LECTURE 15

LECTURE OUTLINE

Problem Structures

— Separable problems

— Integer/discrete problems — Branch-and-bound
— Large sum problems

— Problems with many constraints

Conic Programming
— Second Order Cone Programming

— Semidefinite Programming

All figures are courtesy of Athena Scientific, and are used with permission.



SEPARABLE PROBLEMS

e Consider the problem
™m

minimize Z fi(x:)
i=1

™m
S. t. Zgji(aji)ﬁo, 7=1,....r, z;, €X;, V1
=1

where f; : " — R and gj; : ’™ — RN are given
functions, and X; are given subsets of Jt™i.

e Form the dual problem

™m

maximize Zqi(u) = leg( {fz(ﬂiz) + Zﬂjgji(xi)}
i=1 Y J=1

=1

subject to u >0

e Important point: The calculation of the dual
function has been decomposed into n simpler
minimizations. Moreover, the calculation of dual
subgradients is a byproduct of these mini-
mizations (this will be discussed later)

e Another important point: If X; is a discrete
set (e.g., X; = {0,1}), the dual optimal value is
a lower bound to the optimal primal value. It is
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LARGE SUM PROBLEMS

e (onsider cost function of the form

f(x) = Z fi(x), m is very large,
i=1
where f; : ™ — R are convex. Some examples:

e Dual cost of a separable problem.

e Data analysis/machine learning: z is pa-
rameter vector of a model; each f; corresponds to
error between data and output of the model.

— Least squares problems (f; quadratic).

— {;1-regularization (least squares plus £1 penalty):

min Z(a;az —b;)2 + ’yz EA
j=1 i=1
The nondifferentiable penalty tends to set a large

number of components of x to 0.

e Min of an expected value E{F(z,w)}, where
w is a random variable taking a finite but very
large number of values w;, 2 = 1,...,m, with cor-
responding probabilities ;.

e Stochastic programming:

x

min | Fi(z) + Ew{min F>(z,y, w)}
y

o Snecial methods called incremental applv



PROBLEMS WITH MANY CONSTRAINTS

e Problems of the form

minimize f(x)

subject to a’wr <bj, j=1,...,m

where r: very large.

e One possibility is a penalty function approach:
Replace problem with

rERMT

min f(x) + CZ P(az — bj)
j=1

where P(-) is a scalar penalty function satisfying
P(t)=0ift <0,and P(t) >0ift >0, and cis a
positive penalty parameter.

e Examples:
— The quadratic penalty P(t) = (max{0, t})Q.
— The nondifferentiable penalty P(t) = max{0,t}.
e Another possibility: Initially discard some of
the constraints, solve a less constrained problem,

and later reintroduce constraints that seem to be
violated at the optimum (outer approximation).

e Also inner approximation of the constraint set.



CONIC PROBLEMS

e A conic problem is to minimize a convex func-
tion f : R — (—o0, 0| subject to a cone con-
straint.
e The most useful /popular special cases:

— Linear-conic programming

— Second order cone programming

— Semidefinite programming

involve minimization of a linear function over the
intersection of an affine set and a cone.

e (Can be analyzed as a special case of Fenchel
duality.

e There are many interesting applications of conic
problems, including in discrete optimization.



PROBLEM RANKING IN

INCREASING PRACTICAL DIFFICULTY

e Linear and (convex) quadratic programming.

— Favorable special cases.
e Second order cone programming.
e Semidefinite programming.

e Convex programming.
— Favorable special cases.
— Geometric programming.

— Quasi-convex programming.

e Nonlinear/nonconvex/continuous programming.
— Favorable special cases.
— Unconstrained.

— Constrained.

e Discrete optimization/Integer programming

— Favorable special cases.



CONIC DUALITY

e Consider minimizing f(x) over x € C, where f :
R" +— (—o00,00] is a closed proper convex function
and C' is a closed convex cone in R™.

e We apply Fenchel duality with the definitions

fi(z) = f(z), fQ(x):{go ﬁji;g

The conjugates are

N B - N B ;[0 ifAeCF,

where C* = {\ | Max <0,V x € C} is the polar
cone of C.

e The dual problem is

minimize f*(\)

subject to A € C’,
where f* is the conjugate of f and
C={\NNe>0,VazeC}

C

—(C'* is called the dual cone.



