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Preface 
 
The demand to explore the largest and also one of the richest part of our planet, the 

advances in signal processing promoted by an exponential growth in computation power 
and a thorough study of sound propagation in the underwater realm, lead to remarkable 
advances in sonar technology in the last years.  

 Since the use of imaging system that rely on electromagnetic waves (optical, laser 
or radar) is restricted to only very shallow water environments, and given that the good 
propagation of sound waves in water is known from at least the writings of Leonardo da 
Vinci, the sonar (sound navigation and raging) systems are the most widespread solution 
for underwater remote sensing.  

Sonar systems can be divided into two major types: passive sonar systems that enable 
detection of a sound emitting target and active sonar systems that use the properties of a 
signal reflected on the targets for its detection and image formation. 

As system complexity increases, the study of the way sound is used to obtain 
reflectivity and bathymetry data from targets and submersed areas becomes fundamental in 
the performance prediction and development of innovative sonar systems. 

Because of the many similarities between sonar and radar, algorithms created for the 
latter found application in sonar systems which made use of the advances in signal 
processing to overcome the barriers of the problematic underwater propagation medium 
and to challenge the resolution limits. In particular, synthetic aperture methods, applied 
with so much success in radar imagery, were adapted to sonar systems. This in turn enabled 
a considerable increase in sonar image quality and system robustness. Target detection 
developments lead to the use of multiple transducer sensors and sophisticated beam 
forming techniques with also excellent results. 

High quality sonar imagery with reduced noise and enhanced resolution enables more 
complex applications. Leaving the traditional real of military applications, sonar civil 
applications arise for the study of biology ecology and related fields. Moreover integration 
and data fusion of different sensors is becoming more and more common, being it 
navigation data integration and enhancement for synthetic aperture, sonar systems with 
different propagation characteristics or optical image integration for the improvement of 
object detection. 

But, not unlike natural evolution, a technology that matured in the underwater 
environments is now being used to solve problems for robots that use the echoes from air-
acoustic signals to derive their sonar signals.  

The work on hand is a sum of knowledge of several authors that contributed in various 
different aspects of sonar technology. This book intends therefore to give a broad overview 
of the advances in sonar technology of the last years that resulted from the research effort of 
the authors in both sonar systems and its applications. It is destined to scientist and 
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engineers from a variety of backgrounds and, hopefully, even those that never had contact 
with sonar technology before will find an easy entrance in the topics and principles exposed 
here.  

The editor would like to thank all authors for their contribution and all those people 
who directly or indirectly helped make this work possible, especially Vedran Kordic who 
was responsible for the coordination of this project. 

 

Editor 

Sergio Rui Silva 
University of Porto  



 
 
 
 
 
 
 

Contents 
 

 Preface V 
   
 Side-looking Sonar  
   

1. Simulation and 3D Reconstruction of Side-looking Sonar Images 001 
 E. Coiras and J. Groen  
   
 Synthetic Aperture Sonar  
   

2. Synthetic Aperture Techniques for Sonar Systems 015 
 Sérgio Rui Silva, Sérgio Cunha, Aníbal Matos and Nuno Cruz  
   

3. Motion Compensation in High Resolution  
Synthetic Aperture Sonar (SAS) Images 

043 

 R. Heremans, Y. Dupont and M. Acheroy  
   
 Sonar Image Enhancement  
   

4. Ensemble Averaging and Resolution Enhancement of Digital Radar  
and Sonar Signals 

075 

 Leiv Øyehaug and Roar Skartlien  
   
 Sonar Detection and Analysis  
   

5. Independent Component Analysis for Passive Sonar Signal Processing 091 
 Natanael Nunes de Moura, Eduardo Simas Filho and José Manoel de Seixas  
   

6. From Statistical Detection to Decision Fusion: Detection  
of Underwater Mines in High Resolution SAS Images 

111 

 Frédéric Maussang, Jocelyn Chanussot, Michèle Rombaut and Maud Amate  
   
 Sonar Sensor Integration  
   

7. Multi-Sonar Integration and the Advent of Senor Intelligence 151 
 Edward Thurman, James Riordan and Daniel Toal  



VIII        

8. On the Benefits of Using Both Dual Frequency Side Scan Sonar 
and Optical Signatures for the Discrimination  
of Coral Reef Benthic Communities 

165 

 Tim J Malthus and Evanthia Karpouzli  
   
 Air-acoustics Sonar Systems  
   

9. Outdoor Sonar Sensing 191 
 Fernando J. Álvarez Franco and Jesús Ureña Ureña  
   

10. Mobile Robot Localization using Particle Filters and Sonar Sensors 213 
 Antoni Burguera, Yolanda González and Gabriel Oliver  

 



 
 

Side-looking Sonar 



 

 



1 

Simulation and 3D Reconstruction of 
Side-looking Sonar Images 

E. Coiras and J. Groen 
NATO Undersea Research Centre (NURC) 

Italy 

 

1. Introduction 
Given the limited range and applicability of visual imaging systems in the underwater 
environment, sonar has been the preferred solution for the observation of the seabed since 
its inception in the 1950s (Blondel 2002). The images produced by the most commonly used 
side-looking sonars (side-scan and, more recently, synthetic aperture sonars) contain 
information on the backscatter strength recorded at every given range. This backscatter 
strength mainly depends on the composition and the orientation of the observed surfaces 
with respect to the sensor. 
In this chapter, the relations between surface properties (bathymetry, reflectivity) and the 
images resulting when the surface is observed by side-looking sonar (backscatter strength) 
are studied. The characterization of this sonar imaging process can be used in two ways: by 
applying the forward image formation model, sonar images can be synthesized from a given 
3D mesh; conversely, by inverting the image formation model, a 3D mesh can be estimated 
from a given side-looking sonar image. The chapter is thus divided in two main parts, each 
discussing these forward and inverse processes. The typical imaging sensor considered here 
is an active side-looking sonar with a frequency of hundreds of kilohertz, which usually 
allows for sub-decimetre resolution in range and azimuth. 

2. Sonar simulation 
Simulation is an important tool in the research and development of signal processing, a key 
part of a sonar system. A simulation model permits to study sonar performance and 
robustness, giving the analyst the opportunity to investigate variations in the sonar results 
as a function of one system parameter, whilst keeping other parameters fixed, hereby 
enabling sensitivity studies. A sonar simulator can be used as well for image data base 
generation, as an addition to costly measured data of which there is typically a shortage. A 
data base with sufficient actuality and variability is crucial for testing and developing signal 
processing algorithms for sonar image analysis, such as object detectors and classifiers. An 
example is illustrated in Fig. 1, where a measured synthetic aperture sonar (SAS) image of a 
cylinder sitting on the seafloor and a simulated image of a similar object at the same range 
are shown. 
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Fig. 1. (a) NURC’s test cylinder. (b) Image of the cylinder measured with MUSCLE’s 
synthetic aperture sonar (SAS). (c) 3D computer model of a cylinder and (d) its 
corresponding sonar image simulated with the SIGMAS model. 

2.1 Sonar fundamentals 
The basic idea behind any sonar system is as follows: an acoustic signal (or ping) is emitted 
by the sonar into an area to be observed; the sonar then listens for echoes of the ping that 
have been produced when bouncing back from the objects that might be present in the area. 
Typically, sonar images are produced by plotting the intensity measured back by the sonar 
versus time, and since the speed of sound underwater is known (or can be measured), the 
time axis effectively corresponds to range from the sonar. 
In this way, just as light illuminates a scene so that it can be perceived by an optical sensor, 
the acoustic ping “ensonifies” the scene so that it can be perceived by an acoustic sensor. 
Also, as it happens in the optical field, imaging can be approached as a ray-tracing or a 
wave propagation problem. 

2.2 The acoustic wave equation 
The propagation of acoustic waves is described by the acoustic version of the wave equation 
(Drumheller 1998), a second order differential equation for acoustic pressure p, which is a 
function of time (t) and space (x, y, z). Assuming constant water density and constant sound 
speed (c) it can be written as: 

 ( ) ( )
2 2 2 2

2 2 2 2 2

1 , ,s s s

p p p p x x y y z z s t
x y z c t

δ∂ ∂ ∂ ∂
+ + − = − − − −

∂ ∂ ∂ ∂
 (1) 

The physical process starts with a normalized acoustic wave signal s(t) emitted by a source 
located at (xs, ys, zs). In the equation the source is modelled as a point source, with a Dirac 
delta (δ) spatial distribution function. 
When the propagation of sound is described by Eq. 1, the expression for p(x; t) = p(x, y, z; t) 
in the case of an infinite water mass around the source is given by: 

 ( );
4

rs t
cp t

rπ

⎛ ⎞−⎜ ⎟
⎝ ⎠=x  (2) 

Where r is the range from the sonar’s acoustic source: 
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 ( ) ( ) ( )2 2 2

s s sr x x y y z z= − + − + −  (3) 

From Eq. 2 it is clear that the acoustic pressure level is reduced according to the reciprocal of 
the distance to the source. This loss in acoustic pressure and energy is referred to as 
spherical spreading loss, and in the case of sonars it is to be applied twice: a signal travels 
from source(s) to target(s) and then back from target(s) to receiver(s). The signal received 
back at the sonar is a delayed and attenuated version of the initially transmitted signal. 
It should be noticed that Eq. 2 is obtained with the assumption that the acoustic source is a 
monopole and has no dimensions. If this is not the case, p becomes frequency dependent. 

2.3 Practical approaches to sonar simulation 
From the implementation point of view, several approaches to sonar simulation are possible 
and frequently hybrid models are implemented. The most common are as follows: 
Frequency domain models 
In this approach the Fourier transform of the acoustic pressure that is measured back at the 
sonar receiver is expressed in terms of the Fourier transform of the acoustic pulse used for 
ensonifying the scene. This is the approach used in NURC’s SIGMAS simulator and is 
discussed in detail in section 2.4. This implementation has the advantage of simplifying the 
inclusion of several processes that are easier to represent in Fourier space, such as the 
matched filtering of the received signal or the inclusion of the point spread function (PSF) of 
the sonar transducers. 
Finite difference models 
The wave equation given in Eq. 1 can be solved numerically by applying finite difference 
modelling, which imposes discretizations in time and space dimensions. Using, for instance, 
a forward difference scheme permits to approximate the time derivative of the pressure as 
follows: 

 ( ) ( ), , ; , , ;p x y z t t p x y z tp
t t

+ Δ −∂
≈

∂ Δ
 (4) 

where Δt is the temporal discretization step. For the spatial derivatives (with respect to the 
x, y, z coordinates) a similar formula is used. Starting the computation with initial 
conditions, i.e. the acoustic field at t = 0, permits to estimate the pressure field as any other 
point of time and space. The problem with finite difference models when applied to the 
side-looking sonar case is the dimensions of the computation. In order to obtain an accurate 
acoustic pressure field the sampling in both space and time is required to be on the order of 
a fraction of the reciprocal of the frequency and the wavelength, respectively. Even when 
avoiding parts of the computation—for instance solving only the wave equation around the 
location of the object of interest—the problem cannot be practically approached for 
frequencies higher than several kilohertz.  
Finite Element (FEM) and Boundary Element models (BEM) 
The finite element models and boundary element models are alternatives to finite 
differences that discretize the problem in a more optimized way. These approaches are 
complex to implement but typically generate more stable and accurate results with lower 
computational costs. However, even with these more sophisticated numerical techniques, no 
reasonable computation times have been achieved for sonar image modelling for 
frequencies much higher than ten kilohertz.  
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Ray tracing 
Ray tracing (Bell 1997) is a method to calculate the path of acoustic waves through the 
system of water, sea bottom, sea surface and objects of interest. When the sound speed 
cannot be assumed constant in the water column refraction of the rays results in bent rays 
focused to certain places. The paths of the rays are advanced until they hit an object, where 
the particular contribution of the ray to the returned signal is then computed. Reflection, 
refraction and scattering events can be accurately modelled by computing a large number of 
rays, and these can account for complex phenomena observed in sonar imaging, such as 
multi-path effects or the behaviour of buried targets. Generally speaking, ray tracing is 
capable of rendering very accurate images but at a high computational cost. 
Rasterization 
Most current computer graphics are generated using rasterization techniques, which are 
based on decomposing the scene in simple geometrical primitives (typically triangles) that 
are rendered independently of each other. This permits fast generation of synthetic images, 
although effects that require interaction between primitives (such as mirror-like objects) can 
be complicated to simulate. A big advantage of raster methods is that most current 
computers include specialized hardware (Graphical Procesing Units, or GPUs) that greatly 
accelerate raster computations. NURC is currently working on a GPU-based implementation 
of its SIGMAS sonar simulator, in order to achieve faster simulation performance. 

2.4 The SIGMAS sonar simulator 
Using the frequency domain approach followed by the SIMONA model (Groen 2006) the 
SIGMAS simulator calculates the acoustic pressure for every pixel in the sonar image at the 
same time. In this sense, the signal processing, i.e. the imaging algorithm, is included in the 
model. In order to develop a realistic but sufficiently fast model some assumptions have 
been made. The sound speed in the water column is assumed to be constant, which means that 
acoustic paths follow a straight line. The surfaces of simulated objects are assumed discretized 
into facets to which the Kirchhoff approximation to the scattered field is applied.  
The general expression in frequency domain for the acoustic pressure at the receiver xr outside 
of an object’s surface A can be derived using Green’s theorem (Clay 1977, Karasalo 2005): 

 ( ) ( ) ( ) ( ) ( ) ( )r r r
x

; , ; ; ; , ;
A

P f G f P f P f G f dA
∈

= ⎡ ∇ − ∇ ⎤ ⋅⎣ ⎦∫∫x x x x x x x n x  (5) 

In the expression, n is the surface normal and G is Green’s function, which for a 
homogeneous medium is given by (Neubauer 1958): 

 ( )
r

r
r

, ;
4

ikeG f
π

−

=
−

x x

x x
x x

 (6) 

Where 2k f cπ=  is the wave number.  
On hitting a surface, part of the pressure wave will be scattered back (reflected) and some of 
it will be refracted into the surface material or absorbed as heat. The fraction of pressure that 
is returned is measured by the reflectivity (or reflection coefficient) R of the surface material. 
The surface boundary conditions that relate the incident (Pi) and scattered (P) waves are: 

 ( ) ( )( ) ( ); 1 ; ;iP f R f P f= +x x x  (7) 
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 ( ) ( );
1 ;

P f
R f

n
∂

= −
∂
x

x  (8) 

Where n indicates variation in the direction normal to the surface. 
For our simulation purposes, an object with an acoustically rigid surface can be assumed, 
which means the reflectivity R is set to unity and therefore elastic effects do not play a role. 
This simplifies the boundary conditions on the scattering surfaces and is the approach used 
by SIGMAS. Substituting R for 1 in the boundary conditions (7) and (8), and using Green’s 
function (6) twice to propagate from source xs to surface A and then to receiver xr yields the 
expression: 

 ( ) ( ) ( )
r s

r
r s

x r s r

; x ;
ik ik

A

i e eP f P f dA
λ

− −

∈

−
= − ⋅

− − −∫∫
x x x x x xx n x

x x x x x x
 (9) 

Knowing that in sonar the source and the receiver are in the same position—which from 
now on we assume to be at the coordinate origin—and assuming the surface is discretized 
on small facets of area a2, the integral can finally be expressed as the following summation: 

 ( ) ( )
2 2 r

2

ˆ ˆ k
fi

k k c

k
k

aP f S f e
π

λ
⋅

= ∑
n r

r
 (10) 

Where rk is the vector from the sonar to the kth surface element, S(f) is the Fourier transform 
of the transmit signal s(t), and where the hats indicate unit vectors. 
Application of Eq. 10 produces results as those presented in Fig.2, where a barrel sitting on 
flat sand and a truck wheel on a bumpy clay floor have been simulated. 
 

 
Fig. 2. Two examples of the output produced by the SIGMAS simulator: a barrel sitting on a 
sandy seafloor at 128 meters distance, and a truck wheel at 41 meters distance on a bumpy 
clay seabed. 
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2.5 Model simplification 
The approach to simulation used by SIGMAS produces very accurate results that correlate 
well to experimental data. This accuracy comes with a computational cost, since the 
coherent model used requires sampling the objects to be simulated at scales smaller than the 
wavelength of the ensonificating signal. In the examples shown, for instance, the number of 
discrete point scatterers is around one million per object. 
For very smooth objects or if elasticity effects are relevant, coherence has to be considered. 
On the other hand, if surfaces are rough at wavelength scale, the complex exponentials in 
Eq. 10 can be dropped and the discretization can use bigger surface elements with an 
equivalent reflectivity value R. The constructive and destructive interferences described by 
the complex exponentials can also be replaced by a noise distribution (Bell 1997). 
Furthermore, since most sonars perform some kind of Time-Varying Gain (TVG) intensity 
corrections to compensate for the spherical spreading loss, that contribution can also be 
dropped and replaced by a final image level scaling. Computations can be performed directly 
in image space, removing also the need for the FFT when working in frequency domain, 
resulting in the following expression for the observed pixel intensity at surface point r: 

 ( ) ( ) ( ) ( ) ( )ˆ ˆk k k
k

I K R χ= ⋅∑r r n r r r  (11) 

Where the sonar is assumed at the coordinate origin, K is a normalization constant that groups 
all scaling factors and unit conversions, Rk is the reflectivity of the kth surface patch and χk is 
the characteristic function of the patch (one if the circle of radius |r| intersects the patch, zero 
if not). Note that Eq. 11 basically corresponds to the Lambertian illumination model for diffuse 
surfaces (Zhang 1999), where the perceived brightness of a surface point depends on the 
relative direction of illumination and is independent of the direction of observation. 
All these simplifications greatly reduce the complexity of the computations and even permit 
to use standard computer graphics renderers, such as OpenGL (OpenGL ARB 2004), to 
create the simulated images. Standard 3D models for objects to be simulated, like the VRML 
barrel shown in Fig. 3, can also be used directly.  The final result is much faster scene 
 

 
Fig. 3. A three-dimensional VRML model of a barrel and the result of a simplified sonar 
simulation using standard computer graphics rendering. The barrel is assumed to sit on a 
rough seafloor at 130 meter distance. 
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composition and rendering, at the cost of losing the significance of the resulting image 
values, which are no longer in correspondence with the actual pressure levels. 

3. 3D reconstruction of sonar images 
This second part of the chapter is dedicated to the sonar inversion process, which allows to 
infer a computer CAD model from a given sonar image, thus recovering the underlying 3D 
surface geometry of the observed scene. 

3.1 Side-looking sonar image formation model 
The geometry of the image formation process for a side-scan sonar is briefly sketched in Fig. 
4. The sensor’s acoustic source at o produces an ensonification pulse that illuminates the 
seafloor. Some of the acoustic energy reaching any seabed point p is scattered back and can 
be measured by the sensor. The intensity of the corresponding pixel on the side-scan image 
will be proportional to the amount of energy scattered back from the surface point. The 
illuminating pulse is not isotropic, but follows a particular beam-profile Φ that depends on 
the grazing angle α subtended by the vector r from o to surface point p. 
In the case of synthetic aperture sonar (SAS) the side-looking image is formed differently, by 
emitting wider acoustic pulses and integrating the returned signals over time (Belletini 
2002). For our inversion purposes, however, SAS images can still be regarded as having 
been produced by a sophisticated side-scan sonar, and the following discussion applies to 
both types of sensors. 
 

 
Fig. 4. Side-looking sonar imaging geometry (adapted from (Coiras 2007)). 

In order to model the scattering process we use the traditional Lambertian (Zhang 1999) 
model already described in Eq. 11, which permits one to derive the returned intensity from 
the parameters defining the observed scene. This simple model for diffuse scattering 
assumes that the returned intensity depends only on the local angle of incidence θ of the 
illuminating sound pulse, and not on the direction of observation or on the frequency of the 
pulse. For the problem to be manageable the surface describing the observed scene has to be 
univalued, which forces to replace the expression in Eq. 11 for the following simpler one: 
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 ( ) ( ) ( ) ( ) ( ) ( )( )cosI K R K R θ⋅
= Φ = Φ

n rr r r r r r
n r

 (12) 

Where Φ represents the intensity of the illuminating sound wave at point p, R is the 
reflectivity of the seafloor, θ is the incidence angle of the wave front and K is a normalization 
constant. Since most logged side-looking images already include some kind of intensity 
correction, all the intensity variations caused by the sensor’s beam-profile, the spherical 
spreading loss and the TVG and other corrections are supposed to be grouped under the 
beam-pattern Φ. 
Following (Coiras 2007), with the coordinate system centered at the sensor in o, the x axis 
being the across-track ground distance and y pointing along the sensor’s trajectory, we have: 

 
( )( )

( ) ( )

, 0, ,

, , , ,1

x Z x y

Z Zx y x y
x y

=

⎛ ⎞∂ ∂
= − −⎜ ⎟∂ ∂⎝ ⎠

r

n
 (13) 

Where the y coordinate in r is 0 because the side-scan sonar pulse Φ is shaped so that only 
the points contained in the x-z plane are illuminated. Note that although this does not 
directly apply to the sonar pulses used for SAS imaging, the resulting SAS images are to all 
practical purposes equivalent to a side-scan image with constant resolution in the range 
direction. 
Combination of expressions (12) and (13) yields the forward model for the computation of 
the intensity I at any point p, given the model parameters R, Z and Φ in ground range 
coordinates x, y from the sensor: 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )
22

2 2

, , ,

, ,

, , , 1

I x y K x y R x y
ZZ x y x x y
x

Z Zx Z x y x y x y
x y

= Φ ⋅

∂
− ⋅

∂

⎛ ⎞∂ ∂⎛ ⎞+ ⋅ + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (14) 

Where the surface gradients can be approximated by finite differences (as shown for Eq. 4) 
and where the normalization value K is: 

 ( )

22 22
2 2

2

2

2 2

1 1

,

1

Z x ZZ x Z
y Z y

K x y
ZZ x
y

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟⋅ + ⋅ + + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠=

⎛ ⎞⎛ ⎞∂
⎜ ⎟− − ⋅ + ⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

 (15) 

Where the explicit dependencies on (x, y) have been dropped for clarity. 

3.2 Sonar inversion 
Equation 14 provides a direct formula for estimating the returned intensity given the model 
parameters. But the inverse problem—obtaining the model parameters from the observed 
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intensities—is clearly under-determined, since we only have one observation (of I) at each 
point to compute the values of the three model parameters. 
In order to solve this problem and following (Coiras 2007) we take a least mean squares 
(LMS) approach to minimize the sum E of the squared differences between the points of the 
observed image, I, and those rendered by the model in Eq. 14, Î: 

 ( ) ( ) ( )( )2

, ,

ˆ, , ,
x y x y

E E x y I x y I x y= = −∑ ∑  (16) 

And the following optimization problem needs to be solved: 

 ( ) ( ), , arg minZ R EΦ =  (17) 

A solution can be found by using Expectation-Maximization (EM) (Dempster 1977), which 
will iteratively converge to an optimal set of modeling parameters. Every iteration of the EM 
method consists of two stages: in the Expectation stage, the current estimates for the model 
(R, Φ, Z) are substituted in Eq. 14 to obtain an estimation for the intensity Î. In the 
Maximization stage gradient descent is used to locally minimize E, by updating the model 
parameters as follows: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

, , ,

, , ,

, , ,

ER x y R x y x y
R
Ex y x y x y

EZ x y Z x y x y
Z

λ

λ

λ

∂
← − ⋅

∂
∂

Φ ←Φ − ⋅
∂Φ
∂

← − ⋅
∂

 (18) 

Where λ is a small constant value used to control the rate of change. Direct operation using 
Eq. 14, 16 and 18 yields: 

 

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( )

( )

( ) ( ) ( )2 2 2 2

ˆ , ˆ, , 2 , ,
,

ˆ , ˆ, , 2 , ,
,

ˆ ˆ2

1
1

I x y
R x y R x y I x y I x y

R x y

I x y
x y x y I x y I x y

x y

Z Z I I I

Z x Z y x Z
x Z x Z x ZZ x Z y

λ

λ

λ

← + ⋅ −

Φ ←Φ + ⋅ −
Φ

← − − ⋅

⎛ ⎞−∂ ∂ − ∂ ∂ +
⋅ + +⎜ ⎟⎜ ⎟∂ ∂ − ++ ∂ ∂ + ∂ ∂⎝ ⎠

 (20) 

Where the explicit dependence of the parameters on (x, y) has been removed in the last 
equation for clarity. 
The expressions in Eqs. 20 are iterated until the variation in the error E is below a given 
threshold. 
Regularization 
As the method is pixel-based, a regularization scheme is needed to smooth the overall 
solution. A very simple regularization is performed at the end of every iteration by filtering 
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the estimated reflectivity and beam-pattern maps. Reflectivity values for the points in 
shadowed areas are set to that of their nearest illuminated neighbors by hexadecagonal 
dilation (Coiras 1998) of non-shadowed areas. Whereas values of Φ for all the points 
subtending the same angle α to the sensor are set to their median value, since the beam 
profile of the sensor is supposed to be constant for each grazing angle α: 

 ( ) ( ) ( ) ( ){ }0 0 0 0, , , ,x y Median x y x y x yα αΦ = Φ =  (21) 

Initialization 
The optimization procedure starts by initialization of the R, Z and Φ maps. The reflectivity is 
set to a constant value (typically 0.9), and the elevation of every point (x, y) is set to that of 
the first return at (0, y), corresponding to the altitude of the sonar over the seafloor at that 
point of its trajectory. The initial beam-pattern Φ is set to the original image values I and 
then regularized using Eq. 21. 
Multi-resolution 
A multi-resolution implementation of the method described on the paragraphs above results 
in better convergence and improved results. Implementation of the multi-resolution version 
starts by the construction of a multi-resolution pyramid by iterated sub-sampling of the 
source side-looking image. Processing starts at the smallest level (coarser resolution), using 
the initialization and regularization procedures described in the previous sections. The 
resulting R, Z and Φ maps from one level are used as initial maps for the next resolution 
level. The process finishes when the final stage—corresponding to the full resolution 
image—is processed. Typically 3 levels of multi-resolution are used. 

3.3 Sonar inversion results 
During the MX3 2005 experiment carried out by NURC and partner nations in La Spezia 
(Italy), extensive surveys of an area of seabed were performed using several different 
vehicle and sensor combinations. The Sea Otter autonomous underwater vehicle (AUV), 
which was equipped with a Klein 2000 side-scan sonar, and one of the seabed images it 
produced is shown in Fig. 5. 
 

 

 
 

Fig. 5. The Sea Otter AUV and one of the images it collected during the MX3 trials with its 
Klein 2000 side-scan sonar. 
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Application of the inversion procedure to the slant-range sonar image of Fig. 5 permits to 
derive the projection of the sonar’s beam-profile, the reflectivity map of the seabed and an 
estimation of the seabed topography. The maps for these three components are shown in 
Fig. 6. 
The recovered reflectivity, beam-pattern and elevation maps are frequently noisy, which is 
due to the ill-posed nature of the reconstruction problem; most intensity variations can be 
caused by changes of any of the three forward model components (Φ, R, Z). Nevertheless, 
the reflectivity map in Fig. 6 suggests the presence of two different materials in the seafloor: 
one brighter, responsible for the rippled areas, and a less reflective one on the darker 
smooth areas. The reconstructed elevation map also looks satisfactory, although its accuracy 
is difficult to evaluate without actual measures of the area’s bathymetry. Additional views 
of the interesting complex region at the top of Fig. 6(c) are shown in Fig. 7. 
 
 

 
 

Fig. 6. Results of the 3D reconstruction procedure applied to the sonar image shown in Fig. 
5. (a) Reflectivity map, (b) projection of the sonar’s beam-profile, (c) textured 3D surface 
reconstruction using the recovered elevation map. 

 

 
 
 

Fig. 7. Zoomed view of a selected area of the reconstructed seafloor, using four different 
points of view. 
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Apart from the most visual output of the sonar inversion procedure—the textured elevation 
map—the different recovered components can also be used for other purposes. As 
discussed, the reflectivity map hints at the material composition of the seabed. The 
recovered elevation map can also be used to produce more accurate ground-range 
projections of side-looking sonar images, one of whose coordinates is originally slant-range; 
this is relevant when sonar images are to be tiled to produce seamless seafloor mosaics. The 
recovered beam-profile—which we assume includes as well the intensity corrections (TVG) 
made during the image formation—has a special interest, in the sense that it is unique for 
each particular sonar. This means that after processing several sonar files, an estimate of the 
sensor’s beam-profile can be computed and stored for later reference, reducing future 
inversion problems to the determination of two functions (the reflectivity and the elevation) 
instead of three. 
The projection of the beam-profile is also useful to produce ground-range images with even 
intensity. As we mentioned already (section 2.2) the spherical spreading loss is responsible 
for a decrease of signal intensity with range, which is in principle compensated for by a TVG 
function. Yet there is an additional source of intensity reduction: since points that are far 
from the sonar subtend lower grazing angles—and therefore lower incidence angles—the 
average intensity (governed by Eq. 12) further decreases with range. The average incidence 
angle at a ground range x is: 

 ( ) ( )( ) ( ) ( )
( ) 2 2
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x z x z
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+

rr r n
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Where the angular brackets indicate expected value, and where the expected value of the 
unitary surface normal is assumed vertical because the seafloor is mostly flat. Setting the 
beam-profile to the inverse of Eq. 22 produces the result shown in Fig. 8(c), which features 
even illumination at all average incidence angles. 
 
 

 
 

 

Fig. 8. The recovered beam-profile projection can be used to level the intensities of the 
ground-range version of the sonar image. (a) The original TVG-corrected sonar image in 
ground-range coordinates after proper projection using the recovered elevation map. (b) 
How would the image look if the beam-profile of the sonar was isotropic (had the same 
intensity on all grazing angles). (c) Ground-range image with a modified beam-profile that 
ensures an even illumination at all average incidence angles; this is the texture map that has 
been used on Figures 6(c) and 7. 
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4. Conclusions 
The image formation process for side-looking sonar has been studied in this chapter. Both 
the forward and inverse realizations have been considered, and their application to 
simulation and 3D reconstruction of sonar images has been shown. 
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1. Introduction    
Today a good percentage of our planet is known and well mapped. Synthetic aperture 
techniques used in space and airborne systems has greatly aided to obtain this information. 
Nevertheless our planet is mostly covered by water and the level of detail of knowledge 
about this segment is still very far away from that of the land segment. 
Synthetic aperture is a technique that enables high resolution through the coherent 
processing of consecutive displaced echo data. Instead of using one static large array of 
transducers, it uses the along-track displacement of the sensors to synthesize a large virtual 
array. The resolution thus obtained is in the order of the transducer size and, most 
importantly, independent of the range between sensor and target. While a modern high 
frequency real-aperture sonar system can have a beam width below 1º, this translates into a 
resolution of half a meter at a range of just 25m. A synthetic aperture system using the same 
transducer can obtain a resolution of about 5cm across the whole range. Moreover the 
transducers used for synthetic aperture can be much simpler and so a good deal less 
expensive. Because there is no need to have a small real aperture, the frequency employed 
can be considerably lower, which enables longer reach due to the better propagation of 
lower frequencies in water.  
This potential resolution increase comes at the cost of algorithm complexity in the image 
formation. The sonar must also describe a movement with tight tolerances with respect to 
deviations from known velocity and path. Also, the platform maximum velocity is a 
function of the pulse repetition rate and sensor size. This limit relates to the resolution of the 
image that if not respected will lead to aliasing.  
The most used platform for synthetic aperture sonar is the tow-fish. Good designs enable 
smooth motion, but the inability to use satellite navigation technology leads to expensive 
solutions that integrate high grade inertial navigation units and data extracted from the 
sonar array itself. This only works for arrays with a high count of elements that operate at 
the nominal or above the nominal pulse repetition frequency. The sonar can also be 
mounted on the hull of a ship, providing access to high precision GPS navigation that can be 
integrated with data from moderate cost inertial systems to further refine the navigation 
solution. Nevertheless a ship is seldom easy to manoeuvre and presents considerable 
operation and maintenance costs of the sonar system itself. An autonomous boat arises as an 
interesting solution for these problems. It can be used as standalone or with the support of a 
ship. It enables the use of GPS and inertial navigation units efficiently. Moreover, its path 
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and velocity can be easily controlled for better motion stability. The operation and 
maintenance costs are low and its availability is very high. It can be used both for sporadic 
missions and for regular security check of harbours, river navigability assessment, 
infrastructure inspection, etc.  
The position of the sonar must be known to a 1/8 of the wavelength for proper synthetic 
image formation. Traditional synthetic aperture image formation techniques assumes a 
straight path for the sonar motion (typically for method that operate in the frequency 
domain) and treat deviations from this straight path as motion errors. A newer approach 
uses time-domain methods (such as back-projection) that don’t rely on the assumption that 
the sonar follows any particular path. Instead, the information obtained by the navigation 
system is used at each sonar sampling position to form the virtual array. Here, only the 
position uncertainties are considered as errors.  
High frequency systems require navigation precision bellow the centimetre level. This level 
of precision is not feasible to be obtained with the navigation systems of today. Therefore, 
the image formation starts with the available navigation solution and then a global auto-
focus algorithm (that searches for an optimum measurement of image quality) refines the 
image formation parameters to mitigate the unavailable necessary navigation precision. 
Instead of using redundancy in the data (that comes at a high cost), global auto-focus 
algorithms parameterizes the image formation process enclosing navigation errors and 
medium fluctuations. Because of the large number of parameters that result from this, an 
efficient process of focusing synthetic aperture images is necessary.  

