LECTURE 14
LECTURE OUTLINE

e Min-Max Duality

e Existence of Saddle Points

Given ¢ : X X Z — R, where X C R, Z C ™

consider
minimize sup ¢(z, z)
z€Z

subject to xr € X
and
. -
maximize inf oz, 2)
subject to z € Z.

All figures are courtesy of Athena Scientific, and are used with permission.



REVIEW

e Minimax inequality (holds always)

sup inf ,2) < inf s :
o0z o, (e < g up 04,2

Important issue is whether minimax equality holds.
e Definition: (z*, z*) is called a saddle point of
¢ if

d(x*, z) < plx*, 2*) < d(x,2%), Vee X, VzeZ

e Proposition: (z*,2*) is a saddle point if and
only if the minimax equality holds and

r* € arg minsup ¢(x, 2), z € argmax inf ¢(z,2)
xeX ,cz zeZ xeX
e Connection w/ constrained optimization:
— Strong duality is equivalent to
inf sup L(x, ) = sup inf L(x, i
xeX u>0 ( ,U) u>0 reX ( )

where L is the Lagrangian function.

— Optimal primal-dual solution pairs (z*, u*)
are the saddle points of L.



MC/MC FRAMEWORK FOR MINIMAX

e Use MC/MC with M = epi(p) where p : R™ —
|[—00, 00| is the perturbation function

p(u) = inf sup{d(z,z) — 'z}, u € RfM
TEX 2cZ

e Important fact: p is obtained by partial min.

e Note that w* = p(0) = infsup¢ and ¢(-, 2):
convex for all z implies that M is convex.

o If —¢(x,-) is closed and convex, the dual func-
tion in MC/MC is

q(z) = inf ¢(x,2),  ¢* =supinf¢

w* = inf sup ¢(z, z)
z€X 2€Z

w* = inf sup ¢(z, 2)

z€X 2€Z
; 0 g* = sup inf ¢(z, 2)
q* = sup inf ¢($,2) ze€Z xzeX
zeZzeX

0 \ o 0 \ e




MINIMAX THEOREM 1

Assume that:

(1) X and Z are convex.

2) p(0) =infyex sup,c, P(z, 2) < 0.

(2)
(3) For each z € Z, the function ¢(-, z) is convex.
(4)

4) For each x € X, the function —¢(z,-) : Z —
R is closed and convex.

Then, the minimax equality holds if and only if
the function p is lower semicontinuous at u = 0.

Proof: The convexity/concavity assumptions guar-
antee that the minimax equality is equivalent to
¢* = w* in the min common/max crossing frame-
work. Furthermore, w* < oo by assumption, and
the set M |equal to M and epi(p)] is convex.

By the 1st Min Common/Max Crossing The-
orem, we have w* = ¢* iff for every sequence
{(ug,wr)} € M with up — 0, there holds w* <
liminfy,_ o wg. This is equivalent to the lower
semicontinuity assumption on p:

p(0) < liminf p(ug), for all {ug} with ux — 0

k— o0



MINIMAX THEOREM 11

Assume that:

(1) X and Z are convex.

2) p(0) = infyex sup,c 5 ¢(z, 2) > —o0.

(2)
(3) Foreach z € Z, the function ¢(-, z) is convex.
(4)

4) For each x € X, the function —¢(z,-) : Z —
R is closed and convex.

(5) 0 lies in the relative interior of dom(p).

Then, the minimax equality holds and the supre-
mum in sup, ., infyc x ¢(z, ) is attained by some
z € Z. [Also the set of z where the sup is attained
is compact if 0 is in the interior of dom(p).]

Proof: Apply the 2nd Min Common/Max Cross-
ing Theorem.

e (Counterexamples of strong duality and exis-
tence of solutions/saddle points can be constructed
from corresponding constrained min examples.



