LECTURE 23

LECTURE OUTLINE

Interior point methods
Constrained optimization case - Barrier method
Conic programming cases

Linear programming - Path following

All figures are courtesy of Athena Scientific, and are used with permission.



BARRIER METHOD

e Inequality constrained problem

minimize f(x)

subject to z € X, gi(z) <0, j=1,...,m

where f and g; are real-valued convex and X is
closed convex.

e We assume that the interior (relative to X) set
S = {a:EX|gj(x) <0,j:1,...,r}

1s nonempty.

e Note that because S is convex, any feasible point
can be approached through S (the Line Segment
Principle).

e The barrier method is an approximation method.

e It replaces the indicator function of the con-

straint set
§(z | cl(9))

by a smooth approximation within the relative in-
terior of S.



BARRIER FUNCTIONS

e Consider a barrier function, that is continuous
and goes to oo as any one of the constraints g;(x)
approaches 0 from negative values.

e Examples:

T

B(z) = —Zln{—gj(:l?)}, B(z) = _Z 1

gj(x)

J=1

e Barrier method:

xk:argmin{f(:c)+ekB(:U)}, k=0,1,...,
xeS

where the parameter sequence {e;} satisfies 0 <
€1 < €k for all £ and €. — 0.

eB(x)
€ <e€
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BARRIER METHOD - EXAMPLE
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minimize f(x) =1 ((x1)2 + (x2)2)
subject to 2 < z',
with optimal solution z* = (2,0).
e Logarithmic barrier: B(z) = —In (z' — 2)
e We have z;, = (14 v/1+ e ,0) from
Ty € arg gu;; { ! ((x1)2 + (x2)2) —epln(z — 2)}
o As ¢ is decreased, the unconstrained minimum
xr approaches the constrained minimum z* = (2, 0).

e Aser — 0, computing z, becomes more difficult
because of ill-conditioning (a Newton-like method
is essential for solving the approximate problems).



CONVERGENCE

e Every limit point of a sequence {zx} generated
by a barrier method is a minimum of the original
constrained problem.

Proof: Let {x} be the limit of a subsequence {z\ }rex.
Since zr € S and X is closed, x is feasible for the
original problem.

If z is not a minimum, there exists a feasible
z* such that f(z*) < f(x) and therefore also an
interior point z € S such that f(z) < f(x). By the
definition of z,

f(CUk:) -+ EkB(wk) < f(fé) -+ EkB({é)v vV k,
so by taking limit

f(z) +  Jiminf exB(zr) < f(Z) < f(x)

Hence lim infi— oo, kex €xB(xr) < 0.

If x € S, we have limk_wo,kgK ekB(a:k) = O,
while if z lies on the boundary of S, we have by
assumption limg— oo, kex B(xg) = oo. Thus

liminf e, B(xx) > 0,

k— oo

— a contradiction.



SECOND ORDER CONE PROGRAMMING

e Consider the SOCP

minimize 'z

subject to Ajx —b, € C;, i =1,...,m,
where z € R™, ¢ is a vector in R", and for i =

1,...,m, A; 1s an n; X n matrix, b; 1s a vector in
R, and C; is the second order cone of R™:.

e We approximate this problem with

minimize 'z + ey Z Bi(Aiz — b;)
1=1

subject to z € R”,

where B; is the logarithmic barrier function:

Bi(y) = —In(yn, — (Wi +-+ +¥n;—1)), ¥y € int(Cy),

and {e;} 1s a positive sequence with ¢, — 0.

e FEssential to use Newton’s method to solve the
approximating problems.

e Interesting complexity analysis



SEMIDEFINITE PROGRAMMING

e (Consider the dual SDP

maximize b\

subject to C — (MA1+ -+ Andnm) € D,

where D is the cone of positive semidefinite ma-
trices.

e The logarithmic barrier method uses approxi-
mating problems of the form

maximize b A+exln (det(C’ — A A — - — AmAm))

over all A € R™ such that C — (M A1+ -+ A\ An)
is positive definite.

e Hereer >0 and ¢, — 0.

e Furthermore, we should use a starting point

such that C — A1 A1 — -+ — A\ A, 1S positive def-
inite, and Newton’s method should ensure that
the iterates keep C — A1 A1 —- - - — A\ A,y Within the

positive definite cone.



LINEAR PROGRAMS/LOGARITHMIC BARRIER

e Apply logarithmic barrier to the linear program

minimize c'x
. (LP)
subject to Axz = b, x>0,

The method finds for various e > 0,

= in Fe(z) = — Inz;
x(€) arg min () = ar E:Ilelgl{cx EZ nx}

where S = {:1; | Ax = b, © > 0}. We assume that S
is nonempty and bounded.

e As e — 0, z(e) follows the central path

Point x(e) on
central path

e All central paths start at the analytic center

Too = arg min —E Inz; p,
reS _

and end at optimal solutions of (LP).



PATH FOLLOWING W/ NEWTON’S METHOD

e Newton’s method for minimizing F::
T=x4+ alx —x),

where z is the pure Newton iterate

r = arg giﬁb {VFe(x)/(z —2)+ L(z—2) V°F.(z)(z — a:')}

e By straightforward calculation

x=x— Xq(x,e),

q(z,e) = —e, e=(1...1), z=c— A\,

A= (AX?A)TTAX (Xc— ee),

and X is the diagonal matrix with x;, i =1,...,n
along the diagonal.

e View ¢q(z,e) as a “normalized” Newton incement
[the Newton increment (z—z) transformed by X —*
that maps z into e.

e Consider ||q(x,e)| as a prozimity measure of the
current point to the point z(¢) on the central path.



KEY RESULTS

e It is sufficient to minimize F. approximately, up
to where ||q(x,e)| < 1.

e Fact 1: If x > 0, Az = b, and ||¢(x,e)| < 1,

/ . /
cxr— min cyge(n+\/n).
Ay=b,y=>0

Defines a “tube of convergence”.

Set {x | llq(x eVl < 1}

e Fact 2: The “termination set” {x | ||g(z,e)|| <
1} is part of the region of quadratic convergence.

e Fact 2: If ||¢(z,e)|| < 1, then the pure Newton
iterate x satisfies

lg(z,e)| < llg(z,e)]|* < 1.



SHORT STEP METHODS

Set {x | llq(x.ek*+ 1l ;

Set {x | llq(x,eK

e Idea: Use a single Newton step before changing
e (a little bit, so the next point stays within the
“tube of convergence”).

Proposition Let z > 0, Ax = b, and suppose
that for some v < 1 we have ||q(x,e)|| <. Then if

e = (1—0n"'?)e for some 6 > 0,
2

v +0

a9l < 70

In particular, if
§ <A1 —y)(1+7),
we have [|g(z, €)| < 7.

e Can be used to establish nice complexity results;
but ¢ must be reduced VERY slowly.



LONG STEP METHODS

e Main features:

— Decrease ¢ faster than dictated by complex-
ity analysis.

— Use more than one Newton step per (approx-
imate) minimization.

— Use line search as in unconstrained Newton’s
method.

— Require much smaller number of (approxi-
mate) minimizations.

(b)

Short Step method Long Step method

e The methodology generalizes to quadratic pro-
gramming and convex programming.
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