
LECTURE 5 

LECTURE OUTLINE 

Directions of recession of convex functions • 

• Local and global minima 

• Existence of optimal solutions 

All figures are courtesy of Athena Scientific, and are used with permission.



DIRECTIONS OF RECESSION OF A FN


• We aim to characterize directions of monotonic 
decrease of convex functions. 

• Some basic geometric observations: 
− The “horizontal directions” in the recession 

cone of the epigraph of a convex function f 
are directions along which the level sets are 
unbounded. 

− Along these directions the level sets 
�
x 

f(x) ≤ γ
� 

are unbounded and f is mono-
| 

tonically nondecreasing. 

These are the directions of recession of f .• 
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RECESSION CONE OF LEVEL SETS


• Proposition: Let f : �n �→ (−∞, ∞] be a closed 
proper convex function and consider the level sets 
Vγ = 

�
x | f(x) ≤ γ

�
, where  γ is a scalar. Then: 

(a) All the nonempty level sets Vγ have the same 
recession cone: 

RVγ = 
�
d | (d, 0) ∈ Repi(f)

� 

(b) If one nonempty level set Vγ is compact, then 
all level sets are compact. 

Proof: (a) Just translate to math the fact that 

RVγ = the “horizontal” directions of recession of epi(f) 

(b) Follows from (a). 



RECESSION CONE OF A CONVEX FUNCTION


• For a closed proper convex function f : �n �→
(−∞, ∞], the (common) recession cone of the nonempty 
level sets Vγ = 

�
x | f(x) ≤ γ

�
, γ ∈ �, is the re­

cession cone of f , and is denoted by Rf . 

Level Sets of f 

•	 Terminology: 
− d ∈ Rf : a  direction of recession of f . 
− Lf = Rf ∩ (−Rf ): the lineality space of f . 
− d ∈ Lf : a  direction of constancy of f . 

•	 Example: For the pos. semidefinite quadratic 

f(x) =  x�Qx + a�x + b, 

the recession cone and constancy space are 

Rf	 = {d | Qd = 0, a�d ≤ 0}, Lf = {d | Qd = 0, a�d = 0} 



RECESSION FUNCTION


• Function rf : �n �→ (−∞, ∞] whose epigraph 
is Repi(f ) is the recession function of f . 

Characterizes the recession cone: • 

Rf =
�
d | rf (d) ≤ 0

�
, Lf =

�
d | rf (d) = rf (−d) = 0

� 

since Rf = {(d, 0) ∈ Repi(f )}. 
Can be shown that • 

rf (d) = sup 
f(x + αd)− f(x) 

= lim  
f(x + αd)− f(x) 

α>0 α α→∞ α 

• Thus rf (d) is the “asymptotic slope” of f in the 
direction d. In fact, 

rf (d) =  lim ∀ x, d ∈ �n 
α→∞ 

∇f(x + αd)�d, 

if f is differentiable. 

Calculus of recession functions: • 

rf1+ +fm (d) =  rf1 (d) +  + rfm (d),··· · · ·

rsupi∈I fi (d) = sup  rfi (d) 
i∈I 



DESCENT BEHAVIOR OF A CONVEX FN
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• y is a direction of recession in (a)-(d).

• This behavior is independent of the starting
point x, as long as x dom(f).∈



LOCAL AND GLOBAL MINIMA


• Consider minimizing f : �n �→ (−∞, ∞] over a  
set X ⊂ �n 

• x is feasible if x ∈ X ∩ dom(f) 

• x∗ is a (global) minimum of f over X if x∗ is 
feasible and f(x∗) = infx∈X f(x) 

x∗ is a local minimum of f over X if x∗ is a • 
minimum of f over a set X ∩ {x | �x − x∗� ≤  �}
Proposition: If X is convex and f is convex, 
then: 

(a) A local minimum of f over X is also a global 
minimum of f over X. 

(b) If f is strictly convex, then there exists at

most one global minimum of f over X.


x




EXISTENCE OF OPTIMAL SOLUTIONS


• The set of minima of a proper f : �n �→
(−∞, ∞] is the intersection of its nonempty level 
sets. 

• The set of minima of f is nonempty and com­
pact if the level sets of f are compact. 

• (An Extension of the) Weierstrass’ Theo­
rem: The set of minima of f over X is nonempty 
and compact if X is closed, f is lower semicontin­
uous over X, and one of the following conditions 
holds: 

(1) X is bounded. 

(2) Some set 
�
x ∈ X | f(x) ≤ γ

� 
is nonempty 

and bounded. 

(3) For every sequence {xk} ⊂ X s. t. �xk� →  
∞, we  have  limk→∞ f(xk) =  ∞. (Coercivity 
property). 

Proof: In all cases the level sets of f ∩X are 
compact. Q.E.D. 



EXISTENCE OF SOLUTIONS - CONVEX C

• Weierstrass’ Theorem specialized to con­
vex functions: Let X be a closed convex subset 
of �n, and let f : �n �→ (−∞, ∞] be closed con­
vex with X ∩ dom(f) =� Ø. The set of minima of 
f over X is nonempty and compact if and only 
if X and f have no common nonzero direction of 
recession. 

Proof: Let f∗ = infx∈X f(x) and note that f∗ < 
∞ since X ∩ dom(f) =� Ø. Let {γk} be a scalar 
sequence with γk ↓ f∗, and consider the sets 

Vk = 
�
x | f(x) ≤ γk

�
. 

Then the set of minima of f over X is 

X∗ = ∩∞k=1(X ∩ Vk). 

The sets X ∩ Vk are nonempty and have RX ∩ Rf 

as their common recession cone, which is also the 
recession cone of X∗, when  X∗ = Ø. It follows X∗�
is nonempty and compact if and only if RX ∩Rf = 
{0}. Q.E.D. 



EXISTENCE OF SOLUTION, SUM OF FNS


• Let fi : �n �→ (−∞,∞], i = 1, . . . ,m, be closed 
proper convex functions such that the function 

f = f1 + + fm· · ·

is proper. Assume that the recession function of 
a single function fi satisfies rfi (d) =  ∞ for all 
d = 0. Then the set of minima of � f is nonempty 
and compact. 

• Proof: The set of minima of f is nonempty and 
compact if and only if Rf = {0}, which  is  true  if  
and only if rf (d) > 0 for all d = 0. � Q.E.D. 

• Example of application: If one of the fi is 
positive definite quadratic, the set of minima of 
the sum f is nonempty and compact. 

• Also f has a unique minimum because the pos­
itive definite quadratic is strictly convex, which 
makes f strictly convex. 



PROJECTION THEOREM


n• Let C be a nonempty closed convex set in � .


(a) For every z ∈ �n, there  exists  a  unique  min­
imum of


f(x) =  �z − x�2


over all x ∈ C (called the projection of z on 
C). 

(b) x∗ is the projection of z if and only if 

(x − x∗)�(z − x∗) ≤ 0, ∀ x ∈ C 

Proof: (a) f is strictly convex and has compact 
level sets. 

(b) This is just the necessary and sufficient opti­
mality condition 

∇f(x∗)�(x − x∗) ≥ 0, ∀ x ∈ C. 
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