2. Overview of current systems 
Active sonar systems enable underwater imaging through angular and range echo 
discrimination. When a single beam is used to illuminate a swath as the sonar platform 
moves it is said that the sonar is a side-scan. In these systems a single echo line is obtained at 
each time with the angular discrimination being given by the beam width. Thus a narrow 
beam is desirable for high angular discrimination or along-track resolution. Typical beam 
widths are in the order of 1º. In these systems the along-track resolution is dependent of the 
range and a large array has to be used to obtain suitably low beam widths at the desired 
range. This type of sonar enables high area coverage speed. Alternatively, several narrow 
beams can be used to spatially sample the swath obtaining range and intensity information 
for each angular position. This is called multi-beam sonar. In this case the footprint of each 
beam is also dependent of the range. This type of sonar requires expensive and complex 
hardware to achieve a high number of sampling narrow beams. The area coverage speed is 
also limited by the area covered by the beams. 
Synthetic aperture enables a high resolution/high area coverage binomial not possible with 
other sonar techniques. Instead of using a long physical array, a large virtual array is 
synthesised through the coherent combination of the echoes in the along track dimension of 
a side-scan sonar. Range independent along-track resolution is in this way obtained. 
Moreover the obtained along-track resolution is not influenced by the frequency of the 
signals employed and is in the order of the transducer physical dimensions. Lower 
frequency signals can thus be employed to extend the sonar range. Also because of the 
processing gain, the necessary transmitting power is lower when compared to its real 
aperture counterpart. 
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While it is possible to apply synthetic aperture techniques to multi-beam sonar, these have 
not been of great dissemination and the focus has been on obtaining high resolution sonar 
systems with large area coverage speed. 
It is possible to obtain height estimation through the use of interferometric techniques on 
side-scan sonar images or synthetic aperture sonar images ([Saebo, T.O. (2007); Silva, S. et al 
(2008 c)]). Nevertheless multi-beam sonar obtains height measurements directly.  
Synthetic aperture sonar systems can operate in strip-map or spot-light mode. In spot-light 
mode the beam is steered so a single zone is illuminated as the sonar platform moves, while 
in strip-map mode an area is sequentially sampled. Since sonar applications normally strive 
for area-coverage, strip-map is the more used synthetic aperture mode. 
Synthetic aperture techniques are of common use in radar systems (typically know as SAR, 
[Tomiyasu, K. (1978)]). Here the signal propagation velocity through the medium is much 
higher, the wavelength long in comparison to radar platform motion uncertainties and 
medium phase fluctuations. Moreover the scene width is short when compared to the centre 
range which enables the use of simplifying approximation in the image formation 
algorithms. Also the bandwidth to centre frequency ratio is small. This means that SAR 
algorithms are not suitable for direct application in sonar data. 
Medium stability for synthetic aperture sonar system is a major issue, but has been proved 
to be not restraining factor for the application of this technique ([Gough,  P. T. et al (1989)]).  
Most active synthetic aperture sonar systems are still in the research and development stage 
([Douglas, B. L.; Lee, H. (1993); Neudorfer, M. et al (1996); Sammelmann, G. S. et al (1997); 
Nelson, M. A. (1998); Chatillon, J. et al (1999)]) but this technology is starting to emerge as a 
commercially advantageous technology ([Hansen, R.E. et al (2005); Putney, A. et al (2005)]). 
Nevertheless most of these systems rely on complex and costly underwater vehicle 
configurations with multiple receivers, making them not attractive cost wise. This is because 
to correctly focus a synthetic array one needs to know the position with a very high degree 
of precision. Since it is not possible to use a high precision navigation system, such as a GPS, 
in the underwater environments, these systems have to rely on positioning schemes that use 
sonar data itself. This usually means having to use a complex array with multiple receivers, 
limit the range to use higher pulse repetition frequency or greatly limit the area coverage 
speed. Inertial navigation systems are of hardly any utility in standalone mode and must be 
corrected by other navigation sources. The underwater vehicles can be simply towed by a 
ship or be autonomous.  
Surface autonomous vehicles are easier to operate and maintain. Plus it is possible to use 
readily available high precision differential GPS navigation system. Other navigation data 
sources can also be effectively used to enhance the navigation solution. A simple transducer 
array can be used since there is no longer mandatory to have a multiple element system for 
navigation. This makes high resolution synthetic aperture sonar a cost effective possibility. 

3. Problem statement 
Synthetic aperture techniques can be used to obtain centimetre level resolution in the along-
track direction. Nevertheless to obtain this level of resolution in the cross-track direction, 
one needs to use large bandwidths and thus high frequency signals. This makes the position 
accuracy issue even more problematic for synthetic aperture sonar system since the 
necessary accuracy is directly related to the wavelength of the signal used.  
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Further more a sonar platform is subject to several undesirable motions that negatively 
affect the synthetic aperture performance. Normally a synthetic aperture sonar platform 
would move through a straight path with constant velocity. But this is seldom the case. Low 
frequency oscillations around the desired path and high frequency motion in heave, sway 
and surge directions adversely affect the sonar platform. This is due to water surface 
motion, currents and platform instability. 
In the case of a tow-fish, there is little or no control on its motion. For an autonomous under 
water vehicle it is difficult to maintain a path reference since there are no reliable navigation 
sources.  
An autonomous boat offers automatic position and velocity following capabilities through 
the use of a highly available differential GPS system (DGPS-RTK). Furthermore, the sonar 
sampling position and attitude is known to a high precision level which can than be 
integrated in the image formation algorithms. 
The synthetic aperture sonar is then thus only limited by the unknown portion of the 
platform motion and medium phase fluctuations. Typical DGPS-TRK systems can operate 
with an error in the centimetre level. This mean that a synthetic aperture image with a 
wavelength of about 8 cm can be directly formed using only this position estimation. 
Furthermore, in this way, the obtained images can be easily and accurately integrated with 
other geographic information systems. Nevertheless, shorter wavelengths require auto focus 
procedures to be applied to the data for successful image formation.  
Traditional synthetic aperture image formation algorithms treat deviations from a linear path 
as motion errors. They do not integrate well large deviation from a theoretical linear constant 
velocity path, and so new algorithms had to be developed to cope with this information. 
Auto-focus algorithms are essential to successfully produce high-resolution synthetic 
aperture images. Their role is to mitigate phase fluctuations due to medium stability and 
more importantly reduce the navigation precision requirements to acceptable levels.  
Most auto-focus algorithms require either large pulse repetition frequencies (PRF), several 
receiver transducers or both. In practical terms is not always possible to use high pulse 
repetition frequencies due to range ambiguity. With several receiver transducers the PRF 
can be lower, but the system cost is considerably higher not only due to the transducer array 
itself but also because of the data acquisition and signal processing system increased 
complexity. 

4. System description 
The complete system setup ([Silva, S. (2007a)]) is constituted by a control base station, a 
surface craft and the sonar itself (Fig. 1). Because of its size and modular construction, this 
setup is easily portable and has low deployment time. The boat it self is modular and easy to 
assemble in site without the need of any special tools. 
The sonar platform is an autonomous boat (Fig. 2). This is a small catamaran like craft, 
proving high direction stability, smooth operation and several hours of unmanned 
operation, which can be command manually from the base station or fulfil a pre-defined 
mission plan. It was built using commonly available components to lower cost and simplify 
maintenance. It has two independent thrusters for longitudinal and angular motion that 
provide high manoeuvrability at low speeds and a maximum speed of 2 m/s. Its size is 
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suitable for, together with the navigation system, executing profiles and other manoeuvres 
with sub-meter accuracy. The boat carries three GPS receivers, for position and attitude 
calculation, a digital compass and a inertial navigation system. The data from the digital 
compass and inertial system is integrated with the GPS data to provide a better navigation 
solution. It also embodies an on-board computer for system control, as well as for 
acquisition and storage of data. 
The communication to the boat is obtained using an ethernet radio link (Wi-Fi). The boat 
and base station antennas were studied as to minimize the effect of the water reflective 
surface and maximize radio reach which is in the kilometre range. 
The sonar system is carried by the boat as payload and transducers are placed at the front of 
the vessel, rigidly coupled to the boats structure. 
 

 
Fig. 1. Sonar system overview. 

 
Fig. 2. Autonomous boat based synthetic aperture sonar. 
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Fig. 3. Autonomous boat and base station before a mission. 
Compared to a solution based on a tow-fish, this sonar platform was mainly chosen because 
of the possibility to use a GPS positioning system. The velocity and position following is of 
great importance too. Low frequency errors such as deviations from the desired linear path 
or inconstant mean velocity are in this way limited. Other surface crafts could be used, but it 
would still have to provide some degree of motion control. 
Having the sonar placed at the surface of the water, limits its use to shallow water realms 
such as rivers, lakes, dams harbours, etc, because of the maximum possible range. These are 
nevertheless an important part of the synthetic sonar possible application scenarios. It also 
makes the sonar more vulnerable to undesirable heave, roll and pitch motion that has to be 
measured by the boats navigation system and integrated in the sonar image formation 
algorithms.  
 

 
Fig. 4. Autonomous boat in preparation for a mission. 
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The base station is constituted by a portable PC that runs the boat and sonar control 
software, a GPS reference station and a high speed digital radio link to the boat (Fig. 3). The 
purpose of the base station is to control the mission and provide real-time visualization of 
the sonar data.  
The synthetic aperture sonar system is it self constituted by two major components: the 
transducer array (Fig. 5) and the digital signal processing system for signal generation and 
acquisition (Fig. 6).  
The floating platform transports the acoustic transducer array, placed beneath the waterline. 
The transducer array is formed by two displaced sets of 4 transducers separated by 0.5 m. 
Although only one transducer is necessary for transmission and reception of the sonar 
echoes, the vertical arrangement enables interferometric height mapping. The horizontal set 
of transducers is for future use and will enable image enhancement through the use of 
micro-navigation techniques. Each individual set can be regulated for an angle suitable to 
illumination of the swath at the expected underwater surface depth.  
The transducers operate at a centre frequency of 200 kHz, corresponding to a wavelength of 
0.75 cm. As appropriate for synthetic aperture operations, their real aperture is large 
(approximately 18 degrees), but have a strong front-to-back lobe attenuation ratio which is 
fundamental to minimize the reflections on the near water surface. The effective transducer 
diameter is 5 cm, which allows for synthetic images with this order of magnitude of 
resolution in the along-track direction.  
The usable bandwidth of the transducers (and of the signals employed) is explored thought 
the use of amplitude and phase compensation to obtain the highest possible range 
resolution from the system, thus enabling the use of bandwidths of 20 to 40 kHz with the 
current configuration. 
The sonar signal acquisition and generation system is made up of four principal 
components: the digital processing and control system, the power amplifier, the low noise 
amplifier, and a GPS receiver for time reference (Fig. 7).  
This system is tailored for a high resolution interferometric synthetic aperture sonar and so 
special attention was paid to the different analogue components in terms of bandwidth, 
frequency amplitude response and phase linearity.  
 

 
Fig. 5. Transducer array and support system. 



 Advances in Sonar Technology 

 

22 

The power-amplifier is a linear amplifier which can have a bandwidth as high as 10 MHz, 
and has a continuous output power rate of 50 W (RMS). A trade-of was made between 
output power and bandwidth. Because we are interested in using our system in shallow 
waters, an output power of 50W was found to be adequate for this 200 kHz sonar system. In 
exchange it was possible to build a power-amplifier with very flat amplitude and linear 
phase response in addition to low distortion (THD < -60 dB) in the spectral band of interest. 
The power amplifier only operates through the transmission period: this saves energy and 
lowers the electric noise levels during echo reception. Traditionally, switch amplifiers are 
use to drive the transducers. A linear amplifier design of this type enables the use of 
amplitude modulated signals and typically provides lower noise and spectral interference. 
The transmitted signal can be of any kind: linear chirp, logarithmic chirp or pseudo-random 
sequence. It can also have any suitable windowing function applied. At this moment, a 
linear chirp of 30 kHz bandwidth is being used for system tests. The system is prepared to 
output a pulse rate between 1 to 15 Hz. Because we are interested in shallow water surveys, 
short ranges enable higher pulse rates. Nevertheless, because of the broad beam-width of 
the transducer and its effective diameter, a pulse rate of 15 Hz still imposes very low 
moving speeds to the autonomous boat (0,16 m/s) that in turn has to couple with higher 
precision trajectory tracking constrains. 
Each receiving channel has a low noise amplifier and a controllable gain amplifier to handle 
the high dynamic range of echo signals. The pre-amplifier system has a bandwidth of 10 
MHz, a noise figure of 2 dB and a 50-115 dB gain range. It can also recover rapidly from 
overdrive caused by the transmitting pulse. To reduced aliasing, a linear phase analogue 
filter is used in combination with a high sample rate A/D (up to 40 MSamples/s). This anti-
aliasing filter is interchangeable and can have a cut-off frequency of, for example, 650 kHz 
or 2,3 MHz. Both the D/A and A/D have 12 bit resolution and are capable of 200 
MSamples/s and 40 MSamples/s respectively. The 12 bit resolution of the A/D (effective 72 
db SNR) was found to be high enough to cope with the front-end performance that is 
dominated by the transducers noise. 
The sonar signal processing system uses a direct to digital system architecture. This means 
that only the front-end elements of the sonar, like the power amplifier and the low-noise 
amplifier, use analogue electronics and all other functions such as signal generation, 
frequency down/up-conversion, filtering and demodulation are performed in the digital 
domain.  
 

 
Fig. 6. Sonar signal generation and acquisition system. 
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Fig. 7. Sonar schematic system overview. 

This greatly simplifies the electronic hardware at the cost of more complex digital signal 
operations and hardware. But these in turn are powerfully performed in an field 
programmed array system (FPGA), providing a low cost solution.  
A FPGA is a device that enables the implementation of customized digital circuits. This 
device can perform several tasks in parallel and at high speed. The system complexity 
stands, therefore, in the digital domain, enabling more flexible and higher quality signal 
acquisition and processing through this implementation. The use of this technology results 
in a low power consumption system that fits a small box, compatible with the autonomous 
boat both in size and energy consumption.  
The FPGA system is responsible for the generation of complex acoustic signals, for 
controlling the transmitting power amplifiers and the adaptive gain low noise receiving 
amplifiers, for demodulating and for match filtering the received signals with the 
transmitted waveform (Fig. 8). 
The first task of the FPGA is therefore to control the digital-to-analog (D/A) and analog-to-
digital interface (A/D). At each transmission pulse trigger, the FPGA reads the signal wave 
form from memory (that is stored in base-band, decimated form), converts the signal to 
pass-band (frequency up conversion), interpolates and filters the signal and finally supplies 
it to the D/A. 
During the receiver stage, the samples are read from the A/D, converted to base-band 
(frequency down-conversion), filtered, decimated and finally placed in a FIFO memory.  
Each transmit pulse is time-stamped using a real-time clock implemented in the FPGA 
system that is corrected using the time information and pulse-per-second trigger from a GPS 
receiver. This enables precise correlation with the navigation data.  
The processor embedded in the FPGA bridges the low level hardware and the control PC, 
providing an ethernet access to the sonar.  
The results are then supplied to an embedded computer for storage and acoustic image 
computation. The shore base station accesses this data through a high-speed digital radio-
link making available the surveyed data. 
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Fig. 8. FGPA system detail. 

5. Navigation system 
The accurate target area image formation process depends on the precise knowledge of the 
sensor position as it traverses the aperture. One of the major strengths of using a surface 
vessel is the use of satellite systems for navigation. Since the used wavelengths are in the 
order of centimetres, this is the level of relative accuracy that is required for the vessel along 
the length of the synthetic aperture. This is possible with GPS navigation if operated in 
differential mode using carrier phase measurements. The long term errors of a CP-DPGS 
solution for a short baseline to the reference station is in the order of the decimetre; the short 
term errors, due to noise in the carrier phase tracking loops, is in the order of the centimetre. 
This error can further be smoothed out through integration of the GPS solution with inertial 
measurements. For height computation through In-SAS processing of pairs of images, 
precise attitude data has to be obtained so to precisely transform the lever between two 
sensors into target position estimate. For this purpose inertial sensor play a crucial role: 
through blending with the GPS data, it supplies pitch and roll estimates with levels of 
accuracy in the order of arcminutes; the heading error estimate is slightly poorer, but has 
 

 
Fig. 9. Navigation system diagram. 
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less significant impact in the In-SAS processing algorithms. The Navigation subsystem is 
basically a Kalman filter mixing the dynamic behaviour of the vessel through the inertial 
sensor with the GPS reading. The major states are positioning, velocity and altitude 
(alignment) errors, but also includes inertial sensor biases. The output is a complete 
navigation solution, including position velocity and attitude information at a high data rate. 

6. Autonomous boat control 
To achieve the best results, the boat should follow the predefined paths at constant speed 
over ground and with minimal roll and pitch motions. Furthermore, it is desirable that the 
intended boat trajectories are described with minimal deviation to allow multiple sweeps in 
close parallel lines which are mandatory for dual passage interferometric height mapping. 
To accomplish these goals, a control system that automatically drives the vehicle along user 
specified trajectories at given speeds was developed. The control system is organized in two 
independent control loops, one for the velocity and the other for the horizontal position of 
the vehicle. The velocity loop determines the common mode actuation of the boat while the 
horizontal plane loop determines the differential mode actuation. These values are then 
combined to produce the commands for the starboard and port thrusters. 
The velocity loop is based on a proportional plus integral controller that assures that the 
velocity of the boat is, in steady state, the one defined by the user. The controller parameters 
where tuned to assure a smooth motion by rejecting high frequency noise from the 
navigation sensors. Different controller parameters can be used to obtain the best behaviour 
at different velocity ranges. 
The horizontal plane loop implements a line tracking algorithm. It is composed by an outer 
controller that computes a heading reference based on the cross track error (distance of the 
boat to the desired straight line) and an inner controller that drives the vehicle heading to 
the given reference ([Cruz, N. et al (2007)]). This two stage control loop assures zero cross 
track error in steady state regardless of the water current and the tuning of the controller 
parameters took into account a dynamic model of the boat. 
The whole system has already been tested in operational scenarios with great success. In 
particular, it has been observed that the vehicle describes intended trajectories with average 
cross tracking errors below 10 cm. For illustration purposes, Fig. 10 presents a histogram of 
the cross tracking error for a 50 m straight line described by the autonomous boat while 
collecting SAS data. 
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Fig. 10. Line tracking performance. 
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In Fig. 10 it is illustrated the path following ability of the autonomous boat, where it was 
programmed to execute two parallel profiles with a distance of 1 m of each other. 

East (m)

N
or

th
 (m

)

-2.85 -2.845 -2.84 -2.835 -2.83 -2.825 -2.82 -2.815

x 104

1.5595

1.56

1.5605

1.561

1.5615

1.562

1.5625

1.563

x 105

 
Fig. 11. Example path. 

Fig. 12 shows the boat velocity graph, measured by the navigation system, during the 
execution of a profile. 
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Fig. 12. Autonomous boat velocity during a mission. 

7. Synthetic aperture sonar system model 
Consider a platform that moves trough a nominal straight path. Since the boat is 
programmed to follow straight lines at a constant speed, this is a good assumption. The 
sonar transducers are rigidly coupled to the sonar structure, through which the acoustic  
signals are sent and their respective echoes are received (Fig. 13). 



Synthetic Aperture Techniques for Sonar Systems 

 

27 

 
Fig. 13. Autonomous boat based SAS model. 

Each echo contains indistinctive information of an area corresponding to the radiation 
pattern of the transducers. The transducers are adjusted so that a swath of about 50 m is at 
the boat left broadside, which is the strip-map configuration.  
At each along-track sampling position, the echoes caused by the swath reflectivity are 
received and recorded along the track. 
The echo ( ee( , t)τ ) data is formed trough the reflection of the transmitted pulse ( ( )mp t ) on 

the swath ( sff(x,y ) ): 

 ( )2 22( , ) ( , )s m see t ff x y p t v x y dxdy
c

τ τ⎛ ⎞= − − +⎜ ⎟
⎝ ⎠∫∫  (1.1) 

Transducer beam pattern effects and signal propagation loss have not been included in the 
equation for simplicity but should be accounted for in the image reconstruction process. 
The echo data is converter to base-band though multiplication with the signal carrier 
frequency: 

 02( , ) ( , ) j f t
bee t ee t e πτ τ −=   (1.2) 

Let ( )bp t  be the baseband transmitted signal, the cross-track pulse compressed echo image 
will be: 

 ( , ) ( , ) ( )b b bss t ee t p tτ τ= ∗  (1.3) 

And thus resulting in the following equation: 

 ( ) 02 ( )( , ) ( , ) ( ) vj f t
b s c vss t ff x y p t t e dxdyπ ττ τ −= −∫∫  (1.4) 

Where ( )cp t  is the autocorrelation of the transmitted baseband signal and ( )vt τ  is the time-
of-flight and is given by: 

 ( ) ( ) ( )2 2 2

0 0 0
2( ) ( ) ( ) ( )v p p pt x x y y z z
c

τ τ τ τ= − + − + −  (1.5) 
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The point-target has coordinates 0 0 0(x , y , z ) and p p p(x ( ), y ( ), z ( ))τ τ τ  are the coordinates 
of the sonar platform position at each along-track sampling instant τ . In the absence of 
motion errors, py ( )τ and p ( )z τ  will be zero and px ( ) vτ τ= , where v  is the platform 
velocity.  
The task to retrieve the estimated image ( ˆ ( , )sff x y ) is done through the inversion of this 
model, coherently combining the along-track samples to form an image:  

 ( ) 02 ( )ˆ ( , ) ( , ) ( ) vj f t
s b vff x y ss t t t e d dtπ ττ τ τ= −∫∫   (1.6) 

The sonar platform seldom dislocates through a straight line, and so the sonar model must 
account for the irregular along-track sampling positions. Therefore the polar coordinate 
model must be abandoned and a broader expression for the echo travel time must contain 
the estimated position of the transducers and a rough estimation of the bottom height (a flat 
bottom is enough for a first approximation). Moreover, different transducer geometries 
mean that the travel time will not be exactly the simple double of the distance to reach the 
target, but the distance from the transmitting transducer to the target and back to the 
receiver which is given by: 

 ( )' '1( ) ( ) ( )v TX RXt T X X T
c σ στ τ τ= − + −  (1.7) 

Attitude variations must also be accounted for in the calculation of the transducer positions. 
Knowing the arm between the boat navigation centre (reference for the navigation system) 
and each transducer, and also the roll, pitch and yaw angles, the positions of the transducers 
can be correctly calculated. The transducers attitude also influences the swath footprint. 
During image synthesis this information should be used to calculate the correct weights of 
the combined echoes.  
The frequency domain model of the imaging system can be obtained through Fourier 
transformation of equation (1.4) and the Principle of Stationary Phase ([Gough, P. T. (1998)]). 
The image reconstruction task can, as a result, be done by multiplication of the frequency 
domain inverse sonar imaging model. 
For calculation of the obtained along-track resolution and sampling frequency, consider that 
the target will be seen by the sonar during the time it is inside the aperture (3dB lobe) of the 
transducer, which is approximately given by: 

 3dB D
λθ ≈   (1.8) 

The array spacing from Nyquist spatial sampling and classical array theory is λ/2 (two way 
equivalent 2π phase shift), which means that for angles of arrival of a wave-front the inter-
element phase difference must be less than 2π ([McHugh, R. et al (1998)]). 
This is also true for motion errors. To correctly form a synthetic aperture the platform 
position must be known within 1/8 of a wavelength so the echoes can be coherently 
combined with negligible image deterioration ([Cutrona, L. J. (1975); Tomiyasu, K. (1978); 
Fornaro, G. (1999)]).  
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We can also consider the array spacing to be given by a pulse repetition frequency (PRF) 
that is at least equal the maximum Doppler shift experienced by a target. The Doppler shift 
fD is related to the radial velocity vr by:  

 
2 2 sin ( )r

D
v vf θ τ
λ λ

= =   (1.9) 

The maximum radial velocity is obtained at the beam edge and so the lower bound for the 
PRF is ([McHugh, R. (1998)]): 

 32 sin 2 / 2dBv v D vPRF
D

θ λ
λ λ

≥ ≈ =   (1.10) 

The minimum synthetic array spacing is thus: 

 
1

2SA
Dd v

PRF
= =   (1.11) 

The along-track resolution is independent of the range and wavelength. This results from 
the fact that for a transducer with a fixed length D, the synthetic aperture length DSA will be 
given, approximately, by: 

 0 3 02 2SA dBD R R
D
λθ≈ =   (1.12) 

Where R0 is the distance to the center of the scene. 
This than gives the classical synthetic aperture along-track resolution δAT formula: 

 0 0 0

0
22

AT SA
SA

DR R R
D R

D

λ λδ θ
λ

≈ = = =  (1.13) 

We see here that the phase relations that enable the synthetic array formation are tightly 
related to the wavelength of the signal and the effective synthetic array length. Normally 
these two values are interconnected due to the transducers real aperture width, but can be 
explored to mitigate some of the problems inherent to synthetic aperture.  
The image formed in this way has a cross-track resolution of c/2BW and an along-track 
resolution of D/2 (where c is the speed of sound, BW is the transmitted signal bandwidth 
and D is the effective transducer diameter). More importantly, the along-track resolution is 
independent of the target range. To correctly synthesize an image without aliasing artefacts 
in the along-track dimension, it is necessary to sample the swath with an interval of D/2 
(considering the use of only one transducer for transmission and reception). This 
constraints, together with the maximum PRF defined by the longest distance of interest and 
the along-track sampling restrictions, imposes a very speed to a sonar platform ([Cutrona, L. 
J. (1975); Gough, P. T. (1998)]). 

8. Image formation process 
The sonar acquires the data in pass-band format which is then converted to base-band and 
recorded. Starting with this uncompressed base-band recorded data, the first step in image 
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formation is cross-track pulse compression. This is also known as match filtering. This is 
step is necessary because using a longer transmitting pulse carries more energy than a short 
pulse with the same peak power which enhances the signal-to-noise ratio. The resulting 
cross-track resolution is not given by the duration of the transmitted pulse, but instead by its 
bandwidth. The task of pulse compression is done through correlation of the received data 
with the base-band transmitted pulse.  
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Fig. 14. Raw image, cross-track compressed image and along/cross-track compressed image. 
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At this stage data filtering and frequency equalization can be applied.  
The next step is synthetic aperture formation that should use the available navigation data 
to synthesize the virtual array and form the sonar image. Fig. 14 shows these steps in 
succession for an image of an artificial target placed in the river bottom for a test mission. 
Note that the first image has low along and cross track resolution because its unprocessed, 
the second image has better cross-track resolution due to pulse compression and finally the 
last image, which is the result of synthetic aperture processing, resembles a small point.   
Synthetic aperture image formation can be done through the use of several algorithms 
which can be classified into frequency domain algorithms, such as the wave-number 
algorithm, chirp scaling algorithm or the inverse scaled Fourier transform algorithm, and 
time domain algorithms such as the explicit matched filter or the back-projection algorithm 
([Gough, P. T. (1998); Silkaitis, J.M. et al (1995)]).  
The wave-number algorithm relies on inverting the effect of the imaging system by the use 
of a coordinate transformation (Stolt mapping) through interpolation in the spatial-
frequency domain. The compressed echo data is converted to the wavenumber domain 
(along/cross-track Fourier transforms), matched filtering is applied supposing a target at a 
reference range followed by a nonlinear coordinate transformation ([Gough, P. T. (1998)]). 
The chirp-scaling algorithm avoids the burdensome non-linear interpolation by using the 
time scaling properties of the chirps that are applied in a sequence of multiplications and 
convolutions. Nevertheless the chirp scaling algorithm is limited in use to processing of 
uncompressed echo data obtained by the transmission of chirp signals.  
An approach based on the inverse scaled Fourier transform (ISFFT) previously developed 
for the processing of SAR data can also be followed. This algorithm interprets the raw data 
spectrum as a scaled and shifted replica of the scene spectrum. This scaling can then be 
removed during the inverse Fourier transformation if the normal IFFT is replaced by a 
scaled IFFT. This scaled IFFT can be implemented by chirp multiplications in the time and 
frequency domain (Fig. 15). The obtained algorithm is computationally efficient and phase 
preserving (e.g. fit for interferometric imagery). Motion compensation can be applied to the 
acquired data in two levels: compensation of the known trajectory deviations and fine 
corrections trough reflectivity displacement, auto-focus or phase-retrieval techniques. The 
deviations from a supposed linear path are compensated thorough phase and range shift 
corrections in the echo data. Velocity variations can be regarded as sampling errors in the 
along-track direction, and compensated through resampling of the original data ([Fornaro, 
G. (1999)]). 
The back-projection algorithm, on the other hand, enables perfect image reconstruction for 
any desired path (assuming that rough estimate of the bottom topography is known), since 
it does not rely on the simple time gating range corrections ([Hunter, A. J. et al (2003); 
Shippey, G. et al (2005); Silva, S. (2007b)]). Instead, it considers that each point in one echo is 
the summation of the contributions of the targets in the transducer aperture span with the 
same range. With this algorithm one is no longer forced to use or assume a straight line for 
the sonar platform displacement. The platform deviations from an ideal straight line are not 
treated as errors, but simply as sampling positions. In the same way, different transducers 
array geometries are possible without the need for any type of approximation. This class of 
synthetic aperture imaging algorithms, although quite computational expensive in 
comparison with frequency domain algorithms, lends itself very well to non-linear 
acquisition trajectories and, therefore, to the inclusion of known motion deviations from the 
expected path. To reconstruct the image each echo is spread in the image at the correct 
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coordinates (back-projected) using the known transducer position at the time of acquisition 
(Fig. 16). It is also possible to use an incoherent version of this algorithm (e.g.: that does not 
use phase information). But the obtained along-track resolution is considerably worse ([Foo, 
K.Y. et al (2003)]). 
 

 
Fig. 15. ISFFT algorithm flow diagram. 

The back-projection algorithm can also be implemented in matrix annotation ([Silva, S. et al 
(2008 a)]). The navigation information and system geometry is used to build the image 
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formation matrix leading to the reconstructed image. The transmitting and receiving beam 
patterns and the corresponding swath variation with the platform oscillation is also 
weighted in the matrix. This makes this algorithm well suited for high resolution sonar 
systems with wide swaths and large bandwidths that have the assistance from high 
precision navigation systems. The main advantage of this algorithm is the ease of use within 
an iterative global contrast optimization auto-focus algorithm ([Kundur, D. et al (1996)]). 
The image formation is divided into two matrixes: a fixed matrix obtained from the sonar 
geometrical model and navigation data (corresponds to the use of a model matching 
algorithm, such as the explicit matched filtering); and a matrix of complex adjustable 
weights that is driven by the auto-focus algorithm. This is valid under the assumption that 
the image formation matrix is correct at pixel level and the remaining errors are at phase 
level (so that the complex weight matrix can correct them). 
 

 
Fig. 16. Back-projection algorithm signal flow diagram. 

9. Auto-focus 
Since the available navigation data sources, be it DGPS or INS systems, cannot provide 
enough precision to enable synthetic aperture processing of high resolution (high frequency) 
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sonar data [Bellettini et al (2002); Wang et al (2001)], the phase errors caused by the unknown 
motion components and medium turbulence must be estimated to prevent image blurring.  
Auto-focus algorithms exploit redundancy and or statistical properties in the echo data to 
estimate certain image parameters that lead to a better quality image. Therefore, the auto-
focus problem can be thought as a typical system estimation problem: estimate the 
unknown system parameters using a random noise input. If the auto-focus algorithms 
estimates the real path of sonar platform they are called micronavigation algorithms 
[Bellettini et al (2002)] (sometimes with the aid of navigation sensors such as inertial units) 
otherwise they are generically designated as auto-focus algorithms. Redundant phase centre 
algorithm and shear average algorithm are examples of micronavigation algorithms. 
Since redundancy in data is greatly explored, common auto-focusing algorithms require 
restrictively along-track sample rates equal or higher than the Nyquist sample rate. This 
imposes unpractical velocity constrains, especially for system that use few receivers (as is 
the case with the sonar system described here). It is not possible to obtain micro-navigation 
from an under-sampled swath or to perform displaced centre phase navigation with only 
one transducer. So, with these impairments, global auto-focus algorithms are required in 
sonar systems that use simple transducers arrays and under-sampled swath. The use of 
global auto-focus algorithm presents several advantages for synthetic aperture sonar image 
enhancing. They differ from other algorithm because they try to optimize a particular image 
metric by iteratively changing system parameters instead of trying to extract these 
parameters from the data. Global auto-focus algorithms can correct not only phase errors 
due to navigation uncertainties, but also phase errors that are due to medium fluctuations.  
It is required that the synthetic aperture algorithm uses the available navigation solution to 
form an initial image. Starting with the available navigation solution, the errors are 
modelled in a suitable way. If the expected errors are small they can be modelled as phase 
errors for each along-track position. If the sonar platform dynamic model is known, the 
number of search variables can be greatly reduced by parameterizing this model ([Fortune, 
S. A. et al (2001)]). These parameters are weighted together with the image metric and serve 
as a cost function for the optimization algorithm to search the solution space (Fig. 18). 
Nevertheless, these errors are hardly ever smaller than the original signal wavelength, and 
so create a solution surface that is difficult to search for the optimum set of parameters. 
However, if we have access to the raw data, by dividing the received signal bandwidth in 
several smaller bands and conjugate complex multiplying the pulse compressed signals 
obtained in each band one by the other, a new resulting signal is obtained with an effective 
longer wavelength corresponding to the frequency difference between the two sub-bands 
([Silva, S. (2008 b)]). This longer wavelength effectively reduces the impact of phase 
fluctuation from the medium and platform motion uncertainties. Using this, it is possible to 
divide the signal bandwidth into several sub-bands and combine them in to signals with 
different wavelengths. At the first step, a large wavelength is used since the expected 
motion correction is also large. After achieving a predefined level of image quality, the auto-
focus algorithm then proceeds by using a smaller wavelength and the previous estimated 
position parameters.  
 This step is repeated with decreasingly smaller wavelength and position error, until the 
original wavelength is used. The result is a faster progression through the solution surface, 
with lower probabilities of falling into local minima. 
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Fig. 17. Sonar image of the artificial target through the various auto-focus steps. 

Fig. 17 shows an image of an artificial point target in 3 successive auto-focus steps. The 
algorithm starts wit a longer wavelength thus producing a low resolution image. As it 
progresses through the process, the target gets a sharper appearance.  
For image quality metric a quadratic entropy measure can be used, which is a robust quality 
measure and enables fast convergence than a first order entropy measure or a simple image 
contrast measure. This is a measure of image sharpness. The lower the entropy measure, the 
sharper the image.  
To calculate the quadratic entropy one needs to estimate the image information potential 
IP . Instead of making the assumption that the image intensity has a uniform or Gaussian 
distribution, the probability density function is estimated thought a Parzen window method 
using only the available data samples ([Liu, W. et al (2006)]):  

 2
1 1

1( ) ( )
N N

j i
j i

IP x k x x
N σ

= =

= −∑∑   (1.14) 

Where ( )ik x xσ − is the Gaussian kernel defined as:   

 
2

2
( )

21( )
2

ix x

ik x x e σ
σ πσ

−
−

− =   (1.15) 

 

Because this method of estimation requires a computational intensive calculation of the sum 
of Gaussians, this is implemented through the Improved Fast Gaussian Transform described 
in [Yang, C. et al (2003)]. 
This auto-focus method is suitable for systems working with an under-sampled swath  
and few transducers. No special image features are necessary for the algorithm to 
converge. 
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Fig. 18. Auto-focus block diagram. 

 
Fig. 19. Artificial target used for resolution tests. 

10. Results 
To test the system and access its capabilities a series of test missions were performed in the 
Douro river, Portugal. For the first tests an artificial target was placed in the muddy river 
bottom and the autonomous boat programmed to make several paths through the area.  
The artificial target is a half octahedral reflector structure made of aluminium (Fig. 19). It 
measures 20x20x20cm, but the target response seen by the sonar should be like a point after 
correct image synthesis. 
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Fig. 20 shows one image of the artificial target obtained though the matrix implementation 
of the back-projection algorithm as describe previously. 
 

 
Fig. 20. Sonar image of the artificial target placed in the river bottom. 
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Fig. 21. Synthetic aperture sonar resolution. 

As can be seen if Fig. 21, after auto-focus the image obtained from the artificial target 
presents sharp point like response, achieving the theoretical maximum resolution of the 
sonar system: 2.5x2.5 cm.   
Fig. 22 shows an image obtained near the river shore before synthetic aperture processing 
and Fig. 23 show the same image processed using the described back-projection algorithms. 
It is possible to see several hyperbolic like target responses from rocks in the river bed that, 
after synthetic aperture image processing, assume the correct point like form. 
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Fig. 22. Cross-track compressed reflectivity map an area near the river shore. 
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Fig. 23. Along/Cross-track compressed reflectivity map an area near the river shore. 
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Fig. 24. Reflectivity map of harbour entrance. 
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The hyperboles are wavy due to the uncontrolled platform motion but, because the platform 
motion is known, the image nevertheless correctly synthesized.  
Fig. 24 shows another sonar image obtained with the described system, this time it’s a sand 
bank near a small harbour entrance in the Douro river.  

