2007U. in in Code No: 53017 414 SECTION. ## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, February/March - 2016 ar er. 2,54, | H.C. | 23.5 | THERMODYNAMICS | Adaman
Top Xina
Top You | | | | | | | | |---|-------------------------|--|--|--|--|--|--|--|--|--| | | | (Common to ME, AE, AME) | | | | | | | | | | | Tin | ne: 3 hours Max. Marks: 75 | | | | | | | | | | | MNLtel
PACISE
EXX | Ancrea Ancrea any five avections | | | | | | | | | | . "KITS M. | . 5844 | All questions carry equal marks | CEAN AND AND AND AND AND AND AND AND AND A | | | | | | | | | | | an questions carry equal marks | Deduc
Top 8. | 1.å) | What is meant is and all is a series of the | | | | | | | | | | | 1.49 | The state process and explain any practical example of such | Ç# Ç | | | | | | | | | | L) | process. | | | | | | | | | | | b) | The state of s | | | | | | | | | | 77 5 | | constant volume process and rejects heat of 260 kJ at constant pressure when | | | | | | | | | | | | an adiabatic process. Calculate the adiabatic work and value of internal energy at | * 1. | salient points. [5+10] | | | | | | | | | | 2014 | | | 1707 G | | | | | | | | | | 2.a) | What is a PMMI? Why is it impossible? | s and de | | | | | | | | | | b) | A turbine operates under steady flow conditions, receiving steam at the following | | | | | | | | | | 20.0000 | | state: pressure 1.2 MPa, temperature 188°C, enthalpy 2785 kJ/kg, velocity | | | | | | | | | | | | 33.3 m/s and elevation 3 m. The steam leaves the turbine at the following state: | | | | | | | | | | | | pressure 20 kPa, enthalpy 2512 kJ/kg, velocity 100 m/s, and elevation 0 m. Heat | , norn no | | | | | | | | | | | is lost to the surroundings at the rate of 0.29 kJ/s. If the rate of steam flow through | | | | | | | | | | ,85-88%b | . KATERAD | the furbing to 0.40 mass 1. 22 miles | | | | | | | | | | Delbur
1450 Ts | | the curome is 0.32 kg/s, what is the power output of the turbine in kW? [7±8] | | | | | | | | | | • . | 3.a) | Write the difference to the state of sta | | | | | | | | | | | 5.4) | Write the differences between refrigerator and heat pump? Describe the COP for both of them? | | | | | | | | | | | Lan. | | | | | | | | | | | 197%. | b); | The capacity of refrigerator is 280 tons. Determine the quantity of ice produced at | STANK. | | | | | | | | | | | 0°C within 24 hours when water is supplied at a temperature of 20°C. [6+9] | <u>er</u> | 4.a) | Explain pressure-temperature diagram for a pure substance. | | | | | | | | | | Material Its | b) * | A vessel contains one kg of steam which contains 1/3 liquid and 2/3 vapour by | | | | | | | | | | : | | volume. The temperature of the steam is 151.86°C. Find the quality, specific | | | | | | | | | | | | volume and specific enthalpy of the mixture. [5+10] | | | | | | | | | | | | (2007) (2007), (2007), (2007) | ed woo | | | | | | | | | | 5. | An ideal gas cycle of three processes uses Argon (Mol. wt. 40) as a working | Appendi
XIVA | | | | | | | | | ÷ | | substance. Process 1-2 is a reversible adiabatic expansion from 0.015 m ³ , | | | | | | | | | | | | 650 kPa, 270°C to 0.066 m ³ . Process 2-3 is a reversible isothermal process. | | | | | | | | | | | | Process 3-1 is a constant pressure process in which heat transfer is zero. Sketch | | | | | | | | | | dia di | | the cycle in the P-V and T-s planes, and find | \$055.4f | | | | | | | | | | | a) The work transfer in manager 1.2 | | | | | | | | | | | • | a) The work transfer in process 1-2, | | | | | | | | | | 额 | 28 15 A | b) The work transfer in process 2-3, and | x11x249s | | | | | | | | | | | c) The net work of the cycle. Take $\gamma = 1.67$. [5+5+5] | | | | | | | | | | | | [3,3,3] | | | | | | | | | | .00.100* | | | | | | | | | | | | W. I | 578° K | | AN COLUMN | | | | | | | | | | | | 79F8 %L | | | | | | | | | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 88 6759.4° | | | - PAR | S. Harri | in and and and and and and and and and an | E STORY | 변 (1997년
일 (출간) | EXPER
LIFE 4. | AND ANY OF THE PROPERTY | And here | STATE
STATE
STATE | |--|---------------------------------------|----------------------------|--|---|--|----------------------|--------------------------------------|---|--|-------------------------| | • | 6.a) | Write sh | ort notes | on: | | | | | | * , | | SECTION OF THE PROPERTY | 222 | i) Mole | fraction | hid son
of 200 | Si | | | A STATE OF THE STA | AND MANE. MICH. SANS. S | 4××××× | | • | | 11) Volu
iii) Dry l | metric and
bulb tempe | llysis
erature | | | 208 2 | And L | No. 5. | (Second) | | -85-mas | b) | An air w | ater vapou | ır mixture | has a rela | tive humidi | ity of 60 % | at I atmosr | here and | | | | Property of | 20 0.130 | etermine p
of water va | CL TOOME.C | f the mixt | ure: | BIT | exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exponent
exp | SEC | Subject. | | | e e e e e e e e e e e e e e e e e e e | ii) Mass | of dry air. | rbom | | | | i de la companya de
La companya de la co | [6+9] | | | 23.2
23.23 | 7.a) | Draw P | V on Fr | | | 500 AAA.
