LECTURE 10

LECTURE OUTLINE

e Min Common / Max Crossing duality theorems
e Strong duality conditions
e Existence of dual optimal solutions

e Nonlinear Farkas’ lemma

Reading: Sections 4.3, 4.4, 5.1
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All figures are courtesy of Athena Scientific, and are used with permission.



DUALITY THEOREMS

e Assume that w* < oo and that the set

M = {(u,w) | there exists w with w < w and (u,w) € M}

1S convex.

¢ Min Common/Max Crossing Theorem I:

We have ¢* = w* if and only if for every sequence
{(uk, wk)} C M with ug — 0, there holds

w* < lim inf wy,.
k— o0
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{(uk,wk)} C M, up — 0, w* < liminf wy {(uk,wk)} C M, up — 0, w* > likminfwk
—00

k—o0

e Corollary: If M = epi(p) where p is closed
proper convex and p(0) < oo, then ¢* = w*.)



DUALITY THEOREMS (CONTINUED)

¢ Min Common/Max Crossing Theorem II:
Assume in addition that —oco < w* and that

D = {u | there exists w € R with (u,w) € M}

contains the origin in its relative interior. Then
qg* = w* and there exists yu such that q(u) = g*.
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e Furthermore, the set {u | ¢(1) = ¢*} is nonempty
and compact if and only if D contains the origin
In its interior.

¢ Min Common/Max Crossing Theorem
I1I: Involves polyhedral assumptions, and will be
developed later.



PROOF OF THEOREM 1

e Assume that ¢* = w*. Let {(uk,wk)} C M be
such that ug — 0. Then,

q(p) = : ir;f M{w+,u’u} < wi+p'ug, Vk, VpeR?
u,w)E

Taking the limit as £k — oo, we obtain gq(u) <
liminfy .o wy, for all © € N7, implying that

w* = q* = sup q(p) < liminf wy
peER™ k— oo

Conversely, assume that for every sequence
{(ug,wr)} € M with up — 0, there holds w* <
liminfr oo wg. If w* = —o0, then ¢* = —o0, by
weak duality, so assume that —oo < w*. Steps:

e Step 1: (0,w* —¢) & cl(M) for any € > 0.

o o(Uk+1, Wk+1)
wW* — € ¢

lim inf wp§
k— oo

o o ok, Wk)
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PROOF OF THEOREM I (CONTINUED)

e Step 2: M does not contain any vertical lines.
If this were not so, (0, —1) would be a direction
of recession of cl(M). Because (0,w*) € cl(M),
the entire halfline {(0, w* —¢€) | € > 0} belongs to

cl(M), contradicting Step 1.

e Step 3: For any € > 0, since (0, w*—e¢) & cl(M),
there exists a nonvertical hyperplane strictly sepa-
rating (0, w* —€) and M. This hyperplane crosses
the (n + 1)st axis at a vector (0,&) with w* — e <
£ < w*, so wr —e < g < w*. Since € can be
arbitrarily small, it follows that ¢* = w*.
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PROOF OF THEOREM 11

e Note that (0, w*) is not a relative interior point
of M. Therefore, by the Proper Separation The-
orem, there is a hyperplane that passes through
(0, w*), contains M in one of its closed halfspaces,
but does not fully contain M, i.e., for some (u,3 ) #
(0,0)

Bw* < p'u + Pw, V (u,w) € M,

Bw* < sup {p'u+ fw}
(u,w)eM

Will show that the hyperplane is nonvertical.

e Since for any (u,w) € M, the set M contains the
halfline {(u,w) | w < w}, it follows that 3 > 0. If
B =0, then 0 < p/u for all uw € D. Since 0 € ri(D)
by assumption, we must have p/u = 0 for allu € D
a contradiction. Therefore, 3 > 0, and we can
assume that 3 = 1. It follows that

w* < inf {pu+wh=q(u) <g¢
(w,w)eM

Since the inequality ¢* < w* holds always, we
must have q(u) = ¢* = w*.



NONLINEAR FARKAS’ LEMMA

o let X CRH”, f: X — R, and g; : X — R,
3 =1,...,r, be convex. Assume that

f(x) >0, Ve X with g(x) <0
Let

Q ={u|p>0, flx)+wglx) >0,VreX}

Then Q* is nonempty and compact if and only if
there exists a vector x € X such that g;j(z) < 0
forall g =1,...,7.
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e The lemma asserts the existence of a nonverti-
cal hyperplane in ®7+1 with normal (u, 1), that
passes through the origin and contains the set

{(9(2), f(2)) |z € X}

in its positive halfspace.



PROOF OF NONLINEAR FARKAS’ LEMMA

e Apply MC/MC to

M = {(u,w) | there is x € X s. t. g(x) < u, f(x) < w}

wl

M = {(u,w) | there exists z € X
such that g(z) < wu, f(z) <w}

»
\/m y D

e M is equal to M and is formed as the union of
positive orthants translated to points (g(z), f(z)),
x e X.

e The convexity of X, f, and g; implies convexity
of M.

e MC/MC Theorem II applies: we have
D = {u | there exists w € ® with (u,w) € M}

and 0 € int(D), because ((g9(z), f(x)) € M.
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