11. Conclusion 
As demonstrated, synthetic aperture sonar is a technique that enables attainment of high 
quality, high resolution underwater images. 
Autonomous surface vehicles provides several advantages for synthetic aperture imagery. 
Not only it is possible to control the boat motion in this way, it is also possible to obtain 
navigation measurements with precisions in the order of the wavelength used in high 
resolution sonar systems. Furthermore unsupervised surveillance applications that 
combine the high quality sonar images with the effectiveness of an autonomous craft are 
possible. 
Sonar images obtained in this way can be easily integrated in geographical information 
systems. 
Using back-projection algorithms one is no longer restricted to linear paths, and deviations 
from this path are not treated as errors, but simply as sampling positions. 
Phase errors due to navigation uncertainties and medium fluctuations cause blurring of 
the image. Nevertheless, the results can be further enhanced through auto-focus 
procedures that iterate the solutions until convergence to a predefined image quality 
parameter is achieved.  
The use of high frequency signals imposes demanding restrictions in motion estimation and 
medium stability due to the sensibility of the image formation process to phase errors. A 
clever combination of the received signals enables the creation of a new one with an 
equivalent frequency equal to difference of the centre frequencies of the previous ones. This 
longer wavelength signal effectively masks phase uncertainties and enables efficient auto-
focus of the synthetic aperture sonar image.  
The synthetic aperture sonar thus enables enhanced imagery of underwater realms that 
combined with suitable platforms, such as an autonomous boat, can be obtained at low cost 
and high availability.  

12. Future work 
Synthetic aperture sonar imagery is a powerful technique for underwater imaging that is 
becoming widespread as the problems and difficulties inherent to it are solved. 
The use of multiple receiver systems will enable a higher area coverage ratio and ease 
navigation system precision requirements through the use of micronavigarion techniques. 
With the maturing of image formation algorithms, real-time image formation will further 
extend the application possibilities of synthetic aperture sonar systems. 
Bottom height mapping is possible through the use of a double array of transducers and also 
by exploring the possibility of dual-pass interferometry. In this case the combination of 
images of the same scene obtained from different positions of the platform will allow the 
construction of three dimensional maps of the analyzed surfaces. 
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1. Introduction    
The sequence of echoes detected by an active Synthetic Aperture Sonar (SAS) is coherently 
added in an appropriate way to produce an image with greatly enhanced resolution in the 
azimuth, or along-track direction when compared with an image obtained from a standard 
Side Looking Sonar (SLS).  
The SAS processing originates from the Synthetic Aperture Radar (SAR) concept. A 
complete introduction to SAR technique can be found in  (Sherwin et al., 1962), (Walker, 
1980), (Wiley, 1985) and (Curlander & McDonough, 1991).  
Raytheon was issued in 1969 a patent for a high-resolution seafloor imaging SAS  (Walsh, 
1969) and 1971 analyzed a potential system in terms of its resolution and signal-to-noise 
ratio. Cutrona was the first well-known radar specialist to point out how the various aspects 
of SAR could be translated to an underwater SAS (Cutrona, 1975). Hughes (1977) compared 
the performance of a standard SLS to an SAS and showed that the potential mapping rate 
for SAS was significantly higher than for side-looking sonar.  At the time there was an 
assumption that the instability of the oceanic environment would prevent the formation of 
SAS imagery. Experimental work, which was performed by Williams (1976) and Christoff et 
al. (1982), refuted the instability worry. The verification of this assertion performed at higher 
frequencies by Gough & Hawkins (1989). Later, other concerns regarding the stability of the 
towed platform were also raised and some rail- or wire-guided trails where set up to avoid 
this extra complication. Nowadays there are a multiple of systems as hull mounted SAS 
systems, towed SAS systems and Autonomous Underwater Vehicles (AUV) systems. For 
further reading one can find an extended historical background of SAS in (Gough & 
Hawkins, 1997). 
Time and experience were needed to adapt SAR algorithms to SAS systems; the SAS 
systems use smaller radiating elements in proportion to the wavelength, which leads to 
higher radiation pattern of SAS with respect to SAR. The range migration effect on synthetic 
aperture processing is significant and pronounced in SAS imagery. An additional difference 
between SAR and SAS systems is the synthetic aperture time being greater in one order of 
magnitude in SAS, which leads to a phase corruption due to the medium fluctuations and 
platform instabilities. Typical synthetic aperture times for SAR are of the order of seconds 
with a medium coherence of some days, whereas for SAS the typical synthetic aperture time 
is of the order of several minutes with a similar medium coherence time (Marx et al. 2000). 
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In this chapter the theoretical background of SAS processing will be presented followed by 
the importance of motion compensation in high resolution imagery. To validate the 
accuracy of the motion estimation a simulator was developed in which different motion 
errors were applied. The quantification of the motion estimation was validated through the 
2D Fourier space (ω,k)-reconstruction algorithm. 

2. Processing requirements for SAS  
In order to explain profoundly (Bruce, 1992) the aspects of the synthetic aperture sonar 
technique, one has to introduce first the Side-Looking Sonar (SLS). The SLS is an imaging 
technique that provides two-dimensional reflectance maps of acoustic backscatter energy 
from the ocean floor. The maps are characterized by an intensity variation that is 
proportional to the acoustic backscatter signal strength (Somers, 1984). The geometry of the 
SLS is similar to the one of SAS. The systems ensonify strips on the seafloor using an 
acoustic projector that moves in a nominally straight line above the ocean floor with velocity 
v as shown in Fig. 1. In this figure θ E is the elevation beam width of the projector, θ H is the 
azimuth beam width of the projector, Rs is the instantaneous slant range measured from the 
sensor to a point on the seafloor, and W is the one-sided ensonified ground-plane swath 
width. The reflectance map in SLS has coordinates of cross-track (measured in the slant 
plane) and along-track distances. The near-edge elevation1 angle θe is the elevation angle at 
minimum range, the elevation beam width and the height of the sonar with respect to the 
seafloor determine the size of the ensonified swath width. As the platform moves, a 
projector transmits acoustic pulses and a hydrophone listens for the echoes. The time delay 
of each echo provides a measure of slant range, while the ping-to-ping motion of the 
projector gives the along-track image dimension. As the seafloor is imaged, the data are 
recorded and represented in the slant range plane. In Fig. 1. Rmin and Rmax are the minimum 
and maximum slant ranges respectively and d is the one-sided blind zone defined to be the 
no illuminated area directly below the platform (i.e. nadir). 

2.1 Slant range processing for SLS and SAS 
In SAS, along track and across track processing are completely disentangled. For both SLS 
and SAS systems, the slant range processing is identical and often also called across track 
processing. This processing is performed to obtain range information from the seafloor. 
Pulsed systems sense range by measuring the delay interval between the transmission and 
the reception of the pulse, as shown in the upper right figure of Fig. 1. Assuming range 
gates of duration τ, the two seafloor objects O1 and O2 separated by ΔRg, will be resolved if 
their returns do not overlap in time. The round-trip travel time for a pulse associated with 
the object at range Rs is given by; 

 
c
Rt s2

=   (1)  

and the incremental delay due to the proximate object O2 is; 

                                                 
1 The grazing angle θg is given by the elevation angle θe as: π/2- θe= θg . 
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=+τ   (2)  

where c is the propagation speed in the medium. A measure of the slant plane separability is 
obtained by subtracting (1) from (2), and is given by 

 
c
RsΔ

=
2

τ .  (3)  

The relationship between ground–plane and slant-plane (see lower right figure of Fig. 1.) is 
approximated as 

 
g

s
g

R
R

θcos
Δ

=Δ .  (4)  

Therefore, two objects on the seafloor are fully resolvable if their ground separation satisfies 

 
g

g
cR

θ
τ

cos2
≥Δ .  (5)  

 
Fig. 1. Sonar geometry; (left) One-sided SLS geometry, (right) Time domain representation 
of a transmitted pulse and corresponding echoes. 

Through equation (5) the range resolution is directly proportional to the ping duration τ and 
finer range resolution requires transmission of shorter pulses. However, in order to achieve 
very fine range resolution at long ranges, it may not be feasible to transmit very short pulses 
due to peak power limitation on the transmitter. In such cases, longer duration coded pulses 
can be transmitted with either frequency or phase modulation serving as the code. Upon 
arrival, the coded echo is decoded (compressed) so that the effective pulse length is 
significantly shorter in duration than the transmitted pulse (Stimson, 1983). The general 
relationship for range resolution ρr, is given by 

 
eff

eff
r B

cc
22

==
τ

ρ   (6)  
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where τeff is the effective pulse length after compression and Beff represents the bandwidth 
of the compressed pulse. 
The maximum unambiguous slant-range footprint can be determined by the effects of Pulse 
Repetition Interval (PRI) variations. If the PRI is set sufficiently large so that all echoes from 
a pulse are received prior to the transmission of the next pulse, there won’t be an ambiguity. 
However if the PRI is decreased, the echoes from one pulse may not arrive at the receiver 
prior to the transmission of the following pulse. The minimum PRI value is equivalent to the 
requirement that the time between pulse transmission be greater than the time difference 
between the slant-range returns from the far- and near-edges of the slant-range footprint, 
Rfp. Thus the minimum acceptable PRI is, 

 
c
R

PRI fp2
min = .  (7) 

2.2 Azimuth processing for SLS 
Fig. 2. shows the slant-plane view of an SLS with a projector of length D and azimuthal 
beam width Hθ . The parameters min

aδ  and max
aδ  correspond to the linear azimuthal beam 

width at the minimum and maximum slant ranges respectively. The half-power angular 
beam width of a uniformly weighted rectangular aperture of length D is given in (Skolnik, 
1980) by the approximate relationship 

 
DH
λθ ≅   (8) 

where λ is the acoustic wavelength of the signal. The resolution at slant-range distance Rs of 
an SLS system is given by 
 

 
Fig. 2. Slant range, along track SASgeometry with beam spread as function of slant-range. 
Real-beam resolution degrading with increasing range 
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D

Rs
a

λ
δ ≅ .  (9) 

In order to keep the resolution small as range increases, the frequency and/or the physical-
aperture length D must be increased.  The azimuth resolution however will ever stay 
dependent on slant-range. 
In order to avoid along-track gaps in the image due to the beam pattern, one needs at least 
one sample for each along track resolution cell. Since the resolution cell width varies with 
range, the PRI selection will depend on the desired along-track resolution. Most side-scan 
systems are designed to realize the near-edge resolution 

 
vv

PRI ata Δ
=≤

min

max
δ

  (10) 

where min
aδ  corresponds to the along-track sampling spacing atΔ . In some cases, the along-

track sampling spacing may be chosen finer than the azimuth resolution. This situation is 
called over sampling.  If the lowest sampling rate while satisfying the Nyquist criterion is 
applied (called critical sampling) the along-track sample spacing is exactly equal to the 
azimuth resolution. 

2.3 Azimuth processing for SAS 
The physical aperture of a SAS system may be regarded as one element of a linear array 
extending in the direction of the platform motion as shown in Fig. 3. The SAS processing can 
than be compared to the combination of the individual receivers from the linear array into 
an equivalent single receiver.  Lmax is the maximum synthetic-aperture length possible for a 
given azimuth beam-width θH, while Lact is the actual synthetic aperture length that may be 
shorter than Lmax.    
The azimuth resolution is obtained by sensing, recording, and processing the ping-to-ping 
phase history resulting from the variation in slant range caused by the projector’s main lobe 
illumination pattern moving past seafloor scatterers. The maximum synthetic-array length is 
defined by the linear azimuth beamwidth at a given slant range Rs, HsRL θ=max . The 
minimum effective horizontal beamwidth of the synthetic array is given by 

)2/( maxmin Lλθ = . The finest along track resolution that can be achieved from a focused 

synthetic aperture system is defined (Skolnik, 1980) as .2/min
min DRsa == θρ  

3. Necessity of motion compensation in SAS  
Following equation (7) Synthetic Aperture Sonar, suffers the upper bound on the pulse 
repetition frequency (PRF) imposed by the relatively slow sound speed in water. This in 
turn limits the platform velocity, and consequently introduces motion errors more easily 
due to the ocean instabilities like waves, water currents and wind. The effect of those motion 
errors on the SAS reconstruction will be exhibited in section 3.1.5. Motion compensation is 
the main key to obtain high-resolution SAS images, which are in turn indispensable to be 
able to perform not only reliable small target detection but also classification and 
identification. The prime concept solving the micronavigation issue is called Displaced 
Phase Centre Array (DPCA) that exploits in a unique way the spatial and temporal 
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coherence properties of the seafloor backscatter in a multiple receiver array configuration. 
The DPCA concept will be explained and illustrated on simulated data in section 5. 
 

 
Fig. 3. Slant-plane view of an SLS with azimuthal beamspread θH. Real beam resolution 
degrades with increasing range Rs. 

3.1 Simulator 
The sonar simulator was designed to obtain the echo of a series of known point scatterers in 
a chosen scene. Let us consider first the case of a single transmitter/single receiver 
configuration.  

3.1.1 Single transmitter/ single receiver configuration 
Fig. 4 presents the 2D geometry of broadside strip-map mode synthetic aperture imaging 
systems. The surface imaged is substantially flat and has on top of it a collection of sub 
wavelength reflectors collectively described as the object reflectivity function ff(x,y). Mostly 
ff(x,y) is referred to as the object and consists of a continuous 2D distribution of omni-
directional (aspect independent) and frequency independent reflecting targets. This target 
area is illuminated by a side-looking sonar system travelling along a straight locus u with a 
velocity v, moving parallel to the y-axis of the target area. The origins of the delay time axis t 
and the range axis x have been chosen to coincide. As the sonar platforms travels along u, it 
transmits a wide bandwidth phase modulated waveform pm(t) of duration τ seconds which 
is repeated every T seconds. On reception, the coherent nature of the transmitter and 
receiver allows the echoes that have come from different pulses to be arranged into a 2D 
matrix of delay time t versus pulse number. Since the platform ideally travels a constant 
distance between pulses, the pulse number can be scaled to position along the aperture u in 
meters. Assuming the stop-start assumption, denoting that the sonar system does not move 
further along u between the emission of the pulse and the respective reception of the signal, 
the strip-map system model represents the echoes detected at the output of the receiver and 
is approximately described by;  

 ( ) ( )∫
⎭
⎬
⎫
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where a(t,x,y) is the spatial-temporal response of the combined transmitter and receiver 
aperture. The output of the system given by a convolution in along-track, emphasize the 
two main problems faced by the inversion scheme which are: 
• the system response is range variant 
• there is a range curvature effect also called range migration. 
Note that any function with a subscript m implies modulated notation, i.e. the analytic 
representation of the function still contains a carrier term exp(iω0t), where ω0 represents the 
carrier radian frequency. Demodulated functions are subscripted with a b to indicate a base 
band function. The processing of base banded data is the most efficient method, as it 
represents the smallest data set for both the FFT (Fast Fourier Transform) and any 
interpolators. Many synthetic aperture systems perform pulse compression of the received 
reflections in the receiver before storage. The pulse compressed strip-map echo denoted by 
ssm is given by, 

 ( , ) ( ) ( , ).m m t mss t u p t ee t u= ⊗   (12) 
The temporal Fourier transform of equation (12) is 

 { }( , ) ( ) ( , ) ( ) ( , )m m t m m mSs u P ee t u P Ee uω ω ω ω= ℑ =   (13) 
with the Fourier transform of the raw signal, 

 ( ) dydxuyxkiuyxAyxffPuEe
yxmm ∫∫ ⎟

⎠
⎞⎜

⎝
⎛ −+−−= 222exp),,(),()(),( ωωω   (14)  

with ω and k the modulated radian frequencies and wave-numbers given by ω = ωb+ω0 and 
k=kb+k0.  
Throughout this chapter, radian frequencies and wave-numbers with the subscript 0 refer to  
carrier terms while radian frequencies and wave-numbers without the subscript b refer to 
modulated quantities. At this point it is useful to comment on the double-functional 
notation and the use of the characters e and s like they are appearing in equations (11) till 
(14). The character e is used to indicate non-compressed raw echo data, while s is used for 
the pulse-compressed version (see equation (13)). Due to the fact that the echo is 
characterized by a 2D echo matrix (i.e. the scattering intensity as a function of azimuth and 
slant range) one needs a double-functional notation to indicate if a 1D Fourier transform, a  
2D Fourier transform or no Fourier transform is applied on the respective variable. A capital 
character is used when a Fourier transform is applied. The first position of the double-
functional notation refers to the slant-range direction (fast time) whereas the second position 
refers to the along-track direction (slow time). For example, sSb describes the pulse- 
compressed echo in the range/Doppler domain since a 1D Fourier transform is taken in the 
along-track domain. The subscript b indicates that the pulse compressed echo data are also 
base banded. Putting the expression given in equation (14) into equation (13) leads to, 
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One can obtain the base banded version of equation (12) by taking the temporal Fourier 
transform on the base banded version of (14), 
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Fig. 4. Imaging geometry appropriate for a strip-map synthetic aperture system 
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The term 22 )(2 uyx −+ represents the travel distance from the emitter to the target and 

back to the receiver. In case of the start-stop assumption, the factor 2 appearing in front of 
the square root indicates that the travel time towards the object equals the one from the 
object back to the receiver. In the case the start-stop assumption is not valid anymore or in 
the case of multiple receivers, one has to split the term into two parts, one corresponding to 
the time needed to travel from the emitter to the target and one to travel from the target to 
the corresponding receiver. The above formulas, needed to build the simulator, will be 
extended in the following section towards the single transmitter multiple receiver 
configuration. 

3.1.2 Single transmitter/multiple receiver configuration 
The link with the single receiver can be made by reformulating equation (15) as follows, 

 
( ) dydxhnuRnuRik

uyxAyxfPuEe

backout

yxm
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m
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with Rout(u,n) the distance from the transmitter to target n and Rback(u,n,h) the distance from 
target n to the receiver h  for a given along-track position u. In the case of a multiple receiver 
array Rout does not depend on the receiver number, 
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 ( ) ,),( 22 uyxnuR nnout −+=   (18) 

whereas Rback is dependent on the receiver number h, given by, 

 ( )22),,( hnnback hduyxhnuR −−+=   (19) 

with dh the along-track distance between two receivers. In the simulator the 3D echo matrix 
(depending on the along-track u, the return time t and the hydrophone number h) will 
represent only a limited return time range corresponding with the target-scene. There is no 
interest in simulating return times where there is no object or where there is not yet a 
possibility to receive back signal scattered on the seafloor from the nearest range. Therefore 
the corresponding multiple receiver corresponding expression of equation (16) becomes, 
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where the sum is performed over all N targets and r0 is the centre of the target-scene. 

3.1.3 Input signal p(t) 
The echo from a scene is depending on the input signal p(t) generated by the transmitter 
and its Fourier transform P(ω). When a Linear Frequency Modulated (LFM) pulse p(t) is 
used it is expressed by,  

 ( )2
0exp)( Ktititrecttpm πω

τ
+⎟

⎠
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⎝
⎛=   (21) 

with ω0 (rad/s) the carrier radian frequency and K (Hz/s) the LFM chirp-rate. The rect 
function limits the chirp length to [ ]2/,2/ ττ−∈t . The instantaneous frequency is obtained 
by differentiation of the phase of the chirp, 

 Kt
dt

tdti πωφω 2)()( 0 +== .   (22) 

This leads to a frequency of the input signal of ranging from ω0-π τ K till ω0+π τ K, leading to 
a chirp bandwidth B=Kτ. Using the principal of stationary phase, the approximate form of 
the Fourier transform of the modulated waveform is 
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The demodulated Fourier transform or pulse compressed analogue of Pm(ω), 
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gives a rectangular pulse. 
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3.1.4 Radiation pattern  
The radiation pattern or sonar footprint of a stripmap SAS system maintains the same as it 
moves along the track. The radiation pattern when the sonar is located at u=0 is denoted by 
(Soumekh, 1999) 

 ),,( yxh ω .  (25) 
When the sonar is moved to an arbitrary location along the track the radiation pattern will 
be ))(,,( uyxh −ω  which is a shifted version of ),,( yxh ω  in the along-track direction. The 
radiation experienced at an arbitrary point (x,y) in the spatial domain due to the radiation 
from the differential element located at (x,y)=(xe(l),ye(l)) with l S∈ , where S represents the 
antenna surface and where the subscript e is used to indicate that it concerns the element 
location, is, 
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where 22 yxr += and i(l) is an amplitude function which represents the relative strength 
of that element and where the transmitted signal is assumed to be a single tone sinusoid of 
the form p(t) = exp(iωt). In the base banded expression the term exp(iωt) disappears and will 
not be considered in the following discussion. The total radiation experienced at the spatial 
point (x,y) , is given by the sum of the radiation from all the differential elements on the 
surface of the transmitter: 
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Figure. 5. shows the real  (blue) and absolute value (red) of ( ), ,Th x yω  for a carrier 
frequency of f0=50 kHz which corresponds with a radiance frequency ω=2πf0. 
The spherical phase-modulated signal (PM) can be rewritten as the following Fourier 
decomposition, 
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By substituting this Fourier decomposition in the expression for hT, and after interchanging 
the order of the integration over l and ku, one obtains, 
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Fig. 5. Total radiation hT experienced at a given point (x,y)=(100,[-60,60]) for a given carrier 
frequency f0=50 kHz. In blue the real part of hT is shown, in red the absolute value. 

This means that the radiation pattern can be written as an amplitude-modulated (AM) 
spherical PM, 
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with 
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The surface for a planar transmitter is identified via, 
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where D is the diameter of the transmitter. Uniform illumination along the physical aperture 

is assumed to be, i(l)=1 for .
2 2
D Dl −⎡ ⎤∈ ⎢ ⎥⎣ ⎦

 and zero elsewhere. Substituting these specifications 

in the model for the amplitude pattern AT, we obtain, 
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Equation (33) indicates that the transmit mode amplitude pattern of a planar transmitter in 
the along-track Doppler domain ku is a sinc function that depends only on the size of the 
transmitter and is invariant in the across-track frequency ω. 
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3.1.5 Motion error implementation 
In an ideal system performance, as the towfish, Autonomous Underwater Vehicle (AUV) or 
Hull mounted sonar system moves underwater it is assumed to travel in a straight line with 
a constant along-track speed. However in real environment deviations from this straight 
along-track are present. By having an exact notion on the motion errors implemented in the 
simulated data, one can validate the quality of the motion estimation process (section 5).  
Since SAS uses time delays to determine the distance to targets, any change in the time delay 
due to unknown platform movement degrades the resulting image reconstruction. Sway 
and yaw are the two main motion errors that have a direct effect on the cross-track direction 
and will be considered here. The sway causes side to side deviations of the platform with 
respect to the straight path as shown in Fig. 6. This has the effect of shortening or 
lengthening the overall time-delay from the moment a ping is transmitted to the echo from a 
target being received. Since, in the case of a multiple receiver system, sway affects all of the 
receivers equally, the extra time-delay is identical for each receiver. A positive sway makes 
targets appear closer than they in reality are. In general a combination of two sway errors 
exist. Firstly the sway at the time of the transmission of the ping and secondly any 
subsequent sway that occurs before the echo is finally received. Since the sway is measured 
as a distance with units of meters, we can easily calculate the extra time delay, Δsway(u)  given 
the velocity of sound through water c. The extra time delay for any ping u is, 

 
c

uXuXut RXTX
sway

)()()( +
=Δ   (34) 

where XTX(u) represents the sway at the time of the transmission of the ping under 
consideration and where XRX(u) represents the sway at the time of the reception of the same 
ping. Both quantities are expressed in meter. One assumes often that the sway is sufficiently 
correlated (i.e. slowly changing) so that it is approximately equal in both transmitting and 
receiving case, 
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Fig. 6. The effect of sway (left) and yaw (right) on the position of the multiple receivers 
indicated by the numbers 1 till 5. The coordinate reference is mentioned between the two 
representations. 

In Fig. 7. one sees the effect on the reconstruction of an image with a non-corrected sway 
error (middle) and with a corrected sway error in the navigation (right). 
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Fig. 7. Echo simulation of 3 point targets with sway error in the motion (left), (ω,k)-image 
reconstruction without sway motion compensation (middle) and with sway motion 
compensation (right).  

For sway one has thus the problem of the array horizontally shifting from the straight path 
but still being parallel to it. With yaw, its effect is a rotated array around the z-axis such that 
the receivers are no longer parallel to the straight path followed by the platform as 
illustrated on the right in Fig. 6. Generally speaking there are two yaw errors; firstly when a 
ping is transmitted and secondly when an echo is received. The examination of those two 
gives the following; for the case where the transmitter is located at the centre of the rotation 
of the array, any yaw does not alter the path length. It can safely be ignored, as it does not 
introduce any timing errors. When the transmitter is positioned in any other location a 
change in the overall time delay occurs at the presence of yaw. However this change in time 
delay is common to all the receivers and can be thought of as a fixed residual sway error. 
This means that the centre of rotation can be considered as collocated with the position of 
the transmitter. 
Yaw changes the position of each hydrophone uniquely. The hydrophones closest to the 
centre of rotation will move a much smaller distance than those that are further away. The 
change in the hydrophone position can be calculated through trigonometry with respect to 
the towfish’s centre of rotation. The new position 'hx for each hydrophone h is given by, 
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where hx =(x,y) indicates the position of hydrophone h relative to the centre of rotation and 
'hx =(x’,y’) indicates the new position of hydrophone h relative to the centre of rotation after 

rotating around the z-axis due to yaw. θy represents the angle that the array is rotated 
around the z-axis. For small yaw angles the change in the azimuth u is small and can be 
ignored. Equation (36) becomes 

 yhhh uxx ϑsin' += .  (37) 

Knowing the velocity c of the sound through the medium, one can use equation (37) to 
determine the change in the time delay Δtyaw{h{(u) for each hydrophone h 
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where Δxh’ represents xh-xh’ being the cross-track change in position of hydrophone h. Fig. 8. 
shows the image reconstruction of a prominent point target that has no motion errors in the 
data compared to one that has been corrupted by a typical yaw. 
Once the surge, sway and yaw error vectors are chosen as a function of the ping number, 
they can be implemented in the simulator as follows;  
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Here for a transmitter situated at the centre of the array one can choose the reference system 
in a way that txr0 and txaz0 are situated at the origin, where the subscript r refers to slant 
range and az to the azimuth or the along-track coordinate. Remark that Rout is a scalar 
whereas Rback is an array Nh numbers of hydrophones long. 
 

 
Fig. 8. (w,k)-image reconstruction without yaw motion compensation (left) and with yaw 
motion compensation (right).  

4. (ω,k)- synthetic aperture sonar reconstruction algorithm    
Form section 3 one studies that a reconstructed SAS image is very sensitive to the motion 
position and it is necessary to know the position of the sonar at the order of approximately 
1/10th of the wavelength (a common term to express this is micro navigation). In the 
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following sections a brief overview will be given on one particular SAS reconstruction 
algorithm, i.e. the (ω,k)-reconstruction algorithm (Callow et al. 2001), (Groen, 2006). 
Afterwards the motion estimation will be explained and finally the motion compensation is 
illustrated on the (ω,k)-algorithm. 
The wave number algorithm, appearing under different names in the literature: seismic 
migration algorithm, range migration algorithm or (ω,k)-algorithm, and is performed in the two-
dimensional Fourier transform on either the raw EE(ω,ku) or pulse compressed data SS(ω,ku). 
The key to the development of the wave number processor was the derivation of the two-
dimensional Fourier transform of the system model without needing to make a quadratic 
approximation. The method of stationary phase leads to, 
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The most efficient way to implement the wave number should be performed on the complex 
valued base banded data as it represents the smallest data set for both the FFT and the stolt 
interpolator. It is also recommended that the spectral data stored during the conversion 
from modulated to base banded is padded with zeros to the next power of two to take 
advantage of the fast radix-2 FFT. A coordinate transformation also represented by the 
following stolt mapping operator Sb-1{.}, 
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The wave number inversion scheme, realizable via a digital processor is than given by, 
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The inverse Stolt mapping of the measured (ωb,ku)-domain data onto the (kx,ky)-domain is 
shown in Fig. 9. 
The sampled raw data is seen to lie along radii of length 2k in the (kx,ky)-wave number space. 
The radial extent of this data is controlled by the bandwidth of the transmitted pulse and the 
along-track extent is controlled by the overall radiation pattern of the real apertures. The 
inverse Stolt mapping takes these raw radial samples and re-maps them onto a uniform 
baseband grid in (kx,ky) appropriate for inverse Fourier transformation via the inverse FFT. 
This mapping operation is carried out using an interpolation process.  The final step is to 
invert the Fourier domain with a windowing function WW(kx,ky) to reduce the side lobes in 
the final image, 
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This windowing operation can be split into two parts; data extraction and data weighting. In 
data extraction the operation first extracts from the curved spectral data a rectangular area 
of the wave number data. The choice of the 2-D weighting function to be applied to the 
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Fig. 9. The 2D collection surface of the wave number data. The black dots indicate the locations 
of the raw data samples along radii 2k at height ku. The underlying rectangular grid shows the 
format of the samples after mapping (interpolating) to a Cartesian grid (kx,ky). the spatial 
bandwidths Bkx and Bky outline the rectangular section of the wave number data that is 
extracted, windowed and inverse Fourier transformed to produce the image estimate. 
extracted data is arbitrary. In the presented case a rectangular window and a 2-D Hamming 
window is used. Before applying the ky weighting across the processed 3dB radiation 
bandwidth, the amplitude effect of the radiation pattern is deconvoluted as, 

 ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

yxy k

y
h

k

x
h

yk

y
yx B

k
W

B
kW

kAB
k

rectkkWW ..1.).,(   (44) 

where Wh(α) is a 1D Hamming window defined over [ ]2/1,2/1−∈α  and the wave number 
bandwidths of the extracted data shown in Fig. 9. are 
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here kmin and kmax are the minimum and maximum wave numbers in the transmitted pulse, 
Bc is the pulse bandwidth (Hz) and D is the effective aperture length. The definition of the x- 
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and y-axes depends on the number of samples obtained within each wave number 
bandwidth, the sampling spacing chosen, and the amount of zero padding used. The 
Hamming window over a length N+1 is given by its coefficients, which are calculated by,     
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The resolution in the final image is given by, 
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where αw=1.30 for the Hamming window. 

5. Platform motion estimation    
In order to be able to explain properly the functioning of the Displaced Phase Centre Array 
(DPCA) algorithm (Bellettinit & Pinto 2000 and 2002) he simulation echoes on 9 targets 
arranged around the central target were generated. Some a priori known sway and yaw 
errors were included in the straight line navigated track. The positions of the 9 targets can 
be seen in Fig. 10 (left) and are given relative to the target that is situated at the center of the 
scene (0,0). At the right side the corresponding echo is shown. The simulator used an array 
consisting of 15 hydrophones separated by ΔRx=21.88 cm. The slant range covered goes 

 
Fig. 10. Target position (r,u) given relative to the center of the scene at r0=100 m. 
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from 84.64 m till 115.33 m. The data shown at the right side of Fig.10 shows only the return 
observed in receiver number 1. The echo data for a fixed ping number are presented in Fig. 
11. for ping=61 (left) and for ping=62 (right) as function of the 15 hydrophones (x-axis) and 
the range (y-axis). 
One can clearly see around the smallest ranges that the distance to the target is function of 
the receiver itself. The platform speed was chosen in a way (v=1.2763 m/s) that the echoes 
for receiver 1 till 8 for ping number n should coincide with those of 8 till 15 for ping number 
n+1. This set of 2 times 8 receivers serves as the input data for the dpca-code. The aim of the 
DPCA-motion compensation method is to estimate from the maximal correlation between 
the two pings data the surge, sway and yaw. 
 

 
Fig. 11. The echoes are shown for the 15 different receivers as a function of the slant range 
for (left) ping number 61 and (right) for ping number 62. In this simulation no motion errors 
were introduced and the speed of the platform (v=1.2763 m/s) was chosen in a way that 8 
receivers are overlapping between two consecutive pings. 

5.1 Phase Center Array (PCA) approximation 
In the PCA approach one approximates a true bistatic sonar as a monostatic sonar. On other 
words one will treat the bistatic transmitter/receiver pair as if it were a single co-located 
transducer located midway between the two. The error caused in making the phase-center 
approximation is the difference between the two-way bistatic path and the two-way 
equivalent monostatic path (Fig. 12). Writing out the approximation error, ε, gives; 
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where σ  is the relative position of the hydrophone with respect to the transmitter. The series 
expansion for σ /y<< 1 one obtains  
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where ϑ is the bearing of the target with respect to the position of the co-located transducer 
and r the distance between the co-located transducer and the target. For a far field condition, 

PCA holds when 0
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Fig. 12. Geometry of the phase centre approximation. Tx, Rx, PC are respectively the 
position of the transmitter, the receiver and the phase centre position. The target is located at 
position (x,y). 

5.2 Array geometry and platform displacement 
A 1D array consisting of 15 receivers displaced at ΔRx=21.88 cm is used in the simulator. The 
sonar speed has been chosen to be v8=1.2763 m/s and the pulse repetition time (PRT) to be 
T=0.6 s. The transmitter situates in the middle of the receiver array leading to a phase centre 
array as indicated in Fig. 13. When a higher platform speed is chosen, less overlapping 
phase centres will exist. This means that for being able to perform a DPCA motion 
estimation the platform speed will be rather moderate. 

 
Fig. 13. The number of overlapping phase centers for a 15 hydrophone array with a 
displacement of 7ΔPC leading to 8 overlapping PC’s between ping n and ping n+1. The 
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position of the 15 receivers for ping n+1 was shifted for better presentation. In reality PC 
Rx(1) of ping n overlaps with PC Rx(8) of ping n+1 etc. The diagonal in Rx(8) indicates that 
at this position there is also a transmitter element present. 

The following formula can be used to define the platform speed for a given PRT in order to 
have n ≤  H, with H the total number of receivers in the array, overlapping phase centres; 

 ( )
PRT

nHv PCΔ−
= .  (50) 

Due to these overlapping phase centres between two consecutive pings, a correlation 
analysis can be performed to get an idea about the motion errors. Therefore the notion of x-
lag (cross-range direction) and t-lag (range direction) has to be introduced. 

