LECTURE 20

LECTURE OUTLINE

Approximation methods

Cutting plane methods

Proximal minimization algorithm
Proximal cutting plane algorithm

Bundle methods

All figures are courtesy of Athena Scientific, and are used with permission.



APPROXIMATION APPROACHES

e Approximation methods replace the original
problem with an approximate problem.

e The approximation may be iteratively refined,
for convergence to an exact optimum.
e A partial list of methods:

— Cutting plane/outer approximation.

— Simplicial decomposition/inner approxima-
tion.

— Proximal methods (including Augmented La-
grangian methods for constrained minimiza-
tion).

— Interior point methods.

e A partial list of combination of methods:
— Combined inner-outer approximation.
— Bundle methods (proximal-cutting plane).

— Combined proximal-subgradient (incremen-
tal option).



SUBGRADIENTS-OUTER APPROXIMATION

e (Consider minimization of a convex function f :
R — R, over a closed convex set X.

e We assume that at each x € X, a subgradient
g of f can be computed.

e We have
f(z) 2 flx) +g'(z —x),  Vzehn
so each subgradient defines a plane (a linear func-

tion) that approximates f from below.

e The idea of the outer approximation/cutting
plane approach is to build an ever more accurate
approximation of f using such planes.




CUTTING PLANE METHOD

e Start with any xg € X. For k > 0, set

Tp4+1 € arg min Fi(x),
xeX

where
Fi(x) = max{f(mo)—l—(m—xo)’go, e f(a:k)—l—(a:—:vk)’gk}

and g; is a subgradient of f at x;.

e Note that Fy(z) < f(x) for all x, and that
Fy(xk41) increases monotonically with k. These
imply that all limit points of z; are optimal.

Proof: If ry — x then Fj(zr) — f(x), [otherwise
there would exist a hyperplane strictly separating
epi(f) and (z,limg— o0 Fi(zr))]. This implies that
f(x) <limg_ oo Fr(x) < f(z) for all z. Q.E.D.



CONVERGENCE AND TERMINATION

e We have for all &

Fr(rpy1) < f* < Igilf(fl?i)

e Termination when min;<y f(x;)—F)(xr+1) comes
to within some small tolerance.

e For f polyhedral, we have finite termination
with an exactly optimal solution.
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e Instability problem: The method can make
large moves that deteriorate the value of f.

e Starting from the exact minimum it typically
moves away from that minimum.



VARIANTS

e Variant I: Simultaneously with f, construct
polyhedral approximations to X.

e Variant II: Central cutting plane methods
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e Variant III: Proximal methods - to be dis-
cussed next.



PROXIMAL/BUNDLE METHODS

e Aim to reduce the instability problem at the
expense of solving a more difficult subproblem.

e A general form:

Tk+1 € arg Crcréi;%{Fk(:v) +pr(z) }

Fi(x) = max{f(a?o)—l—(x—a?o)/go, e f(xk)—l—(x—a:k)/gk}

1
pr(e) =, o=yl
QCk

where ci is a positive scalar parameter.

e We refer to pi(x) as the proximal term, and to
its center yx as the proximal center.
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PROXIMAL MINIMIZATION ALGORITHM

e Starting point for analysis: A general algorithm
for convex function minimization

. 1 2
Tr+1 € arg xrg;er?ll {f(:l?) + %0 |z — k| }

— f:R" — (—o00,00] is closed proper convex
— ¢k 18 a positive scalar parameter
— xo 1s arbitrary starting point

f(zr)

Yk
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Yk — ﬂ”)" — Tk

e Convergence mechanism:

1

T = f(Zren) +

) |Tht1 — x| < fxk).

Cost improves by at least ,. [lzx+1—ax[*, and this

is sufficient to guarantee convergence.



RATE OF CONVERGENCE 1

e Role of penalty parameter cx:

Tk  Tk+lThy2 T* z TK | _:'xk+2 z* T

e Role of growth properties of f near optimal
solution set:
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RATE OF CONVERGENCE 11

e Assume that for some scalars 8 > 0, § > 0, and
a> 1,

f*+B(d@)” < f(z), VaeeR" withdz)<s

where
d(r) = min ||z — 27|
rx*¥eX*

1.e., growth of order o from optimal solution set
X™.

o If « =2 and limy .o cx = ¢, then

. d(wk_|_1) 1
lim su <
k—>oop d(xk) — 1 + ﬁé

linear convergence.

e If 1 <a <2, then

lim sup d(@r+1) < 00

oo (d(ap))

superlinear convergence.



FINITE CONVERGENCE

e Assume growth order a = 1:
"+ p6d(x) < f(x), VaeR",

e.g., f is polyhedral.

e Method converges finitely (in a single step for
co sufficiently large).

Zo xr1 T2 =x* T X v @



PROXIMAL CUTTING PLANE METHODS

e Same as proximal minimization algorithm, but
f is replaced by a cutting plane approximation

Fk:

. 1 2
F —
Tri1 € afg;%%{ k(z) + 2 |z — @k }

where

Fi(x) = max{f(a:o)+(x—a:0)/go, e f(a:k)—l—(x—a:k)/gk}

e Drawbacks:

(a) Hard stability tradeoff: For large enough
cr and polyhedral X, x,11 is the exact min-
imum of Fj over X in a single minimization,
so it is identical to the ordinary cutting plane
method. For small ¢, convergence is slow.

(b) The number of subgradients used in F}
may become very large; the quadratic pro-
gram may become very time-consuming.

e These drawbacks motivate algorithmic variants,
called bundle methods.



BUNDLE METHODS

o Allow a proximal center yi. # wx:

in{ F
Tet1 € argmin{ Fi(z) + pa (@) }

Fi(x) = max{f(a:o)—l—(x—xo)/gg, e f(a:k)—l—(a:—xk)’gk}
pu(e) =, o=l

e Null/Serious test for changing y,: For some

fixed 8 € (0,1)

_ e 1 f(yk) — f(xRg1) > Bk,
T Vg if flyr) — f@rg) < B0k,

O = fyk) = (Fr(xrt1) + pr(hsr)) >0

Ye Yk+1 = Tk x Yk = Yk+1 Ti+t1 T

Serious Step Null Step
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