B.Tech II Year I Semester Examinations, February/March - 2016 PROBABILITY THEORY AND STOCHASTIC PROCESSES (Common to ECE, ETM) 10000 Time: 3 Hours NAME OF STREET Max. M: 75 M. Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 Marks. Answer all questions in Part A. NEW T Part B consists of 5 Units. Answer any one full question from each unit. CHIE Each question carries 10 Marks and may have a, b, c as sub questions. 2000 PART - A [25 Marks] 20 1.a) Define a random variable. [2] State theorem of total probability. b) [3] M. Write the expression for pdf of a Poisson random variable. ć) [2] we. Define Moment generating function and present generation of moments using it. d) [3] State central limit theorem for the case of unequal distributions. [2] BPL Write short notes on jointly Gaussian random variables for 2 variable case.[3] What is an ergodic random process? g) [2] Write short notes on Poisson random process. h) [3] Define cross power spectral density. 1) Del pur [2] S.C. Write the properties of power spectral density. j) [3] [50 Marks] PART - B gr. 50 Consider an experiment of drawing two cards at random from a bag containing 2.a) four cards marked with the integers I through 4. (i) Find the sample space 8, of the experiment if the first card is replaced before 64 the second is drawn. (ii) Find the sample space S, of the experiment if the first card is not replaced. Explain relative frequency approach of probability. b) [5+5] or. 257 OR 1911 A Company producing electric relays has three manufacturing plants producing 3. 50, 30, and 20 percent, respectively, of its product. Suppose that the probabilities that a relay manufactured by these plants is defective are 0.02, 0.06, and 0.015, 257 NAME OF respectively. a) If a relay is selected at random from the output of the company, what is the probability that it is defective? b) If a relay selected at random is found to be defective, what is the probability. that it was manufactured by plant 3? [5+5] Obtain the characteristic function of a uniformly distributed random variable. 4.a) Obtain the variance of Poisson random variable. 6). [5+5] A random variable X uniformly distributed in the interval $(0,\pi/2)$. Consider the 5.a) transformation Y= Cos X, obtain the pdf of Y. Obtain the characteristic function of Poisson random variable. [5+5] 95% K 82 STREET BR. Marker Sulf JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD 10000 Code No: 113BT | | 6.a) | where X | l and $X2$ a | transformate independent | dent rande | en by Y ₁
om variable | $= X_1 - 3X$ es. Obtain | $X_2, Y_2 = -$ the joint of | $2X_1+3X_2$ lensity of | | |--|------------------|--|--------------------------|--|---|---|-------------------------------|---|--|--| | STATE OF THE | 6) | Y_1, Y_2 in terms of joint density of X_1, X_2 . Prove the joint characteristic function of two independent random variables is equal to the product of marginal characteristic functions. [5+5] OR | | | | | | | | (2) 21 T. | | | 7.a)
b) | Define co | variance o | of joint der
of random value of X | nsity funct
ariables X, | ion.
Y and der | ive the rela | tionship b | etween
[5+5] | | | 2001 C. | 8. 221 | Define c processes | ross-correl
and prove | ation afunc
any three o | tion of a
of them.
OR | random | processes, | Write p | properties
[10] | And Section 2. | | | 9.a)
b) | Check wh | ether the | es of covari
random pro
ited in the in | ance. | = Acos(ω _o
3π/2). | t+ 0) is WS | SS of not? | Given θ
[5+5] | STATES
STATES
STATES
STATES | | 150 P. S. | 10 | State and | prove Wie | ner- Khincl | nine realati | ons. | are are | and man. | [10] | | | | 11.a) | The power | r spectral c | lensity of a | OR
WSS Pand | om proces | s is π[δ(ω- | ω_{o}) + $\delta(\omega$ | + ω _o)]. | | | BOBYE
NAMES | b) | Find its au | itocorrelati | on function
ower in the | ı. 🏣 / | | | | | 48. 275.
10. 25. | | | | are real co $(0,\pi/2)$. | onstants ar | nd (Pis a) ya | ndom var | able unifo | rmly distri | buted in t | he range [5+5] | | | | | CET. | | | | | 275-277
375-277
375-277 | de mor-
constant
more de
more de | | | | | | | | | | | ے' | | | | | | | 17.000 | \\ . | | are. | SECTION SECTION | (1) 2 3
22 7 2 | AN MARI
THE CHIE
THE CHIE
THE CHIE | STATE OF | MIN. MAIN.
MIN. PARTY
27 A 2224
SEMAN ST. | | | | • | V | | | | | | | | | | | 400°0 | | | EL ES | AZ XXII.
ZG XXIII
TOTA NI. | | | S. S | MARKAT. | | | | • | | | | | | | | | | 2007 à 100 m | | | falls to | | AND | die, hand
was zu
was zu z
was zu z | 275 777 d.
707 8 70. | CARREST
SPR S. | AN WARD
TO PARTY
TO PARTY OF | AN XWA-
RING GA
MANGENT
POLYT | | • | | | | | | | | | | | | STATE OF THE | \$2.00
559 8. | | | ACT STATE | | | | | | | | | | | . • | | | | | · · · · · · · · · · · · · · · · · · · | | | | | 38 m/3 | 25 d. 35 | \$2000 A | 100 and an | dischola
Resolution
Resolution | 875 87
875 87
875 87 | \$33.64G.
\$37.64G. | \$3.577 <u>0</u>
\$3.527.5
\$68.5 % | STIP TO STATE OF THE T | | | | | | | | • | | | | | | | | îF. | SOUTH. | | | | | gos gog
sur o X. | AND BOOK | #71, 80°Q. | 200 A C | | | | | | | | | | | | | | pe inov | | Section 2 | 20 (20)
5125 2. | 99 | 25 0 % | MILE STORY | 99 925
576 4 | | | ************************************** |