601X 翻載 656 æ ## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, February/March - 2016 OPERATIONS RESEARCH (Common to ME, MCT, AME, MSNT) Time: 3 Hours ENE L 52 87 翻 實際 Max. Marks: 75 FARROR FA THE CA Answer any Five Questions All Questions Carry Equal Marks - 1.a) How do you identify the following solution in graphical methods? - i) Infeasible solution - ii) Unbounded solution - b) A company wants to purchase at most 180 units of a product. There are two types of the product, M₁ and M₂ available. M₁ occupies 2 ft³, cost Rs. 12/- and the company makes a profit of Rs. 3/-. M₂ occupies 3ft³, costs Rs. 15/- and the company makes a profit of Rs 4/- If the budget is Rs. 15,000/- and the warehouse has 3000 ft³ for product. Formulate the problem as a linear programming model and solve the problem using simplex method. - 2. A trip from Hyderabad to Warangal takes 6 hours by bus. A typical time table of bus services in both directions is given below. | _ | | lerabad – War | digar x | y wan | angal– Hyder | avau | |---------|-----------|------------------|-----------------|-----------|--------------|---------| | | Route No: | Departure | Arriyal | Route No: | Departure | Arrival | | | a 🕮 | | #FY2:00\#F | 1 | 05:30 | 图1:30 | | _ | b | / 07:30 \ | 13:30 | 2 | 09:00 | 15:00 | | | c | (1 <u>k30</u> / | 17:30, | 3 | 15:00 | 21:00 | | à
Ti | d 🚎 | V19:00 | \ 01\\00 | 4 | 18:30 | 00:30 | | न: | e | 00:30 | 0630 | 5 | 00:00 | 06:00 | The cost of providing this service by the transport company depends upon the time spent by the bus crew (driver and conductor) away from their places in addition to service times. There are five crews. There is a constraint that every crew should be provided with 4 hours of rest before return trip again and should not wait for more than 24 hours for the return trip. The company has residential facilities for the crew at Hyderabad as well as at Warangal. Obtain the pairing of routes so as to minimize the cost. 3.a) Explain the algorithm for sequencing of 2 jobs to process on 'n' machines. 88 b) The following mortality rates have been found for a certain type of coal cutter motors | | Weeks | 10 | 20 | • | 30 | 40 | 50 | _ | |-----|-----------------------------|----|----|---|----|----|-----|---| | Tot | al %failure up to end of 10 | 5 | 15 | | 35 | 65 | 100 | | If the motors are replaced over the week, the total cost is Rs. 200. If they fail during the week the total cost is Rs. 100 per failure. Is it better to replace the motors before failure and if so when. HR. 989 1200 | A. | 4.a) | Dietir | muich ber | tween the | rames w | rith saddle p | oints and w | zithout sade | lle points. | 4 | ĺ | |--|------------|--|---|--|---|--|---|---|--|--|--| | | +.a) | | _ | | e graphic | _ | Offics und vi | Tallout bud. | are points. | [5+10] | | | MALESCA
SECTIONS | 10) | 20176 | | wing gan | | _ | mar | | 207 NEW
84 ME AG | ES TOJ | e e e e e e e e e e e e e e e e e e e | | HORICA. | | Sept. | GRY. | · Said '4 | %55% TV: | Player B | 1927 % | SECTION NO. | XXFE VS. | AATO SA | | | | | | * * | | | 5 -3 | | | | | Y | | | | ·. | | | | 3 5 | | | and the second second | | | | | | PER | 500 (Mail Is
100 (100) | STRUE | nu. nam. | -1 set see. | 5 Heri | ESSEN. | 122 E E E E E E E E E E E E E E E E E E | der of the | 1000 | | HARRY. | | 15945 18 . | . 162075 TR. | - 4419 B | Player A | 4 4 1 | AND AN | , or stane, | 3392 % | | | | | | s | | • | | 2. 2 | 1 | | • | | . 4 | | | | | | | | -5 (| | | | | | | 360-6 | | 960 | #### | 2015VE | MA | MIG | 221 N224
