LECTURE 5

LECTURE OUTLINE

e Directions of recession of convex functions
e Local and global minima

e [Existence of optimal solutions

All figures are courtesy of Athena Scientific, and are used with permission.



DIRECTIONS OF RECESSION OF A FN

e We aim to characterize directions of monotonic
decrease of convex functions.
e Some basic geometric observations:

— The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

— Along these directions the level sets {:1: |

f(z) < ~} are unbounded and f is mono-
tonically nondecreasing.

e These are the directions of recession of f.
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RECESSION CONE OF LEVEL SETS

e Proposition: Let f : R" — (—o0, 00] be a closed
proper convex function and consider the level sets
Vy, ={z | f(z) <~}, where v is a scalar. Then:

(a) All the nonempty level sets V5 have the same
recession cone:

]%Vfy — {d ‘ (d7 O) S Repi(f)}

(b) If one nonempty level set V,, is compact, then
all level sets are compact.

Proof: (a) Just translate to math the fact that

Ry, = the “horizontal” directions of recession of epi( f)

(b) Follows from (a).



RECESSION CONE OF A CONVEX FUNCTION

e For a closed proper convex function f : R" —
(—00, 00], the (common) recession cone of the nonempty
level sets Vy = {z | f(x) <7}, v € R, is the re-
cesston cone of f, and is denoted by Ry.

Recession Cone Ry

|

Level Sets of f

e Terminology:
— d € Ry: a direction of recession of f.
— Ly = RsN(—Ry): the lineality space of f.
— d € Ly a direction of constancy of f.

e Example: For the pos. semidefinite quadratic
flz) =2'Qx + a’x + b,
the recession cone and constancy space are

Ry={d|Qd=0,ad<0}, Ly ={d|Qd=0, a'd=0}



RECESSION FUNCTION

e Function r¢ : R" +— (—o00, 0] whose epigraph
18 Repi(r) 18 the recession function of f.

e (haracterizes the recession cone:
Ry ={d|rp(d) <0}, Ly={d|rs(d)=rs(—d)=0}

since Ry = {(d,0) € Repi(s)}-
e (Can be shown that

r(d) = sup fle+ad) = flz) _ . flz+ad) - f(z)

a>0 (8 o— 00 (8%

e Thus r¢(d) is the “asymptotic slope” of f in the
direction d. In fact,

re(d) = lim Vf(z+ad)d, Vaz,deRn

a— 00

if f is differentiable.

e (Calculus of recession functions:

Tsup,c; fi (d) = SUp Ty, (d)
el



DESCENT BEHAVIOR OF A CONVEX FN
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e y is a direction of recession in (a)-(d).

e This behavior is independent of the starting
point x, as long as x € dom(f).



LOCAL AND GLOBAL MINIMA

e Consider minimizing f : R” +— (—o00, 00| over a

set X C Rk»
e 1 is feasible if x € X N dom(f)

e x* is a (global) minimum of f over X if x* is

feasible and f(x*) = infex f(x)

e z* is a local minimum of f over X if x* is a
minimum of f over a set X N{x | ||z — x*|| < €}

Proposition: If X is convex and f is convex,
then:

(a) A local minimum of f over X is also a global
minimum of f over X.

(b) If f is strictly convex, then there exists at
most one global minimum of f over X.




EXISTENCE OF OPTIMAL SOLUTIONS

e The set of minima of a proper f : R" —
(—o0, 00] is the intersection of its nonempty level
sets.

e The set of minima of f is nonempty and com-
pact if the level sets of f are compact.

e (An Extension of the) Weierstrass’ Theo-
rem: The set of minima of f over X is nonempty
and compact if X is closed, f is lower semicontin-

uous over X, and one of the following conditions
holds:

(1) X is bounded.

(2) Some set {z € X | f(x) <~} is nonempty
and bounded.

(3) For every sequence {xx} C X s. t. ||zg]| —
00, we have limy_, o f(zr) = oo. (Coercivity
property).

Proof: In all cases the level sets of f NX are
compact. Q.E.D.



EXISTENCE OF SOLUTIONS - CONVEX C

e Weierstrass’ Theorem specialized to con-
vex functions: Let X be a closed convex subset
of ®7, and let f : R™ +— (—o0, 0] be closed con-
vex with X Ndom(f) # @. The set of minima of
f over X is nonempty and compact if and only
if X and f have no common nonzero direction of
recession.

Proof: Let f* =inf,cx f(x) and note that f* <
oo since X Ndom(f) # O. Let {v1} be a scalar
sequence with v | f*, and consider the sets

Vi = {x | f(z) <.
Then the set of minima of f over X is
X* =N (XN V).

The sets X NV}, are nonempty and have Rx N Ry
as their common recession cone, which is also the
recession cone of X*, when X* # (). It follows X*

is nonempty and compact if and only it RxNR¢ =
{0}. Q.E.D.



EXISTENCE OF SOLUTION, SUM OF FNS

o Let fi : R" +— (—00,00],i=1,...,m, be closed
proper convex functions such that the function

f=fit o fn

is proper. Assume that the recession function of
a single function f; satisfies r¢,(d) = oo for all
d # 0. Then the set of minima of f is nonempty
and compact.

e Proof: The set of minima of f is nonempty and
compact if and only if Ry = {0}, which is true if
and only if r¢(d) > 0 for all d # 0. Q.E.D.

e Example of application: If one of the f; is
positive definite quadratic, the set of minima of
the sum f is nonempty and compact.

e Also f has a unique minimum because the pos-
itive definite quadratic is strictly convex, which
makes f strictly convex.



PROJECTION THEOREM

e Let C' be a nonempty closed convex set in ™.

(a) For every z € R, there exists a unique min-

imum of

flz) =z —z||?
over all x € C (called the projection of z on
).

(b) x* is the projection of z if and only if
(x —x*)(z —x*) <0, Veel

Proof: (a) f is strictly convex and has compact
level sets.

(b) This is just the necessary and sufficient opti-
mality condition

Vf(x*)(x—ax*) >0, Vel
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