LINEAR-CONIC PROBLEMS

e Let f be affine, f(z) = ¢z, with dom(f) be-
ing an affine set, dom(f) = b+ S, where S is a
subspace.

e The primal problem is

minimize c'x

subject to x —be S, xe(C.

e The conjugate is

f¥(A) = sup (A —c¢)'x =sup(A—c)'(y+0b)

r—beSsS yes
(A=) ifA—ceSL,
| if A\ —cé¢ S+,

so the dual problem can be written as

minimize b’'\

subject to A—ce S+, NeC.

e The primal and dual have the same form.

e If C is closed, the dual of the dual yields the
primal.



SPECIAL LINEAR-CONIC FORMS

min ¢z — max b\,
Az=b, zcC c—A'XeC

min cx — max D'\,
Az—beC A'd=c,\ €C

wherex € Rn, A e Rm, ce R, b€ R™, A: mXxn.

e For the first relation, let x be such that Az = b,
and write the problem on the left as

minimize c'x
subject to x —x € N(A), ze(C
e The dual conic problem is
minimize '
subject to p—c e N(A)+, pued.
e Using N(A)+ = Ra(A’), write the constraints
as ¢ — i € —Ra(A’) = Ra(A4’), n € C, or
c— =AM\, neC, for some A\ € R,

e Change variables u = c— A’)\, write the dual as

minimize z'(c — A’\)

subject to ¢ — A'X € C

discard the constant z’c, use the fact Az = b, and

~hanaoan frarh I FA 1T a9



SOME EXAMPLES

e Nonnegative Orthant: C' = {x | x > 0}.
e The Second Order Cone: lLet

C:{(ayl,...,xnﬂxnz\/x%Jr---er%_l}

AX3

/ X1
X2

e The Positive Semidefinite Cone: Consider
the space of symmetric n X n matrices, viewed as
the space R*° with the inner product

< X,Y >=trace(XY) szzgyzg
1=1 5=1

Let C' be the cone of matrices that are positive
semidefinite.

e All these are self-dual, ie., C = —C* = C.



SECOND ORDER CONE PROGRAMMING

e Second order cone programming is the linear-
conic problem

minimize c'x

subject to A;x —b; € C;, 1 =1,...,m,

where ¢, b; are vectors, A; are matrices, b; is a
vector in R, and

C; : the second order cone of R

e 'The cone here is

C=C;{ x---xC,,

Axs

|

/



SECOND ORDER CONE DUALITY

e Using the generic special duality form

min cx — max b\,
Ax—beC A’ d=c,\ cC

and self duality of C', the dual problem is

m
maximize g bi \;
i=1

™m
subject to ZAMZ' =c A ;,€C; 1=1,...,m,
i=1

where A = (A1,..., A\m).

e The duality theory is no more favorable than
the one for linear-conic problems.

e There is no duality gap if there exists a feasible
solution in the interior of the 2nd order cones C};.

e Generally, second order cone problems can be
recognized from the presence of norm or convex
quadratic functions in the cost or the constraint
functions.

e There are many applications.



EXAMPLE: ROBUST LINEAR PROGRAMMING

minimize c'x

subject to ajz <bj, V(aj,b;) €T), j=1,...,m

where c € o7, and T is a given subset of Jen+1.

e We convert the problem to the equivalent form

minimize c'x

subject to g;(x) <0, g=1...,m

where g;(z) = sup(,. .)er, {0z — b;}.

e For special choice where T is an ellipsoid,
Ty = {(a;j + Pjuj,bj + qjuy) | [Jus]] <1}
we can express ¢gj(z) < 0 in terms of a SOC:

gj(z) = || Slﬁlil{(aj + Pjuj)'w — (bj + qjuy) |

= sup (Pjx —qj)'u; + ajr — by,
Jugl| <1

= [|[Pjx — gj]| + ajx — bj.

Thus, gj(z) < 0iff Pix—q;,b;—ajz) € C;, where
C; is the SOC.
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