- 570 C. | 24 Ang.
24 Ang. | dit San | | dnikan. | | | 7.47 | Processor | , constitui | me me cvo | ne. | | ion cycle | | | 2027E, | | ,845,;;x864 | b) | Derive a | n expres | sion for | efficiency | and mea | ın effectiv | e pressure | of Dual | | | ŞIR. | | comousti | on cycle. | 200 a. s. | 10 E.S. | 4% 18%
23% E | STATE STATE | | [7+8] | erice. | | | 8.a) | Derive th | e expressi | on for CC | P of Bell | Coleman c | ycle when | the compre | ession and | | | | b) * | AWART STOT | i aic isemu | ODIC. | | | | | | | | | | DIMITE TO " | 2 WHL THE | . IPHIDPEST | | 015 onto | r and 8 bar | | • | E. M. T. | | | | B | · Cana. | 47 V & 1680 | t - (-) | I DA AAMM | 2001200 2007 | | | | | | £98518 | are polytr
input for t | ODIO WILL | exponent | $n \neq 1.35$ | . Determin | ession and ne the COI | and the | net power | 40 Min. | | | • | .1 | Plants | | A_{j-1} | 7 | | | [6+9] | - TET 9 18 | | MARKA
DANG TA | | 5252 | | | | | | | | | | | | 4191 75 | | inin asas. V | \0∂Oc | 90 | | 200 | 102 15 | AND WALL | | | | | | | · V | | | | | | | ETTY, | | | \ | | 45 FF | | 25 P.S. | 45 x x | | 45 X X | | | | | | | | | | | | | | A. Disa. | | ALIKAL
AMERIK
PARA P | ser. | | 47 Jun | | | | | | | sentr se | - ACS: No | 9697°% | | | | | die bede
erteke
2.500 de | in Pa | ELECTION OF THE | AN EXX | | | | | | | | | • | • | | | | | | 200 x | ACTION S | | 48, 82
22 3 8
32 3 8
48, 82 | | | ON XNA. | SALEXA
ZONEX
ZONEX | ge. Maa. | | * . | | - | | | | | Topic II Tax. | N. PE N. | | 27.00 V. | | 42.5°4
50°7 6. | | Statistica | ab.itte | | | | | | | | | 1681€16. | 531/K | | | | 2017 8
2017 8
3 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | enings
Kongos
Kongos
Kongos | | | Nagazi
Nagazi | | | . ' | | | | | | | | | | | 1919.
1919. | | 99 (Co.) | 2002
2003
2003
2003
2003
2003
2003
2003 | 25 600.
15 8 % | \$71-25
************************************ | | 874 8251
874 8251 | 231 PAG. | -19: MAN | · 1 | | | • | | | | - | . Kare a. | RUPS^S, | 23.899
27.892 | 2380 | 20x2000 | | 9:1000 | -01-1240 | | | | ż | | | | | | | 2:000
3:000
3:000 | 567 | | | 600 87 S. | | | ene. | | | # 10 f 40
4 | | • | | | | | • | | | | | | | | 19.19.18
10.19.18
10.19.18 | 20.000
20.000
20.000 | 324808
1000 | | 82. | N-33 Cuo. | uni dad. | | | | | | | • | | | \$25 £7.5
7.5 7.5 | | | 60.808
0.00 m | ATTERNATION OF THE PROPERTY | |