241 N224 | B | 287 Sug | | 626F8: | | TEATS TE. | 5. | In m | achine m | aintenano | ce a med | hanic renai | irs four ma | achines. T | he mean 1 | time between | en | | | • | servic | e require | ments is | 5 hours | for each ma | chine and | forms an e | exponentia | l distributio | n. | | | | The n | naan rana | ir machi | ne độtim: | time costs I | e 25 per l | our and th | re machine | costs Rs. 5 | 55 | | AND NO. | | | iv of 8 ho | | iic dowii | ume cosis i | vs. 25 por 1 | | | | | | | | - | ▼. | | 1C | | _1_1_ | · · | | | | | | | | _ | | | perating ma | · · | | | - | | | | | | | - | | time cost pe | - | | | | | | 200 | | | | be ecor | nomical | to engage | two mac | hines eac | h repairir | ng only tv | vo 💮 | | approximately and | | m | achines. | ***** | A | | 7127 25 BA | | | [15] | | | | | | | | | | | | | | | | | 6. | The 1 | oroductio | n depart | ment for | a compar | y requires | 3600 kg | of raw | materials f | or | | 200 | | | | | | | | | | of placing a | | | -9-4 | | | | | | | | | | e inventorie | | | | | | | | | | | | | the operatin | | | | | | | | | pur chase | manager v | VISITOS CO C | | | | | | | | | | · Ville | | | | | 1151 | | | | : | · 300 | ne ioi iav | w materia | is and | | ar area
actual | | | [15] | | | | | 300 | 1619 | | | 96 | AL MAN, | | |][5] | | | | 7.a) | Defin | e Bellmaı | n s princi | ple.of-opt | imality and | its applicat | M
tion to DPI | | 1151 | STATE OF THE | | | 7.a)
b) | Define
Use d | e Bellmar
ynamic p | n's princi
rogramm | ple.of-opt | imality and | its applicat | ion to DPI | | 170J | | | | | Define
Use d | e Bellmaı | n's princi
rogramm | ple.of-opt | imality and | its applicat | OF tion to DPI | | | | | 14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5 | | Defin
Use d
Max 2 | e Bellmar
ynamic p
Z = 2x ₁ +3 | n's princi
rogramm
x ₂ | ple of opting to | A V | 22. 372.
510.772.
110.772. | 48, 386.
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | Defin
Use d
Max 2 | e Bellmar
ynamic p
Z = 2x ₁ +3 | n's princi
rogramm
x ₂ | ple of opting to | imality and $x_2 \le 3$; $x_3 \le 3$ | 22. 372.
510.772.
110.772. | 48, 386.
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | b) | Define
Use d
Max 2
Subject | e Bellman
ynamic por $Z = 2x_1 + 3$ ct to cons | n's princi
rogramm
x ₂
traint x ₁ | ple of opt
ing to
x ₂ ≤ 1;)x | $1 + x_2 \leq 3; x_1$ | $+x_2 \ge 0$ and | 1 x ₁ , x ₂ , x ₃ | | | | | | b)
8.a) | Define
Use d
Max 2
Subject | e Bellman
ynamic p
$Z = 2x_1 + 3$
ct to cons
are the ac | n's princi
rogramm
x ₂ = traint x ₁ = | ple of opting to xx ≤ 1;)x and disa | x_1 $x_2 \le 3$; x_3 dvantages of | $+\mathbf{x}_2 \geq 0$ and | 1 x ₁ , x ₂ , x ₃ |).
≥0. | [5+10] | | | | b)
8.a) | Defind
Use do
Max 2
Subject
What
At Dr | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c | n's princi
rogramm
x ₂
traint x ₁
lvantages
linic pati | ple of opt
ing to
x ≤ 1;)x
and disa
ients arriv | $x_2 \le 3$; $x_2 \le 3$; $x_3 \le 3$; dvantages over with an | $+x_2 \ge 0$ and f simulation average du | 1 x ₁ , x ₂ , x ₃ n? ration of 1 | ≥ 0.2 minutes | [5+10] | ne UR | | | b)
8.a) | Defind Use do Max 2 Subject What At Drarrival | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c
I and nex | n's princi
rogramm
x ₂
traint x ₁
dvantages
dinic pati
t. The av | ple of opting to xx ≤1;)x and disalents arriverage ser | $1/x_2 \le 3$; x_1 dvantages of with an vice time (| $+x_2 \ge 0$ and f simulation average during treatment) in the second contract of | $1 x_1, x_2, x_3$ n? ration of 1 is assumed | 2. ≥ 0. 2 minutes to be 28 | [5+10]
between or
min. simula | ne ^{USS} | | | b)
8.a) | Define Use do Max 2 Subject What At Draw arrival the sy | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c
l and nex
stem till | y s princi
rogramm
x ₂
traint x ₁
tvantages
linic pati
t. The av
11 am ass | ple of opting to x ≤ 1; x and disa lents årriv verage ser suming to | dvantages of with an vice time (a) be starting | $+x_2 \ge 0$ and f simulation average during treatment) in from 9.00 | $1 x_1, x_2, x_3$ n? ration of 1 is assumed | 2. ≥ 0. 2 minutes to be 28 | [5+10] between ormin. simulaer the clinic | ne wa | | | b)
8.a) | Define Use do Max 2 Subject What At Draw arrival the sy | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c
l and nex
stem till | y s princi
rogramm
x ₂
traint x ₁
tvantages
linic pati
t. The av
11 am ass | ple of opting to x ≤ 1; x and disa lents årriv verage ser suming to | $1/x_2 \le 3$; x_1 dvantages of with an vice time (| $+x_2 \ge 0$ and f simulation average during treatment) in from 9.00 | $1 x_1, x_2, x_3$ n? ration of 1 is assumed | 2. ≥ 0. 2 minutes to be 28 | [5+10]
between or
min. simula | ne wa | | | b)
