
Problem Set 4 
To work on this problem set, you will need to get the code. 

This lab has two parts. The first part is on CSPs and the second part is on learning algorithms, 
specifically KNN and decision trees.  

Constraint Satisfaction Problems 
In this portion of Lab 4, you are to complete the implementation of a general constraint 
satisfaction problem solver. You'll test it on problems we've worked out by hand in class.  

We have provided you a basic CSP implementation in csp.py. The implementation has the 
Depth-first-search already completed. It even has a basic built in constraint checker. So it will 
produce the search trees of the kind for DFS w/ back tracking with basic constraint checking.  

However, it doesn't do forward checking or forward checking + singleton propagation!  

So your job is to complete:  

forward_checking(state): 

and 

forward_checking_prop_singleton(state): 

in the file lab4.py. Here state is an instance of CSPState an object that keep track of the 
current variable assignments and domains. These functions are called by the Search algorithm at 
every node in the search tree. These functions should return False at points at which the Domain 
Reduction Algorithm would backtrack, and True otherwise (i.e. continue extending).  

As a hint, here is the (unrefined) pseudocode for the two algorithms.  

Forward Checking  

1.	 Let X be the variable currently being assigned.  
2.	 Let x be the value being assigned to X. 
3.	 Find all the binary constraints that are associated with X.  
4.	 For each constraint:  

1. For each neighbor variable, Y, connected to X by a binary constraint.  
1.	 For each variable value y in Y's domain  

1. If constraint checking fails for X=x and Y=y  
1. Remove y from Y's domain  

2.	 If the domain of Y is reduced down to the empty set, then the 
entire check fails: return False.  



5.	 If all constraints passed declare success, return True  

If you get a state with no current variable assignment (at the Root of the search tree) then you 
should just True, since forward checking could only be applied when there is some variable 
assignment.  

Forward Checking with Propagation through Singletons  

1.	 Run forward checking, fail if forward checking fails.  
2.	 Find variables with domains of size 1. 
3.	 Create a queue of singleton variables.  
4.	 While single queue is not empty  

1.	 Pop off the first singleton variable X (add X to list of visited singletons)  
2.	 Find all the binary constraints that singleton X is associated with.  
3.	 For each constraint therein:  

1.	 For each neighbor variable, Y, connected to X by a binary constraint:  
1.	 For each value of y in Y's domain:  

1.	 If constraint check fails for X = (X's singleton value) and Y 
= y: 

1.	 Remove y from Y's domain  
2.	 If the domain of Y is reduced down to the empty set, then 

the entire check fails, return False.  
4.	 Check to see if domain reduction produced any new and unvisited singletons; if 

so, add them to the queue.  
5.	 return True.  

API 

These are some useful functions defined in csp.py that you should use in your code to 
implement the above algorithms:  

CSPState: representation of one of the many possible search states in the CSP problem.  

•	 get_current_variable() - gets the Variable instance being currently assigned. Returns 
None if we are in the root state, when there are no variable assignments yet.  

•	 get_constraints_by_name(variable_name) - retrieves all the BinaryConstraint 
objects associated with variable_name. 

•	 get_variable_by_name(variable_name) - retrieves the Variable object associated 
with variable_name. 

•	 get_all_variables() - gets the list of all Variable objects in this CSP problem. 

Variable: representation of a variable in these problems.  

•	 get_name() - returns the name of this variable.  
•	 get_assigned_value() - returns the assigned value of this variable. Returns None if 

is_assigned() returns False, that is if the variable hasn't been assigned yet. 



 

•	 is_assigned() - returns True if we've made an assignment for this variable.  
•	 get_domain() - returns a copy of the list of the current domain of this variable. Use this 

to iterate over values of Y. 

You might want to consider using this method to get the singular value of a variable with 
domain size reduced to 1. 

•	 reduce_domain(value) - remove value from this variable's domain.  
• domain_size() - returns the size of this variable's domain  

BinaryConstraint: a binary constraint on variable i, j: i -> j.  

•	 get_variable_i_name() - name of the i variable  
•	 get_variable_j_name() - name of the j variable  
•	 check(state, value_i=value, value_j=value) - checks the binary constraint for a 

given CSP state, with variable i set by value i, and variable j set by value j. Returns False 
if the constraint fails. Raises an exception if value_i or value_j are not set or cannot be 
inferred from state. 

