
LECTURE 16


LECTURE OUTLINE


• Conic programming 

• Semidefinite programming 

• Exact penalty functions 

• Descent methods for convex/nondifferentiable 
optimization 

• Steepest descent method 

All figures are courtesy of Athena Scientific, and are used with permission.



LINEAR-CONIC FORMS


min c�x max b�λ, 
Ax=b, x∈C 

⇐⇒ 
c−A�λ∈Ĉ

min c�x max b�λ, 
Ax−b∈C 

⇐⇒ 
A�λ=c,λ ∈Ĉ

n m n mwhere x ∈ � , λ ∈ � , c ∈ � , b ∈ � , A : m×n.


• Second order cone programming: 

minimize c�x


subject to Aix− bi ∈ Ci, i = 1, . . . ,m,


where c, bi are vectors, Ai are matrices, bi is a 
vector in �ni , and 

niCi : the second order cone of �

• The cone here is C = C1 × · · ·  × Cm 

• The dual problem is 

m

maximize 
� 

b�iλi 

i=1 
m

subject to 
� 

A�λi = c,λ i ∈ Ci, i = 1, . . . ,m, i
i=1 

where λ = (λ1, . . . , λm).




SEMIDEFINITE PROGRAMMING 

• Consider the symmetric n × n matrices. Inner 
product < X,Y  >= trace(XY ) =  

�n 
i,j=1 xij yij . 

• Let C be the cone of pos. semidefinite matrices. 

• C is self-dual, and its interior is the set of pos­
itive definite matrices. 

• Fix symmetric matrices D, A1, . . . , Am, and 
vectors b1, . . . , bm, and consider 

minimize < D,X  > 


subject to < Ai, X  >= bi, i = 1, . . . ,m, X ∈ C


• Viewing this as a linear-conic problem (the first 
special form), the dual problem (using also self-
duality of C) is  

m

maximize	
� 

biλi


i=1


subject to D − (λ1A1 + + λmAm) ∈ C· · ·

• There is no duality gap if there exists primal 
feasible solution that is pos. definite, or there ex­
ists λ such that D− (λ1A1 + + λmAm) is pos. · · ·
definite. 



EXAMPLE: MINIMIZE THE MAXIMUM


EIGENVALUE


• Given n×n symmetric matrix M(λ), depending 
on a parameter vector λ, choose λ to minimize the 
maximum eigenvalue of M(λ). 

•	 We pose this problem as 

minimize z 

subject to maximum eigenvalue of M(λ) ≤ z, 

or equivalently 

minimize z 

subject to zI − M(λ) ∈ C, 

where I is the n × n identity matrix, and C is the 
semidefinite cone. 

•	 If M(λ) is an affine function of λ, 

M(λ) =  D + λ1M1 + + λmMm,· · ·

the problem has the form of the dual semidefi­
nite problem, with the optimization variables be­
ing (z,λ 1, . . . ,  λm). 



EXAMPLE: LOWER BOUNDS FOR


DISCRETE OPTIMIZATION


• Quadr. problem with quadr. equality constraints


minimize x�Q0x + a�0x + b0


subject to x�Qix + a�ix + bi = 0, i = 1, . . . ,m,


Q0, . . . , Qm: symmetric (not necessarily ≥ 0). 

• Can be used for discrete optimization. For ex­
ample an integer constraint xi ∈ {0, 1} can be 
expressed by xi 

2 − xi = 0. 

The dual function is • 

q(λ) =  inf  
�
x�Q(λ)x + a(λ)�x + b(λ)

�
, 

x∈�n 

where 
m

Q(λ) =  Q0 + 
� 

λiQi, 
i=1 

m m

a(λ) =  a0 + 
� 

λiai, b(λ) =  b0 + 
� 

λibi 

i=1 i=1 

• It turns out that the dual problem is equivalent 
to a semidefinite program ... 



EXACT PENALTY FUNCTIONS 

• We use Fenchel duality to derive an equiva­
lence between a constrained convex optimization 
problem, and a penalized problem that is less con­
strained or is entirely unconstrained. 