5.3 The notion of x-lag 
When the platform displacement is chosen like mentioned in section 5.2, eight receivers will 
overlap for two consecutive pings like shown in Fig. 13. However in real situations the 
platform motion will deviate from this ideal trajectory. When the speed of the platform will 
be lower than v8, Rx1(n) will no longer collocate with Rx8(n+1). Here, to indicate the receiver 
number a subscripted index is used, and the ping number is given between brackets. 
Assuming that the platform speed was only v=1.0940 m/s instead of v8, than Rx1(n) will 
collocate with Rx7(n+1), Rx2(n) with Rx8(n+1), .. and Rx9(n) with Rx15(n+1). Therefore the x-lag 
will be used to determine the along track motion of the platform. Due to the fact that the 
data volume on which the DPCA will be applied has to be kept as small as possible, one 
stocks only a limited amount of receiver returns. First of all one makes a mean speed 
estimation of the platform (most reliable is the autopilot speed of the vessel). Corresponding 
this speed one knows the approximate overlapping phase centres by the use of equation 
(50). Only those receiver returns will be considered in the DPCA analysis and corresponds 
to an x-lag = 0. An x-lag=+1 will be executed on Rx2-8(n) and Rx8-14(n+1) as shown in Fig. 14. 
In this analysis 5 x-lags are tested going from –2, -1, 0, 1, 2, being sensitive in detecting speed 
deviations between v=1.641 m/s for an x-lag=-2 and v=0.9116 m/s for an x-lag=+2.  
From Fig. 14 one sees that the correlation for an x-lag =-2 or +2 is performed on 6 receivers 
for each ping, for an x-lag=-1 or +1 it is performed on 7 receivers and for an x-lag=0 it is 
performed on the eight receivers that were memory stacked. 

5.4 The notion of t-lag 
As mentioned before, the x-lag notion refers to the receiver array, while the t-lag notion 
refers to the range. Therefore, the t-lag will be used to determine the time delay leading to a 
estimation of the sway and the yaw. In the DPCA analysis, for each x-lag♦, a cross 
correlation is taken between the two consecutive ping data with a chosen t-lag of 8 based on 
following expression: 
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♦ Here 5 different x-lags are considered, leading to 5 cross correlation plots as shown in Fig. 
15. 
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where m indicates the value of the t-lag (i.e. shift in the slant range between the two vectors f 
and g), f and g are the overlapping Rx couple for respectively ping n and ping n+1 and 

∗g represents the complex conjugate of g. Therefore, for each overlapping Rx couple, one 
obtains 17 cross correlations if a t-lag of 8 is chosen (Fig. 15). For a t-lag of 8 m runs from –8, -
7, …,0, 1, …7, 8. The cross correlation is normalized in a way that the autocorrelations at 
zero lag are identically 1.0. 
 
 

 
 

Fig. 14. The overlapping receivers between ping n and n+1 for the different x-lags under 
consideration (-2, -1, 0, 1, 2). The receivers indicated with the green bar are the ones that will 
be cross correlated. The receivers surrounded in red are the ones that are memory stacked 
during the DPCA processing. Each receiver contains the time series containing the echo 
information.  

Thus for an x-lag=-1 the cross correlation takes place between 7 phase centre couples (see 
Fig. 16.), i.e. (Rx1(p),Rx9(p+1)), (Rx2(p),Rx10(p+1)), …, (Rx7(p),Rx15(p+1)). The x-axis in the cross 
correlation pots represents those couples and is called Rx couple id. Remark that an Rx couple 
id=1 for an x-lag=-1 corresponds to (Rx1(p),Rx9(p+1)) whereas an Rx couple id=1 for an x-
lag=+1 corresponds to (Rx2(p),Rx8(p+1)). Remark also that the number of Rx couple ids 
depends on the x-lag that is considered. There are 6 couples for x-lag=+2 or –2, 7 couples for 
x-lag=+1 or –1 and 8 couples for x-lag=0. Once the Rx couple id is chosen, (lets take for 
instance (Rx4(p),Rx12(p+1))) the slant range vectors are correlated with a y-ordinate given by 
the chosen t-lag=8. Fig. 17 is an illustration of the t-lag=-4, 0 and +4 for an x-lag=-1 and for 
the first receiver couple id. 
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Fig. 15. Cross correlation ( m
fgc ) with a t-lag of 8, giving 17 y-samples and 6, 7, 8, 7, 6 x-

samples for the respective –2, -1, 0 , 1, 2 x-lags. 
 

 
Fig. 16. (Slant range - phase center)-representation for an x-lag= -1 between ping p and p+1. 
The receiver (i.e. more precisely the phase center corresponding a particular Rx) couples are 
(Rx1(p),Rx9(p+1)), (Rx2(p),Rx10(p+1)), …, (Rx7(p),Rx15(p+1)). 

 
Fig. 17. Respective t-lag= -4, 0 and +4 representation of the Rx couple id=1 (i.e.  
(Rx1(p),Rx9(p+1))) for the x-lag= -1. The gray slant range bins will not contribute in the 
calculation of the cross correlation given in equation (51). 

Rx couple 

t-lag 
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5.5 Beam forming on the cross correlation  
To estimate the amplitude and angle of arrival one can perform beam forming on the cross 
correlation plots. But first, a general theory on beam forming is introduced in order to be 
able to explain the extension of this theory onto the cross correlation plots. This extension 
will form the core of the DPCA motion estimation idea. 

5.5.1 Spatial time delay  
Fig. 18. shows a linear array of equally spaced hydrophone elements being intercepted by a 
propagating wave front at beam angle θ. To make the far field approximation of the top 
figure one makes the following assumptions; 
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The corresponding spatial time delay associated with the distance xn is given by 
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where c is the velocity of the wave and n the receiver under consideration. The 
corresponding spatial phase delay is given by 

 nx x
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Fig. 18. Equally spaced linear array of hydrophone elements being intercepted by a 
propagating wave front at beam angles θj for the near field configuration (left) with beam 
angle θ  for the far field (right) approximation. 
It is usually more meaningful when discussing array performance to express the phase 
delays in terms of the carrier frequency f0 and the array frequency fa. The array frequency is 
the frequency whose half-wavelength is equal to the inter hydrophone spacing d, i.e.  
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Substituting this and (53) into (55) yields 
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5.5.2 Beam steering  
An array can be electronically steered by introducing processing phase or time delays into 
the hydrophone outputs. The processing delay inserted in series with the nth element output 
in order to steer the array at angle θ0 is given by 
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where Δrn is the path correction due to the steering of the beam (Fig. 19.). If the steering 
angle is around the central receiver, 
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The beam forming process sums the delayed outputs from the hydrophone elements to 
generate a beam output voltage. This beam voltage can be written in a normalized form 
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where 0sinθ
π

φ
af
f

=Δ is the processing phase increment. Let )(0 kθ  represent the kth beam-

steering angle, than 
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represents the processing phase increment associated with the kth beam-steering angle. 
Restricting the beam angles )(0 kθ  such that 
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Substituting the value of )(kφΔ into equation (61) yields 
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Fig. 19. Steering the multiple hydrophone array at angle θ0. 

From equation (62) and (63) one obtains, 
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with 

 
c

fLffNk hah =≤≤
2

)/(0   (66) 

with Lh the synthetic aperture over the overlapping h receivers. Equation (64) is used to 
beamform the cross correlation plots, which leads to a correlation beam. The y-axis indicates 
still the different t-lags, whereas the x-axis represents the look angle. 
 

 

 
Fig. 20. The beam formed cross correlation matrix before and after interpolation. The 
interpolation is done along the t-lag with an over sampling factor of 8, meaning that 17 t-
lags will become 136. 

A restriction on the look angle is chosen between θ=–1.1 degree till θ=1.1 degree 

corresponding 
π

180
0Lf
c

± . The result of the beam forming on one particular cross correlation 

plot is shown in Fig. 20. In order to find the correlation peaks one has first to smooth the 
correlation beams using for example a linear interpolation. 
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5.5.3 Correlation peaks and temporal delays 
To find the correlation peaks and the temporal delays as a function of the viewing angle a 
parabolic maximum finder was designed. For a parabol given by 2

210)( xaxaaxf ++= , the 
refined analytical maximum is given by 

 
2

120
21 4

4))2/((
a

aaaaaxf −
=−=   (67) 

Since the 3 point parabolic fit is performed on a normalized dataset, one has to convert the 
maximum found between –1 and 1 back to its initial scale. For that a simple interpolation is 
performed. The representation of the 3 points, on which the parabolic fit is performed, is 
shown by the blue crosses on Fig. 21., the result of the parabolic fit is shown by the green 
line. The maximum of the parabol is shown by the blue square. One sees a small correction 
to the integral maximum value towards the new refined maximum. 
 

 
Fig. 21. Illustration of the parabolic maximum finder. 

For each x-lag (i.e. –2, -1, 0, 1, 2) the maximum for each look angle is determined on the cross 
correlation plots after beam forming. Those maxima as function of the look angle are shown 
in the second line of Fig. 22. The corresponding phase delays are shown in the bottom line of 
Fig. 22. So for each x-lag the best beam is found containing the best beam angle for which 
the envelope reaches a maximum. Further, the delay that corresponds with the best beam 
angle is considered the best delay. When the best beam angles are set out as function of the 
x-lags, the parabolic maximum finder is used to find the corresponding best x-lag. In general 
this best spatial lag Blag(x) will not be an integer value but a real number and corresponds to 
a measure for the surge estimation via, 

 2/)( dxBSurge lag= .  (68) 
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The best lag delay is a measure for the sway estimation via, 

 2/)( CdelayBSway lag= .  (69) 

And the best look angle θ corresponding this best lag is a measure for the yaw estimation 
via, 

 LBYaw lag /)( λθ= .  (70) 

 

 
Fig. 22. Each column represents one x-lag, going from –2 (utmost left) to +2 (utmost right). 
The first line represents the cross correlation plots after beam forming. The x-axis represents 
the look angle going from –1.1 till 1.1 degree. For each look angle the 3 point maximum is 
defined and is shown in the figures at the second line. The third line represents the 
corresponding phase delays. 

For each successive ping-pair the surge, sway and yaw can thus be extracted as is shown in 
equation (68), (69) and (70). The result of the sway estimation compared to the actual sway 
that was generated in the simulator is shown on the left-hand side in Fig. 23. The red crosses 
represent the DPCA sway estimations between a set of different ping-pairs. The line 
represents the actual generated sway or true sway. On the right-hand side of Fig. 23 the 
difference is shown between the estimated sway and the true sway expressed in mm. The 
highest difference between the true and estimated sway is 2 mm, which is well within the 
1/10th of the applied wavelength (λ=3 cm for a carrier frequency f0=50 kHz). 
Fig. 24 shows the result of the yaw estimation compared to the actual yaw as a function of 
the ping number (left). The yaw values are expressed in radians. The absolute error between 
the true and the estimated yaw is of the order of 10-4 radians (right). 
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Fig. 23. Result of the sway estimation (red crosses) compared to the simulated sway or 
actual sway (full line) as a function of the ping number (left). The difference between the 
actual sway and the estimated sway expressed in mm (right).  
 

 
 

Fig. 24. Result of the yaw estimation (red crosses) compared to the simulated yaw or actual 
yaw (full line) as a function of the ping number (left). The difference between the actual y 
and the estimated yaw expressed in deg (right). 

6. Motion correction 
The correction of the surge, sway and yaw motions are done following the estimation of the 
x-and t-lag analysis obtained in Section 5. 
Let (O,x,y) be the slant range plane (Fig. 23.), with Ox the along-track, Oy the across-track 
and  (xp,yp) the coordinates of Cp=(Tp+Rp)/2. Tp and Rp are respectively the centres of the real 
transmitter and receiver position at ping p and θp is the angle between Oy and the bore-sight 
to the physical aperture. Than the relative position of the sonar platform can be expressed 
as, 
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Fig. 23. SAS trajectory representation in the slant range plan 
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where γp and ξp are respectively the DPCA sway and yaw between pings p and p+1. The 
angles θp have been assumed small (i.e. sin θ ≈ θ). The quantity (yp+1 – yp), which can be 
interpreted as the physical sway between successive pings, is the sum of three terms. The 
first is the DPCA sway and the other two result from the heading of the physical reception 
antenna at ping p and p+1. The geometrical centre of the DPCA and the one of the physical 
array are separated by D/2. This leads to a difference between the real cross-track position 
and the cross track position of the associated phase centres (D(θp+θp+1)/2). The estimated 
trajectory can be expressed as: 
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The accumulated errors pyδ and pξδ  on the DPCA are given by  
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The most important effect on SAS processing is the cross track errors. One can see in 
equation (73) that the along track error depends on the accumulated errors of the DPCA’s 
sway and yaw. In a case where there is only DPCA sway errors ( pξδ =0) they accumulate 
like a random walk. In a case where there is only DPCA yaw errors ( pγδ =0) they 
accumulate like an integrated random walk. In the last case the errors accumulate much 
faster and lead to a high correlated pattern of phase errors along the SAS. 
The differences in cross track as well as in along track positions are leading to a time delay 
which can be removed by convolving the measured echo with the appropriate delta 
function δ(t-Δτ), 

   ( ) )()(),(),( }{ ututtttuteeutee hyawsway
raw
hh Δ+Δ=ΔΔ−⊗= with         δ   (74) 

where raw
hee  represents the raw data registered at hydrophone h as a function of the delay 

time t and the azimuth position u.  hee represents the motion compensated signal. In 
practice, instead of performing a convolution, one goes to the frequency domain (ω,k) using 
the fast Fourier transform in two dimensions, to perform a simple multiplication, 

 ( ) ( ) ( )tikEEkEE uhuh Δ−= ωωω exp.,, ' .  (75) 

8. Summary 
Synthetic Aperture Sonar (SAS) is a revolutionary underwater imaging technique providing 
imagery and bathymetry at high spatial resolution with large area coverage. The 
implementation of synthetic aperture sonar utilising multiple pings to create a virtual long 
array for range-independent resolution was inadequate due to lack of coherence in the 
ocean medium, precise platform navigation and high computation rates. Moreover, SAS is 
far more susceptible to image degradation caused by the actual sensor trajectory deviating 
from a straight line. Unwanted motion is virtually unavoidable in the sea due to the 
influence of currents and wave action. In order to construct a perfectly-focused SAS image 
the motion must either be constrained to within one-tenth of a wavelength over the 
synthetic aperture or it must be measured with the same degree of accuracy.  
The technique known as Displaced phase centers array (DPCA) has proven to be adequate 
technique in solving the problem of SAS motion compensation. In essence, DPCA refers to 
the practice of overlapping a portion of the receiver array from one ping (transmission and 
reception) to the next. The signals observed by this overlapping portion will be identical 
except for a long track and time shifts proportional to the relative motion between pings. 
Both shifts estimated by the DPCA are scalars representing the projection of the array 
receiver locations onto the image slant plane and can be used to compensate for the 
unwanted platform motion. Thus, the delays observed in the image slant plane can be used 
to refine the surge, sway and yaw motions.  
With advances in innovative motion-compensation, synthetic aperture sonar is now being 
used in commercial survey and military surveillance systems. Emerging applications for 
SAS systems include economic exclusion zone mapping (EEZ), mine detection and the 
development of long range imaging sonar for anti-submarine warfare. 
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Although the development of precise navigation sensors and of stable submerged 
autonomous platforms the motion compensation processing is still a crucial element in the 
image reconstruction, pre- and/or post-processing. 
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1. Introduction   
In radar and sonar signal processing it is of interest to achieve accurate estimation of signal 
characteristics. Recorded pulse data have uncertainties due to emitter and receiver noise, 
and due to digital sampling and quantization in the receiver system. It is therefore 
important to quantify these effects through theory and experiment in order to construct 
“smart” pulse processing algorithms which minimize the uncertainties in estimated pulse 
shapes. Averaging reduces noise variance and thus more accurate signal estimates can be 
achieved. Considering a signal processing system that involves sampling, A/D-conversion, 
IQ-demodulation and ensemble averaging, this chapter forms a theoretical basis for the 
statistics of ensemble averaged signals, and summarizes the basic dependencies on bit-
resolution, ensemble size and signal-to-noise ratio.  
Repetitive signals occur in radar and sonar processing, but also in other fields such as 
medicine (Jane et al., 1991; Schijvenaars et al, 1994; Laguna & Sornmo, 2000) and 
environment monitoring (Viciani et al., 2008). Practical ensemble averaging is subject to 
alignment error (jitter) (Meste & Rix, 1996), but we will neglect this effect. The effective bit-
resolution of the system can be increased by ensemble averaging of repetitive, A/D-
converted signals, provided that the signal contains noise (Belchamber & Horlick, 1981; Ai & 
Guoxiang, 1991; Koeck, 2001; Skartlien & Øyehaug, 2005).  
Due to varying radar and sonar cross section for scattering objects, or varying antenna gain 
of a sweeping emitter or receiver, the pulses exhibit variation in scaling. In the case of radar 
or sonar, the cross section of the target may then vary from pulse to pulse, but not 
appreciably over the pulse width. The scanning motion of the radar antenna may also affect 
the pulse scaling regardless of the target model, but we can safely neglect the time variation 
of the scaling due to this effect. In the case of a passive sensor, the signal propagates from an 
unknown radar emitter to the sensor antenna, and there is no radar target involved. Only 

                                                 
* The present study was conceived of and initiated during the authors’ employment with the 
 Norwegian Defence Research Establishment, P.O. Box 25, 2027 Kjeller, Norway. 
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the scanning motion of the emitter antenna (and possibly the sensor antenna) may in this 
case influence the scaling. In general, we assume that the scaling can be treated as a random 
variable accounted for by a given distribution function (Øyehaug & Skartlien, 2006). 
In the present chapter we briefly review some of the theory of ensemble averaging of 
quantized signals in absence of random scaling (Sect. 2) and summarize results on ensemble 
averaging of randomly scaled pulses (in absence of quantization) modulated into amplitude 
and phase (Sect. 3). Aided by numerical simulations, we subsequently extend the results of 
the preceding sections to amplitude and phase modulations of scaled, quantized pulses 
(Sect. 4).  In Sect. 5 we discuss how the theoretical results can be implemented in practical 
signal processing scenarios and outline some of the issues that still require clarification. 
Finally, in Sect. 6 we draw conclusions. 

 
Fig. 1. The signal chain considered in Sect. 2. After sampling, the signal is quantized (A/D-
converted) followed by ensemble averaging.    

2. Ensemble averaging of quantized signals; benefitting from noise 
This section considers the statistical properties of ensemble averages of quantized, sampled 
signals (Fig. 1), and demonstrates that the expectation of the quantization error diminishes 
with increasing noise, at the cost of a larger error variance. As the ensemble average 
approximates the expectation, it follows that the quantization error (in the ensemble average) 
can be made much smaller than what corresponds to the bit resolution of the system. We will 
also demonstrate that there is an optimum noise level that minimizes the combined effect of 
quantization error and noise. First, consider a basic analog signal with additive noise; 

 = +( ) ( ) ( ),i iy t s t n t   (1) 

where t is time, and n is random noise. We observe N realizations of y, and the index i  
denotes one particular realization i (or sonar or radar pulse i). We assume that s is repetitive 
(independent of i), while n varies with i. We assume a general noise distribution function 
with zero mean and variance 2σ . The recorded signal is sampled at discrete jt  giving ,i jy , 
and these samples are subsequently quantized through a function Q  to obtain the sampled 
and A/D-converted digital signal , ,( )=i j i jx Q y . We consider the quantization to be uniform, 
i.e. the separation between any two neighboring quantization levels is constant and equal to 
Δ. The probability distribution function (pdf) of ,i jx is discrete and generally asymmetric 
even if the pdf of n is continuous and symmetric.  

2.1 Error statistics  
We define the error in the quantized signal as , ,= −i j i j je x s  accounting for both noise and 
quantization effects. The noise in different samples is uncorrelated and we assume that the 
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correlation time is sufficiently small such that the noise between different time-samples is 
also uncorrelated.  
To illuminate the effect of ensemble averaging, we consider the one-bit case for which the 
quantizer has two levels: 0 and 1. If the input is larger than 1/2 the output will be 1, 
otherwise the output is 0. Consider a constant “signal” 1/ 2=js . For zero noise the output is 
always 1, giving an error of 1/2. If we introduce noise with a symmetric pdf with zero 
mean, the quantizer output “flips” between 0 and 1 randomly.  The expectation value of the 
output is then 1/2, since we expect an equal number of zeroes and ones on the output, hence 
the expectation value of the error is zero. If the input signal is larger or smaller than 1/2, 
there will be an error such that the expected error of the output is nonzero.  
For Gaussian noise combined with a uniform quantizer with many levels, Carbone and Petri 
(1994) derived  
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It is easy to see that the expected error is reduced and goes to zero for increasing noise. The 
reason for this is that for increasing noise, the discrete pdf of the quantized signal becomes 
an increasingly more accurate representation of the continuous pdf of ,i jy (with expectation 

js ). The pdf of ,i jy  gets “broader” and is thus better resolved on the fixed grid defined by 
the quantizer cells. The expected error attains its largest values for zero noise where it 
becomes a “sawtooth” function of js  and, for intermediate noise, it becomes roughly 
sinusoidal as function of js  (Fig. 2, left), since only the first few terms in the series 
expansion are significant.  
Along with the expectation value of the error, there is an error variance, defined by 

2 2
, , ,Var[ ; ] [ ; ] [ ; ]= −i j j i j j i j je s E e s E e s , which can also be derived in terms of a trigonometric 

series. For Gaussian noise, 
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It is apparent from the exponential factors that in the large noise limit the error variance 
goes to 2 2/12 σΔ +  (Fig. 2, right), i.e. the variance is signal-independent. Both a vanishing 
error expectation, and a variance of σ2 in the large noise limit, are exactly the properties of 
the analog signal before quantization.  

2.2 Expectation of the sample mean  
In the following we consider the ensemble average of ,i jx , 
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j i j
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x x
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 (4) 

Ensemble averaging has the beneficial effect of reducing the variance, as we expect from 
basic statistics. Using the asymptotical relations above, one can show that the variance 
follows the usual 1/N-law in the large noise limit, i.e. the ensemble average variance goes to  
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Fig. 2. Signal-dependent expected error (left) and variance (right) for Δ = 1 and three noise 
levels; σ = 0.05 (full line) σ = 0.2 (dashed) and σ = 0.5 (dash-dotted). In (B), the straight line 
Δ2/12+σ2 is plotted to indicate the convergence towards this value with increasing noise. 

( )2 2/12 /σΔ + N  with increasing noise. Thus, the variance of the ensemble average can be 
made arbitrarily small for increasing ensemble size N. It is important to note that the 
expectation of the ensemble average converges to the input signal for increasing noise level. 
Noise is therefore beneficial in this respect, at the cost of a larger variance that can of course 
be compensated by increasing N. 
Furthermore, for small noise, the expectation of the ensemble average differs from the input 
signal. Ensemble averaging will not remove this difference, since it originates from the 
deterministic property of the quantizer and not from the noise. We illustrate the effect of 
noise in Fig. 3, where we compute the average of a sinusoidal with Gaussian noise with 
variance σ2 and use a simple roundoff to integer numbers as the quantizer function (i.e. 
Δ=1). With no noise we obtain a staircase function as expected (Fig. 3, upper panel). With 
increasing noise, the staircase function is smoothed out to resemble the sine-wave (Fig. 3, 
lower panels). 

2.3 Mean square error (MSE) of the sample mean  
With the sample mean as the measured quantity, the associated error is = −j j je x s . We note 

that as the sample mean tends to the expectation value as N tends to infinity, je  tends to 
,[ ]i jE e . For Gaussian noise and for sufficiently large /σ Δ , the mean square error MSE of 

the sample mean, obtained by averaging ( )2
je  over all discrete samples [1,..., ]∈j M , is 

(Skartlien & Øyehaug, 2005), 
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When N is given, one can ask what are the bounds on σ to obtain super-resolution? For 
fixed 2N ≥ , the requirement 2MSE /12< Δ  defines the super-resolution interval 

max(0, ( ))Nσ . In the case of Gaussian noise, the upper bound max( )Nσ  is given implicitly by  
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for large enough /σ Δ . A remarkable property is that there is an optimal noise optσ  in the 
super-resolution interval max(0, ( ))Nσ  which minimizes the MSE. This optimal noise is 

opt log(2( 1)) /2Nσ π= Δ −  provided that /σ Δ  is sufficiently large and that the noise is 
Gaussian. For N=100, for example, the optimum value for /σ Δ  is close to 0.366, which 
explains the good averaging performance associated with this value in Fig. 3.   
 

 
 

Fig. 3. An example of the effect of ensemble averaging of quantized signals. A sinusoidal 
with unit amplitude (dashed) plus Gaussian white noise is quantized by a simple roundoff 
to the nearest integer (i.e. Δ=1) and then averaged over an ensemble of 100 realizations 
(ensemble average: solid line). In absence of noise we obtain a staircase function (upper 
panel) and, with increasing noise, the staircase function is smoothed out to resemble the 
sine-wave. For the particular value σ/Δ=0.366 the mean square error is a minimum. 
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In summary, the existence of a minimum MSE is a consequence of the balancing between 
quantizer and noise effects. For small noise ( optσ σ< ), the noise tends to remove the effect 
from the quantization error in the sample mean and the MSE decreases with increasing 
noise. For large noise ( optσ σ> ), quantization is roughly negligible compared to the effect of 
the noise itself, and the MSE increases with increasing noise. 

 
Fig. 4. The signal processing chain considered in Sect. 3. After IQ-demodulation, the signal is 
sampled and normalized followed by either (i) ensemble averaging of I and Q and then 
amplitude/phase modulation (in Sect. 3 referred to as Method I, lower branch) or (ii) 
amplitude/phase modulation and then ensemble averaging of amplitude and phase 
(Method II, upper branch).  

3. Ensemble averaging of modulated signals that are randomly scaled  
In this section our focus is on the statistical properties of the ensemble average of amplitude 
and phase of a sequence of randomly scaled, IQ-demodulated pulses. Here we ignore 
quantization effects.  We give the pdf of amplitude and phase modulation of complex 
signals in Gaussian noise, then discuss in which order ensemble averaging of IQ-
demodulated and normalized signals should proceed (whether amplitude and phase should 
be computed for each individual pulse and then averaged or the average of I and Q should 
be used to compute phase and amplitude averages. See Fig. 4 for the two alternative 
methods). Then, we review the theory behind the optimal scaling threshold, which involves 
discarding pulses that have amplitudes below a certain threshold. 
Consider the complex signal ( )Z t  in terms of an IQ-decomposition; = +( ) ( ) ( )Z t I t iQ t . An 
IQ-demodulator provides a signal on this form in a sonar/radar or a radio. Alternatively, 
one may generate the quadrature signal by Hilbert transformation. To include random noise 
and scaling, we adopt the signal model  

 = +0( ) ( ) ( ),k k kZ t a Z t n t  (7) 

where t  is time delay from pulse start and k is pulse number. The scaling ak is accounted for 
by a general distribution p(a), where a  is a positive, real number. The noise is complex and 
Gaussian with variance 2σ . We assume a certain noise correlation function with a 
characteristic correlation time that is sufficiently short such that noise in different pulses is 
uncorrelated. We will in the following consider the phase and amplitude modulations, 
which are 
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( )( ) Arg ( ) ,

( ) Mod( ( )),
k k

k k

t Z t
A t Z t
φ =

=  (8) 

respectively. Both these modulations have a random component due to noise and scaling.  

3.1 Phase and amplitude statistics in general terms  
The starting point to obtain the pdf’s in question, is to consider how the scaled and 
subsequently normalised complex numbers  

 0
( )( ) ( )/ ( ) k

k k k
k

n tZ t Z t a Z t
a

= = +  (9) 

are distributed in the complex plane. It is obvious that the phase of kZ  is unaffected, and 
that the normalized amplitude is accounted for, by the scaling. The associated amplitude 
and phase distributions are obtained by considering the conditional distributions for given 
ak, and then integrating over the scaling distribution p(a).  
We obtain the conditional distribution by using the scaled variance 2( / )aσ  in place of 2σ  in 
the phase distribution for a Gaussian complex variable of variance 2σ  (see Davenport and 
Root, 1958; Papoulis, 1965),  

 
( ) ( ) ( )φ φ

φ φ
π π
− − ⎡ ⎤= + +⎢ ⎥⎣ ⎦

2 2 2 2
2exp cos( )exp sin ( )

( ; , ) 1 2Erf 2 cos( ) ,
2 4

a q a q a q
p q a a q  (10) 

where 2 2
0 /(2 )q A σ= , and Erf denotes the usual error function. With given a, the normalised 

amplitude /A A a=  obeys a Rician distribution (Davenport and Root, 1958; Papoulis, 1965) 
with variance 2( / )aσ  and amplitude parameter 0 0Mod( )A Z= ,  

 ( )22 2 2 2 2 2
0 0 0 0( ; , , ) ( / )exp ( )/2 ( / ).p A A a a A a A A I a AAσ σ σ σ= − +  (11) 

Here, 0I is the modified Bessel function of zero order.  
Integration over ( )p a  yields the phase and amplitude distributions 

 
0

( ; ) ( ; , ) ( ) ,k kp q p q a p a daφ φ
∞

= ∫  (12) 

 0 0
0

( ; , ) ( ; , , ) ( ) .k kp A A p A A a p a daσ σ
∞

= ∫  (13) 

The variances 2
Aσ  and 2

φσ can now be obtained by calculation of the second moments of 

0( ; , )kp A A σ  and ( ; )kp qφ .  

3.2 Order of ensemble averaging 
Averaging methods: There are two different ways of generating accurate phase and 
amplitude estimates by ensemble averaging (see Fig. 4): 
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•  Method I, which refers to calculating phase and amplitude of ensemble averaged  I/a 
and Q/a.  

• Method II, which refers to calculating phase and amplitude of each individual 
realization of the pair (I/a,Q/a) before ensemble averaging. 

In radar- or sonar-terms, Method I can be regarded as “coherent integration” and Method II 
as “incoherent integration”, where “integration” is to be understood as ensemble averaging.  
Method I: For sufficiently large ensemble N, the averages of the output of the IQ-
demodulator I  and Q  tend to normal distributions (Gaussian random variables) by 
invoking the Central Limit Theorem from basic statistics. For normalized averaging, the 
joint distribution of andI Q  is also symmetric. One can then immediately use the classical 
“Rician” probability distributions (10) and (11) for the amplitude and the phase, 
respectively, which apply to Gaussian and symmetric joint distributions. Then, for Method I, 
the pdf of the amplitude is of the form (11) with σ replaced by Nσ , where  

 
2

2
2

0

( ) ,N
p a da

N a
σσ

∞

= ∫  (14) 

and the pdf of the phase is of the form (10) with q  replaced by 2 2
0 /(2 )N Nq A σ= .  

Method II: In Method II we calculate the phase and the amplitude of each individual 
realization of the pair (I/a,Q/a), before ensemble averaging.  The phase and amplitude 
modulations are estimated by performing an ensemble average (pulse to pulse average) 
over all available pulses. The ensemble averaged phase and amplitude are 

 
1

1( ) ( ),
N

k
k

t t
N

φ φ
=

= ∑  (15) 

 
1

1 ( )( ) ,
N

k

k k

A tA t
N A=

= ∑  (16) 

where the amplitude ensemble average is normalized and kA is the time averaged pulse 
amplitude for pulse k. We assume that kA estimates ak  with sufficient accuracy such that we 
can neglect the stochastic component of   kA  in the analysis. We note that kA is the average 
instantaneous pulse amplitude over a single pulse k only. The pdfs of ( )k tφ and ( )/k kA t A  
for fixed delay give the variance of the individual terms in the sum. The variance of the 
ensemble average is found by scaling this variance with 1/N, since the individual terms are 
uncorrelated..  
One can show that the joint pdf of  (I/a,Q/a) is non-Gaussian. This can be handled by treating 
the Rician distributions as conditional distributions for given a, and then integrating over 
p(a)  to obtain the non-Rician amplitude and phase distributions  (12, 13). The resulting 
variances can then be calculated numerically. Finally, the variances for the ensemble 
averages are obtained by scaling with 1/N, using the assumption of uncorrelated 
realizations.  
Large SNR: In the large SNR case, the phase variance for both methods tend to the same 
value for 0A σ : In this limit 2 1a q  (for not too small a), such that the phase pdf (12) for 
Method II can be replaced by a normal distribution (see Appendix A of Øyehaug & 
Skartlien, 2006) with variance 
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σ
σ

∞

= ∫
2

2 0
,M2 2

0

/ ( ) .
A p a da

N a  (17) 

Similarly, the phase distribution for Method I has the variance 1/(2 )Nq  in the same limit, 

and it follows that 2 2
,M1 ,M2φ φσ σ= . We conclude that the two methods give different phase 

variance only for moderate signal to noise ratios, which means a low amplitude radar or 
sonar pulse, or on the rising and falling edges of the pulse in general. 
Also the amplitude variance for both methods tend to the same value for 0A σ : In this 
limit, the amplitude distribution tends to a Gaussian near 0A . The integrand of the 
amplitude distribution in (13) is then a Gaussian with expectation 

2
0 0[ ; ] ( / ) /(2 )E A a A a Aσ= +  and it can be shown that 

 
2

2
,M2 2

0

( ) .A
p a da

N a
σσ

∞

= ∫  (18) 

Similarly, the amplitude distribution (11) for Method I has variance 2
Nσ  in the same limit. It 

then follows that  2 2
,M1 ,M2A Aσ σ→  for 0 /A σ → ∞ . We conclude that the two methods give 

different amplitude variances only for moderate signal to noise ratios. 
Comparison of methods: Which of the two methods gives the smallest amplitude and phase 
variance for moderate signal to noise ratios? The answer is non-trivial,  since the 
computation of amplitude and phase is nonlinear. We need to express how the variances 
depend on the noise, the signal amplitude and N. With the phase and amplitude pdfs (10) 
and (11), we obtain for Method I: 

 
2 2 2

,M1 ,M1 0 0

2 2 2
,M1 ,M1 0

( ,[ / ] / ),

([ / ] / ).
A A A A N

A Nφ φ

σ σ σ

σ σ σ

=

=
 (19) 

For Method II, we can assume that the terms in the averaging sum are uncorrelated, and 
obtain the usual 1/N -law,  

 
2 2 2

,M2 ,M2 0 0

2 2 2
,M2 ,M2 0

( ,( / ) )/ ,

([ / ] )/ .
A A A A N

A Nφ φ

σ σ σ

σ σ σ

=

=
 (20) 

The difference between the methods then arises when we scale the argument with 1/N in 
contrast to scaling the variances with 1/N. Either way, the amplitude as well as the phase 
variance decrease with increasing N. Comparing the performance of Methods I and II then 
comes down to establishing which is the smallest of the functions M1( / )f x N  and M2( )/f x N , 
where 2

0( / )x Aσ=  and the f’s express the phase variance or the amplitude variance. Thus, 
given the value of N we should be able to establish for which signal-to-noise ratios Method I 
is favourable over Method II and vice versa. One can expect that the differences between the 
variances of Method I and II vary as function of N and σ in general. Below, we quantify 
these differences for given signal strength and noise level by integrating over the pdf’s, 
when an explicit form is not available.  
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Amplitude: There are two independent parameters in the amplitude pdf; A0 and σ.  We plot 
the output NSR as function of N (Fig. 5A) for σ = 1 and σ = 0.1. In the former case Method II 
performs best, in the latter the methods are virtually indistinguishable. The plot of output 
NSR as function of SNR (Fig. 5B) gives the same conclusion; Method II is the best choice, this 
time by a clear margin for both values of σ. For high SNR, however, the methods are 
indistinguishable; the variances for the two methods coalesce near SNR=10. 
Phase: The variance of the phase depends only on the input SNR via σ= 2 2

0 /(2 )q A .  Fig. 5C 
displays the standard deviation of the phase as function of N (measured in degrees) for σ = 1 
and σ = 0.1. For the former and for low values of N, Method II is the best, otherwise the 
methods have close to indistinguishable variances. Considering variation in input SNR (Fig. 
5D), for low input SNR, Method I is the best, for moderate SNR, Method II is the best. The 
difference between the two methods converges rapidly to zero with increasing input SNR. 
In summary, Method II appears to achieve the smallest variances, the only exception being 
at low-to-moderate input SNR for the phase variance.  