EXAMPLE 1

o Let X = {(z1,22) |2 >0} and Z ={z € R |
z > 0}, and let
gb(iC,Z) = e VI1T2 4 ~L1,

which satisty the convexity and closedness assump-
tions. For all z > 0,

i {evern 4 2} =0

S0 SUp, ¢ infy>0 ¢(z, z) = 0. Also, for all z > 0,

sup {e" V¥ 4 zp b =
z>0

{1 if 21 =0,

oo if x1 >0,

so infz>osup,~q ¢(z, 2) = 1.

e Here
p(u) = inf sup {e~ V#1224 (21 —u)}
20 >0

p(u) A

epi(p)




EXAMPLE 11

o let X =R, Z={z€R|2z>0}, and let
oz, 2) = & + 222,

which satisfy the convexity and closedness assump-
tions. For all z > 0,

| _1/(42) ifz>0
21 — )
i ozt = 0 20

SO SUpP,>q infzew ¢(x, 2) = 0. Also, for all x € R,

sup {z + z2?} =
z>0

{0 if x =0,

oo otherwise,

S0 infyex sup,~q ¢(z, z) = 0. However, the sup is
not attained, i.e., there is no saddle point.

e Here

p(u) = inf sup{x + z22 — uz}
reR ;>0

:{—\/u if u >0,

00 if u < 0.



SADDLE POINT ANALYSIS

e The preceding analysis indicates the importance
of the perturbation function

p(u) = xlenggn F(z,u),

where

F(x,u) = {Supzez{sb(:v,z) —u/z} ifreX,
| o0 if v ¢ X.

It suggests a two-step process to establish the min-
imax equality and the existence of a saddle point:

(1) Show that p is closed and convex, thereby
showing that the minimax equality holds by
using the first minimax theorem.

(2) Verify that the inf of sup,., ¢(x, z) over
r € X, and the sup of inf,cx ¢(x, z) over
2z € Z are attained, thereby showing that
the set of saddle points is nonempty.



SADDLE POINT ANALYSIS (CONTINUED)

e Step (1) requires two types of assumptions:

(a) Convexity/concavity /semicontinuity conditions
of Minimax Theorem I (so the MC/MC frame-
work applies).

(b) Conditions for preservation of closedness by
the partial minimization in

= inf F
p(u) = inf F(z,u)

e.g., for some u, the nonempty level sets

{:1:' | F'(x,u) S’y}

are compact.

e Step (2) requires that either Weierstrass’ The-
orem can be applied, or else one of the conditions
for existence of optimal solutions developed so far
is satisfied.



CLASSICAL SADDLE POINT THEOREM

e Assume convexity/concavity /semicontinuity of
¢ and that X and Z are compact. Then the set
of saddle points is nonempty and compact.

e Proof: F'is convex and closed by the convex-
ity /concavity /semicontinuity of ¢, so p is also con-
vex. Using the compactness of Z, F' is real-valued
over X X ™, and from the compactness of X,
it follows that p is also real-valued and therefore
continuous. Hence, the minimax equality holds by
the first minimax theorem.
The function sup, ., ¢(z, 2) is equal to F'(z,0),

so it is closed, and the set of its minima over x € X
is nonempty and compact by Weierstrass’ Theo-
rem. Similarly the set of maxima of the function
inf,cx ¢(x,z) over z € Z is nonempty and com-
pact. Hence the set of saddle points is nonempty
and compact. Q.E.D.



ANOTHER THEOREM

e Use the theory of preservation of closedness
under partial minimization.

e Assume convexity/concavity /semicontinuity of
¢. Consider the functions

sup, x,z) itxelX,
t(x):F(x,O):{oopeZ¢( ) I

and

_ [ —infiex oz, 2) ifz € Z,
r(z) {oo if 2 ¢ Z.

e If the level sets of ¢t are compact, the minimax
equality holds, and the min over x of

sup ¢(x, z)
z€/

(which is t(z)] is attained. (Take u = 0 in the
partial min theorem to show that p is closed.)

o If the level sets of ¢ and r are compact, the set
of saddle points is nonempty and compact.

e Various extensions: Use conditions for preser-
vation of closedness under partial minimization.



SADDLE POINT THEOREM

Assume the convexity /concavity /semicontinuity con-
ditions, and that any one of the following holds:

(1) X and Z are compact.

(2) Z is compact and there exists a vector z € Z
and a scalar v such that the level set {:U c

X | ¢(z,2) <~} is nonempty and compact.

(3) X is compact and there exists a vector x € X
and a scalar v such that the level set {z c

Z | ¢(x,z) >~} is nonempty and compact.

(4) There exist vectors x € X and z € Z, and a
scalar v such that the level sets

{ze X |d(x,2) <v}, {2€Z]¢(x,2) 27},

are nonempty and compact.

Then, the minimax equality holds, and the set of
saddle points of ¢ is nonempty and compact.
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