8.a) | Define Use do Max 2 Subject What At Draw arrival the sy | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c
l and nex
stem till | y s princi
rogramm
x ₂
traint x ₁
tvantages
linic pati
t. The av
11 am ass | ple of opting to x ≤ 1; x and disa lents årriv verage ser suming to | dvantages of with an vice time (a) be starting | $+x_2 \ge 0$ and f simulation average during treatment) in from 9.00 | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simulaer the clinic | ne WR
te
is | | | b)
8.a) | Define Use do Max 2 Subject What At Draw arrival the sy | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c
l and nex
stem till | y s princi
rogramm
x ₂
traint x ₁
tvantages
linic pati
t. The av
11 am ass | ple of opting to x ≤ 1; x and disa lents årriv verage ser suming to | dvantages of with an vice time (a) be starting | $+x_2 \ge 0$ and f simulation average during treatment) in from 9.00 | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simulaer the clinic | ne WR
te
is | | | b)
8.a) | Define Use do Max 2 Subject What At Draw arrival the sy | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c
l and nex
stem till | y s princi
rogramm
x ₂
traint x ₁
tvantages
linic pati
t. The av
11 am ass | ple of opting to x ≤ 1; x and disa lents årriv verage ser suming to | dvantages of with an vice time (a) be starting | $+x_2 \ge 0$ and f simulation average during treatment) in from 9.00 | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simulaer the clinic | ne WR
te
is | | | b)
8.a) | Define Use do Max 2 Subject What At Draw arrival the sy | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c
l and nex
stem till | y s princi
rogramm
x ₂
traint x ₁
tvantages
linic pati
t. The av
11 am ass | ple of opt
ing to
x ≤1;)x
and disa
lents arriv
verage ser
suming to
verage w | dvantages of with an vice time (a) be starting | $+x_2 \ge 0$ and f simulation average during treatment) in from 9.00 | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simulaer the clinic | ne WR
te
is | | | b)
8.a) | Define
Use d
Max 2
Subject
What
At Dr
arrival
the sy
opene | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c
I and nex
stem till
d. Also ca | y s princi
rogramm
x ₂
traint x ₁
tvantages
linic pati
t. The av
11 am ass | ple of opting to x ≤ 1; x and disa lents årriv verage ser suming to | dvantages of which an evice time (b) be starting aiting per p | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between or min. simula er the clinic [5+10] | ne tra | | | b)
8.a) | Define
Use d
Max 2
Subject
What
At Dr
arrival
the sy
opene | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c
I and nex
stem till
d. Also ca | y s princi
rogramm
x ₂
traint x ₁
tvantages
linic pati
t. The av
11 am ass | ple of opt
ing to
x ≤1;)x
and disa
lents arriv
verage ser
suming to
verage w | dvantages of with an vice time (to be starting aiting per p | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between or min. simula er the clinic [5+10] | ne tra | | | b)
8.a) | Define
Use d
Max 2
Subject
What
At Dr
arrival
the sy
opene | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c
I and nex
stem till
d. Also ca | y s princi
rogramm
x ₂
traint x ₁
tvantages
linic pati
t. The av
11 am ass | ple of opt
ing to
x ≤1;)x
and disa
lents arriv
verage ser
suming to
verage w | dvantages of with an vice time (to be starting aiting per p | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between or min. simula er the clinic [5+10] | ne tra | | | b)
8.a) | Define
Use d
Max 2
Subject
What
At Dr
arrival
the sy
opene | e Bellman
ynamic p
$Z = 2x_1+3$
ct to cons
are the ac
Raju's c
I and nex
stem till
d. Also ca | y s princi
rogramm
x ₂
traint x ₁
tvantages
linic pati
t. The av
11 am ass | ple of opting to x ≤1;)x and disa ients arriverage sersuming to verage w | dvantages of with an vice time (to be starting aiting per p | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | 1 x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between or min. simula er the clinic [5+10] | ne tra | | | b)
8.a) | Defind Use do Max 2 Subject What At Drarrival the sylopene. | e Bellman