 
Fig. 5. Comparison of Method I and II. Output amplitude NSR σA/A0 as function of (A) N 
and of (B) input SNR A0/σ using Method I (solid  line) and Method II (dashed) for σ = 1 
(blue) and σ = 0.1 (red). Plots (C) and (D) display the same for the phase standard deviation  
(in degrees).   

3.3 Optimum thresholding 
In the preceding subsection we saw that when one considers moderate to good signal to 
noise ratios it is possible to obtain analytic, approximate expressions for the phase and 
amplitude variances (given in eqs. (17) and (18), respectively). Both these variances are 
proportional to the quantity 
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0

( )1 .p aR da
N a

∞

= ∫  (21) 

One can see the possibility of minimising R by rejecting pulses below a certain threshold a0. 
A new truncated distribution p(a;a0) governs the remaining data and we obtain 

 
0

0 2
0

( )1( ) ,
( ) a

p aR a da
n a a

∞

= ∫  (22) 

where 
0

0( ) ( )
a

n a N p a da
∞

= ∫  is the reduced ensemble size. A minimum point exists provided 

that 
0

2( )/
a

p a a da
∞

∫  decreases faster than n(a0) for small a0, and slower than n(a0) for larger a0. 

The existence and location for the optimal threshold depends entirely on the properties of 
p(a). We find that a necessary condition for the existence of a minimum is (Øyehaug & 
Skartlien, 2006),   

 
0

2
min 1( ) ,

2a

a p a da
a

∞
⎛ ⎞ <⎜ ⎟
⎝ ⎠∫  (23) 

where p(a) is the original distribution. Optimum thresholding is further investigated below 
in Sect. 4, where the signals are also assumed to be quantized.  

 
Fig. 6. The signal processing chain under consideration in Sect. 4. The input signal is 
demodulated into I and Q, sampled and quantized before it is normalized. The two 
components are then used to estimate amplitude and phase and finally the ensemble 
averages are computed using amplitude and phase from each individual pulse (Method II of 
Sect. 3). 

4. Ensemble averaged randomly scaled amplitude and phase in quantized 
signals 
This section considers the combination of the signal models that we looked at in Sects. 2 and 
3, i.e. the signal under study has undergone IQ-demodulation, sampling, quantization, 
normalization, modulation into amplitude and phase and, finally, ensemble averaging (Fig. 
6). The complex signal to be considered before modulation is  

 [ ] [ ]0
1 1( ) ( ) ( ) ( ) .k k k k

k k

U t Q Z t Q a Z t n t
a a

= = +  (24) 
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Fig. 7. (A) Typical distribution of the quantization of IQ-demodulated noisy signals in the 
complex (I,Q)-plane. The degree of shading of the markers indicates the frequency of each 
quantization level. (B) Histograms of the distribution (shaded) of noisy signals for I (the 
histogram for Q is similar), amplitude and phase (C, D). The associated discrete 
distributions of the quantized signal are depicted as arrows (not correctly scaled compared 
to the continuous distributions). 

4.1 Statistical properties of randomly scaled and quantized complex signals 
Due to quantization, the complex numbers in (24) follow a discrete pdf depicted as arrows 
in Fig. 7B where the normalized histogram of the Gaussian noise (corresponding to the pdf) 
is drawn for comparison. Deriving a general pdf for amplitude and phase that accounts for 
quantization as well as stochastic noise poses an extremely difficult mathematical problem 
that we do not attempt to solve. Instead we employ a mixture of graphical arguments and 
simulations to shed light on the statistics of these quantities.   
In Fig. 7A there are nine possible complex values for the given noise and quantization levels, 
of which two have identical amplitude and two pairs of points have identical angle, which 
explains that there are eight different attainable values of the amplitude (Fig. 7C) and seven 
different for angle (Fig. 7D). We note that despite the low SNR in this example the 
underlying amplitude and phase pdfs (represented by shaded histograms in Figs. 7C, D) 
resemble very much Gaussian distributions.  
We observe that the amplitude and phase pdfs when quantization is included,  differ both 
qualitatively and quantitatively from the pdfs obtained when quantization is neglected. 
Despite this, the differences between the corresponding variances need not be as large as one 



Ensemble Averaging and Resolution Enhancement of Digital Radar  and Sonar Signals 

 

87 

might expect when comparing the pdfs. For Gaussian noise and σ/Δ sufficiently large, eqs. 
(2) and (3) give the following approximate expression for the variance of a signal sj with a 
given scaling a (not random); 
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a
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 (25) 

With increasing σ/Δ the variance in (25) goes rapidly to ( )2 2 2/12 /σΔ + a  such that the error 
variance becomes signal-independent. In Sect. 3.2 we argued that, in the large SNR limit and 
without taking into account quantization (i.e. Δ=0), this estimate also holds for the 
amplitude variance 2

Aσ and the phase variance multiplied by the squared signal amplitude 
2 2
0A φσ . Thus we expect, at least for small Δ, that eqs. (17) and (18) remain valid with 2σ  

replaced by 2 2/12 σΔ + . Among other things we examine this validity numerically in Sect. 
4.2 below. 
Consider random scaling with a uniform scaling pdf; min( ) 1/(1 )p a a= − on min( ,1)a . The 
corresponding truncated pdf is 0 0( ; ) 1/(1 )p a a a= −  on 0( ,1)a . Straightforward calculus 
applied to eqs. (15) and (16) establishes that, in the large SNR and σ/Δ limits,  
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These estimates are subject to numerical investigation below in Sect. 4.2.   

4.2 Numerical results 
Numerical experiments were performed to demonstrate the validity of the asymptotical 
estimates (26) and to examine the effect of quantization on thresholding. We estimated the 
variances numerically with a uniform p(a), and compared these to the asymptotic values 
obtained analytically. The numerical results estimate the exact variances for all SNR, 
whereas the analytical results are valid only asymptotically for large SNR and σ/Δ.   
The numerical variance estimates are based on a series of realizations of (24). We conducted 
the experiments as follows. Let , 1,...,ka k N=  be a random sequence where the elements are 
uniformly distributed on min( ,1)a , where amin = 0.01. For a randomly selected Z0 (see below), 
the complex numbers 0k k kZ a Z n= +  (where kn  is complex and Gaussian and the real and 
imaginary parts are independent) are computed for 1,..., , 1,...,k N M= = , where k is the 
pulse index, while  is a realization index. Different realizations are necessary for 
estimating the variances numerically.   For each , we estimated the mean values /A A  

and φ  by summing over k. The variances of these averages were estimated by summing 
over .  
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For convenience, the sequence in ak is sorted according to increasing scaling to easily handle 
the thresholding. Each k then corresponds to a scaling threshold ak. Only data with scaling 

ka a≥  were retained and used for signal estimation; for each value of k the mean  
values 〈 /A A 〉 k  and kφ  were computed including ak for indices , 1,...,k k N+ . 
Subsequently, amplitude and phase variance estimates were obtained by averaging over all 
realizations 1,..., M= ; 
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 (27) 

The simulations were performed for three values of the quantization separation Δ. To avoid 
signal-dependent estimates, which is generally the case (see eq. 25), for each Δ we repeated 
the protocol described above 100 times with Z0 selected at random on the circle in the 
complex plane with modulus 4 and thereafter calculated the mean variance estimate.  
Comparing the asymptotical expressions in (26) with the numerical results in Fig. 8, we 
observe that there is a reasonable agreement between numerical and theoretical estimates, 
with two notable exceptions: (i) for small values of a0 and for large noise the numerical 
variances deviate markedly from the theoretical estimates and (ii) for large Δ and small 
noise (in particular for the phase variance), the numerical variances are clearly larger than 
the theoretical estimate. 

 
Fig. 8. Amplitude and phase variances as function of scaling threshold a0 for the specified 
values of σ and Δ obtained by performing the computations described in the main text (solid 
lines) and corresponding asymptotical estimates (eqs. 26, dashed).  
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5. Discussion 
As the test case in Sect. 4.2 shows, it was justified to apply the asymptotic estimates in Sect. 3 
for both phase and amplitude averaging for sufficient levels of SNR ranging from roughly 
10. Although this SNR is reasonable for many practical purposes, the instantaneous signal to 
noise ratio varies throughout the radar/sonar pulse with the instantaneous amplitude. Parts 
of the rising and falling flanks of the pulses will then correspond to short time intervals in 
which the theory should not be applied.  
We adopted a smooth scaling distribution p(a) in our analysis. In a practical situation, only 
the scaling histogram is available. The normalised histogram approximates p(a;a0) and the 
optimal scaling threshold can be obtained by the discrete analog to eq. (23). On the other 
hand, the optimum scaling threshold can of course be computed by brute force, i.e. by 
straightforward estimation of the variance based on available pulse signals and rejecting 
those pulses that contribute to a degraded ensemble average. One interesting possible future 
investigation is to evaluate the brute force and theoretically driven approaches in practical 
situations and compare them in terms of efficiency and reliability.  
In Sect. 2.3 we defined and obtained a mathematical expression for the mean square error 
(MSE) of the ensemble average of a quantized, noisy signal. The MSE is a signal-
independent measure of the average signal variance. When the signals over which we 
average are randomly scaled, there is no obvious way of defining the MSE. One way of 
circumventing this problem is to, as we did in Sect. 4.2 above, calculate variances of a large 
number of randomly selected points and then taking the average in order to achieve 
variances that are roughly signal-independent (Fig. 8). In the future, more sophisticated 
definitions of average variance that account for random scaling as well as quantization and 
stochastic noise should be developed.    
Direct averaging with subsequent amplitude and phase calculation (Method I) provides the 
same results as Method II in the large SNR limit. Method I is potentially a more efficient 
averaging method, since amplitude and phase need not be computed for each pulse. 
However, signal degradation is more sensitive to alignment errors of the pulses before 
averaging; the sensitivity to precise alignment increases for increased carrier frequency due 
to larger phase errors for the same time lag error. This problem is much reduced when one 
performs averaging on amplitude and phase modulations directly (Method II).  

6. Conclusion 
We have reviewed the statistics of (i) averaged quantized pulses and (ii) averaged 
amplitude and phase modulated pulses that are randomly scaled, but not quantized. We 
showed that ensemble averaging should be performed on the amplitude and phase 
modulations rather than on I and Q. In the final point (iii), we analyzed the asymptotic 
statistics for ensemble averaged amplitude and phase modulated pulses that are both 
randomly scaled and quantized after IQ-demodulation. We studied the effect of 
thresholding (rejecting pulses below a certain amplitude) and found that theoretical 
estimates of the variance as function of threshold, closely agree with numerical estimates. 
We believe that our analysis is applicable to radar and sonar systems that rely on accurate 
estimation of pulse characteristics. We have covered three key aspects of the problem, with 
the goal of reducing statistical errors in amplitude and phase modulations.  Extensions or 
modifications of our work may be necessary to account for the signal chain in a specific 
digital system.      
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1. Introduction 
Systems employing the sound in underwater environments are known as sonar systems. 
SONAR (Sound Navigation and Ranging) systems have been used since the Second World 
War (Waite, 2003), (Nielsen, 1991). These systems have the purpose of examining the 
underwater acoustic waves received from different directions by the sensors and  determine 
whether an important target is within the reach of the system in order to classify it. This 
gives extremely important information for pratical naval operations in different conditions. 
Fig. 1 shows a possible scenario for a sonar operation, in which two targets: the ship that is a 
surface contact and another submarine. In this case, the submarine’s hydrophones are 
receiving the signals from the two targets and the purpose is to identify both targets. 
 

 
Fig. 1. Possible scenario for sonar operation 

Depending on the sonar type, it may be, passive or active. The active sonar system transmits 
an acoustic wave that may be reflected by the target and signal detection, parameter 
estimation and localization can be obtained through the corresponding echoes (Nielsen, 
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1991), (Waite, 2003). A passive sonar system performs detection and estimation using the 
noise irradiated by the target itself (Nielsen, 1991) (Clay & Medwin, 1998), (Jeffsers et al., 
2000). The major difficulty in passive sonar systems is to detect the target in huge 
background noise environments. As much in active and passive mode, the sonar operator, 
(SO) listens to the received signal from one given direction, selected during the 
beamforming, envisaging target identification. This chapter focus on passive sonar systems 
and how the received noise is analysed that may arise. In particular, the signal interference 
in neighbour directions is discussed. Envisaging interference removal, Independent 
Component Analysis (ICA) (Hyvärinen, 2000) is introduce and recent results obtained from 
experimental data are described. The chapter is organised as it follows.  In next Section, the 
analysis performed by passive sonar systems is detailed described. Section 3 introduces ICA 
principles and algorithms. Section 4 shows how ICA may be applied for interference 
removal. Finally, a chapter summary and perspectives of passive sonar signal processing are 
addressed in Section 5. 

2. Passive sonar analysis 
A passive sonar system is typically made from a number of building blocks (see Fig. 2); 
described in terms of its aim and specific signal processing techniques that have been 
applied for signal analysis. 
  

Hydrophone Array Beamforming

Beam select
(Audio)

Detection

Classification

Tracking

Display

Bearing time 

 
Fig. 2. Blocks diagram for passive sonar system 

2.1 Sensors array 
The passive sonar systems rely very much on the ability of their sensors in capturing the 
noise signals arriving in different directions. Typically, sensors (hydrophones) are arranged 
in arrays for fully coverage of detection directions The hydrophone array may be linear, 
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planar, circular or cylindrical. For the experimental results in Section 4, signals, were 
acquired through a cylindrical hydrophone array (CHA) while realizing an omnidirectional 
surveillance. This type of array comprises a number of sensor elements, which are 
distributed along staves. Therefore, the design performance depends on the number of 
staves, the number of hydrophones and the number of vertical elements in a given stave. 
For instance, the CHA from which the experimental tests were derived has 96 staves.  

2.2 Beamforming 
The beamforming operation aims at looking at a given direction of arrival (DOA) with the 
purpose of observing the target energy of a given direction through a bearing time display 
(Krim & Viberg, 1996). The signals are acquired employing the delay and sum (ds) 
technique to realize the DOA, allowing omnidirectional surveillance (Knight et al., 1981). In 
case of the experimental results to be described in Section 4, the directional beam is 
implemented using 32 adjacent sensors as it is shown in Fig. 3. A total of 32 adjacent staves 
were used to compute the direction of interest which gives an angular resolution of 3.75o.  
 

 
Fig. 3. Arrange of hydrophones for beamforming on a determined direction 

Fig. 4 shows a bearing time display. In this figure, the horizontal axis represents the bearing 
position (full coverage, -180 to 180 degrees) and the vertical axis represents time, considering 
one second long acquisition window. This corresponds to waterfall display. The energy 
 

 
Fig. 4. A bearing time display 
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measurement for each bearing at each time window has a gray scale representation. The 
sonar operator relies very much on the bearing time display, the sonar operator relies very 
much on the in the time display for possible target observation. An audio output permits the 
operator to listen to the target noise from a specific direction of interest. 

2.3 Signal processing core 
After beamforming, passive sonar signal processing comprises detection, classification and, 
in some situations, target tracking. For detection, two main analysis are performed; LOFAR 
(LOw Frequency Analysis and Recording) and DEMON (Demodulation of Envelope 
Modulation On Noise). The LOFAR analysis is also used for target classification. 

2.3.1 LOFAR analysis 
The LOFAR is a broadband spectral analysis (Nielsen, 1991) that covers the expected 
frequency range of the target noise as, for instance, machinery noise. The basic LOFAR block 
diagram is shown in Fig. 5.  
 

 
 

Fig. 5. Block diagram of the LOFAR analysis 

As it can be depicted from Fig. 5, at a given direction of interest (bearing), the incoming 
signal is firstly multiplied by a Hanning window (Diniz et al., 2002), In the sequence, short-
time Fast Fourier Transform (FFT) (Brigham, 1988) is applied to obtain signal representation 
in the frequency-domain (Spectral module). The signal normalization follows typically 
employing the TPSW (Two-Pass Split Window) algorithm (Nielsen, 1991) for estimating the 
background noise (see Fig. 6). 
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Fig. 6. TPSW window. 
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Fig. 7. Typical LOFAR display. 

This window will slide along the signal and performing a local average to achieve the 
removal of background noise and making a sign of normalization. This TPSW normalization 
aims at estimation a mean spectrum by computing a local mean for each sample. This makes 
it possible to remove the bias and perform peak equalization, so that the amplitudes in all 
spectrums present similar values.  
Fig. 7 shows a typical display from LOFAR analysis. The horizontal axis corresponds to 
frequency, in this case covering range of 0 to 15.625 Hz, and the vertical axis represents time. 
In this case, 200 acquisition windows (one second long each were accumulated). As can be 
seen in Fig. 7, some rays of often persist over time, thus characterizing the type of target 
being identified. 

2.3.2 DEMON analysis 
DEMON is a narrowband analysis that operates over the cavitation noise of the target 
propeller with the purpose of identifying the number of shafts, shaft rotation frequency and 
the blade rate (Nielsen, 1999), (Trees, 2001). As these parameters provide a detailed 
knowledge about the target propellers and normally the propeller noise is characteristic of 
each contact, this analysis shows good detection capabilities. Fig. 8 shows the block diagram 
of classical DEMON analysis.   
 

 
 

Fig. 8. Block diagram of the DEMON analysis 

Given a direction (bearing) of interest, noise signal is bandpass filtered to limit the cavitation 
frequency range. The cavitation frequency goes from hundreds until thousands of Hz. 
Therefore, it is important to select the cavitation band and obtain the maximum information 
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for ship identification. In sequence, the signal is squared as in traditional demodulation 
(Yang et al., 2007) (Trees, 2001) and the TPSW algorithm is used to reduce the background 
noise (Nielsen, 1991). Using TPSW, it is possible to emphasize target signal peaks. In most 
cases, the signal sampling rate is relatively high, so that the band of interest is sampled with 
coarse resolution with respect to observation needs. Thus, it is necessary to resample the 
signal for better observation in the range. Finally, a short-time Fast Fourier Transform 
algorithm is applied to observe the peaks in frequency domain. Fig. 9 shows a typical 
DEMON plot. The horizontal axis represents the rotation scale (in RPM) while the vertical 
axis correspond to signal amplitude (in dB). This allows target identification, as shaft 
rotation and the number of blades may be obtained. The largest amplitude reveals the speed 
of shaft rotation, while the subsequent harmonics indicate the number of blades. In this 
example, the shaft rotation is about 148 RPM and next hamonics are, 293.6, 441.8, 587.1 and 
735.3 RPM, from which the number of blades can be obtained. 
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Fig. 9. typical DEMON display. 

2.3.3 Classification 
Another important task for passive sonar systems is target classification. Usually classification 
is based on extracting relevant features that characterize target classes and using such features 
to decide whether a detected target belongs to a given class. As already mentioned, features 
are typically extracted in frequency domain using the LOFAR analysis. But the stress, many 
directions of interest and high number of classes, automatic classification often uses 
computational intelligence algorithms to obtain the target class. Neural networks (Haykin, 
2001) have successfully been used for passive sonar signal classification. (Moura, 2007), 
(Torres., 2004);(Seixas, 2001) and (Soares Filho, 2001). Other signal processing techniques have 
been applied to realize the classification task.( Peyvandi, 1998) used a hidden Markov model 
with Hausdorff similarity measurement to detect and classify targets. Another way to perform 
the detection and classification of targets is to use the Prony’s method (Marple, 1991), which 
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provides an alternative time-frequency mapping (signals are modelled through a sum of 
damped sinusoidal components) suitable to acoustic signals. 

2.3.4 Tracking 
Eventually, tracking a target over time may be important. Usually this is perfomed after 
target detection at a specific direction. In some situations, the sonar operator performs 
tracking manually, but modern sonars have an automatic system to support this task. 
Although Kalman filters (Lee, 2004) have often been used to implement passive tracking 
(Rao, 2006), other techniques, (Mellema, 2006) have also been obtaining good results in 
target tracking application. 

2.3.5 Interference 
As it may be depicted from Fig. 9, interference from neighbour bins, as it is the case for 
bearings 190o and 205o, and the self-noise produced by the submarine in which the sonar 
system is installed  may mask the original target features. Thus, when such is the case, a 
preprocessing scheme may be developed aiming at reducing signal interference, facilitating 
target identification.This procedure is addopted in Section 4 using the ICA (Hyvärinen, 2001). 

3. Independent component analysis 
The Independent Component Analysis (ICA) considers that a set of N observed signals x(t) 
= [x1(t), ..., xN(t)]T is originally generated from a linear combination of signal sources s(t) = 
[s1(t), ..., sN(t)]T: 

 (t)(t) Asx =   (1) 

where, A is the NxN mixing matrix (Hyvärinen et al., 2001). Formulated this way, ICA is 
also referred to as Blind Source Separation (BSS) (Cardoso, 1998) and its purpose is to 
estimate the original sources s(t) using only observed data, x(t). A solution can be obtained if 
we find the inverse of the mixing matrix B = A-1 and apply this inverse transformation on 
the observed signals to obtain the original sources.  

 (t)(t) Bxs =   (2) 

A general principle for estimating the matrix B can be found by considering that the original 
source signals are statistically independent (or as independent as possible). High-order 
statistics (HOS) information is required during the search for independent components. 
There are many mathematical methods for calculating the coefficients of matrix B. The 
nonlinear decorrelation and the maximally nongaussianity are among the most applied ones 
(Hyvärinen & Oja, 2000).  There are some indeterminacies in the ICA model, the order of 
extraction of the independent components can change and scalar multipliers (positive or 
negative) may be modifying the estimated components. Fortunately these limitations are 
insignificant in most applications (Hyvärinen et al., 2001). 

3.1 Statistical independence 
Considering two random variables x and y, they are statistically independent if and only if 
(Papoulis, 1991): 
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 )()(),(, yxyx yxyx ppp =   (3) 

where px,y (x, y), px (x) and py (y) are, respectively, the joint and marginal probability density 
functions (pdf) of x and y. Equivalent condition is obtained if for all absolutely integrable 
functions g(x) and h(y) the expression on Eq. 4 holds:   

 )}({)}({)}()({ yxyx hEgEhgE =   (4) 

where E{.} is the expectation operator (Hyvärinen et al., 2001).  
In typical blind signal processing problems, there is very little information on the source 
signals and so direct estimation of the pdfs is a very difficult task. Eq. 4 gives an alternative 
independence measure and is the origin of a class of ICA algorithms that searches for 
nonlinear decorrelation.  
Independent variables are uncorrelated, although, the reciprocal is not always true. Linear 
correlation is verified by second order statistics, while independence needs higher order 
information. In the nonlinear decorrelation methods, nonlinear functions introduce high-
order statistics, making it possible the search for independent components.  
As from Eq. 4, two random variables are statistical independent if they are nonlinearly 
uncorrelated.   As it is not possible to check all integrable functions g(.) and h(.), estimates of 
the independent components are obtained while guaranteeing nonlinear decorrelation 
between a finite set of nonlinear functions (Hyvärinen et al., 2001).  
For example, a well known linear ICA algorithm, proposed by Cichocki and Unbehauen in 
(Hyvärinen & Oja, 2000), searches for independent components while providing 
decorrelation between a hyperbolic tangent and a polynomial function, both applied to the 
input signals (observations). 

3.1.1 Non-gaussianity and independence 
The ICA/BSS model described in Eq. 1 can be re-written as: 

∑
=
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N
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jiji Nisax
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(5)

Considering the central limit theorem (Spiegel  et al., 2000):  “The sum of two (independent) 
random variables is always closest to a Gaussian distribution than the original variables 
distributions”. As described in Eq. 5, the observed signals xi are formed by an averaged 
summation of the sources si. Thus, xi is closer to Gaussian-distributed variables than si. In 
other words, the independent components can be obtained through maximization of non-
gaussianity (Hyvärinen et al., 2001). 
The gaussianity (and consequently the statistical dependence) of a random variable can be 
measured through higher order cumulants. Considering a random vector x, the moment αk 
and central moment µk of order k are defined by (Spiegel  et al., 2000): 
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where α1=mx is the mean of x. If the random variable x is zero mean (mx=0), than for all k 
holds: αk =µk. 
The cumulant κk of order k is defined as a function of the moments (Spiegel  et al., 2000).  
For a zero mean random variable x, the first four cumulants are:  

 01 =κ ;        2
2

2 }{ ακ == xE ;       3
3

3 }{ ακ == xE ;  (8) 

2
24

224
4 3}]{[3}{ αακ −=−= xx EE  

The third and fourth order cumulants are called respectively skewness (κ3) and kurtosis (κ4) 
(Kim & White, 2004). Cumulants of order higher than four are rarely applied in practical 
ICA/BSS problems. Some interesting properties of cumulants are: 

 
(x y) (x) (y)

(x) 0,for k 2 if xis Gaussian 
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k

κ κ κ
κ

+ = +
= >

  (9) 

Therefore, cumulants of order higher than two may be applied to estimate data gaussianity. 
The skewness value, for example, is related to pdf symmetry (κ3=0 indicates symmetry). 
Spanning the interval [−2, ∞), kurtosis is zero for a Gaussian variable. Negative values of 
kurtosis indicate sub-gaussianity (pdf flatter than Gaussian) and positive values super-
gaussianity (pdf sharper than Gaussian) (Spiegel et al., 2000). Examples of Gaussian, sub 
and super-gaussian distributions are illustrated in Figure 10. Kurtosis can be easily 
computed from data substituting expectations in Eq. 8 by sample means.  One disadvantage 
is that kurtosis can be seriously influenced by outliers (observations that are numerically 
distant from the rest of the data), in extreme situations the kurtosis value may be dominated 
by a small number of points (Kim & White, 2004).  Some studies are been conduced with the 
purpose of obtaining robust estimation of high order cumulants, specially the kurtosis 
(Welling, 2005).  
Alternative gaussianity measures can be obtained from information theory (Cover & 
Thomas, 1991). These parameters are usually more robust to outliers than cumulant based 
ones (Hyvärinen et al., 2001). 

 
Fig. 10. Examples of Gaussian, sub and super-Gaussian distributions. 
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For instance, Negentropy of a random variable x is calculated through (Cover & Thomas, 
1991): 

 )()()( xxx HHJ gauss −=   (10) 

where H (.) is the entropy, and xgauss  is a Gaussian random variable with the same mean and 
variance of x.  Entropy is one of the basic concepts of information theory and can be 
interpreted as the level of information contained in a random variable.  Entropy H(x) can 
also be viewed as the minimum code length needed to represent the variable x, considering 
a discrete random variable, entropy is defined as (Shannon, 1948):  

 ( ) ( ) log ( )i i
i

H P a P a= = =∑x x x   (11) 

where ai are the possible values assumed by the variable x, and P(x=ai) is the probability  
that x=ai. 
An important result is that the Gaussian variables have maximum entropy among variables 
of same variance (Hyvärinen et al., 2001). So both entropy and negentropy can be used as 
gaussianity measures. The advantage of J(x) is that it is always non-negative and zero when 
variable x is Gaussian. A problem with the computation of J (.) and H (.) in blind signal 
processing is the pdf estimation (see Eq. 10 and 11). To avoid this, approximations using 
high order cumulants or non-polynomial functions shall be applied  (Hyvärinen et al., 2001;  
Hyvärinen, 1998).   
Another statistical independence measure can be obtained through mutual information. The 
Mutual Information I(x1, x2, ..., xm) between m random variables x = [x1, x2, ..., xm] is 
obtained through (Hyvärinen et al., 2001): 

 ∑
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It is proved elsewhere (Cover & Thomas, 1991) that, more efficient codes are obtained while 
using the set of variables x instead of the individual ones xi, unless when the variables are 
independent ((x1, x2, ..., xm)=0). So, minimization of mutual information leads to statistical 
independence. 
The Kullback-Leiber (KL) divergence, defined through Eq. 13 (Hyvärinen et al., 2001): 
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measures the distance between the two probability densities Px(x) and Qx(x), as it is always 
nonnegative with minimum value zero when both densities are the same. If one pdf is 
Gaussian, maximizing CKL is equivalent to maximize non-gaussianity. The KL divergence is 
proved to be equivalent to mutual information (Hyvärinen et al., 2001). 
Using one of these statistical independence measures, several routines have been proposed 
to find the B matrix (Hyvärinen et al., 2001). Here we consider two which are among the 
most successful ICA algorithms. 
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3.2 JADE algorithm 
The start point for JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithms is 
the realization that BSS (Blind Source Separation) algorithms generally require an estimation 
of the distributions of independent sources or have such an assumption built into the 
algorithm (Cardoso, 1998). It is also noted that, optimising cumulant approximations of data 
implicitly perform this, leading to present a number of approximations to information 
theoretic algorithms that operate on second and fourth order cross cumulant. 
The cumulant tensor is a linear operator defined by the cumulant of fourth order cum(xi, xj, 
xk, xl) (Hyvärinen et al., 2001). This linear operation generates a matrix in form of Eq. 14. In 
this algorithm, the eigenvalue decomposition is considered as a preprocessing. 

 F ( ) ( , , , )i j kl i j k l
kl

m cum x x x x= ∑M   (14) 

Where, mkl is an element of the matrix M that is transformed and x is an nx1 random vector. 
The second order cumulant is used to ensure that data are white (decorrelated)  
(Cardoso, 1998). A set of cumulant matrices is estimated from the whitened data, as shown 
in Eq. 4.Then F(M) is made diagonal through W for some Mi. 

 T
i WMWQ )F(=   (15) 

The minimization of the sum of the squares of the non-diagonal elements of Eq. 15 is 
equivalent to maximization of the sum of squares of the diagonal elements, because an 
orthogonal matrix W does not change the total sum of squares of a matrix. The 
maximization of JADE is a method that gives an approximate joint diagonal of F(Mi). 

 ∑=
i

T
iJADE diagJ 2||)F((||)( WMWW   (16) 

3.3 FastICA algorithm 
Independent components can be extracted from a mixture implementing the principles of 
maximization of nongaussianity, described in terms of kurtosis or negentropy (Hyvärinen et 
al., 2001; Hyvärinen & Oja, 2000; Shaolin & Sejnowski, 1995). Considering a mixture x, one 
defines kurtosis in Eq. 8, where W is the weight matrix, and z is a component vector. There 
is a whitening step as a preprocessing, and thus, z = Vx, where V is the whitening matrix 
and the correlation matrix z is equal to identity, E{zzT}= I. So using kurtosis, it is possible to 
estimate the independent components from the cost function presented in Eq. 17. 

zWx T=  

  )}||||3(E{)]sign[kurt(4|)kurt(| 2WWzWzW
W

zW
−=

∂
∂ TT

T

z   (17) 

To make the algorithm faster, the gradient computation is changed to Eq. 18 a normalization 
was implemented to avoid a W overflow. 

3TT )(E( ))sign(kurt(  zWzzWW ∝Δ  

 ||||/ WWW ←   (18) 
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Then, the FASTICA (PEACH, 2000) optimizes Eq. 19. 

 WzWW 3)}{( −← TE   (19) 

Another possibility for maximizing non-gaussianity is negentropy (Hyvärinen, 1999). The 
classic method of approximating negentropy is using higher order cumulants and 
polynomial density expansions, like G(x) = log[cosh(x)] or –exp(x2/2). Using a gradient 
based method, function derivatives (g)  can be chosen to be applied in FASTICA. 

 WWWzW )}z('{)}z({ TT gEgE −←   (20) 

4. Interference removal 
As already mentioned in Section 2, passive sonar signals detected at adjacent bearings may 
be masked by cross-channel interference. The complexity of the target identification task 
increases proportionally to the interference level. Considering this, blind source separation 
methods (Cardoso, 1998) may be useful as a preprocessing step in passive sonar signal 
analysis as they project the observed signals into directions of maximum independence.  
 

 
                                         (a)                                                                           (b)  
Fig. 11. DEMON analysis at (a) 190° and (b) 205°. 

Consider a particular problem where two targets are present at adjacent directions (190° and 
205°). As illustrated in Fig. 11, the frequency components of 190° target (FA=148 RPM and its 
multiples) are mixed together with information from the 205° direction (FB=119 RPM). The 
same problem exists in the signal measured at bearing 205°. It was also observed that both 
signals (190° and 205°) are contaminated by FC=305 RPM that is the main frequency present 
at direction 076°, see Fig. 12. It is known from the experimental setup that the last bearing 
(076°) contains information from the noise radiated by the submarine where the 
hydrophones array is allocated (self-noise). It can also be verified that, signal measured at 
direction 076o presents interference from target at 205° (FB).  
Independent component based methods are applied in the following sub-sections aiming at 
reducing signal interference and thus, allow contact identification through DEMON analysis 
performed over cleaner data. Signal processing may be performed in both time-domain and 
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frequency-domain. The main advantage of frequency-domain methods is that, after 
DEMON, the signal-to-noise ratio is significantly improved, producing better separation 
results. 

 
Fig. 12. DEMON analysis at  076°. 

Performance comparisons between ICA algorithms applied to passive sonar signal 
separation were conduced in (Moura et al. 2007b) and it was observed that JADE presents 
slightly better performance. Considering this, the results presented in the next sections were 
derived through the application of JADE algorithm to perform ICA. 

4.1 Time-domain BSS 
A simple and straightforward implementation is to perform independent component 
analysis over raw-data. Signals measured at each direction (076°, 190° and 205°) are put 
together in order to compose a three component observation vector. An ICA algorithm 
(JADE) is applied to estimate three (time-domain) independent components, which will 
further be used as inputs to DEMON analysis block. The method is illustrated in Fig. 13. 
 

 
Fig. 13. Time-domain blind signal separation method. 

To obtain quantitative measures of the signal separation performance, the peak amplitude 
values of each frequency component (after DEMON analysis) are compared for both raw-
data and separated signals. Moreover, useful information is also obtained from the full-
width at half of the peak value (Full-Width of Half Maximum - FWHM) of a certain 
frequency component Fx. This measure indicates whether Fx is accurately estimated (shorter 
FWHM) or not (larger FWHM). When ICA is applied, can be observed, from Fig. 14, that, 
considering direction 205°, the amplitudes of interfering frequencies FA and FC were 
reduced from -5.9dB and -3.2dB (in raw-data) up to, respectively, -9.1dB and -4.2dB. The 
background noise level (estimated from the high frequency components amplitude) was 
also reduced from -7dB up to -8.5dB.  
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Fig. 14. DEMON analysis at 205°, for independent signal estimation. 

Unfortunately, through this method, at directions 076° and 190° no significant signal 
separation was observed. The half-peak bandwidths were not modified either. 
A main limitation of this approach is that raw-data is usually corrupted by additive 
underwater acoustic environment noise. It is known that, standard ICA algorithms present 
poor performance in the presence of noise (Hyvärinen et al., 2001). Modifications on the 
traditional ICA model in order to consider additive noise may increase the algorithms 
accuracy and thus produce better separation results (Hyvärinen, 1998b). 

