Code No: 126EK

B.Tech III Year II Semester Examinations, May - 2016

DIGITAL SIGNAL PROCESSING

(Common to ECE, EIE)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART – A (25 Marks) Write four advantages of Digital Signal Processing over Analog Signal Processing.[2] 1.a) Show that the frequency response of a discrete system is a periodic function of b) frequency. [2] :::[3] c) Give the relation between DTFT and Z-Transform. d): Distinguish between Linear convolution and circular convolution: [2] What are the advantages of Butterworth filter? What are the advantages and disadvantages of Chebysher filter. [3] f) [2] Define Impulse Response. g) [3] Define sampling and Nyquist Rate.

PART - B

(50 Marks)

- 2.a): Test the following systems for linearity, time invariance, causality and stability: $y(n) = sin(2nf\pi/F)x(n)$
 - b) A digital system is characterized by the following difference equation: Y(n) = x(n)+ay(n-1) Assuming that the system is relaxed initially, determine its impulse response. [5+5]

OR

3. By taking an example compute DFT by using Over-Lap save method. [10]

4.a) Compute the circular convolution of the sequences

 $x_1(n) = \{1, 2, 0, 1\}$ and

 $x_2(n) = \{2, 2, 1, 1\}$ Using DFT approach.

b) What is FFT? Calculate the number of multiplications needed in the calculation of DFT wising FFT algorithm with 32 point sequence. [5+5]

OR

5.a) Prove the following properties.

i)
$$x^*(n) \rightarrow X^*((-K))_N R_N(K)$$

ii)
$$x^*((-n))_{\mathcal{N}} R_{\mathcal{N}}(n) \to X_{ep}(k) = \frac{1}{2} \left[X((K))_{\mathcal{N}} + X^*((-K))_{\mathcal{N}} \right] R_{\mathcal{N}}(K)$$

b) Compare FFT for the sequence:

 $x[n] = \{1, 0, 1, 1, 0, 1, 1, 1\}$

[5+5]

XX G *XXX* X * X * X * X *	6.a) Discus b) Explain	s in detail about son how IIR digital	spectral transform	mations.	filters.	[5+5]	*** *** * * * * * * * * * * * * * * *
	7.a) Compa	ere the impulse in	Convariance and biles of a low pass	OR inear transforma Butterworth filte		bandwidth of [4+6]	**************************************
	b) Design	and explain frequal a high pass ians/second and	filter using hai N=9.	f FIR digital filtenming window	er. with a cut-off	frequency of [5+5]	368 986
Ţ	b) Design given l Pass b	oelow. and cut-off frequ	of FIR filters us tal FIR filter us ency = 100 Hz.	sing fourier meth	nod. ::::::::::::::::::::::::::::::::::::	specifications	
N	Pass b	and cut-off frequand ripple = 0.1d and affenuation = ing frequency =	B = 20 dB	ER	äk	(3+7)	
	b) What i	are the Dead banks mean by samplare Limit Cycles are the process of	ling rate convers	sion? Explain. OR :::::::::::::::::::::::::::::::::::	nit Cycles in brief rsion by an ration	[5+5] 	
			0	oOoo-i			
T.							
R							