Code No: 113AW

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, December-2014 SIGNALS AND SYSTEMS

(Common to ECE, EIE, BME)

Time: 3 Hours Max. Marks: 75

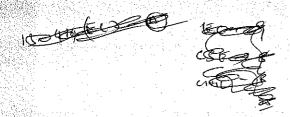
Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Part- A (25 Marks)

1.a)	State and prove any two properties of unit impulse.	[2m]
b)	Derive the expression for Mean Square Error.	[3m]
c)	Derive the Fourier transform of an arbitrary constant.	[2m]
d)	Define sampling theorem for band pass signals.	[3m]
e)	Define transfer function.	[2m]
f)	Sketch the frequency response of ideal LPF, HPF and BPF.	[3m]
g)	Derive the relation between PSDs of input and output for an LTI system.	[2m]
h)	Find the auto correlation of $f(t) = Sin(w_0 t)$.	[3m]
i)	Prove that the Laplace transform of even function is even function.	[2m]
j)	Find the z-transform the sequence $x[n] = (-2)^{-n}u[-n-1]$.	[3m]

Part-B (50 Marks)


- 2.a) Approximate the function described below by a wave form sin t over the interval $(0, 2\pi)$. The function is f(t) = 1, $0 < t < \pi$
 - b) Discuss the concept of trigonometric Fourier series and derive the expressions for coefficients.
 - c) State the properties of complex Fourier series.

OR

- 3.a) Define orthogonal signal space and bring out clearly its application in representing a signal.
- b) Obtain the Fourier series representation of half-wave rectified sine wave.
- c) Explain the significance of waveform symmetry in Fourier analysis.
- 4.a) Find the Fourier transform of symmetrical gate pulse and sketch the spectrum.
 - b) State and prove time convolution and time differentiation properties of Fourier transform.
 - c) What is aliasing? Explain its effect on sampling.

OR

- 5.a) Find the Fourier transform of symmetrical triangular pulse and sketch the Spectrum.
 - b) State and prove frequency shifting and scaling f properties of Fourier transform.
- c) Determine the minimum sampling rate and Nyquist interval of the following function. $f(t) = \sin(200\pi t) + \sin(100\pi t)$.

- 6.a) Draw a circuit diagram of a physically realizable LPF. Sketch its impulse response.
 - b) The transfer function of an LTI system is $H(w) = \frac{16}{4 + jw}$. Find the response y(t) for an input x(t) = u(t).
 - c) What are the conditions for distortion less transmission from through a system?

 OR
- 7.a) Explain causality and physical reliability of a system and hence give poly-wiener criterion.
 - b) Show that from the knowledge of the impulse response h(t) of a linear system, the response of any arbitrary function can be obtained.
 - c) Differentiate between causal and non-causal systems.
- 8.a) State and prove frequency Convolution property of Fourier transform.
 - b) Find the correlation of symmetrical gate pulse with amplitude and time duration '1' with itself.
 - c) Find the total energy of the Sinc pulse $ASinc(2w_c t)$.

OR

- 9.a) Derive the expression for energy in frequency domain.
 - b) Compute the signal energy for $x(t) = e^{-4t} u(t)$.
 - c) Explain briefly detection of periodic signals in the presence of noise by correlation.
- 10.a) Determine the Laplace transform and the associate region convergence for each of the following functions: i) x(t) = 1; $0 \le t \le 1$ ii) x(t) = t for $0 \le t \le 1$.
 - b) Find the z-transform of the sinusoidal signal x[n] = Sin[bn]u[n].
 - c) State and prove any two properties of Z-transforms.

OR

- 11.a) If x(t) is an even function, prove that X(s) = X(-s) and if x(t) is odd prove that X(s) = -X(-s).
 - b) Derive the relation between Laplace transform and Z-transform.
 - c) Find the inverse z-transform of X(z) = 1/(1+z) + 2z/(z-0.2).