ynamic product to constare the acceptance Raju's color and next stem till d. Also can | n's princi
rogramm
x ₂
traint x ₁
tvantages
clinic pati
t. The av
11 am ass
alculate a | ple of opt
ing to
x ≤1;)x
and disa
lents arriv
verage ser
suming to
verage w | dvantages of the with an evice time (to be starting aiting per | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simular the clinic [5+10] | ne tra | | | b)
8.a) | Defind Use do Max 2 Subject What At Drarrival the sylopene. | e Bellman
ynamic product to constare the acceptance Raju's color and next stem till d. Also can | n's princi
rogramm
x ₂
traint x ₁
tvantages
clinic pati
t. The av
11 am ass
alculate a | ple of opting to x ≤1;)x and disa ients arriverage sersuming to verage w | dvantages of the with an evice time (to be starting aiting per | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | 1 x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simular the clinic [5+10] | ne tra | | | b)
8.a) | Defind Use do Max 2 Subject What At Drarrival the sylopene. | e Bellman
ynamic product to constare the acceptance Raju's color and next stem till d. Also can | n's princi
rogramm
x ₂
traint x ₁
tvantages
clinic pati
t. The av
11 am ass
alculate a | ple of opting to x ≤1;)x and disa ients arriverage sersuming to verage w | dvantages of the with an evice time (to be starting aiting per | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | 1 x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simular the clinic [5+10] | ne tra | | | b)
8.a) | Defind Use do Max 2 Subject What At Drarrival the sylopene. | e Bellman
ynamic p
Z = 2x ₁ +3
ct to cons
are the ac
Raju's c
l and nex
stem till
d. Also ca | n's princi
rogramm
x ₂
traint x ₁
tvantages
clinic pati
t. The av
11 am ass
alculate a | ple of opting to x ≤1;)x and disa ients arriverage ser suming to verage w | dvantages of with an evice time (to be starting aiting per | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simulaer the clinic [5+10] | ne tra | | | b)
8.a) | Defind Use do Max 2 Subject What At Drarrival the sylopened | e Bellman
ynamic product to constare the acceptance Raju's color and next stem till d. Also can | n's princi
rogramm
x ₂
traint x ₁
tvantages
clinic pati
t. The av
11 am ass
alculate a | ple of opting to x ≤1;)x and disa ients arriverage sersuming to verage w | dvantages of the with an evice time (to be starting aiting per | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | 1 x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simular the clinic [5+10] | ne tra | | | b)
8.a) | Defind Use do Max 2 Subject What At Drarrival the sylopened | e Bellman
ynamic p
Z = 2x ₁ +3
ct to cons
are the ac
Raju's c
l and nex
stem till
d. Also ca | n's princi
rogramm
x ₂
traint x ₁
tvantages
clinic pati
t. The av
11 am ass
alculate a | ple of opting to x ≤1;)x and disa ients arriverage ser suming to verage w | dvantages of with an evice time (to be starting aiting per | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simulaer the clinic [5+10] | ne tra | | | b)
8.a) | Defind Use do Max 2 Subject What At Drarrival the sylopened | e Bellman
ynamic p
Z = 2x ₁ +3
ct to cons
are the ac
Raju's c
l and nex
stem till
d. Also ca | n's princi
rogramm
x ₂
traint x ₁
tvantages
clinic pati
t. The av
11 am ass
alculate a | ple of opting to x ≤1;)x and disa ients arriverage ser suming to verage w | dvantages of with an evice time (to be starting aiting per | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simulaer the clinic [5+10] | ne tra | | | b)
8.a) | Defind Use do Max 2 Subject What At Drarrival the sylopened | e Bellman
ynamic p
Z = 2x ₁ +3
ct to cons
are the ac
Raju's c
l and nex
stem till
d. Also ca | n's princi
rogramm
x ₂
traint x ₁
tvantages
clinic pati
t. The av
11 am ass
alculate a | ple of opting to x ≤1;)x and disa ients arriverage ser suming to verage w | dvantages of with an evice time (to be starting aiting per | $+x_2 \ge 0$ and f simulation average during from 9.00 atient. | l x ₁ , x ₂ , x ₃ n? ration of 1 is assumed am immed | ≥ 0. 2 minutes to be 28 liately after | [5+10] between ormin. simulaer the clinic [5+10] | ne tra |