Code No: 121AL

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech I Year Examinations, May - 2016

MATHEMATICAL METHODS (Common to EEE, ECE, CSE, EIE, IT, ETM)

Max. Marks: 75 Time: 3 hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

[2] Evaluate $\Delta x^{(2)}$. 1.a)

Show that $\Delta f_i^2 = (f_i + f_{i+1}) \Delta f_i$. [3] b)

Find two values of x between which the root of $xe^x = \cos x$ lies. [2]

Find y(0.2) and y(0.4) by Euler's method given that $y' = \frac{x^2}{(y^2 + 1)}$, y(0) = 2. d)

[3]

If $f(x) = \begin{cases} 1 - x, & 0 < x < 3 \\ 0, & 3 < x < 6 \end{cases}$ then find a_0 in Fourier series in (0, 6).

If the fourier transform of f is $\frac{s}{(s^2+1)}$ then find the fourier transform of f(at). f)

[3]

A rod of length l has its ends A and B kept at $0^{\circ}C$ and $60^{\circ}C$ respectively, until [2] steady state conditions prevail. Find u(x).

Form the partial differential equation from $z = f\left(\frac{y}{y}\right)$. [3] h)

i) If $\phi = xyz$ then find $(\nabla \phi)$.

12.1

If $F = y(ax^2 + z)i + x(y^2 - z^2)j + 2xy(z - xy)k$ is solenoidal then find a. [3]

PART-B

(50 Marks)

Fit a parabola of the form $y = a + bx + cx^2$ X 2 4 6 76.4420 122.1800 [10]17.2460 41.4640 Y OR

Fit a natural cubic spline to the following data. Hence determine y(0.5), y'(0.4)3. and y(1.5)

		1	· ,
X	0	1	2
y	4	1	2

4. Find y(0.2) and y(0.4) given that y' = y - x, y(0) = 2, h = 0.2, using fourth order Runge Kutta formula.

OR

5.a) Find the first derivative of f(x) at x = 1.5 from the following table.

X	1.5	2.0	2.5	3.0	3.5	4.0
Y	3.375	7.0	13.625	24	38.87	59

The velocity V of a particle at a distance s from a point on its path is given by the following table.

s(ft)	0	10	20	30	40	50	60
$V_{(ft/s)}$	47	58	64	65	61	52	38

Estimate the time taken to travel 60 ft using Simpson's $\frac{3}{8}th$ s rule. [5+5]

6.a) Obtain the Fourier series for the function $f(x) = \begin{cases} -1, & \text{if } -2 \le x \le -1 \\ x, & \text{if } -1 < x < 1 \end{cases}$ $1, & \text{if } 1 \le x \le 2$

b) Find the finite Fourier cosine transforms $x(\pi - x)$ in $(0, \pi)$.

OR

7.a) Obtain a cosine series for the function $f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \pi \end{cases}$

b) Obtain the Fourier cosine transform of $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$ [5+5]

8. Solve the partial differential equation by Charpit's method px + qy = pq. [10] **OR**

9. Find the general solution of the wave equation $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$. [10]

10. Prove that $\overline{F} = (y^2 \cos x + z^3)i + ((2y \sin x - 4)j + 3xz^2k)$ is irrotational and find its scalar potential. [10]

Verify Green's theorem for $\int_{c}^{c} (xy + y^{2}) dx + x^{2} dy$ where c is bounded by y = x and $y = x^{2}$.