NOTE: in our implementation of CSPs, constraints are symmetrical; a constraint object exists for 
each "direction" of a constraint, so you can check for the presence of a constraint by substituting 
for i and/or j in the most convenient fashion for you.  

Here is how you might use the API to get the value of a variable currently being assigned.  

var = state.get_current_variable()
value = None 
if var is not None: # we are not in the root state 

value = var.get_assigned_value()
# Here value is the value of the variable current being assigned. 

Here is how you might use the API to get the singular value from a singleton variable:  

if singleton_var.domain_size() == 1
value = singleton_var.get_domain()[0] 

Testing 

For unit testing, we have provided moose_csp.py, an implementation of the seating problem 
involving a Moose, Palin, McCain, Obama, Biden and You -- in terms of the framework as 
defined in csp.py. 

Running: 

python moose_csp.py dfs 



will return the search tree for DFS with constraint checking. When you have finished your 
implementation, running python moose_csp.py fc or python moose_csp.py fcps should 
return the correct search trees under forward checking and forward checking with singleton 
propagation. 

Similarly  

Running: 

python map_coloring_csp.py [dfs|fc|fcps] 

Should return the expected search trees for the B,Y,R, state coloring problem from the 2nd Quiz 
in 2006. 

There are also other fun solved CSP problems in the directory that you can test and play around 
with. You can submit your own unique solution to an interesting CSP problem to get extra 
credit! 

EXTRA CREDIT 

As extra credit, try to follow the code in moose_csp.py or map_coloring_csp.py, and 
implement a problem() function that returns a CSP instance for a problem of your own 
choosing. 

You may do one of the problems from past quizzes: the 2009 Time Traveler scheduling problem, 
the 2010 Jigsaw puzzle question or the phoneme-syllabification problem (from tutorial). 
Alternately, you may implement something that you find useful or interesting, ideas include: 
scheduling classes, seating guests for a wedding or dinner party (to maximize harmony), solving 
crypt-arithmetic puzzles, the 8-queens problem, or crossword puzzles.  

You may also try to extend csp.py. For instance, you can add ability to find an optimal solution 
rather than just a constraint-satisfying solution (i.e. replace DFS with one of the optimal searches 
we've learned). Or you can add support for multi-variable constraints, and make the code solve 
the Max-flow problem from the 2006 final.  

When you've succeeded in implementing such a problem or extension, send your working code 
to the TAs. Your reward: either a 1-to-3-day extension (depending on difficulty) on one of the 
previous or future labs, possibly erasing any late penalties. Or if your lab grade is already 
perfect, praise and recognition from the 6.034 staff.  

Learning 
Now for something completely different. Learning!  

Classifying Congress 



During Obama's visit to MIT, you got a chance to impress him with your analytical thinking. 
Now, he has hired you to do some political modeling for him. He seems to surround himself with 
smart people that way.  

He takes a moment out of his busy day to explain what you need to do. "I need a better way to 
tell which of my plans are going to be supported by Congress," he explains. "Do you think we 
can get a model of Democrats and Republicans in Congress, and which votes separate them the 
most?" 

"Yes, we can!" You answer. 

The Data 
You acquire the data on how everyone in the previous Senate and House of Representatives 
voted on every issue. (These data are available in machine-readable form via voteview.com. 
We've included it in the lab directory, in the files beginning with H110 and S110.) 

data_reader.py contains functions for reading data in this format.  

read_congress_data("FILENAME.ord") reads a specially-formatted file that gives information 
about each Congressperson and the votes they cast. It returns a list of dictionaries, one for each 
member of Congress, including the following items:  

•	 'name': The name of the Congressperson.  
•	 'state': The state they represent.  
•	 'party': The party that they were elected under.  
•	 'votes': The votes that they cast, as a list of numbers. 1 represents a "yea" vote, -1 

represents "nay", and 0 represents either that they abstained, were absent, or were not a 
member of Congress at the time.  

To make sense of the votes, you will also need information about what they were voting on. This 
is provided by read_vote_data("FILENAME.csv"), which returns a list of votes in the same 
order that they appear in the Congresspeople's entries. Each vote is represented a dictionary of 
information, which you can convert into a readable string by running vote_info(vote). 

The lab file reads in the provided data, storing them in the variables senate_people, 
senate_votes, house_people, and house_votes. 