4.2 Frequency-domain BSS. 
An alternative approach is to perform signal separation in the frequency domain. As 
illustrated in Fig. 15, DEMON analysis is initially performed over raw-data and frequency 
information from the three directions are used as inputs for an ICA algorithm, producing 
the independent (frequency-domain) components. 
  

 
Fig. 15. Frequency-domain blind signal separation method. 

As described in Section 2, DEMON analysis basically consists in performing demodulation 
and filtering of acoustic data in order to obtain relevant frequency information for target 
characterization. Most of noise and nonrelevant signals are eliminated by DEMON, allowing 
more accurate estimation of the independent components.  
A particular characteristic is that DEMON analysis is usually performed over finite time-
windows (approximate length = 250ms) and the frequency components are estimated within 
these windows. Aiming at reducing the random noise generated in time-frequency 
transformation, an average spectrum is computed using frequency information from these 
time slots.  
In Independent Component Analysis algorithms the order and the amplitude of the 
estimated components are random parameters and thus different initializations may lead to 
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(a) 

 
(b) 

 
(c) 

Fig. 14. DEMON analysis for both raw-data (measured acoustic signal) and frequency 
domain independent components (FD-ICA) at bearings (a) 076°, (b) 190° and (c) 205°. 



 Advances in Sonar Technology 

 

106 

different scaling factors and ordering (Hyvärinen et al., 2001). As in the frequency-domain 
BSS approach the ICA algorithms are executed after DEMON estimation at each time 
window, independent components from a certain direction may appear in different ordering 
at adjacent time-windows in this sequential procedure. Before generating the average 
spectrum, the independent components must be reordered (to guarantee that the averages 
are computed using samples from the same direction) and normalized in amplitude. The 
normalization is performed by converting signal amplitude into dB scale.  The reordering 
procedure is executed by computing the correlation between independent components 
estimated from adjacent time slots. High correlation indicates that these components are 
related to the same direction. 
Separation results obtained through this approach are illustrated in Fig. 14. It can be seen 
that, the interfering frequencies were considerably attenuated at the independent 
components from all three directions. The higher frequency noise levels were also reduced. 
The results obtained from both time (ICA) and frequency domain (FD-ICA) methods are 
summarized in Table 1 (when Fx frequency width is not available it means that half of Fx 
peak amplitude is under the noise level). It can be observed that, for FD-ICA both the 
interference peaks and the width of the frequency components belonging to each direction 
were reduced, allowing better characterization of the target. The time domain method (ICA) 
produced relevant separation results only for 205° signal. 
 

Freq. Raw-data ICA FD-ICA Raw-data ICA FD-ICA
FB -1,7 -0,8 -3,6 - - -

FC 0 0 0 8 7,9 8,4
FD -1,4 -3,1 -1,3 - - -

FA 0 0 0 4,9 4,9 4,3
2FA -1,4 -1,4 -1,7 5,3 5,3 4,3
3FA -4,1 -4,1 -5,7 8,8 8,8 6,2
4FA -5 -5 -6,7 - - 7,4

5FA -5,3 -5,4 -7,2 - - 11

FB -4,2 -4,1 -9,8 16,6 15,8 -
FC -4,4 -4,4 -8,6 7,7 7,7 -
FD -8,7 -8,6 -16,5 - - -

FA -5,9 -9,1 -9,9 - - -

FB 0 0 0 16,8 16,3 15,2

FC -3,2 -4,2 -6,4 7 6,6 6,5
FD -5,6 -5,8 -9,3 - - -

Direction 190

Direction 076

Direction 205

Peak (dB) Width (RPM)

 
Table 1. Separation results summary 

4.4 Extensions to the basic BSS model 
In order to obtain better results in signal separation and thus higher interference reduction, 
more realistic models may be assumed for both the propagation channel and measurement 
system. 
For example, it is known that, signal transmission in passive sonar problems may comprise 
different propagation paths, and thus the measured signal may be a sum of delayed and 
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mixed versions of the acoustic sources. This consideration leads to the so-called convolutive 
mixture model for the ICA (Hyvarinen et al., 2001), for which the observed signals xi(t) are 
described through Eq. 10: 

 
1

,  1
n

i ikj j
j k

x (t) a s (t k) for i ,...,n
=

= − =∑∑   (10) 

where sj are the source signals. To obtain the inverse model, usually a finite impulse 
response (FIR) filter architecture is used to describe the measurement channel. 
Another modification that may allow better performance is to consider, in signal separation 
model, that sensors (or propagation channel) may present some source of nonlinear 
behavior (which is the case in most passive sonar applications). The nonlinear ICA 
instantaneous mixing model (Jutten & Karhunen, 2003) is thus defined by: 

 F( )=x s   (11) 

where F(.) is a RN→ RN  nonlinear mapping (the number of sources is assumed to be equal to 
the number of observed signals) and the purpose is to estimate an inverse transformation G : 
RN  → RN :  

 G( )=s x   (12) 

so that the components of y are statistically independent. If G = F −1 the sources are perfectly 
recovered (Hyvärinen & Pajunen, 1999).  
Some algorithms have been proposed for the nonlinear ICA problem (Jutten & Karhunen, 
2003), a limitation inherit to this model is that, in general, there exists multiple solutions for 
the mapping G in a given application. If x and y are independent random variables, it is 
easy to prove that f(x) and g(y), where f(.) and g(.) are differentiable functions, are also 
independent. A complete investigation on the uniqueness of nonlinear ICA solutions can be 
found in (Hyvärinen & Pajunen, 1999). NLICA algorithms have been recently applied in 
different problems such as speech processing (Rojas et al., 2003) and image denoising 
(Haritopoulos et al., 2002). 
Although these extensions to the basic ICA model may allow better signal separation 
performance, the estimation methods usually require considerable large computational 
requirements, as the number of parameters increases (Jutten & Karhunen, 2003) e 
(Hyvarinen., 2001). Thus, an online implementation (which is the case in passive sonar 
signal analysis) may not always be possible. 

5. Summary and perspective 
Sonar systems are very important for several military and civil underwater applications. 
Passive sonar signals are susceptible to cross-interference from acoustic sources present at 
different directions. The noise irradiated from the ship where the hydrophones are installed 
may also interfere with the target signals, producing poor performance in target 
identification efficiency. Independent component analysis (ICA) is a statistical signal 
processing method that aims at recovering source signals from their linearly mixed versions. 
In the framework of passive sonar measurements, ICA is useful to reduce signal interference 
and highlight targets acoustic features.  
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Extensions to the standard ICA model, such as considering the presence of noise, multiple 
propagation paths or nonlinearities may lead to a better description of the underwater 
acoustic environment and thus produce higher interference reduction. Another particular 
characteristic is that the underwater environment is non-stationary (Burdic, 1984). 
Considering this, the ICA mixing matrix becomes a function of time. To solve the non-
stationary ICA problem recurrent neural networks trained using second-order statistic were 
used in (Choi et al., 2002) and a Markov model was assumed for the sources in (Everson & 
Roberts, 1999). 
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1. Introduction    
Among all the applications proposed by sonar systems is underwater demining. Indeed, 
even if the problem is less exposed than the terrestrial equivalent, the presence of 
underwater mines in waters near the coast and particularly the harbours provoke accidents 
and victims in fishing and trade activities, even a long time after conflicts. 
As for terrestrial demining (Milisavljević et al., 2008), detection and classification of various 
types of underwater mines is currently a crucial strategic task (U.S. Department of the Navy, 
2000). Over the past decade, synthetic aperture sonar (SAS) has been increasingly used in 
seabed imaging, providing high-resolution images (Hayes & Gough, 1999). However, as with 
any active coherent imaging system, the speckle constructs images with a strong granular 
aspect that can seriously handicap the interpretation of the data (Abbot & Thurstone, 1979). 
Many approaches have been proposed in underwater mine detection and classification 
using sonar images. Most of them use the characteristics of the shadows cast by the objects 
on the seabed (Mignotte et al., 1997). These methods fail in case of buried objects, since no 
shadow is cast. That is why this last case has been less studied. In such cases, the echoes 
(high-intensity reflection of the wave on the objects) are the only hint suggesting the 
presence of the objects. Their small size, even in SAS imaging, and the similarity of their 
amplitude with the background make the detection more complex. 
Starting from a synthetic aperture image, a complete detection and classification process 
would be composed of three main parts as follows: 
1. Pixel level: the decision consists in deciding whether a pixel belongs to an object or to the 

background. 
2. Object level: the decision concerns the segmented object which is “real” or not: are these 

objects interesting (mines) or simple rocks, wastes? Shape parameters (size,…) and 
position information can be used to answer this question. 

3. Classification of object: the decision concerns the type of object and its identification (type 
of mine). 

This chapter deals with the first step of this process. The goal is to evaluate a confidence that 
a pixel belongs to a sought object or to the seabed. In the following, considering the object 
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characteristics (size, reflectivity), we will always assume that the detected objects are actual 
mines. However, only the second step of the process previously described, which is not 
addressed in the chapter, would give the final answer. 
We propose in the chapter a detection method structured as a data fusion system. This type 
of architecture is a smart and adaptive structure: the addition or removal of parameters is 
easily taken into account, without any modification of the global structure. The inputs of the 
proposed system are the parameters extracted from an SAS image (statistical in our case). 
The outputs of the system are the areas detected as potentially including an object. 
The first part of the chapter presents the main principal of the SAS imaging and its use for 
detection and classification. The second part is on the extraction of a first set of parameters 
from the images based on the two first order statistical properties and the use of a mean – 
standard deviation representation, which allow to segment the image (Maussang et al., IEEE, 
2007). A third part enlarges this study to the higher order statistics (Maussang et al., 
EURASIP, 2007) and their interest in detection. Finally, the last part proposes a fusion 
process of the previous parameters allowing to separate the regions potentially containing 
mines (“object”) from the others (“non object”). This process uses the belief theory (Maussang 
et al., 2008). In order to assess the performances of the proposed classification system, the 
results, obtained on real SAS data, are evaluated visually and compared to a manually 
labeled ground truth using a standard methodology (Receiver Operating Characteristic 
(ROC) curves). 

2. SAS technology and underwater mines detection 
SAS (Synthetic Aperture Sonar) history is closely linked to the radar one. Actually, the 
airborne radar imagery was the first to develop the process of synthetic aperture in the 
1950’s (SAR : Synthetic Aperture Radar). Then, it was applied to satellite imagery. The first 
satellite to use synthetic aperture radar was launched in 1978. Civilian and military 
applications using this technique covered enlarged areas with an improved resolution cell. 
Such a success made the synthetic aperture technique essential to obtain high resolution 
images of the earth. Following this innovation, this technique is now frequently used in 
sonar imagery (Gough & Hayes, 2004). The first studies in synthetic aperture sonar occurred 
in the 1970’s with some patents (Gilmour, 1978, Walsh, 1969, Spiess & Anderson, 1983) and 
articles on SAS theory by Cutrona (Cutrona, 1975, 1977).  

2.1 SAS principle 
Synthetic aperture principle is presented on Fig. 1 and consists in the coherent integration of 
real aperture beam signals from successive pings along the trajectory. Thus, the synthetic 
aperture is longer than the real aperture. As the resolution cell is inversely proportional to 
the length of the aperture, longer the antenna, better the resolution. In practice, the synthetic 
aperture depends on the movements of the vehicle carrying the antenna. Movements like 
sway, roll, pitch or yaw are making the integration along the trajectory more difficult.  
The synthetic aperture resolution is that of the equivalent real aperture of length LERA, given 
by the expression: 

 RERA )1(2 LVTNL +−=  (2.1) 
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Fig. 1. SAS principle 

where N is the number of pings integrated, V is the mean cross-range speed, T is the ping 
rate and LR is the real aperture length. 
Hence, the cross-range resolution at range R is given by: 

 
ERA

S L
Rλδ =  (2.2) 

The maximum travel length (N-1)VT corresponds normally (but not necessarily) to the 
cross-range width of the insonification sector, equal to Rλ/Ltr when the transmitter has a 
uniform phase-linear aperture of length Ltr and operates in far field. For large N, the LERA 
given by (2.1) equals approximately twice this width;  hence, the resolution is independent 
of range and frequency, and is given by the expression: 
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Let us note that the cross-range resolution of the physical array δR = Rλ/LR. The resolution 
gain g of the synthetic aperture processing is defined by the expression:  
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2.2 SAS challenges 
Nowadays, SAS is a mature technology used in operational systems (MAST’08). However, 
some challenges remain to enhance SAS performances. For example, a precise knowledge of 
the motion of the antenna will permit to obtain a better motion compensation and better 
focused images. There are also some studies to improve beamforming algorithms, more 
adapted to SAS processing. Another challenge lies in the reduction of the sonar frequency. 
Knowing that sound absorption increases with the frequency in environments like sea water 
or sediment, a logical idea is to decrease imagery sonar frequency. Yet, resolution is 
inversely proportional to frequency and length of antenna. So for a reasonable size of array, 
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the resolution remains quite low, especially for underwater minewarfare. SAS processing 
can then be used to artificially increase the length of the antenna and improve the resolution 
One of the purposes is the detection of objects buried in the sediment. Both civilian (pipeline 
detection, wreck inspection) and military (buried mines detection) applications are 
interested in this concept. GESMA conducted numerous sea experiments on SAS subject 
since the end of the 1990’s. Firstly, in 1999, in cooperation with the British agency DERA, 
high frequency SAS was mounted on a rail in Brest area (Hétet, 2000). The central frequency 
was 150 kHz, the frequency band was 60 kHz and the resolution obtained was 4 cm. Fig. 2 
presents two images resulting from this experiment. 
 

 

 
Fig. 2. On the left, SAS image and picture of the associated modern mine. On the right, SAS 
image and picture of the associated modern mines 

Then, GESMA decided to work on buried mines and conducted an experiment with a low 
frequency SAS mounted on a rail in 1999. It was in Brest area, the sonar frequency was 
between 14 and 20 kHz (Hétet, 2003). Fig. 3 presents results of this experiment. We notice 
the presence of a large echo coming from the cylinder.  
 

 
Fig. 3. SAS image of buried and proud objects at 20 m. C1 : buried cylinder ; R1 : buried 
rock ; S1 : buried sphere ; S2 : proud sphere 

Fig. 3 shows that low frequencies allow to penetrate the sediment and to detect buried 
objects. Moreover, echoes are more contrasted on this image and there is a lack of the 
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shadows for the objects, making the classification more difficult. To go a step further, in 
2002, a low frequency SAS was hull mounted onboard a minehunter (Hétet et al., 2004). 
Frequency was chosen between 15 and 25 kHz and Fig. 4 presents results of these trials 
conducted in cooperation with the Dutch agency TNO, Defence, Security and Safety. 
 

 
Fig. 4. Low frequency SAS images. On the left, SAS image of three cylinders. 
Downwards : proud cylinder, half buried cylinder, buried cylinder. In the middle : pictures 
of the supporting ship, the sonar and the three cylinders. On the right, SAS images of two 
wrecks in the bay of Brest. 
Considering previous figures, low frequency and high frequency SAS images present an 
important difference. High frequency images allow detecting and classifying underwater 
objects thanks to their shadow when low frequency images present no more shadow but 
strong echoes. The idea is thus to use specificities of low frequency SAS to define a new 
approach to detect and classify buried objects. 

3. Underwater mines detection using local statistical parameters 
The key issue when designing a classification algorithm is to choose the right parameters 
discriminating the classes of interest. The two main approaches are (i) use of statistical 
knowledge about the process, (ii) use of expert knowledge, eventually derived from a 
physical model of the process. In this application, the statistical characteristics of the seabed 
pixels are well known and follow statistical laws (Rayleigh and Weibull distributions for 
instance). As a consequence, the data fusion process is based on the comparison of the 
statistical characteristics locally extracted for each pixel and these laws. 

3.1 Statistical description of the SAS images 
The sonar images, as any image formed by a coherent system (radar imagery is another 
example), are seriously corrupted by the speckle effect. They thus have a strong granular 
aspect. This noise comes from the presence of a large number of elements (sand, rocks, etc.) 
that are smaller than the wavelength and randomly distributed over the seabed. The sensor 
receives the result of the interference of all the waves reflected by these small scatterers 
within a resolution cell (Goodmann, 1976). 
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3.1.1 Speckle noise and the Rayleigh law 
Sonar images provided by the sonar system are constructed by the speckle. This bottom 
reverberation comes from the presence of a large number of elements (sand, gravel, etc.) that 
are smaller than the wavelength of the used monochromatic and coherent illumination 
source. These elements are assumed to be randomly distributed on the seabed. As a 
consequence, the sensor records the result of the constructive and destructive interferences 
of all the waves reflected by these elementary scatterers contained in a resolution cell (Collet 
et al., 1998, Schmitt et al., 1996). 
The response of a resolution cell can thus be described by the following: 

 ∑
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with A being the amplitude of the response on a resolution cell and φ representing the 
phase. The phases are usually considered as independent and uniformly distributed 
over ],[ ππ +− . With these assumptions, and if the number of elementary scatterers Nd 
within the resolution cell is large enough, the central limit theorem applies: X and Y can be 
considered as Gaussian random values. Consequently, the probability density function of 
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with α being the Rayleigh’s law specific parameter. This parameter is bound with the 
average intensity of the reflected waves. 
The νth-order moment of A is given by the following: 
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with Γ being the Gamma function ( ∫
+∞ −==+Γ

0
!)1( dttezz zt ). This results in an interesting 

property of the Rayleigh law: the standard deviation σA and the mean μA of the amplitude A 
are linked by a simple proportionality relation:  
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This property leads to modeling the speckle as a multiplicative noise. As a matter of fact, the 
variation of amplitude induced by the speckle and characterized by parameter σA is bound 
by the mean amplitude (μA) with a multiplicative coefficient kR. 

3.1.2 Non-Rayleigh models 
The previous description of the speckle is the most usual and the most popular one. 
However, it is not satisfactory when the number of scatterers within a resolution cell (noted 
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Nd in the previous paragraph) significantly decreases. The central limit theorem does not 
hold and the Rayleigh approximation is no longer valid. This case is frequently observed in 
high-resolution images (Collet et al., 1998, Mignotte et al., 1999) such as SAS images. In this 
case, the amplitude A is better described by a Weibull law: 
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with β being the scale parameter and δ representing the shape parameter, strictly positive. 
These two parameters provide an increased flexibility compared to the Rayleigh law. Note 
that this law is a simple generalization of the Rayleigh distribution (in the special case 

αβ 2= and δ = 2, the Weibull law turns to a simple Rayleigh law). 
For a Weibull distribution, the νth-order moment of A is given by: 
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Therefore, the proportionality between and still holds, but with a coefficient kW(δ ) function 
of δ: 
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Note that for δ = 2, corresponding to the Rayleigh law, we obtain the same coefficient as in 
(3.4). 
Other more complex non-Rayleigh approaches have been proposed in the literature to 
statistically describe the bottom reverberation in high-resolution sonar imaging. One of the 
most famous models is the K-distribution. For this model, the number of scatterers in a 
resolution cell Nd is supposed to be a random variable following a negative binomial 
distribution. The amplitude A is then described by a K-law (called generalized K-
distribution), a three parameters distribution function given by (Gu & Abraham, 2001): 
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where ν1 is the shape parameter, µ is the scale parameter, and ν0 is the parameter bound to 
the number of raw data averaged to figure out the pixel reflectivity. Kν1- ν0 is the modified 
Bessel function of the second kind and order  ν1 - ν0. This distribution describes a rapidly 
fluctuating Rayleigh component modulated by a slowly varying χ² component. 
The νth-order moment of A is then given by: 
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The relationship between σA and μA is preserved, with a coefficient depending on the two 
parameters ν1 and ν0: 
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A Rayleigh mixture has been also proposed to describe SAS data, each scattering material 
within a resolution cell being characterized by one specific Rayleigh distribution (Hanssen et 
al., 2003). 

3.1.3 Application to experimental data 
In this section, the performances of the different statistical models are compared using the 
SAS data presented in section 2 (Fig. 2). For this purpose, two tests are considered: the χ² 
criterion and the Kolmogorov distance (Mignotte et al., 1999). The χ² criterion dχ² is estimated 
according to the following relation (Saporta, 1990): 
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where ki is the number of realizations (number of pixels having the value i), Pi is the 
estimated probability of value i, r is the number of possible values, and n is the number of 
observations (in our case, the number of pixels). 
With k’i being the number of realizations from 1 to i and p’i being the value for i of the 
cumulative distribution function associated with pi, the Kolmogorov distance is defined as: 
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= ...1
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The parameters of the Rayleigh and the Weibull laws are evaluated on the SAS image using 
a maximum-likelihood (ML) estimator. The estimated parameter MLα̂ of the Rayleigh law 
(3.2) is given by the following (Schmitt et al., 1996): 
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where n is the number of pixels and yi is the amplitude of pixel i. 

Parameters β and δ of the Weibull law (3.5) are estimated by MLβ̂ and MLδ̂ , respectively, 
given by the following (Mignotte et al., 1999): 
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with δk = F(δk-1), δ0 = 1 (exponential law), and 
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These estimators are unbiased, consistent, and efficient (Collet et al., 1998). 
The estimation of the K-law parameters is more problematic. Actually, there is no analytic 
expression for the derivative of a modified second kind Bessel function. Consequently, no 
ML estimation can be performed without approximations (Joughin et al., 1993). A moment’s 
method can then be used (3.9), even though it does not offer a closed-form solution. 
These estimators are tested on the image presented in section 2 (Fig. 2 left). Fig. 5 presents in 
solid line the observed distribution (normalized histogram of the image) and compares it 
with the estimated Rayleigh and Weibull distributions (dashed lines).With a simple visual 
inspection, one immediately notices that the Weibull distribution and K-distribution fit the 
observed one better than the Rayleigh distribution1. This confirms the nonvalidity of the 
central limit theorem in the case of high-resolution images obtained in SAS imaging. This 
Rayleigh model will not be used subsequently. It is nevertheless included in this chapter 
 

 
Fig. 5. Rayleigh distribution, Weibull distribution, and K-distribution estimated on Fig. 2 

                                                 
1 In Fig. 2 a shadow can be seen behind the echoes reflected by the mine. Shadows are 
present on most sonar images containing underwater mines lying on the seabed. The 
shadow corresponds to a non illuminated region of the seabed and the sensor receives a 
weak acoustic wave from this region: the signal related to the shadow area essentially 
consists of the electronic noise from the processing chain. It can also come from the 
“differential shadow effect” due to the variation of the shadow zone position during the 
imaging process. The amplitude A of the pixels in this region can thus also be modeled by a 
Gaussian distribution and the models remain valid. 
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since the reader dealing with low-resolution sonar images may use the very same detection 
method proposed in this paper using the Rayleigh distribution. The K-distribution seems to 
provide a better statistical model of the background than the Weibull law. It especially fits 
better the “head” of the observed distribution. This is confirmed by the quantitative 
evaluation presented in Table 1. However, the “tail” of the distribution is accurately 
estimated by both models. 
 

Distribution Estimated 
parameters χ2 criterion Kolmogorov 

distance 
Rayleigh 5.1482ˆ ≈MLα  357.9 2.22 x 10-4 

Weibull 
7.1961ˆ ≈MLβ  

604.1ˆ ≈MLδ  
0.318 1.66 x 10-4 

K 

610300.4ˆ ×≈μ  
882.0ˆ0 ≈ν  
163.31̂ ≈ν  

0.044 1.41 x 10-4 

Table 1. Comparison of the performances of the distribution on the SAS image of Fig. 2 

3.1.4 Choice of the statistical model 
Considering the previous remarks, the K-distribution seems to be a better model than the 
Weibull model. However, as we have seen in section 3.1.2, the estimation of K-law 
parameters is more difficult (no ML estimators). The estimators of the K-parameters are not 
optimal and the estimation takes more time. 
The difference with the Weibull model is not enough to justify this difficulty. Moreover, 
Weibull law is largely used in the sonar community and it made its proofs in their 
applications. That is why we will use the Weibull model in the following, but we keep in 
mind the existence of other models such as K. 

3.1.5 Local statistical description 
In the previous sections, a global statistical description of the SAS images has been given, 
ignoring the presence of any echoes. This is fair since the number of target pixels in the image 
is too small to significantly modify the global statistics. The observed histogram matches 
indeed very well a Weibull law. In this section, we study local first- and second-order 
statistical properties. This is achieved by looking at the data through a small sliding window 
composed of few pixels. In this case, the potential presence of echoes can no longer be ignored. 
Each echo is modeled as a deterministic element with an amplitude D surrounded by a 
noisy background with a Weibull distribution. We assume that the noise correlation is 
smaller than the spatial extension of the target echo and that the amplitude fluctuation of 
the echo is negligible. This is consistent with the experiments where the echoes appear as 
small sets of connected pixels with an almost constant value. This is justified in Fig. 8(b) 
with the pixels corresponding to echoes fitting the predicted ellipse in the mean–standard 
deviation plane. 
We note p the proportion of deterministic pixels (i.e., pixels belonging to an echo) and (1 – p) 
the proportion of random values (i.e., pixels belonging to the background) within a small 
square window (Fig. 6). Considering μ’D(r), μ’N(r), and μ’W(r) , the rth-order noncentral 



From Statistical Detection to Decision Fusion: Detection of Underwater Mines  
in High Resolution SAS Images 

 

121 

moments computed on the “echo part” of the window, the “background part” of the 
window, and the whole window, respectively, the following relation holds: 

 )()()( )1( rNrDrW pp μμμ ′−+′=′   (3.17) 

Considering μX = μ’X(1) and σ²X = μ’X(2) - μ’²X(1), the mean and the variance of X, respectively 
[X can be replaced by D, N, or W, as in (3.17)], we have: 

 NW pDp μμμ )1( −+=   (3.18) 

 ( ) ( ) ( ) 222222 1 WNNDDW pp μμσμσσ −+−++=   (3.19) 

Moreover, echoes are considered as deterministic elements with an amplitude D, leading to: 

 r
rD D=′ )(μ   (3.20) 

and 

         DD =μ   and 0=Dσ   (3.21) 
and, consequently: 

      ( )NNW Dp μμμ −+=   (3.22) 

 ( )2222222
NNWNNW Dp μσμμσσ −−+−+=   (3.23) 

By combining (3.22) and (3.23), we obtain an interesting relationship between σW and μW: 

 ( ) ( )DD NWNWW NN
μλμλμμσ σσ −+−+=+ 22   (3.24) 

with ( )NN D
N

μσλσ −= /2 . It is important to underline that this relation is independent of p. 

Also note that in limit cases, this relation remains valid: in the case of p = 0 (the window 
contains only background pixels), μW = μN  and  σW = σN  ; in the case of p = 1 (the echo is 
filling the whole window), μW = D  and σW = 0, which is consistent with (3.21). Remember 
that intermediate values of p correspond to windows being partially composed of echo 
pixels. 

3.2 First and second order parameters: segmentation 
The proportional relation of the statistical model describing the sea bed sonar data previously 
described is used to extract the two first parameters. The local mean and standard deviation 
are estimated on the SAS image using a square sliding window. These values become the 
coordinates of the processed pixel in the mean – standard deviation plane. 

3.2.1 Mean-standard deviation representation 
Inspired by a segmentation tool applied to spectrograms (Hory et al., 2002), this enables the 
separation of the echoes from the bottom reverberation, both features having different 
statistical characteristics as stated in section 3.1. In (Ginolhac et al., 2005), the link between 
first- and second-order statistics is highlighted using this representation. 
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Fig. 6. Modeled echo and various values of the parameter p: (a) p = 0, (b) p = 1/9, (c) p = 2/9, 
and (d) p = 1 

 
Fig. 7. Building of the mean–standard deviation representation 

Whereas in (Ginolhac et al., 2005) this link is simply illustrated as a justification to use first- 
and second-order statistics, the method presented in this chapter actually performs a 
segmentation of the mean–standard deviation plane. 
The idea is to change the representation space of the data to highlight local statistical 
properties. The chosen space is the mean–standard deviation plane. For each pixel, the local 
standard deviation and the local mean are estimated within a square-centered computation 
window with the following conventional equations: 
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where N is the number of pixels in the computation window ( N = Nx.Ny with Nx and Ny 
being the length and the width of the window, respectively) and yi is the value of pixel in 
the window. The pair ( )WW μσ ˆ,ˆ becomes the coordinates representing the current pixel in 
the mean–standard deviation plane (Fig. 7). The performances of these estimators are 
evaluated by computing their moments (Hory et al., 2002). For the mean estimator, the mean 

( )WM μ̂ and the variance ( )WV μ̂ are: 

 ( ) WWM μμ =ˆ   (3.27) 

 ( )
N

V W
W

2
ˆ σ
μ =   (3.28) 

The mean estimator is unbiased and consistent with a variance varying as 1/N. For the 
standard deviation estimator, the mean ( )WM σ̂  and the variance ( )WV σ̂  are given by: 
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with mW(4) being the fourth central moment computed on the window. These equations come 
from the approximation ( ) ( ) ( )XMXVXV 4≈ with X being a random variable (Kendall & 
Stuart, 1963). This estimator is asymptotically unbiased and is consistent with a variance 
varying as 1/N. 
The choice of the size of the computation window is a tradeoff. On one hand, the variance of 
the estimators [see (3.25) and (3.26)] increases for small values of N. N should thus not be too 
small to enable an accurate estimation. On the other hand, if N is too high, echoes being 
small elements, the proportion p of the deterministic elements in the computation windows 
remains low and echoes are lost in the background speckle [see (3.24)]. Consequently, the 
computation window should be chosen as slightly larger than the spatial extension of the 
echoes, this size depending on the resolution of the sonar image and the quality of the 
preprocessing chain. 
The mean–standard deviation representation of Fig. 2 image is built with a 5 x 5-cm² 
window and is presented in Fig. 9. A general linear orientation is observed, as well as some 
pixels distancing the main direction on the right [see Fig. 8(b)]. Three different linear 
regressions of the data in the mean–standard deviation plane can be computed. They are 
shown in Fig. 8(a). The first line, with a slope of approximately 1.91, corresponds to the 
proportionality relation between the mean and the standard deviation estimated when 
assuming that the bottom reverberation is modeled by a Rayleigh law (3.4). The second line, 
with a slope of approximately 1.57, corresponds to the proportionality relation estimated 
with a Weibull model (3.7). At the given computation accuracy, the same line is obtained by 
a linear regression using a mean square method on the pixels representatives. To describe 
the global linear orientation of the data in the mean–standard deviation plane, the 
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proportionality coefficient estimated with the Weibull assumption clearly outperforms the 
estimation based on a Rayleigh law. This confirms the previous results for the case of high-
resolution data (Table I). In Fig. 8(b), the curve corresponding to the local relationship 
between mean–standard deviation on a computation window (3.24) is plotted considering a 
deterministic element with an amplitude of D = 3.4 × 10-4, approximately corresponding to 
the typical amplitude of the main echo on the original SAS image. This curve is a part of an 
ellipse and is a fairly good estimation of the main structure. Results obtained on other data 
sets could not be presented in this paper for confidentiality reasons. We will see following 
that each structure can be associated with one echo on the SAS image. 

 
                                           (a)                                                                              (b) 

Fig. 8. Mean–standard deviation representation of the SAS image (5 cm x 5-cm window). 
The linear approximations are estimated by the Rayleigh law, the Weibull law, and a 
regression. (a) Linear approximations. (b) Echo model 

 
                                  (a)                                                                                      (b) 

Fig. 9. Comparison between the SAS image (Fig. 2) and its mean–standard deviation 
representation. (a) Zoom of the SAS image. (b) Representation 

The fact that no pixel is on the Y-axis of this representation comes from the size of the 
computation window sensibly larger than the echoes. Therefore, no window contains only 
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echo pixels and all the windows have a part of background. Moreover, the hypothesis of a 
constant deterministic echo is not strictly valid, the pixels of one echo having different, but 
similar, values. However, the value of our model is not called into question to explain the 
results described previously. 
To highlight interesting properties of the mean–standard deviation representation, it is 
compared with the original image. Fig. 9 presents a zoom of the original image featuring  
two mine echoes and the corresponding mean–standard deviation representation. For a 
better understanding, a manual labeling of the sonar image is performed: pixels 
corresponding to the echoes are selected and corresponding points on the mean–standard 
deviation representation can be inspected. It turns out that the cluster of points close to the 
origin of the mean–standard deviation plane corresponds to the bottom reverberation pixels 
on the SAS image, with low means and low standard deviations. On the contrary, horn-
shaped structures (actually parts of ellipses) correspond to the echoes on the sonar image. 
Two main structures can be seen with different positions and dimensions, each one 
corresponding to one specific echo. The extremities of these structures correspond to the 
centers of the echoes which are deterministic elements (high mean and relatively low 
standard deviation). The intermediary points correspond to the transition between echoes 
and background (increasing standard deviation and decreasing mean). These properties can 
be used to classify the different elements on the sonar image by observing the mean–
standard deviation plane and the characteristics of the different structures. 

3.2.2 Segmentation 
Based on the statistical study and the observations previously presented, we propose in this 
section a segmentation method. The aim is to design an automatic algorithm isolating the 
echoes from the reverberation background on the sonar images. The proposed method is 
decomposed into the following steps. 
• The  Weibull distribution best fitting the observed normalized histogram is estimated 

with an ML estimator; 
• The original amplitude data are mapped in the mean–standard deviation plane; 
• In this representation, echoes appear as horn-shaped structures whereas background 

pixels are closer to the origin (low mean and low standard deviation). Therefore, a 
double threshold (both in mean and in standard deviation) allows a separation of the 
echoes pixels from the background pixels. The threshold value in standard deviation is 
set, either manually or automatically as will be described following; 

• Corresponding threshold value for the mean is obtained by multiplying the standard 
deviation threshold by the proportionality coefficient estimated for the Weibull law [see 
(3.7)]; 

• Application of both thresholds in the mean–standard deviation plane isolates 
corresponding echoes pixels in the original image. 

