[5+5]

Code No: 123BN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, March - 2017 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

(Common to CSE, IT)

Time: 3 Hours	Max	. Marks: 75			
Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all question carries 10 marks and may have a, b, c as sub question carries 10 marks and may have a d, c as sub question carries 10 marks and may have a d, c as sub question carries 10 marks and may have a d, c as sub question carries 10 marks and may have a d, c as	ion from each		◆ X X X X X 4		
PART- A	**** * * * * * * * * * * * * * * * * *	(25:Marks)	***		
1.a) Write the converse and contrapositive of the statement: 'rectangle'.		[2]			
b) Rewrite the following statement informally, without $\forall x \in R$, if $x > 2$ then $x^2 > 4$		[3]			
Let $I = \{0,1,2\}$ and define functions f and g from I to I as follows: $f(x) = (x^2 + x + 1) \mod 3 \qquad and \qquad g(x) = (x + 2)^2 \mod 3$		in keep leed	¥ * * *		
State whether $f=g$. d) Compute the transitive closure of the relation $R=\{(1,1), 0\}$ over a set $S=\{1,2,3\}$ e): State principle of inclusion. Give any three applications of Pigeonhole principle. g) What is a non-homogeneous recurrence relation? Give an experiment of the principle.	(1,2),(1,3),(2,3)	[2]),(3,1)} defined [3] [2] [3] [2]	0 e x x 9 e x x 9 e		
h) Give any three applications of generating functions. i) What do you mean by isomorphism? Give examples of isor j) What is a planar graph? Give examples of planar and non-p	norphic graphs	[3]	**************************************		
(50 Marks)					
2.a) Assume x is a particular real number. Determine whether the following two statements are logically equivalent.					
i) $x < 2$ or it is not the case that $1 < x < 3$ i) $x \le 1$ or either $x < 2$ or $x \ge 3$.	***** **** ***		***************************************		
b) Translate the given statements into propositional logic using P: "The message is scanned for viruses" Q:"The message was sent from an unknown system" i) "The message is scanned for viruses whenever the message is system." ii) "It is necessary to scan the message for viruses wheneve system." OR	age was sent fro	om an unknown	X • • • • • • • • • • • • • • • • • • •		
3.a) Using automatic theorem proving show that $(\neg Q \land (P \rightarrow Q))$	$(Q)) \rightarrow \neg P$.				
b). Explain the following: ii) Free and bound var	riables.	*****	***		

iv) Resolution.

iii) Logical Equivalence

describe the inverses of the bijective functions:	* * * * * * * * * * * * * * * * * * * *
i) The function $f: N \to N$ with $f(a) = 9$ and $f(n) = \begin{cases} 3f(n) + 1 & \text{if } f(n) \text{ is odd} \\ \frac{1}{2}f(n) & \text{if } f(n) \text{ is even} \end{cases}$	
ii) A function $f:A \to A$ satisfying $f(f(x)) = f(x)$ for all $x \in A$ b) Find all homomorphisms. $[X, Y] : [S+5]$ i) $f: Z_2 \to Z_4$	**************************************
ii) $f: Z_2 \to Z_5$	
OR	
5.a) Let A, B be finite sets with $ A = m$ and $ B = n$. Determine the numbers of: ii) Functions $A \rightarrow B$ (provided that $m \le n$)	
iii) Surjective functions $A \rightarrow B$ (provided that $m \ge n$)	
iv) Bijective functions $A \rightarrow B$ (provided $m = n$)	
v) Symmetric relations on A	N F + K
ii) The multiplicative group Z_6^* . [5+5]	
6.a) In a group of 30 people, at least how many are born in the same month? b) In how many ways can six coupons for free lunches at different restaurants be distributed	****
i) If none is to receive more than one coupon?	* * * * * * * * * * * * * * * * * * *
ii) If there is no restriction on the number of coupons that each student can receive? [5+5]	
OR 7.a) A student council consists of 15 students.	
i) Suppose two members refuse to work together on projects. How many groups of seven	
can be chosen to work on a project?	***
ii) Suppose two team members insist on either working together or not at all on projects. How many groups of seven can be chosen to work on a project?	
b) Count the bit-strings of length ten that:	
i) Start with 01 and end with 10.	
ii) Start with 01 and do not end with 10.	**** **
iii) Neither start with 01 nor end with 10.	* * * * * * * * * * * * * * * * * * * *
8.a) Find the generating function for the following sequence:	
$\frac{1}{2}, \frac{1 \times 3}{2 \times 4}, \frac{1 \times 3 \times 5}{2 \times 4 \times 6}, \dots \frac{1 \times 3 \times 5 \times \dots \times (2n+1)}{2 \times 4 \times 6 \times \dots \times (2n+2)}, \dots$	
$2'2\times4'2\times4\times6'$ $2\times4\times6\times\cdots\times(2n+2)'$	
b): Use generating function to solve the following recurrence relation: $a_0 = 2, a_1 = 3, a_n = 5a_{n-1} - 6a_{n-2} + 7^n \text{ for } n \ge 2.$ [5+5]	****
OR	

X * * X * * X * * X * X * X * X * * X * * X * * X * X

x xx+ x x + x x + x x x x x x x x x x x **** ** * * * * * * * * * * * *