• We consider the problem 

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,


where g(x) =  
�
g1(x), . . . , gr(x)

�
, X  is a convex 

n nsubset of �n, and f : � → � and gj : � → �
are real-valued convex functions. 

r • We introduce a convex function P : � �→ �, 
called penalty function, which satisfies 

P (u) = 0, ∀ u ≤ 0, P (u) > 0, if ui > 0 for some i 

• We consider solving, in place of the original, the 
“penalized” problem 

minimize f(x) +  P
�
g(x)

� 

subject to x ∈ X, 



FENCHEL DUALITY


We have • 

inf 
�
f(x) +  P

�
g(x)

�� 
= inf  

�
p(u) +  P (u)

�


x∈X	 u∈�r 

where p(u) = infx∈X, g(x)≤u f(x) is the primal func­
tion. 

• Assume −∞ < q and f < ∞ so that p is
∗ ∗ 

proper (in addition to being convex). 

•	 By Fenchel duality 

inf 
�
p(u) +  P (u)

� 
= sup  

�
q(µ) − Q(µ)

�
, 

u∈�r	 µ≥0 

where for µ ≥ 0, 

q(µ) =  inf  
�
f(x) +  µ�g(x)

� 

x∈X 

is the dual function, and Q is the conjugate convex 
function of P : 

Q(µ) =  sup  
�
u�µ− P (u)

� 

u∈�r 



PENALTY CONJUGATES
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P (u) = c max{0, u}

0 u 0 µ

P (u) = max{0, au+u2} Q(µ)

Slope = a

0 u 0 a µ

0 u 0 µ

0 if 0Q(µ) =
� ≤ µ ≤ c
∞ otherwise

c

P (u) = (c/2)
�
max{0

�2 (1/2c µ2 if µ, u ) =
�

)
µ

≥ 0} Q( ∞ if µ < 0

• Important observation: For Q to be flat for
some µ > 0, P must be nondifferentiable at 0.



FENCHEL DUALITY VIEW
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f̃ + Q(µ)

)
q∗ = f∗ = f̃

q(µ

0 µ̃ µ

f̃ + Q(µ)

q(µ)
f̃

0 µ̃ µ

f̃ + Q(µ)

q(µ)
f̃

0 µ̃ µ

• For the penalized and the original problem to
have equal optimal values, Q must be“flat enough”
so that some optimal dual solution µ∗ minimizes
Q, i.e., 0 ∈ ∂Q(µ∗) or equivalently

µ∗ ∈ ∂P (0)

• True if P ( ru) = c j=1 max{0, uj} with c ≥
�µ∗� for some optimal

�

dual solution µ∗.



DIRECTIONAL DERIVATIVES 

• Directional derivative of a proper convex f :


nf �(x; d) = lim
f(x + αd) − f(x) 

, x ∈ dom(f), d ∈ �
α 0 α↓

The ratio • 

f(x + αd) − f(x) 
α 

is monotonically nonincreasing as α 0 and con­
verges to f �(x; d). 

↓

For all x ∈ ri
�
dom(f)

�
, f �(x; ) is the support • ·

function of ∂f(x). 



STEEPEST DESCENT DIRECTION


Consider unconstrained minimization of convex • 
f : �n �→ �. 

A descent direction d at x is one for which • 
f �(x; d) < 0, where 

f �(x; d) =  lim
f(x + αd) − f(x) 

= sup  d�g
α 0 α↓ g∈∂f (x) 

is the directional derivative. 

• Can decrease f by moving from x along descent 
direction d by small stepsize α. 

• Direction of steepest descent solves the problem


minimize f �(x; d) 
subject to �d� ≤  1


• Interesting fact: The steepest descent direc­
tion is −g∗, where  g∗ is the vector of minimum 
norm in ∂f(x): 

min f �(x; d) =  min  max d�g = max min d�g 
�d�≤1 �d�≤1 g∈∂f (x) g∈∂f(x) �d�≤1 

= max min 
g∈∂f (x) 

�
−�g�

� 
= − 

g∈∂f (x) 
�g� 



STEEPEST DESCENT METHOD


n• Start with any x0 ∈ � . 

• For k ≥ 0, calculate −gk, the  steepest  descent  
direction at xk and set 

xk+1 = xk − αkgk 

Difficulties: • 

− Need the entire ∂f(xk) to compute gk. 
− Serious convergence issues due to disconti­

nuity of ∂f(x) (the method has no clue that 
∂f(x) may change drastically nearby). 

• Example with αk determined by minimization 
along −gk: {xk} converges to nonoptimal point. 
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