Fig. 10(b) presents an original sonar image. Corresponding mean–standard deviation 
representation is presented in Fig. 10(a) where the dashed line represents the 
proportionality coefficient between mean and standard deviation (estimated with the 
Weibull law), and the solid lines feature the threshold values. Corresponding segmentation 
of the image is presented in Fig. 10(c): the echoes have been correctly set apart. 
To automate the segmentation algorithm proposed, we now propose a method to 
automatically set the standard deviation threshold value (the threshold value for the mean  
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Fig. 10. Segmentation of the SAS image of Fig. 2 (thresholds: standard deviation: 4000; mean: 
6751). (a) Thresholds (in thick lines). (b) SAS image. (c) Result of the segmentation 

is then set accordingly). This is achieved in stepwise fashion by means of a progressive 
segmentation: the results obtained with decreasing standard deviation thresholds are 
computed. For each result, the spatial distribution of the segmented pixels is studied by 
computing corresponding entropies2 with respect to the two axes, until a maximum value 
was reached. For each result, the histograms of the segmented pixels along the X- and the Y-
axis are computed and normalized (so that they sum to 1). See Fig. 12 for one example. 
Then, the entropy Haxis on each axis is computed by the following: 

 ( ) ( )∑
∈

−=
Ii

axisaxisaxis ipipH 2log   (3.31) 

with paxis(i) being the number of segmented pixels (after normalization) in the column 
(respectively, the line) number i, I = {I = 1…Naxis with paxis ≠ 0}, and Naxis being the number of 
columns (respectively, lines) of the original image. These entropies characterize the 
spreading of the segmented pixels in the SAS image: a uniform distribution of the 
segmented pixels over the image leads to high entropies, whereas much localized regions 
lead to small entropies. 
As a consequence, a decrease of the threshold value (more pixels are segmented) leads to an 
increase of the entropy (segmented pixels tend to distribute over the whole image). 
However, this increase is not regular (see Fig. 13): for instance, two slope break points 
clearly appear in the entropy evolution along the azimuth axis and one appears for the sight 
axis (they are pointed out by arrows in Fig. 13. They correspond to the standard deviation 
threshold of about 6250 and 4000, respectively). For a better understanding of these 
irregularities, the segmentations corresponding to different threshold values are presented 
in Fig. 11: when the threshold progressively decreases, the first echo begins to be segmented; 
then, the second echo is segmented as well which explains the rapid increase of the entropy 
(break point 1). Finally, the random background reverberation is reached, with segmented 
pixels spread all over the image. This explains the sharp increase of entropy (break point 2). 
Note that with the two segmented echoes being parallel to the azimuth axis, the first slope 
breaking is only visible on the azimuth axis (the sight axis only “sees” one echo). 

                                                 
2 Entropy-based segmentation algorithms have already been proposed in the literature. For 
example, Pun used an entropy criterion, evaluated on the gray level histogram (Pun, 1980, 
1981). 
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As a conclusion, the optimal segmentation, detecting both echoes with a maximal size but 
with no background element, is obtained with a threshold corresponding to the highest 
slope breaking (with a lower threshold, structures from the background are segmented 
generating false alarms in the system). This optimal threshold value is automatically 
detected from the derivative profile of the entropy. For this purpose, the maximum3 of the 
two entropies defined previously is computed [see Fig. 14(a)]. The maximum of the 
derivative points out the highest slope breaking. However, to detect the real beginning of 
this slope breaking, the threshold corresponding to the half of this maximum is selected [see 
Fig. 14 (b)]. The result obtained on the SAS image from this threshold is presented in Fig. 12: 
the two echoes are correctly segmented. 
Note that the computed threshold value is used in the following for the fusion process. 
 

 
Fig. 11. Segmentation results for different thresholds in standard deviation. (a) Threshold 
1000. (b) Threshold 5000. (c) Threshold 8000 

 
Fig. 12. Segmented SAS image and repartition of the segmented pixels according to the two 
axes. Computed entropies: X-axis: 3.46; Y -axis: 4.58 

                                                 
3 Similar results are obtained with other combination operators (simple sum, quadratic sum, 
etc.). 
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Fig. 13. Entropy variation on the two axes in function of the threshold in standard deviation. 
(a) Azimuth axis. (b) Sight axis 

 
Fig. 14. Maximum of the entropies, its derivative, and setting of the threshold (see the 
arrows). (a) Entropy (max). (b) Derivate entropy 

3.3 Higher order statistics 
Pertinent information regarding SAS data can also be extracted from higher-order statistics 
(HOSs). In particular, the relevance of the third-order (skewness) and the fourth order 
(kurtosis) statistical moments for the detection of statistically abnormal pixels in a noisy 
background is discussed in (Maussang et al., EURASIP, 2007). In this previous work, an 
algorithm aiming at detecting echoes in SAS images using HOS is described. It basically 
consists in locally estimating the HOS on a square sliding window. 

3.3.1 HOS estimators 
The two most classically used HOSs are the skewness (derived from the 3rd-order 
moment) and the kurtosis (derived from the 4th-order moment) (Kendall & Stuart, 1963). 
One should underline that beyond these two standard statistics, other statistics with an 
order greater than 4 can be mathematically defined. However, these statistics are 
extremely difficult to estimate in a reliable and robust way and are thus practically never 
used. Noting μX(r) as the rth order central moment of a random variable X, the definition 
of the skewness is given by: 
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A definition of the kurtosis is given by: 
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The skewness measures the symmetry of a random distribution, while the kurtosis 
measures whether the data distribution is peaked or flat relative to a normal distribution. 
These statistics are theoretically zero for the normal distribution. 
To estimate the skewness and the kurtosis on a sample X of finite size N, k-statistics kX(r) can 
be used. kr is defined as the unique symmetric unbiased estimator of the cumulant κX(r) on X 
(Kendall & Stuart, 1963). An unbiased estimator of the skewness is then given by: 
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Defining the rth sample central moment of X by the following expression: 
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/1 and xi are the N samples of X, we can derive another definition of 

this estimator. Actually, considering the relationships between kX(r) and mX(r), we have: 
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In the same way, we derive the following estimator for the kurtosis: 
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Asymptotic statistical properties are studied for high values of N. Firstly, we can mention 
that these estimators are biased in the first order and that they are correlated (the bias being 
dependent on higher-order moments). However, exact results can be derived in the 
Gaussian case. In this case, M and V being the mean and the variance respectively, we have: 

( ) 0ˆ =XSM  
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In the general case, there is no analytical expression for unbiased estimators independently 
from the probability density function of the random value. However, one should note that 
in the case of a normal distribution, the estimators are unbiased. Nevertheless, variances of 
these estimators are relatively high and it is well known that a reliable estimation requires a 
large set of samples. 

3.3.2 Application on sonar images  
We have seen in section 3.1 that a good statistical model of the background noise in the case 
of high resolution sonar images is given by the Weibull law. With such a non-Gaussian 
distribution, background values of the skewness and the kurtosis are not null anymore. On 
real SAS data, δ [see (3.5)] is function of the resolution of the image, but it is generally 
approximated by 1.65 (Maussang et al., 2004). This corresponds to skewness and kurtosis 
values close to 1 (Fig. 15). 
 

 
Fig. 15. Weibull background HOS values in function of the parameter δ of the Weibull law 

Considering the echoes generated by the mines as deterministic elements, the SNR is 
sufficiently high to have higher values of the HOS if the calculus window contains an echo 
(Maussang et al., EURASIP, 2007). 
Fig. 16 presents the kurtosis results obtained on SAS image of Fig. 3 where all the objects of 
interests are framed by high values of the kurtosis, the size of the frame being linked to the 
size of the computation window. A theoretical model of these frames is used to perform a 
matched filtering and thus refocus the detection precisely at the center of the objects of 
interest. The last step consists in rebuilding the objects using a morphological dilation 
(Maussang et al., EURASIP, 2007). The corresponding detection result is presented in Fig. 
16(c): all the objects of interest are marked by high values, thus providing a good detection. 
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However, some false alarms remain, and the detection is not as accurate as with the first 
algorithm (see section 3.2). This will be taken into account for the fusion process (section 4). 
 

 
                (a)SAS image                             (b) Kurtosis               (c) Detection 

Fig. 16. Detection on the SAS data of Fig. 3 (kurtosis 11 × 11, matched filtering 15 × 15, SD = 3). 

4. Underwater mines detection using belief function theory 
In the previous section, we have presented two algorithms aiming at detecting echoes in 
SAS images. In order to further improve the detection performances, we present a fusion 
scheme taking advantage of the different extracted parameters. The combination of 
parameters in a fusion process can be addressed using probabilities. This popular 
framework has a solid mathematical background (Duda & Hart, 1973). Numerous papers 
have been written on this theory using modeling tools (parametric laws with well-studied 
properties) and model learning. However, these methods are affected by some 
shortcomings. Firstly, they do not clearly differentiate doubt from conflict between sources 
of information. Single hypothesis being considered, the doubt between two hypotheses is 
not explicitly handled and the corresponding hypotheses are usually considered as 
equiprobable. Conflict is handled in the same way. Moreover, probabilities-based fusion 
methods usually need a learning step using a large amount of data, which is not necessarily 
available for an accurate estimation. 
Another solution consists in working within the belief function theory (Shafer, 1976). The 
main advantage of this theory is the possibility to deal with subsets of hypotheses, called 
propositions, and not only with single hypothesis. It allows to easily model uncertainty, 
inaccuracy, and ignorance. It can also handle and estimate the conflict between different 
parameters. Regarding the problem of detection, this theory enables the combination of 
parameters with different scales and physical dimensions. Finally, the inclusion of doubt in 
the process is extremely valuable for the expert who can incorporate this information for the 
final decision. As a conclusion, the belief function theory is selected to address the 
considered application. The proposed fusion scheme is described in the next subsection. 

4.1 Fusion scheme and definition of the mass functions 
For the detection of echoes in SAS images, the frame of discernment Ω defined for each pixel 
is composed of the two following hypotheses: 
i.  “object” (O) if the pixel belongs to an echo reflected by an object; 
ii.  “nonobject” (NO) if it belongs to the noisy background or a shadow cast on the seabed. 
The set of propositions 2Ω is thus composed of four elements: the two single hypothesis, also 
called singletons, O and NO, the set Ω = {O,NO}, noted O U NO (U means logical OR) and 
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called “doubt,” and the empty set called “conflict.” In this application, the world is obvious 
closed (Ω contains all the possible hypotheses). 
The proposed fusion process uses the local statistical parameters extracted from the SAS 
image, as presented in section 3. These parameters are fused as illustrated on Fig. 17: the 
relationship between the first two statistical orders is taken into account by using the 
thresholds in standard deviation and mean estimated by the automatic segmentation, the 
third and fourth statistical moments are used after focusing and rebuilding operations. 

 
Fig. 17. Main structure of the proposed detection system 

The mass of belief is the main tool of the belief function theory as the probability for the 
probability theory. The definition of the mass functions enables to model the knowledge 
provided by a source on the frame Ω. In this application, every parameter is used as a source 
of information. For one given source i, a mass distribution mit on 2Ω is associated to each 
value t of the parameter. This type of functions verifies the following property: 

1)(
2

=∑ Ω⊂A
Am . We propose to define each mass function by trapezes or semi trapezes. 

In the considered application, only the three propositions (O), (NO), and (O U NO) are 
concerned. Four thresholds must thus be defined namely, ti1, ti2, ti3, and ti4 (see Fig. 18). They 
are set using knowledge on local and global statistics of sonar images. They also take into 
account the minimization of the conflicts while preserving the detection performances (no 
nondetection). 
The first mass function concerns the two first statistical orders simultaneously because they 
are linked by the proportional relationship. In order to build the trapezes, we consider the 
pair (mean; standard deviation) as used for the automatic segmentation. Fig. 19 illustrates 
the design of the corresponding mass function, based on the mean standard deviation 
representation. We first describe this function in the general case, the setting of the 
parameters being described afterward.  
Pixels with a local standard deviation below t11 are assigned a mass equal to one for the 
proposition “nonobject” and a mass equal to zero for the others. Pixels with a local standard 
deviation between t11 and t12 are assigned a decreasing mass (from one to zero) for the 
proposition “nonobject,” an increasing mass (from zero to one) for the proposition “doubt,” 
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meaning “object OR nonobject” (O U NO). These variations are linear in function of the 
standard deviation. 
The construction of the mass functions goes in a similar way for t13 and t14. This mass 
function is function of the standard deviation, but, considering the proportional relation 
holding between the mean and the standard deviation, an equivalent mass function can 
easily be designed for the mean. Then the mass function corresponding to the mean being 
redundant with the standard deviation is not computed. 
We propose to set the different parameters of these mass functions using the following 
expressions: 

( )BWMt σ̂1
1 = ; 

( ) ( )BWBW VMt σσ ˆˆ2
1 += ; 

 ( )BWs Vt σσ ˆ
2
13

1 −= ;  (4.1) 

( )BWs Vt σσ ˆ
2
14

1 +=  

where Bσ̂ stands for the background standard deviation estimated, using the Weibull model 
previously computed, on a region of the image without any echo. σs is the threshold in 
standard deviation fixed by the algorithm described in section 3.2. MW and VW are the mean 
and variance of the standard estimators (Kendall & Stuart, 1963) applied on σs considering 
the size of the computation window used for mean standard deviation building. This allows 
taking into account the uncertainty in the statistical parameters estimation by the fuzziness 
of the mass distributions. 

 
Fig. 18. Definition of the mass functions 

The two other mass functions concern the HOSs: the skewness and the kurtosis, respectively. 
As mentioned in section 3.3, the corresponding detector provides less accurate results, which 
prevent a precise definition of the areas of interest. Furthermore, some artifacts generate false 
alarms. As a consequence, the information provided by these parameters will only be 
considered to assess the certainty of belonging to the background. A null mass is thus 
systematically assigned to the proposition “object,” whatever are the values of the HOS. The 
mass is distributed over the two remaining propositions: “nonobject” and “doubt.” This is 
illustrated on Fig. 20: only two parameters remain t21 and t22. 
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Fig. 19. Definition of the mass functions for the first two-order statistical parameters: 

( )WVtttt σ̂3
1

4
1

1
1

2
1 =−=− (the thresholds obtained from the automatic segmentation are in 

red. The mean standard deviation graph given on this figure has been calculated on the 
image presented on Fig. 4). 

 
Fig. 20. Definition of the mass functions for the higher-order statistics (the graphic is valid 
for definition of t31 and t32) 

Parameters t21 and t22 (skewness) are set by considering the normalized cumulative 
histogram, noted H(t), of the HOS values over the whole SAS image. This is illustrated in 
Fig. 21. Considering that pixels with low HOS values necessarily belong to the noisy 
background and that pixels with high values (that might belong to an echo of interest) are 
extremely rare, the following expressions are used: 

( )75.011
2

−= Ht  
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 ( )90.012
2

−= Ht   (4.2) 

These equations are valid for t31 and t32 (kurtosis). This assumes that at least 75% of the 
image belongs to the background, which is easily fulfilled. Similarly, the 10% pixels with the 
highest HOS values are considered as potential objects (doubt has a mass equal to one). 
 

 
Fig. 21. Example of histogram and cumulative histogram of a kurtosis image (after focusing 
and rebuilding, as presented on Fig. 16(c)) 

Based on the local statistical moments of the data, three mass functions have been defined. 
The data fusion aims at improving the detection performances and eases the final decision 
by the expert. It is performed using the following conjunctive rule: 

 3213,2,1 mmmm ⊕⊕=   (4.3) 

where ⊕  is the conjunctive sum: ( )( ) )()( 2121 CmBmAmm
ACB∑ =∩

=⊕  with A a 

proposition. 
Note that, for the sake of simplicity, the superscript t of the mass mit, corresponding to the 
parameter value, is removed from the notations. 
A conflict between the different sources can appear during this combination phase. This 
information is preserved as it is valuable to assess the adequacy of the fused parameters. If 
one of the fused parameters provides irrelevant information, the conflict is high. Further 
investigations are then required to determine the cause of this situation (bad estimation of 
the parameter, limits of the data, etc.). 

4.2 Decision 
The results of the fusion step can be used in different ways, producing different end user 
products: 
i. “binary” representations can be generated, providing segmented images and giving a 

clear division of the image into regions likely to contain objects or not; 
ii. “enhanced” representations of the original SAS image can also be constructed from the 

results of the fusion. 
These representations should somehow underline the regions of interest while smoothing 
the noise, but leave the decision to the human expert. The “binary” representations only use 
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the results of the fusion process in order to classify each pixel according to the belief, the 
plausibility, or the pignistic value. A simple solution consists in thresholding the belief or 
plausibility for the proposition “object,” for instance, all the pixels with a belief above 0.5 are 
assigned to the class “echo.” A binary image is obtained, separating the echoes from the 
background. However, this method requires the setting of the threshold by the user. In 
order to overcome this shortcoming, another strategy consists in associating each pixel to 
the hypothesis (“object” or “nonobject,” resp.) with the highest belief. This unsupervised 
method also provides a binary image. The same methods can be used with the plausibility. 
However, since the space of discernment only contains two elements, plausibility and belief 
actually provide the same results. The corresponding results are presented on different 
datasets on Fig. 22(d) and Fig. 23(d). 
Beyond the binary result, a more precise classification can be constructed by assigning every 
pixel to the class with the highest mass of evidence (including the conflict). The resulting 
image is divided into four classes: “object,” “nonobject,” “doubt,” and “conflict.” 
Corresponding results are presented on Fig. 22(c) and Fig. 23(c). This nonbinary 
representation leaves more flexibility to the expert for the final interpretation. A similar 
strategy has been used in the frame of medical imaging in (Bloch, 1996). 
 

 
Fig. 22. Presentation of the fusion results—image of Fig. 3 
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Fig. 23. Presentation of the fusion results—image of Fig. 4 

These representations are well suited for a “robotics oriented” detection: regions of interest 
are defined, and an automatic system, such as an autonomous underwater vehicle (AUV), 
can be sent to identify the objects. However, such representations lose a lot of potentially 
valuable information (environment, relief, intensity, etc.). Such information may be useful 
for a human expert to actually identify the objects and solve some ambiguities. Therefore, 
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other representations can be considered. For instance, we propose to combine the results of 
the fusion with the original image in order to enhance information. This is achieved by 
weighting the pixels of the original image by a factor linearly derived from the belief (or the 
plausibility) of the class “object.” The intensity of pixels likely NOT being echoes is 
decreased (low belief), thus enhancing the contrast with the pixels most likely being echoes. 
For instance, Fig. 22(b) and Fig. 23(b) feature the resulting images with the weighting factor 
linearly ranging from 0.3 for a null plausibility to 1 for a plausibility of 1. On these images, 
the background tends to disappear, but all potential objects of interest are preserved. 
Finally, another solution consists in performing an adaptive filtering of the sonar image in 
function of the belief. This is described in (Maussang et al., 2005). 

4.3 Performance estimation 
The decision coming from the results of the fusion process is valid only if the algorithm 
generating these results is sufficiently efficient. That is why, assessing the performances of the 
proposed algorithm is a crucial problem. In this section, we propose and discuss different 
approaches. A manually labelled ground truth can be taken into account or not, the evaluation 
can work on a direct analysis of the mass functions or on the classification results. 
Note that in this section mi(A) denotes the mass value associated to the proposition A for the 
pixel i after fusion. 

4.3.1 Intrinsic qualities of the mass functions 
The evaluation of the detection performances can first be addressed by directly considering 
the quality of the resulting mass distribution. The first criterion is the nonspecificity (Klir & 
Wierman, 1999). This value estimates the ambiguity remaining in the mass distribution: it is 
low if the largest part of the mass of evidence is on a singleton or a single hypothesis (certain 
response); it is high if the mass is on a proposition of higher cardinal (doubt on several 
hypotheses). The nonspecificity is defined on a mass m by the following expression: 

 ∑
Ω∈

=
2

2log).()(
A

AAmmN   (4.4) 

where |A| is the cardinal of the subset A. The nonspecificity can take values in the 
following interval: 

 Ω≤≤ 2log)(0 mN   (4.5) 

The bottom limit (zero) is reached in the case of Ω∈ia  with { }( ) 1=iam  (total certainty). It 
reaches the upper limit with ( ) 1=Ωm  (total ignorance). The lower is the nonspecificity, the 
better and more accurate is the detection. A nonspecific mass function gives few false 
responses (limited risk), but brings limited information (all the hypotheses can be true). On 
the contrary, a specific response is accurate, but has a higher risk of error. 
For the addressed application, the space of discernment is composed of two hypotheses. The 
nonspecificity is only computed for the mass associated with the proposition “doubt.” 
Moreover, this value is bound with each pixel of an image. We choose then to define the 
density of nonspecificityestimating the quality of the fusion result on the whole image. It is 
defined by the following expression: 
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with n the size of the image (in pixels) and mi(O U NO) the mass of “doubt” for the pixel i 
after the fusion. The values of this density are between 0 and 1. The lower is this density, the 
more certain is the response of the fusion. 
On the other hand, the higher is the specificity, the higher is the risk of conflict. 
Consequently, the conflict between sources must be analyzed. As previously, we define a 
density of conflict with the following expression: 

 ( )∑
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imC m

n
d

1
)( ø1

  (4.7) 

This density is between 0 and 1. Obviously, the lower is this density, the more coherent are 
the sources of information and the more reliable is the result. 

4.3.2 Assessing the quality of the mass functions when a ground truth is available 
In order to validate the results of the fusion process, additional information can be used. For 
instance a ground truth can be designed by the expert. Fig. 24(b) features such a segmented 
image where the expert roughly isolated the pixels likely to correspond to actual echoes 
(class “objects” (O), in black) from the background (class “nonobjects” (NO), in white). 
If B denotes the environment truth ( Ω∈B , e.g., see Fig. 24: B = O if the pixel is in black, B = 
NO if the pixel is in white), we define the rate of nonspecificity knowing the environment 
truth B: 

 ( ) ( )∑
Ω⊂

=
BA

AAmBmN
/

2log./   (4.8) 

N(m/B) corresponds to the sum of the elements including B, weighted by their cardinal. For 
instance, for one given pixel, if B = O, the rate of nonspecificity is estimated using the 
masses of A = O and A = O U NO, respectively. 
This expression is applied to SAS images and a rate of nonspecificity density associated with 
the hypothesis B can be defined by: 

 ( ) ( )∑
=

∪=
n

i
iiBmN NOOm

n
d

1
/ .1 δ   (4.9) 

with δi(B) = 1 if the pixel i has label B (“object” or “nonobject”) in the environment truth, 
δi(B) = 0, otherwise. In this way, only the pixels with the correct assignment B are taken into 
account in the density estimation. This density consequently allows to characterize the 
nonspecificity previously estimated (see (44)): it can either come from doubt on object 
detection (the most dangerous situation) or on the background. 
It is obvious that addition of the density B = O and the density B = NO is equal to the 
density of nonspecificity of (4.6): 

 )/()/()( NOmNOmNmN ddd +=   (4.10) 
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In a similar way, we define a rate of error knowing the environment truth by the following 
expression: 

 ( ) ( ) ( )∑
=∩

+=
ø

2 1log/
BA

AAmBmEr   (4.11) 

Considering our application, the rate of density of error, associated with B, is defined by: 

 ( ) ( )∑
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d
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with { }NOOB ,∈  and B the complementary set of B. As a matter of fact, for a given B, only 
the mass associated to B is taken into account: B and O U NO have at least one common 
element with B. The total error density can also be calculated by adding the two errors 
corresponding to B = O and B =NO: 

 )/()/()( NOmErOmErmEr ddd +=   (4.13) 

where dEr(m) is an estimation of the detection quality, considering potential mistakes on the 
pixel nature (“object” or “nonobject”). It should be as low as possible. 
In this part, it is assumed that the designed ground truth actually corresponds to the truth. 
However, in real cases, this might be different as the expert might hesitate on the actual 
nature of some pixels (fuzzy boundaries of the objects of interest, false alarms, etc.). This 
results in errors that appear in the error parameters. 
A last criterion measuring the performance comes from the assumption that a decision is 
taken for each pixel, considering the corresponding mass functions. The images of belief and 
plausibility associated with the hypothesis “object” are segmented by applying a threshold. 
50 different threshold values, between 0 and 1, are applied. For each threshold, the detection 
and false-alarm probabilities are computed on the resulting binary image. This is achieved 
by comparing the segmentation with the environment truth. The plot of these 50 points in 
the false-alarm rate versus detection probability plane features the ROC curve that is 
classically used to assess the performances of detection systems in sonar imagery. 
 

 
Fig. 24. Example of image used for the environment truth 
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4.4 Results on sonar images 
The fusion process presented in this paper is applied on the sonar images presented in 
section 2. 
The first image (Fig. 3) features several buried or partially buried objects.  In this image, the 
echoes are hardly visible apart from a partially buried cylindrical mine on the left (at 16m in 
sight). For each pixel and for each parameter, we firstly estimate the mass associated to each 
proposition (“object,” “doubt,” and “nonobject,” resp.) by using the mass functions 
previously defined (Fig. 25, Fig. 26, and Fig. 27, resp.). These images are combined using the 
orthogonal rule in order to obtain the mass images associated to each proposition (Fig. 28). 
This results in an image of belief (corresponding to the mass of the class “object”) and an 
image of plausibility (corresponding to the sum of the masses of the classes “object” and 
“doubt”) associated to the proposition “object” (Fig. 29). One should underline that all the 
objects in the image are efficiently detected: belief and plausibility are close to 1 in the 
regions likely to contain echoes. The plausibility highlights some spurious regions at the 
bottom of the image. These regions have a small area and could be easily removed, for 
instance, by a morphological filter. The first- and second-order parameters are 
complementary to the third- and fourth-order ones. Actually, the doubt on Fig. 25 (1st and 
2nd order) is decreased by the mass “nonobject” brought by the higher-order statistical 
parameters (Fig. 26 and Fig. 27). On the other hand, the doubt coming from HOS is limited 
by the mass “object” and “nonobject” provided by the first orders. The first-order 
parameters provide precise information, but with some false alarms (Fig. 25), whereas 
higher orders provide a few false alarms (consider the “doubt” image), but imprecise 
information (Fig. 26 and Fig. 27). It illustrates the usual duality between certainty and 
accuracy, and how a fusion process can take advantage of multiple complementarities 
sources. 
Some conflict appears in the result of the fusion (Fig. 28(d)). However, it remains low (the 
sum of the masses of the focal elements is strictly inferior but close to 1), and isolated. This 
result shows the good concordance of the parameters. 

4.4.1 Evaluation of the performances on the sonar image 
A first evaluation of the fusion process consists in analyzing the contribution of each 
parameter to the final result. This is achieved by combining the parameters two by two. As 
previously observed, the addition of one HOS parameter decreases the mass “doubt” 
(compare Fig. 30(b) with Fig. 25(b)). The fusion of three parameters further decreases this 
mass (Fig. 29(b)). The more parameters are added to the fusion process, the more accurate is 
the response. Note that the addition of one parameter to the fusion process “selects” more 
accurately the masses: the “object” mass that differs from the values 0 or 1 are fewer. 
A quantitative evaluation can also be completed by estimating conflict and nonspecificity 
densities, independently from the environment truth, or a combination of these values (rate 
of density of nonspecificities and error). The results are listed in Table 2. The results confirm 
the previous qualitative remarks as follows: 
i.    nonspecificity decreases when new parameters are added. Note that this density is high 
      for the two HOS parameters and their fusion; 
ii.  conflict can increase with the addition of one parameter, but this is not obvious in this 
     application. 
That proves the good reliability of the chosen parameters. 
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Fig. 25. Mass images obtained for each proposition after the fusion of the mean standard 
deviation parameter (segmentation) in Fig. 3 

 
Fig. 26. Mass images obtained for each proposition with the skewness parameter in Fig. 3 
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Fig. 27. Mass images obtained for each proposition with the kurtosis parameter in Fig. 3 
 

 
 

Fig. 28. Mass images obtained after fusion of the three parameters in Fig. 3 



 Advances in Sonar Technology 

 

144 

 
Fig. 29. Belief and plausibility object images obtained after fusion of the three parameters in 
Fig. 3 

 
Fig. 30. Mass images obtained for each proposition after the fusion of the mean standard 
deviation (segmentation) and kurtosis parameters in Fig. 3 
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These values also estimate the amount of information brought by each parameter: if adding 
one parameter does not significantly decrease the density of nonspecificity, the 
corresponding parameter can be considered as bringing very little information. Moreover, if 
the density of conflict increases, this parameter is contradictory with the others and the 
reliability of this parameter (or one of the other) should be questioned. 
The environment truth is a source of information that can be used to assess the 
performances of the system. The addition of one HOS parameter slightly decreases the error, 
which remains low for the HOS. As a matter of fact, the fuzzy definition of the mass 
functions keeps the error bounded (if the mass “doubt” is 1, the error is null). On the 
contrary, the relatively high value of error on the areas selected as “object” can be explained 
by the large size of the regions selected by the expert. This rough selection actually includes 
a part of the region selected as “background” by the fusion process; but this should not be 
considered as a bad detection: the echoes are well detected, but are only smaller than the 
masks of the original reference image. This will be confirmed by the ROC curves (the 
maximum detection probability is smaller than one). 
The nonspecificity is greater for the “nonobject” pixels on the reference image than for the 
“object” pixels. This is a promising conclusion for the fusion process: the result is more 
accurate if a potentially dangerous object is present. 
Finally, ROC curves of the fusion results are built and compared with the curves obtained 
with each parameter alone (segmentation with the 1st and 2nd order, the skewness, or the 
kurtosis). They are also compared with the ROC curves obtained with the standard detector 
consisting in directly thresholding the original data. 
The first comment on the results presented in Fig. 31 concerns the lack of points between 
low values of false alarms (until 0.03) and the point of probability equal to 1. This is a 
consequence of the pixels declared as “echo” by the expert, but classified as “nonobject” by 
the system. In order to include these pixels as “object” by the system, all the pixels of the 
image must be selected (this is, achieved with a threshold of zero). These pixels are not 
significant at all and come only from the rough design of the regions containing echoes. This 
results in the maximum false-alarm and detection probabilities being far from the point (1, 
1) (see the arrow on Fig. 31 (b)). In the same way, minimum detection and false-alarm 
probabilities exist for belief and plausibility obtained with a threshold of 1. 
 

Densities 
(x 10-3) 1- 2 3 4 1-2 + 3 1-2 + 4 3 + 4 1-2 + 3 + 4 

conflict 0 0 0 0.0299 0.0885 0 0.105 
nonspecificity 51.0 166.1 166.1 23.8 20.9 121.3 19.0 

/O 7.9 18.8 17.5 6.7 6.1 17.4 6.1 
/NO 43.0 147.3 148.6 17.1 14.8 103.9 12.9 
error 5.0 2.2 3.5 6.2 6.8 3.5 6.8 
/O 4.5 2.2 3.5 5.7 6.3 3.5 6.3 

/NO 0.557 0 0 0.520 0.535 0 0.518 

Table. 2. Performances of the fusion in Fig. 3, 
(1-2: mean standard deviation (segmentation), 3: skewness, 4: kurtosis) 
The second comment is that the false-alarm rates and detection probabilities are lower for 
belief than plausibility. This is linked to the certainty/accuracy duality previously 
mentioned. Moreover, note that the plausibility and the belief curves are both above all the 
other curves: this assesses the improvement of the detection performances obtained thanks 
to the fusion process. 
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4.4.2 Results on other data 
In this section, the proposed fusion process is tested on two more SAS images. Image of Fig. 
4 (Fig. 32) represents a region of 40m × 20m of the seabed with a pixel size of about 4 cm in 
both directions (see section 2). It contains three cylindrical mines: one mine is lying on the 
sea floor (top of image), another one is partially buried (approximately in the middle of the 
image), and the last one is completely buried under the sea floor (lower part of image). 
Fig. 32 represents the belief and plausibility after fusion, and Fig. 33 presents the 
corresponding ROC curves. Moreover, quantitative criteria estimated for this image are 
presented in Table 3 and can be compared with the results of the first image. The fusion 
process has been performed with mass functions defined previously, in function of the 
corresponding standard deviation thresholds and higher order statistics histogram. 
The same comments and conclusions hold for this new image. The detection performances 
are improved (in particular, see the belief image). However, the fusion with the skewness 
parameter does not significantly affect the result in image of Fig. 4: the nonspecificity, error, 
and conflict densities are similar whether two or three parameters are aggregated. 
 

Densities 
(x 10-3) 1- 2 3 4 1-2 + 3 1-2 + 4 3 + 4 1-2 + 3 + 4 

conflict 0 0 0 0.406 0.527 0 0.528 
nonspecificity 8.1 159.0 162.8 3.9 3.5 122.0 3.4 

/O 1.8 13.5 12.0 1.8 1.5 12.0 1.5 
/NO 6.3 145.4 150.8 2.2 1.9 110.0 1.9 
error 6.5 0.0446 1.6 6.0 6.2 1.6 6.2 
/O 4.4 0.0446 1.6 4.4 4.6 1.6 4.6 

/NO 2.0 0 0 1.6 1.6 0 1.6 

Table 3. Performances of the fusion in Fig. 4, 
(1-2: mean standard deviation (segmentation), 3: skewness, 4: kurtosis) 

 
Fig. 31. ROC curves of each of the three parameters compared with the results of the fusion 
process (belief and plausibility) in Fig. 3 
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Fig. 32. Belief and plausibility images obtained after fusion of the three parameters in Fig. 4 

5. Conclusion and perspectives 
This chapter presented the interest of the use of high resolution images formed thanks to 
SAS system, and proposed a fusion architecture aiming at taking advantage of the 
complementary properties of sources, based on statistical properties, in order to improve the 
detection performances. 
Being able to handle conflicts between sources and doubt between different hypotheses, the 
belief theory is well suited to represent and characterize the information provided by the 
different sources. It also provides a fusion rule. The fused data can be used either to take a 
decision or to enhance the data adaptively, leaving the final decision to an expert. 
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Fig. 33. ROC curves of each of the three parameters compared with the results of the fusion 
process (belief and plausibility) in Fig. 4 
The design of the mass functions is fairly simple and flexible. A general knowledge about 
the acquisition system and the induced statistical properties on the SAS image enables the 
setting of the few parameters (trapeze-shaped functions). Confronted to different datasets, 
these settings were not modified, thus assessing the robustness of the whole procedure. 
The evaluation of the proposed architecture is based on new parameters, some of them 
classically taking a manually labelled ground truth into account, some others being 
independent from this ground truth and aiming at directly assessing the quality of the 
available information. 
These last criteria determine intrinsic properties of the mass functions, such as 
nonspecificity and conflicts densities. The first set of criteria concerns the properties 
conditioned by the ground truth: rates of nonspecificity and error densities, probabilities of 
detection and false alarm. 
The fusion architecture has been tested on two real SAS images and convincing results have 
been obtained: the fusion actually improves the detection performances of the different 
sources taken separately. 
The proposed process may be improved by incorporating new parameters (statistical, 
morphological, criteria characterizing the spatial distribution of the features, etc.) coming 
either from a deeper knowledge of the data or from new sonar images (multiple acquisitions). 
The interest of such a fusion structure lies in its flexibility: the addition of new parameters is 
easy to work out and does not need any change of structure or parameterization. Moreover, it 
is possible to estimate the quantity of information brought by each of the new parameter. This 
allows to reach the next levels in the detection and classification process, as described in the 
introduction, by deciding if the regions previously segmented actually contain a sought object 
and by identifying this object (mine, kind of mine, etc.). 
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1. Introduction     
The subsea environment represents the last major frontier of discovery on Earth. It is 
envisioned that exploration of the seabed, in both our deep-ocean and inshore waters, will 
present a multitude of potential economic opportunities. Recent interest in the ever-
expanding exploration for valuable economic resources, the growing importance of 
environmental strategies and the mounting pressure to stake territorial claims, has been the 
main motivation behind the increasing importance of detailed seabed mapping, and rapid 
advancements in sensor technology and marine survey techniques (McPhail, 2002; Nitsche 
et al., 2004; Desa et al., 2006; Niu et al., 2007).  
Over the past decade, there has been an increasing emphasis on the integration of multiple 
sonar sensors during marine survey operations (Wright et al., 1996; Laban, 1998; Pouliquen 
et al., 1999; Yoerger et al., 2000; Duxfield et al., 2004; Kirkwood et al., 2004). The synergies 
offered by fusing and concurrently operating multiple acoustic mapping devices in a single 
survey suite underpin the desire for such an operational configuration; facilitating detailed 
surveying of the ocean environment, while enabling the information encoded in one 
instrument’s dataset to be used to correct artefacts in the other.  
Innovative advancements in the intelligence of sensors have permitted time-critical 
decisions to be made based on the assessment of real-time environmental information. In-
mission data evaluation and decision making allows for the optimisation of surveys, 
improving mission efficiency and productiveness. 
While low-frequency (<200kHz) sonar has a long range imaging capability, the generated 
datasets are inherently of low resolution, reducing the ability to discriminate between small-
scale features. Conversely, high-frequency (>200kHz) imaging sonar generates high-resolution 
datasets, providing greater detail and improving data analysis. High-frequency sonar systems 
are therefore the desired sensor systems used during seabed survey missions. However, 
seawater severely restricts acoustic wave propagation, reducing the range (field of view) of 
high-resolution sonar in particular. Consequently, high-resolution survey sensors must be 
deployed in close-proximity to the seabed. UUVs are ideal platforms for providing the near-
seabed capability required, and often demanded, by marine survey operations (McPhail, 2002). 
Furthermore, recent technological advancements have allowed UUVs to provide high-
resolution survey capabilities for the largely unexplored deep-water environments, previously 
considered uneconomical or technically infeasible (Whitcomb, 2000).  
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Fig. 1. Comparison of sonar systems operating at different depths. Notice the increasing 
footprint as the distance increases. However, as the distance increases, the operating 
frequency of the sonar must decrease, as seawater severely restricts acoustic wave 
propagation, resulting in lower resolution datasets. 
 

