Code No: 131AA

....

....

...

147

R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech I Year I Semester Examinations, December - 2016 **MATHEMATICS-I**

(Common to all Branches)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

- Solve the following differential equation $n(2y x^3)dx + x dy = 0$. 1.a) [2]
- Find the Particular Integral of the equation $(D^2 2D + 1) y = x e^x \sin x$. b) [3]
- Examine whether the vectors are linearly dependent or not (3.1-1), (2.0-1), (4.2.1), [2]
- If α, β , and γ are the roots of the equation $x^3 + px + q = 0$ then the value of the determinant $\begin{vmatrix} \beta & \gamma & \alpha \end{vmatrix}$ is [3]
- Compute the Eigen values and Eigen vectors of $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$. Find the Eigen values of the following system $\begin{cases} 8x 4y = \lambda x \\ 2x + 2y = \lambda y \end{cases}$
- Find the value of $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x}$ if f(x, y, z) = 0. [2]
- Find $\frac{dy}{dx}$ if $x^y = y^x$. [3]
- Form the partial differential equation by eliminating the arbitrary function $z = f(x^2 + y^2)$ [2]
- Solve the following partial differential equation y q x p = z. j) [3]

(50 Marks)

- the value of the constant d such that the parabolas $y = c_1 x^2 + d$ are the 2.a) orthogonal trajectories of the family of ellipses $x^2 + 2y^2 - y = c_2$.
- In a culture of yeast, the active ferment doubles itself in 3 hours. Determine the number ... of times it multiplies itself in 15 hours. OR
- Solve $(D^2 + 5D + 6)y = e^x \cos 2x$. 3.a)
 - Solve by the method of variation of parameters $y'' + y = \sec x$. [5+5]

$$2x + 3y + 4z = 11$$

 $x + 5y + 7z = 15$

Discuss the consistency of the system of equations x + 5y + 7z = 15

$$3x + 11y + 13z = 25$$

Find an LU decomposition of the Matrix A and solve the linear system AX=B

$$\begin{bmatrix} -3 & 12 & -6 \\ 1 & -2 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -33 \\ 7 \\ -1 \end{bmatrix}$$
 [5+5]

Solve the system of equations by the Gauss Seidel method

$$10x + y + z = 12$$
$$2x + 10y + z = 13$$
$$2x + 2y + 10z = 14$$

b) Convert the matrix into echelon form $\begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 1 \\ 6 & 2 & 4 \end{bmatrix}$

Find A^{39} if $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$. 6.a)

Compute the Modal matrix for $\begin{bmatrix} 5 & 4 \\ 12 & 7 \end{bmatrix}$.

Reduce the quadratic form $6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 - 2x_3x_2 + 4x_3x_1$ to the sum of 7. squares and find the corresponding linear transformation. Find the index and signature.

8.a) Determine the functional dependence and find the relation between $u = \frac{x-y}{x+y}$, $v = \frac{xy}{(x-y)^2}$.

b) If
$$u = x^2 + y^2 + z^2$$
, $v = xyz$ find $J\left(\frac{x, y}{u, v}\right)$. [5+5]

Expand $x^2y + 3y - 2$ in powers of x - 1 using Taylor's theorem.

b) Find the maximum and minimum distances of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$. [5+5]

10 Solve the partial differential equations:

a)
$$px(z-2y^2) = (z-qy)(z-y^2-2x^3)$$

b) $xp-yq+x^2-y^2=0$

b)
$$xp - yq + x^2 - y^2 = 0$$
.

11. Solve the partial differential equations:

$$a) p(1+q) = qz$$

a)
$$p(1+q) = qz$$

b) $z^2(p^2x^2 + q^2) = 1$.

[5+5]

---00000---