss it anymore.

. 2" table in the previous page shows the time cost relative to c=a. Note that for double
scalars this ratio varies from 0.84 to 1.83 (for rand function and c=a"2*a), while for
double matrix the number varies from 1 to 111.6 (for c=a and c=a"3). This means that
operational cost is magnified for matrixes; and for scalars the timing is mostly due to
interpretation and data handling. For example for doubles the {+,-,*} are only about 2%
faster than {/}, while for matrixes there are about 4.4 times faster. For scalars we do not
care about operation\function type, but we just have to have smaller number of them.

« We can see that the relative time cost can be quite different for an operation\function
between scalars and matrixes. This is shown in the table on the previous page. The
speed up varies from 4.1 to 345 (for c=a.”3 and c=a). Consequently the speed up “13”
we saw earlier was just an average.

« Probably the most interesting fact is that the operational cost is not solely dependent on
mathematical complexity. Indeed a few very high-speed transistors makes CPU capable
of computing any of those operations\functions very quickly for scalars (almost a clock
when data are in CPU registers and the results will be in registers too). That’s another
reason why scalar cost are so close together. However, when it comes to huge data (like
huge matrixes) the parallelism plays the key role for speed up. The parallel calculation
relies on the CPU arithmetic capacity for each basic operation\function. The arithmetic
capacity is based on usual needs of a computer. For example typical use of the

computer needs a lot of {+,—,X, x,x*,sinx } and they are very fast (there are a lot of
rooms for those calculations). On the other hand x" where n #0.5,2is not a popular
function and a typical computer does not have a considerable capacity for that
operation. As a result, amazingly x is slower than any other operations\functions above
for matrixes (including {\/; ,sinx,cosx,tanx,e’,e ", Inx }). In those situations, we have
to replace our function with popular ones. Here using x’ =x* Xx or x’ =xXxXx
speeds up our calculation for about 35 times. Consequently we always prefer to
compute x" by recursive method for series. Also notice that due to different

? Still this CPU manual recommends singles for arithmetic, as much as possible instead of double. So the
hardware is still better for singles but software preferences pushes for doubles.
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computational capacity for different operations\functions, the speed up due to their
vectorization differs and varies by changing the size of array”.

. Another surprise: we have two calls to rand and the 2" one is consistently faster. This
is because the system still has that function in its memory and when it notices that it is
going to be called again it keeps that in the memory. Consequently the 2™ run is faster.
This is also true for other operands\functions, especially when they are similar or they
need some similar temporary memory or variables. For example {+,—} take the same

time, but since we first do the summation, the subtraction seems to be faster. This is just
an artifact and similarly {X } seems to be faster than both {+,—}, while this is not true

(in the table we see that {x } is about 5% faster than {+}). This can be verified by
changing the order of these operations (as I have done). Also it can be checked that
c=a."2.*a and c=a.*a.*a take the same time.
« Some specific results and speed ups are reported here. Note that they can be specific to
the array size (here 100*100):
o Operations {+,— x,+ } take the same time for scalars. For huge matrixes
{+,—,x } cost the same, while {+ } cost about 4.4 times.

o The square operator {x”} is a special function and is slightly (15%) faster
than {xxx }.

o The square root can be evaluated faster by using “sqrt” function. Indeed sqrt
is at least 2 times faster than equivalent x.*0.5 operation.

o As stated earlier { x" } is a very slow operation if n #0.5,2 . In those cases it
is better to use {x } if possible. For example, replacing {x’} with {x* x x }
can accelerate our computation up to 35 times.

o Apparently c=-a is about 3 times slower than c=b-a. This shows bad
implementation of MATLAB. Indeed it is even 1.32 more costly than
c=abs(a).

o Among the trigonometric function, the {sinx} is about 1.21 times faster
than {cosx} and about 1.67 times faster than {tanx}. Still {sinx} is as
costly as “sqrt(x)” and both cost about 10 times {+,—,x }.

o After {x"}, the functions { Inx } is the most costly function. { Inx } costs

about 1.3 times of { ¢" }, while { e* } and { tanx } cost about the same.

« Finally again remember that cost of scalar operations\functions is all about the same in
MATLAB. Consequently in general, for a faster scalar calculation you have to have
smaller number of operations\functions (regardless of their type). On the other hand, for
a faster matrix calculations, the functions\operations should be selected with respect to
your arithmetic capacity; as a rule of thumb select the popular ones.

