JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year II Semester Examinations, May - 2016

MATHEMATICS - II

(Common to ME, MCT, MIE, MSNT) Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

- Find $\nabla x^2 y z^3$. 1.a) [2]
- State Stoke's theorem. [3]
- If $f(x) = x + x^2$ in $(-\pi, \pi)$ then find a_0 in the fourier series of f(x). [2]:
 - If the Fourier transform of $f(t) = \frac{2\sin as}{s}$, then find F[t f(t)]. [3]
- If h = 1, find $\Delta^2(x^3 3x^2)$. e) [2]
- Write the three normal equations to fit $y = a + bx + cx^2$. [3]
- Find the two points between which the root of $x \log_{10} x = 1.2 \text{ lies}$. [2]
- Find the LU decomposition of $A = \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$. h) [3]
- If $\frac{dy}{dx} = 1 + xy$ and y(0) = 1 then find $y^{(1)}(x)$ by Picard' methods. If y'' + y = 2, then find the recurrence relation connecting y_i , y_{i-1} , y_{i+1}

PART - B

(50 Marks)

Verify Green's theorem for $\int_c (xy+y^2) dx + x^2 dy$ where c is bounded by y = x and $y = x^2$. [10]

OR

- Verify stokes theorem for $F = (x^2 + y^2)i 2xy i$ taken around the rectangle 3. bounded by the lines $x = \pm a$, y = 0, y = b.
- 4.a) Find the Fourier series of the periodic function as defined by

$$f(x) = \begin{cases} -\pi & \text{in } -\pi < x < 0 \\ x & \text{in } 0 < x < \pi \end{cases}$$

Obtain the Fourier cosine transform of

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$$

