R13 WEAT. gra. SR. . Pigg \$\$\$#£ 1171.5 Code No: 113AQ 94 544 ##4 åÆ. ## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, February/March-2016 METALLURGY AND MATERIALS SCIENCE | FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FILENA
FI | Time | (Common to ME, MCT, AME) | | Max. Mark | s: 75 | |--|--|---|---------------------------------|------------------|--| | | Note: | 100 NAC | questio | n from each | | | Part Inc | E CONTRACTOR | PART- A | 2222 | (25 Ma | ırks) | | | 1.a) | Distinguish between Unit cell and space lattice. | | [2] | | | 1521511
1 ₂ 715 1 | b) 🖂 | What is ASTM-grain size number? | \$5.5.49
\$5.500 | [3] | | | | c) | Explain Lever rule with an example. | | [2] | | | | d) | What do you mean by Isomorphous system? | | [3] | | | *** | e) | What are the effects of non-equilibrium cooling of alloy | s? | [2] | | | | f) | Distinguish between hardness and hardenability. | F1517E | | | | | g) | Why is it easier to control the properties of cast irons as | compar | red to steels?[2 | 2] | | | h) | Why age hardening process is two step process? | | [3] | | | | i) | What is Isomerism? Explain with example. | 41, USE
11475 TI | [2] | | | 110701 | j) | What is degree of polymerization? Explain its significan | ice. | [3] | | | | | | | | · . · · · · · · · · . | | | | PART-B | | (50 Ma | | | Sale P | - Jel | 第 | | | Prove | | | 2.a) | Distinguish between single crystal and poly crystal. | Expla | in their effec | t on | | | 4. | properties of materials. | | | | | | b) | List out different types of Bravais lattice structures wit | h their | 56 15 15 Jan | 2.35 Z.1.12 | | 2231 11 | , salercen | examples. | - | FC] | ⊦ 5] | | | • | OR | | | 1. | | | 3. | What is co-ordination number? Find the co-ordination | number | | | | i dina | (\$\frac{1300}{2000})
\$\frac{1500}{2000} \text{\$\text{\$0\$}}\$
\$\frac{1500}{2000} \text{\$\text{\$10\$}}\$ | face central cubic and hcp systems. | 151 122
271 142
271 142 | | | | | 4 -> | Table de la | م امسماع | -1: J14: | | | | 4.a) | Explain the governing rules for the formation of substitut | | | | | | b) | Distinguish between electron compounds and intermexamples. | | _ | witii
⊦5 * | | effelt 2 tr | with the | OR | No. 71 | [J7 | r31 * | | | 5.a) | Explain the relationship between equilibrium diagrams a | nd pror | verties of allow | re | | | b) | Discuss about congruent melting phases. | ina prof | ·. . | s.
⊦5] | | 941 | | Discuss about congruent menting phases. | | | | | | 6. | Draw Fe-Fe ₃ C phase diagram and explain the phase trans | sformat | ion reactions i | in | | | • | the diagram. | DIOIIIM | [10] | | | 54. | | th sp. sp. or | 27-27-3
27-27-3
21-27-3-1 | CLANA.
STATE | de d | | WAY 15. | 7.a) | Explain the effects of ferrite stabilizers and austenite sta | | 190 10 10 | V1-V | | | , | diagram. | J1112 C 13 | он то-гозо р | 11430 | | | b) | What is quench severity? Explain its role on hardenings | of steel | ls. [5+ | -51 | | #10 9 11. | | The is quench severity: Explain its fole on hardellings | or stock | اه.
چنا | | | | | | * * * | | | MIN. Distinguish between α , β and $\alpha+\beta$ titanium alloys with respect to composition, CDT (L 8.a) microstructure, properties and applications. b) Explain the role of solvus curve in phase diagrams for age hardenable alloys. tert. 444 737575 -737675 [5+5] OR 9.a) Draw the partial Al-Cu phase diagram (up to 10% Cu) and explain engineering significance of Al with 4-5% Cu. 胸围 Explain how the property of aluminium alloys changes on age-hardening. [5+5] b) 9212 Explain the differences between crystallization of polymers and other solids. 10.a) What factors affect the crystallization of polymers? [5+5] 244. Meri Karu OR Differentiate between thermoplastic polymers and thermosetting polymers. Give 11.a) minimum two examples of each type. ER. b) What is vulcanization of rubber? Why it is done? [5+5] --ooOoo--Æ, 2014 ENG. S 66176 SK AND DEX 47 ēR. gri W.C 435025. 111874. gie. HR OM. BR DF. 354 Sint. din #P űř. 517 SEL art W. 851 45.7% 17.7% \$42 #P an. DH. NF. Mili 99 ME. MAG. ĒĽ. 1941143 1864175, 4039 MA. Dit 1000 T äų, SFE. 60,000 642 642 EUP, \$60000 \$20000 271 wi. MY. 46-602 500 % 31923 Masse. 814 MES, 胡用 1944 200 200 P \$1900 \$1000