3 Before we reach the arithmetic capacity, the cost per element is almost inversely proportional to the number of
arrays element and the total time is almost constant. In these regime the whole data is processed in one pass. As
long as we exceed the capacity we need extra passes to process all the data.
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Problem 2.5 (15 Points): Computational cost in other language (EXTRA CREDIT)

Repeat previous problem for a basic language (like C++ or Fortan), but only on the scalars.

Problem 2.6 (10 Points): Computational cost of determinant evaluation

a) We want to have a recursive formula for computational cost of determinant evaluation
by expansion of minors. Assume that for a matrix with size n the number of
multiplication and summation\subtraction is S,(n), M (n). Now compute

S.(n+1), M _(n+1) by arecursive formula.

b) Now notice that S,(1)=0, M (1)=0and try to develop a closed formula (or an order
estimation) for S, (n), M, (n).
C) Study the textbook Box 9.1. Ignore the pivoting and compute or estimate the
computational cost of determinant evaluation by Gauss elimination.
d) Compare “b” and “c” and discuss.
Solution:
a) For a matrix with size “n+1”, we have to compute “n+1” minors, multiply them by

matrix elements and then sum\subtract “n+1”” numbers:

S, (n+1) =(m+1)xS, (n)+n
M, (n+1) =(n+1)xM (n)+n+1

b) Note that S,(2)=1, M (2)=2. Consequently both S,(n), M (n) will grow faster than
n!. For example:

M (n) :n!+ZH‘;::_i+3j n>3
i=3
M (6) =6!4+(6X5X4X3+6X5x4+6%x5+6) n>3

b
Also by a little extension of summation notation (so that if b<a=0= Zm(i )):

M, (n) =n! +i]‘[‘}’::_i+3j = n! (1+§Hf;i%) n>3
i=3 i=2

n—1 1 n—1 l
Mx(n)=n!(1+25)=n!2; n>1
=2t i=1 %

n—1

remember e* series = lim 27‘= e—1
i
1

limM_(n) =n!(e—1)

Also by induction we can prove that: S,(n)=n!-1.
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C) After doing the gauss elimination, we are left with a triangular matrix and the
determinant of such a matrix is the product of its diagonal elements. So we need “n”
extra multiplications beside regular Guass elimination.

3

M, (n) :%;+00f)+n

3

&m):%+mm

Please note that:
i. If B results from A by exchanging two rows or columns, then det(A)=-det(B).
ii. If B results from A by multiplying one row or column with the number c, then
det(B)=c*det(A) .
iii. If B results from A by adding a multiple of one row to another row, or a multiple of
one column to another column, then det(A)=det(B).

Consequently the determinant of the initial matrix and the standard Gaussian eliminated
one can only differ by a sign. They have the same sign if we have an even number of
pivoting and opposite sign if we have an odd number of pivoting.

d) The cost (flops: or total number of floating point operations) of determinant evaluation
’;

. .. . . n .
by Gaussian elimination is of order =3 On the other hand, the cost of minors

expansion is at least of order nl!e=2.7n!. Consequently the Gaussian elimination is
strongly preferred and indeed the huge cost of minor expansion renders it as an
impractical method for large matrixes.

Problem 2.7 (10 Points): Correct and effective implementation of numerical algorithms

For any numerical code we are concerned with three issues:
1. Generalization (scope of algorithm) and exceptions
2. Numerical stability
3. Effective and fast implementation

Here we have a very simple MATLAB code for solving a linear system with Gauss elimination
and we are interested to investigate these issues for below code:

function [x]=gauss(A,b) % A: n*n matrix, b: n*l vector where Ax=b
Ab=[A b];

n=length(A);
for i=1l:n-1
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for j=i+l:n
m=-Ab(i,1i)/Ab(Jj,1);
for k=1l:n+1
Ab(j,k)=m*Ab(j,k)+Ab(i,k);
end
end
end
x=zeros(n,1l);
for i=n:-1:1
sum=Ab(i,n+1);
for j=i+l:n

sum=sum-x(Jj)*Ab(i,j);
end
X(i)=sum/Ab(i,i);
end

a) Is that mathematically correct? Does it work for all matrixes or some matrixes exist
which it fails to solve.

b) Is that numerically stable? Briefly discuss possible improvements.