Nearest Neighbors 
You decide to start by making a nearest-neighbors classifier that can tell Democrats apart from 
Republicans in the Senate. 

We've provided a nearest_neighbors function that classifies data based on training data and a 
distance function. In particular, this is a third-order function:  



•	 First, call nearest_neighbors(distance, k), with distance being the distance 
function you wish to use and k being the number of neighbors to check. This returns a 
classifier factory. 

•	 A classifier factory is a function that makes classifiers. You call it with some training 
data as an argument, and it returns a classifier.  

•	 Finally, you call the classifier with a data point (here, a Congressperson) and it returns 
the classification as a string. 

Much of this is handled by the evaluate(factory, group1, group2) function, which you can 
use to test the effectiveness of a classification strategy. You give it a classifier factory (as defined 
above) and two sets of data. It will train a classifier on one data set and test the results against the 
other, and then it will switch them and test again.  

Given a list of data such as senate_people, you can divide it arbitrarily into two groups using 
the crosscheck_groups(data) function. 

One way to measure the "distance" between Congresspeople is with the Hamming distance: the 
number of entries that differ. This function is provided as hamming_distance. 

An example of putting this all together is provided in the lab code:  

senate_group1, senate_group2 = crosscheck_groups(senate_people)
evaluate(nearest_neighbors(edit_distance, 1), senate_group1, senate_group2,
verbose=1) 

Examine the results of this evaluation. In addition to the problems caused by independents, it's 
classifying Senator Johnson from South Dakota as a Republican instead of a Democrat, mainly 
because he missed a lot of votes while he was being treated for cancer. This is a problem with the 
distance function -- when one Senator votes yes and another is absent, that is less of a 
"disagreement" than when one votes yes and the other votes no.  

You should address this. Euclidean distance is a reasonable measure for the distance between 
lists of discrete numeric features, and is the alternative to Hamming distance that you decide to 
try. Recall that the formula for Euclidean distance is:  

[(x1 - y1)^2 + (x2 - y2)^2 + ... + (xn - yn)^2] ^ (1/2) 

•	 Make a distance function called euclidean_distance that treats the votes as high-
dimensional vectors, and returns the Euclidean distance between them.  

When you evaluate using euclidean_distance, you should get better results, except that some 
people are being classified as Independents. Given that there are only 2 Independents in the 
Senate, you want to avoid classifying someone as an Independent just because they vote 
similarly to one of them.  

•	 Make a simple change to the parameters of nearest_neighbors that accomplishes this, 
and call the classifier factory it outputs my_classifier. 



ID Trees 
So far you've classified Democrats and Republicans, but you haven't created a model of which 
votes distinguish them. You want to make a classifier that explains the distinctions it makes, so 
you decide to use an ID-tree classifier.  

idtree_maker(votes, disorder_metric) is a third-order function similar to 
nearest_neighbors. You initialize it by giving it a list of vote information (such as 
senate_votes or house_votes) and a function for calculating the disorder of two classes. It 
returns a classifier factory that will produce instances of the CongressIDTree class, defined in 
classify.py, to distinguish legislators based on their votes.  

The possible decision boundaries used by CongressIDTree are, for each vote:  

• Did this legislator vote YES on this vote, or not?  
• Did this legislator vote NO on this vote, or not?  

(These are different because it is possible for a legislator to abstain or be absent.)  

You can also use CongressIDTree directly to make an ID tree over the entire data set.  

If you print a CongressIDTree, then you get a text representation of the tree. Each level of the 
ID tree shows the minimum disorder it found, the criterion that gives this minimum disorder, and 
(marked with a +) the decision it makes for legislators who match the criterion, and (marked with 
a -) the decision for legislators who don't. The decisions are either a party name or another ID 
tree. An example is shown in the section below. 

