LECTURE 16

LECTURE OUTLINE

e Conic programming
e Semidefinite programming
e Lixact penalty functions

e Descent methods for convex/nondifferentiable
optimization

e Steepest descent method

All figures are courtesy of Athena Scientific, and are used with permission.



LINEAR-CONIC FORMS

min ¢z — max b\,
Az=b, zcC c—A'XeC

min cx — max D'\,
Az—beC A'd=c,\ €C

wherex € Rn, A e Rm, ce R, b€ R™, A: mXxn.

e Second order cone programming:

minimize c'x

subject to A;x —b; € C;, 1 =1,...,m,

where ¢, b; are vectors, A; are matrices, b; is a
vector in R, and

C; : the second order cone of Jri

e The cone hereisC =C1 x---x C,,

e The dual problem is
maximize Z bi \;
i=1

™m
subject to ZA;)\Z-:C,)\ ,€Ci, 1=1,...,m,

1=1

where A = (A1,..., Am).



SEMIDEFINITE PROGRAMMING

e (Consider the symmetric n X n matrices. Inner
product < X,Y >= trace(XY) = > """, i;yij-

e Let C be the cone of pos. semidefinite matrices.

e (U is self-dual, and its interior is the set of pos-
itive definite matrices.

e Fix symmetric matrices D, Ai,..., A, and
vectors b1, ..., b, and consider

minimize < D,X >
subject to < A;, X >=1b;, 1=1,....m, X eC

e Viewing this as a linear-conic problem (the first
special form), the dual problem (using also self-
duality of C) is

maximize Z b; \;
i=1
subject to D — (MA1+ -+ Andn) € C

e There is no duality gap if there exists primal
feasible solution that is pos. definite, or there ex-
ists A such that D — (A A1+ -+ + A Ap) is pos.
definite.



EXAMPLE: MINIMIZE THE MAXIMUM
EIGENVALUE

e Given nxn symmetric matrix M (\), depending
on a parameter vector A, choose A to minimize the
maximum eigenvalue of M ().

e We pose this problem as
minimize z

subject to maximum eigenvalue of M(\) < z,
or equivalently

minimize 2
subject to zI — M(X) € C,

where [ is the n x n identity matrix, and C' is the
semidefinite cone.

e If M(\) is an affine function of A,
M) =D+ MM+ 4+ XM,
the problem has the form of the dual semidefi-

nite problem, with the optimization variables be-
ing (z,A1,...,Am).



EXAMPLE: LOWER BOUNDS FOR
DISCRETE OPTIMIZATION

e (Quadr. problem with quadr. equality constraints

minimize z’'Qox + ajx + bo
subject to ’'Q;x +alx+b; =0, 1=1,...,m,
Qo, - - -, Qm: symmetric (not necessarily > 0).

e (Can be used for discrete optimization. For ex-
ample an integer constraint x; € {0,1} can be
expressed by x? — x; = 0.

e The dual function is

g(A) = inf {2/Q(N)x + a(A)z + b(\)},

rER™

where

QN =Qo+ > X,
i=1

a(\) =ao+ Y Niai, bA)=bo+ > Aib;
1=1 1=1

e It turns out that the dual problem is equivalent
to a semidefinite program ...



EXACT PENALTY FUNCTIONS

e We use Fenchel duality to derive an equiva-
lence between a constrained convex optimization
problem, and a penalized problem that is less con-
strained or is entirely unconstrained.

e We consider the problem

minimize f(x)
subject to x € X, g(x) <0,

where g(z) = (g1(2),...,9-(z)), X is a convex
subset of Jt7, and f : ®*» — R and g; : kI — R

are real-valued convex functions.

e We introduce a convex function P : " — R,
called penalty function, which satisfies

Pu)=0, Vu<0, P(u)>0, if u; > 0 for some i

e We consider solving, in place of the original, the
“penalized” problem

minimize f(z) + P(g(z))
subject to = € X,



FENCHEL DUALITY

e We have

inf {f(z) + P(g(z))} = inf {p(u) + P(u)}

where p(u) = inf e x 4(2)<u f(2) is the primal func-
tion.

e Assume —oo < ¢* and f* < oo so that p is
proper (in addition to being convex).

e By Fenchel duality

inf {p(u)+ P(u)} =sup{q(p) — Q) },

ueR” ©t>0

where for © > 0,

is the dual function, and () is the conjugate convex
function of P:

Q(u) = sup {u'p — P(u) ]



PENALTY CONJUGATES

4 P(u) = cmax{0,u}

Q(n) :‘{ 0

if0<u<ec
oo otherwise

‘P(u) = max{0, au +u?}

Slope =i

~0

u

-
0 C
Qp)
-
0 a p

P(u):‘(c/2)(max{0,u})2 o) :‘{ (1/2c)p2 if p >0

00 if <0

e Important observation: For () to be flat for
some 1 > 0, P must be nondifferentiable at O.



FENCHEL DUALITY VIEW

i q(1)
i /
0 / [ \ ;;
A
T+ Q)
i q(1)
7 -

o/ﬁl \;

e For the penalized and the original problem to
have equal optimal values, () must be “flat enough”
so that some optimal dual solution p* minimizes
Q, i.e., 0 € 0Q(u*) or equivalently

u* € OP(0)

o True if P(u) = c¢) ;_ max{0,u;} with ¢ >
|o*|| for some optimal dual solution p*.



DIRECTIONAL DERIVATIVES

e Directional derivative of a proper convex f:

f/(x;d) = lim fe+ad) = fle) dom(f), d € Rn

a0 o

f(@+ad)t

f(z+@d)—f(x)

Slope:

Slop:e: fiz:d)

B
0 Ql Qo

e The ratio

flz 4+ ad) — f(z)

Q
is monotonically nonincreasing as « | 0 and con-
verges to f/(x;d).

e For all x € ri(dom(f)), f'(z;-) is the support
function of 0f(x).



STEEPEST DESCENT DIRECTION

e (Consider unconstrained minimization of convex

f R — R.

e A descent direction d at x is one for which
f'(x;d) < 0, where

f'(x;d) = lim fla+ad) = f(z) = sup d'g

|0 o gedf(x)
is the directional derivative.

e Can decrease f by moving from x along descent
direction d by small stepsize «.

e Direction of steepest descent solves the problem
minimize f/(x;d)
subject to [|d|| <1

e Interesting fact: The steepest descent direc-

tion is —g*, where ¢g* is the vector of minimum
norm in 9 f(x):

min f/(z;d) = min max d’g= max min d'g
Id|I<1 ldI<1 g€df(x) g€of(z) ||d||<1
= max (—|lgl]) =— min |lg]

geIf(x) geIf(x)



STEEPEST DESCENT METHOD

e Start with any z¢ € R".

e For k>0

, calculate —g., the steepest descent

direction at x; and set

Tk — Qg

Lk+1

e Difficulties

— Need the entire 0f(xx) to compute g.

— Serious convergence issues due to disconti-

nuity of 0f(x) (the method has no clue that
0f(x) may change drastically nearby).

e Example with aj determined by minimization
along —gi: {xr} converges to nonoptimal point.
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