C) Is that written effectively? Can we increase its speed? Is that operating with the
minimum number of operations? More specifically about MATLAB, can the code be
vectorized?

d) (EXTRA CREDIT: 10 Points) Improve the above code according to your answer in
previous part (print the code).

Solution:

a) We can examine the code and we will see that it produces the right solution. However,
does it work for all matrixes? The answer is “No”. If we look at the code every line
sounds safe unless these two lines:

1) m=-Ab(i,i)/Ab(j,i);
2) x(i)=sum/Ab(i,i);

Both lines can be problematic when the denominator is zero. For 1) we do not need a row
summation (note that above “m” is inverse of standard definition of “m” in Gaussian
elimination). In 2) A(i,1) is zero, and reminds the case when we have to do a pivoting. This
codes lacks the pivoting and more importantly lacks to check the inversibility of the matrix;
which means if it is at all possible to find a nonzero element by pivoting.

b) We have to do the pivoting, when the diagonal element of the active row becomes zero.
To improve the numerical stability:

i. Do partial pivoting so that the pivot element has the highest absolute value among
all the below elements in its own row. Even better, do the scaled partial pivoting, so
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that the absolute value of the pivot element divided by the maximum absolute
coefficients in its own row is the largest.

ii. Do full pivoting by exchanging variable orders and rows appropriately.

iii. Scale the equations or unknowns for equilibration.

C) To increase the speed we have to choose the right schemes. Even after that we have to
be careful to simplify it as much as possible so our code is as simple as possible. To that
end when we know the value of something, we should not compute it. In particular if
A(i,)) is zero then we do not need to compute the “m”. Beside that in the most internal

loop we are varying “k” from 1 to n+1, while elements before j will remain zero.

Original Code

Modified

m=-Ab(i,1i)/Ab(j,1);
for k=1l:n+l
Ab(j,k)=m*Ab(j,k)+Ab(i,k);
end

if Ab(j,1i)~=0
m=-Ab(j,1)/Ab(i,1);
Ab(j,1)=0
for k=i+l:n+1
Ab(j,k)=Ab(j,k)+m*Ab(i,k);
end
end

Also regarding the computer or MATLAB implementation we have to vectorize our code
as much as possible. In the MATLAB this is equivalent to replace “for” loops with
equivalent matrix or vector versions. So we can modify the code:

n=length(A);
for i=1:n-1
for j=i+l:n
m=-Ab(i,i)/Ab(j,1);
for k=1l:n+l
Ab(j,k)=m*Ab(j,k)+Ab(i,k);
end
end
end
x=zeros(n,1l);
for i=n:-1:1
sum=Ab(i,n+l);
for j=i+l:n

sum=sum-x(j)*Ab(i,J);
end
x(i)=sum/Ab(i,1i);
end

Original Code Modified (Still have to add pivoting in case
Ab(i,1) becomes zero)
Ab=[A b]; Ab=[A Db];

n=length(A);
for i=1:n-1
for j=i+l:n
if Ab(j,i)~=0
m=-Ab(j,1i)/Ab(i,1);
Ab(j,i:end)=Ab(j,i:end)+m*Ab(i,i:end);
end
end
end
x=zeros(n,1l);
for i=n:-1:1
sum=Ab(i,n+1)
if i<n
sum=sum-Ab(i,i+l:n)*x(i+l:end);
end
x(i)=sum/Ab(i, 1)
end

d) A modified code with scaled full pivoting is shown below. The related file is attached by

C2p29 PSET1 7.m name.

Ab=[A b];
n=length(A);
for i=1l:n-1

Scaled Coeff=Ab(i:n,i)./max(max(Ab(i:n,i:n),[],2),abs(min(Ab(i:n,i:n),[]1,2)));

[pivot,index]=max(Scaled_Coeff);
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if pivot==
error( 'Matrix is singular');
elseif index~=1

temp =Ab(1i ,i:end);
Ab(1i ,i:end)=Ab(i-1l+index,i:end);
Ab(i-1+index,i:end)=temp;

end

for j=i+l:n
if Ab(j,1i)~-=0
=-Ab(j,1i)/Ab(i,1);
Ab(j,i:end)=Ab(j,i:end)+m*Ab(i,i:end);
end
end
end
x=zeros(n,1l);
for i=n:-1:1
sum=Ab(i,n+1);
if i<n
sum=sum-Ab(i,i+l:n)*x(i+l:end);
end
X(i)=sum/Ab(i,i);
end
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