An ID tree for the entire Senate 

You start by making an ID tree for the entire Senate. This doesn't leave you anything to test it on, 
but it will show you the votes that distinguish Republicans from Democrats the most quickly 
overall. You run this (which you can uncomment in your lab file):  

print CongressIDTree(senate_people, senate_votes, homogeneous_disorder) 

The ID tree you get here is: 

Disorder: -49 
Yes on S.Con.Res. 21: Kyl Amdt. No. 583; To reform the death tax by setting
the 
exemption at $5 million per estate, indexed for inflation, and the top death
tax rate at no more than 35% beginning in 2010; to avoid subjecting an
estimated 119,200 families, family businesses, and family farms to the death
tax each and every year; to promote continued economic growth and job
creation;
and to make the enhanced teacher deduction permanent.:
+ Republican
- Disorder: -44 



 Yes on H.R. 1585: Feingold Amdt. No. 2924; To safely redeploy United States
troops from Iraq.:
+ Democrat 
- Disorder: -3 
No on H.R. 1495: Coburn Amdt. No. 1089; To prioritize Federal spending to
ensure the needs of Louisiana residents who lost their homes as a result 

of 
Hurricane Katrina and Rita are met before spending money to design or
construct a nonessential visitors center.: 
+ Democrat 
- Disorder: -2 
Yes on S.Res. 19: S. Res. 19; A resolution honoring President Gerald
Rudolph Ford.:
+ Disorder: -4 
Yes on H.R. 6: Motion to Waive C.B.A. re: Inhofe Amdt. No. 1666; To
ensure agricultural equity with respect to the renewable fuels

standard.: 
+ Democrat 
- Independent

- Republican 

Some things that you can observe from these results are:  

•	 Senators like to write bills with very long-winded titles that make political points.  
•	 The key issue that most clearly divided Democrats and Republicans was the issue that 

Democrats call the "estate tax" and Republicans call the "death tax", with 49 Republicans 
voting to reform it.  

•	 The next key issue involved 44 Democrats voting to redeploy troops from Iraq.  
•	 The issues below that serve only to peel off homogenous groups of 2 to 4 people.  

Implementing a better disorder metric 

You should be able to reduce the depth and complexity of the tree, by changing the disorder 
metric from the one that looks for the largest homogeneous group to the information-theoretical 
metric described in lecture.  

You can find this formula on page 429 of the textbook.  

•	 Write the information_disorder(group1, group2) function to replace 
homogeneous_disorder. This function takes in the lists of classifications that fall on 
each side of the decision boundary, and returns the information-theoretical disorder.  

Example:  

information_disorder(["Democrat", "Democrat", "Democrat"], ["Republican",
"Republican"])
=> 0.0 

information_disorder(["Democrat", "Republican"], ["Republican", "Democrat"])
=> 1.0 



Once this is written, you can try making a new CongressIDTree with it. (if you're having trouble, 
keep in mind you should return a float or similar)  

Evaluating over the House of Representatives  

Now, you decide to evaluate how well ID trees do in the wild, weird world of the House of 
Representatives. 

You can try running an ID tree on the entire House and all of its votes. It's disappointing. The 
110th House began with a vote on the rules of order, where everyone present voted along straight 
party lines. It's not a very informative result to observe that Democrats think Democrats should 
make the rules and Republicans think Republicans should make the rules.  

Anyway, since your task was to make a tool for classifying the newly-elected Congress, you'd 
like it to work after a relatively small number of votes. We've provided a function, 
limited_house_classifier, which evaluates an ID tree classifier that uses only the most 
recent N votes in the House of Representatives. You just need to find a good value of N. 

•	 Using limited_house_classifier, find a good number N_1 of votes to take into 
account, so that the resulting ID trees classify at least 430 Congresspeople correctly. How 
many training examples (previous votes) does it take to predict at least 90 senators 
correctly? What about 95? To pass the online tests, you will need to find close to the 
minimum such values for N_1, N_2, and N_3. Keep guessing to find close to the 
minimum that will pass the offline tests. Do the values surprise you? Is the house more 
unpredictable than the senate, or is it just bigger? 

•	 Which is better at predicting the senate, 200 training samples, or 2000? Why? 

The total number of Congresspeople in the evaluation may change, as people who didn't vote in 
the last N votes (perhaps because they're not in office anymore) aren't included.  

Survey 
Please answer these questions at the bottom of your ps4.py file:  

•	 How many hours did this problem set take?  
•	 Which parts of this problem set, if any, did you find interesting? 
•	 Which parts of this problem set, if any, did you find boring or tedious?  

(We'd ask which parts you find confusing, but if you're confused you should really ask a TA.)  

Errata 
In the code in the section for finding N_2 such that using N_2 votes classifies at least 90 senators 
correctly, lab4.py creates senator_classified using house_people and house_votes. Our fault. 



Please just take it that you're to find the n required to classify 90 house members. It will still be 
instructive to find the smallest required value for the senate, but please leave the variable names 
and tests as they are.  
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