 Water Depth Operating 
Frequencies Resolution Swath 

Coverage Remarks 

Shallow Water 
Systems < 100m > 200kHz Medium - 

High 
Low - 

Medium 

Continental shelf, 
inshore-water 

seabed surveying 
 

Deep Water 
Systems > 200m < 200kHz Low High 

Wide-area, deep-
ocean seabed 

surveying 
 

ROV/AUV 
Systems 5m – 4000m 200kHz – 

500kHz High Low 
Detailed, high-

resolution seabed 
surveying 

 

Table 1. Comparison of typical operating specifications for sonar systems operating at 
different depths. 

However, the operation of multiple co-located, high-frequency acoustic sensors results in 
the contamination of the individual datasets by cross-sensor acoustic interference. The 
development of sensor control routines and ‘intelligent’ sensors helps to avoid this sensor 
crosstalk.  
This chapter details the modern sonar technologies used during survey operations of today 
and the integration of these sensors in modern marine survey suites. The problems 
associated with integration of multiple sonar sensors are explained, and the sensor control 
routines employed to avoid such problems are discussed. Finally, the future direction of 
payload senor control and the development of intelligent sensor routines are presented.  
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2. Sonar technologies 
Due to the high attenuation of electromagnetic waves underwater, video and radar are 
unsuitable for wide-area mapping of the subsea environment. Instead, acoustic waves are 
the only practical way to chart wide areas of the seafloor. Sonar technology is an essential 
part of a modern marine survey system and has been successfully employed to record the 
composition, physical attributes, and habitat and community patterns of our ocean seabeds. 
Today, there are numerous acoustic devices available for charting the seafloor including 
multibeam echosounders, sidescan sonar, interferomteic sonar and synthetic aperture sonar. 
These systems differ in their acoustic mapping techniques and capabilities, and provide 
diverse interpretations of the seabed. The different acoustic techniques, applications and 
survey capabilities of modern sonar technologies are briefly detailed below: 

2.1 Multibeam echosounders 
Multibeam echosounders are capable of collecting highly accurate seafloor depth 
information. Over the last number of decades these systems have been successfully used for 
gathering high-resolution seafloor bathymetric data in shallow- and deep-water regions 
(Hammerstad et al., 1991; Laban, 1998; Kloser, 2000; Parnum et al., 2004). The multibeam 
sonar system emits an acoustic pulse wide in the across-track field and narrow in the along-
track field, producing a “cross fan” beam pattern to obtain detailed coverage of the bottom. 
The receive beam pattern is wide in the along-track field and narrow in the across-track 
field. The resulting product of the transmit and receive beams is a narrow beam that 
ensonifies an area of the seafloor, providing range-angle couplets of sample points (over 500 
individual points in some systems) along the swath. Multibeam sonar systems are also 
capable of supplying acoustic backscatter imagery, by recording the intensity of the 
backscattered signal as it is swept along the seabed. However, the image is of lower 
resolution and poorer quality than the sidescan sonar backscatter image (Smith & Rumohr, 
2005). Multibeam systems are also expensive and require high processing power. 

2.2 Sidescan sonar 
Sidescan sonar is an acoustic imaging device used to produce wide-area, high-resolution 
backscatter images of the seabed, under optimal conditions it can generate an almost photo-
realistic, two-dimensional picture of the seabed. This acoustic instrument is used for 
charting seabed features and revealing special sediment structures of both biogenic and 
anthropogenic origin (McRea, 1999; Brown et al., 2004; Smith & Rumohr, 2005). Sidescan 
does not usually produce bathymetric data. However, it does provide information on 
sediment texture, topology, bedforms and the low grazing angle of the sidescan sonar beam 
over the seabed makes it ideal for object detection (Kenny, Cato et al. 2003). One 
disadvantage of sidescan sonar is that it does not provide reliable information on the 
position of seabed features. 

2.3 Interferometric sonar 
Interferometric systems are capable of providing high-resolution, wide-swath bathymetry in 
shallow water with swaths of 10 - 15 times the instrument altitude (Gostnell et al., 2006). 
Interferometry is the technique of superimposing (interfering) two or more waves, to detect 
differences between them. Measurement of the difference in acoustic path allows the 
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accurate assessment of the angular direction. Interferometric technology could prove highly 
beneficial to seabed mapping programmes. However, it is still considered a developing 
technology within the marine industry. While there have been numerous papers written on 
the theoretical functionality of these systems and a variety of manufacturer studies 
conducted, there have been few independent analyses of their in situ performance (Gostnell, 
2005). 

2.4 Synthetic aperture sonar 
The Synthetic Aperture Sonar (SAS) is a high-resolution acoustic imaging technique that 
combines the returns from several consecutive pings to artificially produce a longer sonar 
array. With the use of sophisticated processing, the data is used to produce a very narrow 
effective beam. The most important attribute of an SAS system is its along-track resolution 
being independent of both range and frequency. SAS is a direct analogue of synthetic 
aperture radar (SAR) processing, which is well established in both airborne and spaceborne 
applications (Curlander & McDonough, 1992) providing vast area coverage, imagery and 
bathymetry at high spatial resolution. For a generation, engineers have attempted to 
replicate SAR concepts with sidescan seafloor imaging sonars. However, SAS has long been 
considered a purely theoretical concept (Lurton, 2002) and its implementation was thought 
to be untenable due to lack of coherence in the ocean medium, precise platform navigation 
requirements and high computation rates. With advances in innovative motion 
compensation and autofocusing techniques, signal processing hardware, precise navigation 
sensors, and stable submerged autonomous platforms, SAS is now beginning to be used in 
commercial survey and military surveillance systems (Sternlicht & Pesaturo, 2004). 

3. Sensor integration 
The integration of multiple sonar sensors into a marine survey suite allows for the 
simultaneous collection, and fusing, of individual datasets of the same seafloor region. 
Accordingly, the provision, and combined analysis, of complementary and comparative 
datasets affords a more accurate representation of the seafloor, the removal of possible 
dataset ambiguities and improved data analysis and interpretation (Wright et al., 1996; 
Evans et al., 1999; Hughes Clarke et al., 1999; Dasarathy, 2000; Fanlin et al., 2003; Duxfield et 
al., 2004; Nitsche et al., 2004; Shono et al., 2004).  
Data fusion is the process of taking information from multiple, independent datasets and 
combining it to extract information not available in single datasets; the combined analysis of 
contoured bathymetry maps, generated from multibeam echosounders, and the sidescan 
sonar acoustic reflectivity images permit the geologic interpretation of multibeam 
bathymetry data to be enhanced by providing an acoustic characterisation of the seafloor 
from which geologic composition can be inferred, while the bathymetric information 
improves the representation of the seafloor relief in sidescan imagery by providing the 
geometric configuration of the seabed (de Moustier et al., 1990; Pouliquen et al., 1999).  
An integrated interpretation of acoustic datasets is presented by Nitsche et al. (Nitsche et al., 
2004). According to the authors, the integrated examination of sidescan, sub-bottom and 
high-resolution bathymetry data enable the clear distinction of different seabed facies, and 
hence, an understanding of the related processes, vastly improving data interpretation and 
classification. Shono et al. (Shono et al., 2004) explore the synergies offered by an integrated 
hydro acoustic survey scheme, in which the survey region is mapped using a multibeam 
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echosounder and a sidescan sonar. The bathymetry data and sidescan imagery present 
complementary datasets of the seabed region, enhancing the individual, and combined, 
dataset analysis; affording a greater understanding of the seafloor region. The author also 
concludes that the integrated approach provides for a more economical and efficient survey. 
Wright et al, (Wright et al., 1996) present methods for performing multi-sensor data fusion. 
Through their investigations, the authors demonstrate that data fusion aids the classification 
and identification of seabed features, minimises dataset ambiguities and improves upon 
positional accuracy of the features present. 
The integration of multiple sensors onto a single platform, such as a UUV, also minimises 
the relative positional error between features evident in the various datasets, as the target 
region is ensonified by the sensors under the same environmental conditions and geo-
referenced by the same navigational data. Simultaneous multi-sonar operation also 
eliminates the need to conduct separate surveys for each instrument, as well as the 
collection of supporting data required to fully understand the operating environment 
during each individual survey, thereby significantly reducing the survey duration and 
consequently the survey costs (Thurman et al., 2007). 
Reports of successful AUV survey missions suggest that bathymetric mapping, sidescan 
imaging, magnetometer survey and sub-bottom profiling are the principle mission of the 
new survey-class AUVs (Whitcomb, 2000). To execute these missions, modern AUVs are 
typically equipped with a range of survey sensors, integrated into the single marine survey 
suite. The synergies offered by integrating and concurrently operating multiple acoustic 
mapping devices on a UUV underpin the desire for such an operational configuration, 
facilitating high-resolution surveys of the deep-ocean environment, while enabling the 
information encoded in one instrument’s dataset to be used to correct artefacts in the other.  

4. Acoustic interference avoidance 
The reception circuitries of sonar transducers are typically frequency band-limited to 
prevent acoustic interference from parallel operating instruments of different frequencies. 
However, the high-resolution versions of most imaging sonar operate within the same 
frequency band, with typical working frequencies for high-frequency multibeam 
echosounders being 200kHz-400kHz, and high-frequency sidescan sonar ranging from 
200kHz to 500kHz. While some instruments, such as multibeam echosounders, can be depth 
gated to filter spurious returns, sidescan sonar records can be severely distorted by sensor 
crosstalk, as they rely on the full temporal trace of the returned backscatter to construct an 
intensity image. Consequently, the simultaneous operation of multiple high-frequency sonar 
is prohibited by the inherent complication of cross-sensor acoustic interference (de Moustier 
et al., 1990; Ishoy, 2000; Kirkwood, 2007). 
The integration and concurrent operation of multiple sonar sensors in a marine survey suite 
creates issues of cross-sensor acoustic interference. The contamination caused by sensor 
crosstalk severely degrades the resulting datasets of the parallel operating sensors. 
Traditionally, compromises were sought to avoid this sensor crosstalk and more recently, in 
particular in the operation of UUV platforms, survey sensor control routines have been 
developed. 
Surveys requiring multiple high-resolution datasets typically require a compromise of 
mobilising separate survey vessels for each sensor (Parrott et al., 1999; McMullen et al., 
2007). Conducting a survey of the same seafloor region for each of the interfering sensors is 
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uneconomical and inefficient. Evans et al. (Evans et al., 1999) investigated the advantages of 
single or dual vessel solutions for hydrographic surveys requiring multiple datasets of a 
region. The team concluded that although the dual vessel solution allowed the gathering of 
the multibeam data at higher survey speeds, the single vessel solution to conducting 
multibeam and sidescan sonar surveys proved more economical and improved the 
hydrographic analysis and understanding of the data. However, during the single vessel 
survey, the sidescan sonar deployed was of lower frequency (100kHz) to the sidescan sonar 
deployed during the dual vessel survey (300kHz), reducing the sidescan imagery resolution 
and data integrity. 
 

 
Fig. 2. Crosstalk can be seen on this sidescan sonar image where the backscatter is very low. 
The interference was caused from a simultaneously operating sonar.  

Others have also attempted to avoid cross-sensor acoustic contamination by separating the 
operating frequency of the payload sonar sufficiently far that they are undetectable from one 
another (Pouliquen et al., 1999; Lurton & Le Gac, 2004). As a result, the sonar systems 
employed are a combination of high-frequency and low-frequency sonar. The low frequency 
systems significantly degrade the quality of the generated datasets, with the result that 
small-scale features may not be evident, thereby compromising the data interpretation 
process. An advanced solution must be utilised that will enable the simultaneous operation 
of high-frequency acoustic sensors to provide detailed datasets that are demanded by 
today’s needs and standards. 
Temporally separating the transmission-reception cycles of similar frequency sonar has been 
attempted in (de Moustier et al., 1990), which reports the concurrent acquisition of 
multibeam and sidescan sonar data using co-frequency 12kHz systems by interleaving their 
pings. The described algorithm takes into account the timing requirements of both systems 
and schedules the multibeam transmit cycles around the fixed sidescan timing events using 
a sound synchronisation unit. The sound synchronisation unit interleaves the transmission-
reception cycle of each sensor, thus avoiding acoustic interference. However, because of the 
fixed transmission rates, the system is best suited for long-range, deep-water applications 
and does not provide optimal ping repetition rates. 



Multi-Sonar Integration and the Advent of Senor Intelligence 

 

157 

Other triggering modules have been developed by a number of marine technology 
companies, such as GeoAcoustics’ Timer2 module, to allow asynchronous triggering of 
multiple sonar systems while avoiding the effects of sensor crosstalk. Operator specified 
timing schedules are used to trigger the individual systems at fixed intervals. The 
interleaving of the otherwise interfering pulses avoids dataset contamination, enabling the 
simultaneous use of multiple high-frequency sonar sensors. 

5. Remote payload control 
The deployment of UUVs has, by their very nature, necessitated the development for remote 
payload sensor control routines. Typically, command and control of payload sensors are 
pre-programmed and/or operator based. C&C Technology’s HUGIN 3000, a third 
generation AUV manufactured by Kongsberg Simrad, interfaces to the payload sensors 
through the HUGIN Payload Processor (Hagen & Kristensen, 2002). Survey specifications 
are programmed before deployment and take control of all sensor operations onboard. 
Another well-proven AUV, the Atlas Maridan’s SeaOtter, enables the synchronised 
operation of multiple sensors by specifying the repetition rate, delay and duty cycle for each 
sensor during survey planning. The values are sent over the vehicle network to the Local 
Trigger Manager (LTM), which generates the signals required for each instrument during 
deployment (Ishoy, 2000). The Monterey Bay Aquarium Research Institute (MBARI) has 
developed the DORADO AUV, capable of conducting simultaneous multibeam bathymetry, 
sidescan sonar and sub-bottom surveys of an area of interest. The AUV is integrated with 
Reson’s 7100 multibeam echosounder (200kHz), Edgetech’s 110/410kHz chrip sidescan 
sonar and an Edgetech 2 – 16kHz chrip sub-bottom profiler. Simultaneous operation of the 
multiple sensors is managed by the Reson propriety timing algorithm. The multibeam 
echosounder acts as the master system, and along with the other integrated systems, is 
pinged using a fixed 1 pulse per second (PPS) clock, made available by the navigation 
system (Kirkwood, 2007).  
Survey results have shown that the described systems have successfully completed surveys 
of an area of interest in which simultaneously operating sonar are deployed (George et al., 
2002; Wernli, 2002; Kirkwood et al., 2004; Desa et al., 2006). However, the integrated systems 
do not allow for optimal surveys, leading to deficient datasets; the acoustic sensors used are 
not all of high-frequency and the payload control is pre-programmed and non-adaptable.  
The intelligence of sensors is becoming increasingly sophisticated. Innovative developments 
in sensor technology have enabled the real-time data acquisition, processing and decision 
making based on the collected and processed data, of sensor systems during survey 
operations. Researchers at the Mobile and Marine Robotics Research Centre (MMRRC), 
University of Limerick, have developed an approach to the real-time adaptive control of 
multiple high-frequency sonar survey systems for UUVs (Thurman et al., 2008). This 
approach is based around a centralised sensor payload controller which manages the 
integrated sensors during survey missions, facilitating the operation of co-located, high-
frequency sonar. The Multibeam is the master system and supplies the raw data to be 
processed in real-time to provide a priori bathymetry data to auxiliary acoustic sensors. The 
automated system is based on the interleaving of the sonar transmission-reception cycles to 
avoid issues of cross-sensor acoustic interference, permitting the integration of multiple 
acoustic sensors operating in parallel. By dynamically adapting the ping rates of the payload 
sensors, the system optimises the execution of the seabed mapping survey and improves the 
quality of the resulting data, thereby significantly increasing survey productivity. 
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Fig. 3. System arrangement; the multibeam echosounder is mounted at the fore of the 
platform, with the sidescan sonar mounted in the rear, permitting the multibeam 
echosounder to provide a priori data to the controller. 

6. Integrated acoustic controller system 
Previously, multibeam bathymetric data was collected and stored during survey operations, 
with processing performed post-survey. However, recent advances in computational 
technology have enabled real-time processing of multibeam data. In-survey processing of 
the multibeam data allows time-critical survey control decisions to be made based on the 
assessment of real-time environmental information. The Integrated Acoustic Controller 
System utilises the modern computational resources and real-time processing techniques to 
enable synchronised multi-sonar operation through the prediction and temporal separation 
of each of the UUV’s payload sonar’s transmission-reception window.  
Unlike traditional sensor triggering routines, which operate on fixed timing schedules, the 
system dynamically adapts the time separation between successive pings. The sensor 
triggering timing schedule is calculated as a function of each sensor’s imaging geometry, the 
range between each sensor and the ensonified seafloor, the survey vessel velocity, and the 
desired resolution of the collected dataset. With the imaging geometry and mounting 
configuration of each instrument known, the required set of parameters is completed by 
analysis of the navigation and bathymetric data streams collected during the survey. The 
terrain-adaptive timing schedule enables optimal use of each sensor’s available 
transmission-reception cycle windows; providing the capability to interleave the pings of 
multiple acoustic sensors, thus avoiding acoustic contamination while still adhering to high-
resolution survey requirements.  
The system exploits the fact that, due to the slow forward speed of the UUV platform, 
typically 2 – 4 knots, there occurs a high ping-to-ping coherence between successive 
multibeam swaths. This permits the duration of the next multibeam transmission-reception 
window to be predicted with a high degree of accuracy. The multibeam transducer is 
mounted to the fore of the survey platform such that the geometry of the region of the 
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seafloor to be interrogated by the sidescan sonar will already have been mapped, providing 
the a priori information needed to predict its transmission-reception window. 
 

 
Fig. 4. Timing diagram of the Integrated Acoustic Controller System; within each Triggering 
Cycle, TC, the transmission-reception cycles of the multibeam echosounder, tmb, and the 
sidescan sonar, tss, are scheduled. Separation of the transmit-receive windows enable the 
concurrent operation of the high-frequency sonar. 

 
Fig. 5. Sonar transects during dual sonar operation. 

The system is comprised of the multibeam sonar and data acquisition module, the sidescan 
sonar and data acquisition module, the position and orientation sensor and data acquisition 
module and the multi-sonar synchronisation module. The multibeam sonar system is the 
master system and provides to the survey controller the raw data that determines the multi-
sensor triggering routine. The multibeam sonar data acquisition module reads in the raw 
seafloor data, filters for outliers and extracts each individual beam’s time and angle couplet. 
In parallel, the navigational sensors provide concurrently generated high-frequency time-
stamped Motion Reference Unit data, which is queued in the memory buffer. Both streams 
are fused by selecting the navigational message relating to the time-stamp encoded in the 
multibeam data. A transformation matrix is constructed and converts the body-fixed 
multibeam data to earth-fixed seafloor depth samples. A select number of geo-referenced 
depth points are then used to generate and populate a Digital Terrain Model (DTM) of the 
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surveyed region (in calculating the adaptive timing schedule it is not typically required to 
build a fully populated DTM, thereby reducing the processor’s computational workload). 
By analysing the region of the DTM within the seafloor footprint of the payload sonar’s 
reception beam the optimal ping rate of each individual sonar is calculated for each swath. 

 
Fig. 6. Software architecture; the system is decomposed into a multi-threaded framework to 
enable independent modules to execute in parallel. 

The system benefits are manifold and are of significant interest to the marine and off-shore 
communities: 
• The system adapts to the varying geometry of the seafloor, optimising the use of the 

individual sensors. 
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• Survey productivity is increased due to the considerable reduction in survey duration 
and cost; the area of interest is surveyed, along with the supporting data being 
collected, only once. 

• The simultaneous acquisition of multiple datasets improves the data interpretation 
process by allowing the combined analysis and interpretation of independent datasets 
of the same region. 

The relative positional error between features evident in the datasets is also minimised, as 
the target region is ensonifed by the instruments integrated on the same platform under the 
same environmental conditions and geo-referenced by the same navigational data, 
promoting the straightforward co-registration of the acoustic signature of features across 
multiple datasets. 

7. Conclusion 
Increased interest in the detailed exploration of our ocean seabeds has spurred the 
development and technological advancements in sonar technology. Sonar is an essential 
part of a modern marine survey system and has been successfully employed to record the 
composition, physical attributes, and habitat and community patterns of the seafloor. The 
integration of multiple sonar sensors into a marine survey suite allows for the simultaneous 
collection of individual datasets of the same seafloor region. A move towards multi-sensor 
integration is becoming more and more apparent in the marine industry, allowing for the 
enhancement of decision making and data analysis by exploiting the synergy in the 
information acquired from multiple sources.  
However, the integration and concurrent operation of multiple sonar sensors in a marine 
survey suite creates issues of cross-sensor acoustic interference. The contamination caused 
by sensor crosstalk severely degrades the resulting datasets, and hence, the data 
examination and understanding. Traditionally, compromises were sought to avoid this 
sensor crosstalk by mobilising separate surveys for each of the interfering sensors or by 
separating the operating frequency of the sonar sufficiently far that they are undetectable 
from one another, and more recently, in particular in the operation of UUV platforms, 
survey sensor control routines have been developed. Nevertheless, solutions to the problem 
of sensor crosstalk remain inadequate and inefficient.  
The intelligence of sensors is advancing rapidly. Innovative developments in sensor 
technology have enabled the data acquisition, processing and decision making to occur in 
real-time during survey operations. An approach to the real-time adaptive control of 
multiple high-frequency sonar systems was presented in this chapter. This approach is 
based around a centralised sensor payload controller which manages the integrated sensors 
during survey missions, facilitating the operation of co-located, high-frequency sonar. The 
multibeam is the master system and supplies the raw data to be processed in real-time to 
provide a priori bathymetry data to auxiliary acoustic sensors. The automated system is 
based on the interleaving of the sonar transmission-reception cycles in a non-interfering 
fashion.  
By allowing real-time decision making to be made based on real-time mission data, the 
system optimises the execution of the seabed mapping survey and improves the quality of 
the resulting data, thereby significantly increasing survey productivity, and consequently, 
the data analysis and interpretation. 
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1. Introduction  
The importance of coral reef ecosystems is well established (McManus and Noordeloos, 
1998). The threats to these highly diverse and endangered communities are well known and 
a large number of reports document the dramatic effects of climate change and particularly 
global seawater warming, coastal development, pollution, and impacts from tourism, 
overfishing, and coral mining on them (Grigg & Dollar, 1990; Holden & LeDrew, 1998; 
Lough, 2000; Buddemeier, 2002; Knowlton, 2001; Sheppard, 2003). To protect these 
ecosystems the extent of their degradation must be documented through large scale 
mapping programmes, and inventories of existing coral reef areas are particularly important 
(Riegl & Purkis, 2005; Mora et al., 2006). Such programmes are essential so that the health of 
these ecosystems can be assessed and local and global changes over time can be detected 
(Holden & LeDrew, 1998).  
Seagrass beds are also recognized as playing a pivotal role in coastal ecosystems. They are 
crucial to the maintenance of estuarine biodiversity, the sustainability of many commercial 
fisheries, for stabilizing and enriching sediments and providing an important food resource 
and spawning areas for many marine organisms (Powis & Robinson, 1980; Bell & Pollard, 
1989, Dekker et al., 2006). Unprecedented declines in seagrass beds have occurred in 
temperate and tropical meadows throughout the world; their global decline highlights the 
need for monitoring programmes to manage their conservation and sustainable use (Short & 
Wyllie-Echeverria, 1996; Ward et al., 1997).  
Coral reefs, seagrass, and macroalgal habitats are commonly found in association with, and 
in close proximity to each other, and are linked by many pathways such as sediment 
deposition mechanisms, the primary productivity cycle, and the migration of many fish 
species (Mumby, 1997). Due to their nutritional biology and photosynthetic requirements, 
coral reefs generally exist in clear tropical waters and this makes them highly suited for 
optical remote sensing (Mumby, 1997; Green et al., 2000). Although less confined to them, 
macroalgal and seagrass habitats are also found in such environments. Under stress, both 
coral and seagrass ecosystems may retreat and become replaced by macroalgal or less 
productive and biologically diverse sedimentary or bare rocky habitats. Such 
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impoverishment adversely affects biodiversity and productivity and ultimately local, 
tourist-based, economies. 
The potential of marine remote sensing as an alternative mapping tool to conventional 
methods like in situ diving surveys is now well understood and recognized. Tropical coastal 
environments are well suited to optical remote sensing because sunlight is minimally 
attenuated compared to other marine regions penetrating up to depths of 25 m or greater 
(Mumby, 1997; Green et al., 2000; Isoun et al., 2003). The technique is recognised as being the 
most cost-effective and feasible means of mapping and monitoring of tropical coastal 
ecosystems over large areas (Bouvet et al., 2003; Maeder et al., 2002; Green et al., 2000; 
Luczkovich et al., 1993). 
The sensors used to monitor reef ecosystems generally can be divided into either passive or 
active systems. Passive remote sensors measure reflected sunlight in a given bandwidth of 
the electromagnetic spectrum and constitute traditional optical systems, while active remote 
sensing systems generate their own source of energy, and measure the reflected energy. 
Examples of active remote sensing systems include imaging sonars (e.g. side scan sonar) and 
Synthetic Aperture Radar (SAR).  
The mapping of both temperate and tropical marine benthic habitats using medium and 
high spatial resolution optical satellite systems shows that generally only a few classes can 
be discriminated on the basis of spectral signatures alone (Holden & Ledrew, 1999; 2001; 
Hochberg & Atkinson, 2000), owing to the limited spectral information available in 
conventional optical instruments and the similarities in reflectance of many species and 
habitats (Hochberg & Atkinson, 2000; 2003; Holden, 2001; Hochberg et al., 2003; Karpouzli et 
al., 2004). Whilst higher spectral resolution data may increase the power of habitat 
discrimination, limited availability of such data in future spaceborne systems restricts its 
application to coarse coverage only. In the last few years, high spatial resolution data from 
commercial satellites such as IKONOS and QuickBird has shown to be well suited for 
mapping coral reef systems (Maeder et al., 2002; Andrefouet 2003; Capolsini et al., 2003). In 
particular, the incorporation of additional information on small scale variability in higher 
spatial resolution remotely sensed data has been shown to improve on the accuracies of 
spectral centred classifications (Dustan et al., 2001; Jakomulska & Stawiecka, 2002; Palandro, 
2003).  
A major challenge to optical remote sensing in both temperate and tropics regions is cloud 
cover which reduces the number of images available over a period of time over an area of 
interest (Jupp et al., 1981). The attenuation of light by water also significantly limits the 
technique in deeper and more turbid waters (Holden, 2001; 2002). These limitations have 
been drivers to develop and use active remote sensing systems for imaging the seabed such 
as acoustic systems. However, in comparison to satellite or airborne optical sensors, acoustic 
systems have rarely been used to map and monitor tropical marine habitats (Prada, 2002, 
White et al., 2003; Riegl & Purkis, 2005) and their potential is still in need of evaluation 
(Bouvet, 2003). Acoustic systems such as imaging sonars may offer further advantages over 
optical systems such as the provision of structural information of different habitat types, and 
geomorphological zonation. This additional information may improve the discrimination of 
spectrally similar but structurally different bottom types. 
Despite the increasing evidence of the benefits to be gained there is presently a lack of 
studies on the synergistic use of alternative remote sensing approaches for mapping shallow 
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water marine near shore habitats (Malthus & Mumby, 2003). The most obvious advantage of 
using acoustic and optical methods in combination is the different depth ranges that each of 
the systems operate; optical systems perform best in shallow waters (generally up to a 
maximum of 25 m in the clearest waters), while the deployment of sonar systems (single and 
multibeam) can be used to depths of hundreds of metres, but it is very much limited in 
shallow waters. 
Few studies have attempted to integrate side scan sonar data with optical data to exploit the 
complementarity of the two systems and which have been in temperate waters (Pasqualini 
et al., 1998; Piazzi et al., 2000). These studies used visual photo-interpretation methods and 
occasional automated methods to classify the optical imagery, and to establish the upper 
boundary limits, whilst the sonograms were used for detecting lower depth limits. To date, 
no studies have tested the potentially improved accuracy of habitat classification when the 
optical and acoustic signatures are used in combination. 
Although the potential of incorporating additional information on small scale variability in 
higher spatial resolution data to improve spectrally centered classifications has been 
recognized by a limited number of researchers (Jakomulska & Stawiecka, 2002), few studies 
have incorporated textural and spectral parameters for classifying benthic habitats 
simultaneously where these parameters have originated from high spatial resolution 
multiband acoustic and optical datasets. This study represents a first attempt to test the 
discrimination of coral reef habitats based on textural and spectral parameters derived from 
side scan sonar and IKONOS datasets. The overall aim is to statistically evaluate optical and 
acoustic remote sensing in discriminating reef benthic communities and their associated 
habitats, both in isolation and in combination.  

2. Methods 
2.1 Study area 
The study site, selected for its conservation importance and for the availability of ancillary 
data, was focused on the littoral habitats of San Andres island (12° 34’ N; 81° 43’ W, land 
area 24 km2), Colombia, situated within the San Andres, Old Providence and Santa Catalina 
Archipelago in the western Caribbean Sea. Approximately 180 km east of the Nicaraguan 
coast and 800 km northeast of the Colombian coast, the Archipelago comprises a series of 
oceanic islands, atolls and coral shoals (Figure 1). The submerged habitats of the 
Archipelago were designated a UNESCO Biosphere Reserve in 2000. The main extent of the 
sublittoral platform of San Andres is to the east and northeast and is bordered by a barrier 
reef, where depths range between 1 and 15 m before dropping rapidly to >1000 m (Geister & 
Diaz, 1997). The typical submerged habitats found around San Andres are seagrass (mainly 
Thalassia and Syringodium genera) and algal beds in different proportions, soft and hard 
coral habitats, as well as sandy and rocky substrates. These communities have seen high 
levels of mortality during the last two decades, with studies reporting overall reductions in 
live coral by more than 50% and corresponding increases in algal cover and biomass of such 
species as Dictyotaceae and Halimeda (Diaz et al., 1995; Zea et al., 1998). These changes 
coincide with significant increases in the human population of San Andres which has risen 
from 5,675 inhabitants in 1952 to around 80,000 by 1992 making it the most densely 
populated island in the whole of the Caribbean (Vollmer, 1997).  
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Fig. 1. Map of the western Caribbean Sea showing the location of the Archipelago of San 
Andres and Providencia. 

2.2 Optical imagery 
An IKONOS multispectral satellite image (11-bit radiometric resolution, 4-m spatial 
resolution) was acquired on the 9th September 2000 to coincide with a side scan sonar 
survey, and ground-truthing biological surveys. The weather conditions at the time of 
acquisition were fair, with limited patchy cloud overlying the terrestrial part of the image. 
An independent geometric correction (linear quadratic transformation, nearest neighbour 
resampling) was performed to improve on the geometric correction, based on 21 DGPS- 
determined ground control points, and which yielded an RMS error of 0.87 m. To 
atmospherically correct the image, the empirical line method was employed, based on a 
number of pseudo-invariant land targets of varying brightness from which in situ 
reflectances were determined at the time of image acquisition, as outlined in detail in 
Karpouzli and Malthus (2003). 
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Following land masking a water column correction was applied based on the semi-
analytical approach of Maritorena et al., (1994) and Maritorena (1996) using independently 
obtained in situ water column spectral attenuation (k) and depth (z) estimates. An earlier 
study on the spatial variation of the attenuation of downwelling Photosynthetically Active 
Radiation, kd(PAR), in the littoral zone of San Andres showed that attenuation is highly 
variable (Karpouzli et al., 2003). For this reason, pixel specific values of k for each of the 
visible IKONOS bands were estimated on the basis of field measurements and simple 
models (Karpouzli, 2003; Karpouzli et al., 2003). The application of Maritorena’s model 
resulted in an image with enhanced bottom reflectance where the influence of varying 
bathymetry was greatly reduced, particularly where accurate estimates of depth and 
attenuation existed (Karpouzli, 2003). 

2.3 The acoustic dataset 
Dual frequency (100 and 500 kHz) Side Scan Sonar (SSS) backscatter and bathymetric data 
were acquired in the coastal waters of San Andres using a towed GeoAcoustics, fully digital, 
side scan sonar system (model: 159D, SS941, linked to an EOSCAN real time acquisition and 
image processing system) with the survey designed to overlap with parts of the IKONOS 
image and to encompass the full range of the marine habitats found in the area (coral, 
seagrass, algal and sediment habitats). The acoustic data were collected using a 7 m survey 
vessel equipped with a Trimble Global Positioning System. Differential correction of the 
navigation signal was conducted in real-time using the Omnisar satellite network resulting 
in a horizontal accuracy of about 0.5 m. Anamorphic and slant-range corrections were 
applied to the raw data in real time, thus eliminating lateral and longitudinal distortions in 
the sonograms, as were geometric corrections to reference the towed fish in respect to the 
position of an onboard dGPS system. Survey lines were spaced 10-30 m apart (depending on 
depth) to achieve a 100% backscatter cover of the selected survey areas. 
Depth was determined concurrently using a FURUNO haul-mounted echo-sounder at 
intervals of one second, equating to a data point approximately every metre. After tidal 
corrections, these data were merged with soundings obtained from digitised hydrographic 
charts of the area and interpolated using a radial basis function in Surfer (version 7.02). The 
resulting DEM matched the spatial resolution of the IKONOS image and was used to 
undertake the water column correction of the satellite image. 
A further geometric correction using an affine model was applied and the paired 100 kHz 
and 500 kHz subsets were corrected using image to image registration with the optical 
IKONOS dataset. 
Texture layers - The sonograms acquired were used for extracting a number of acoustic 
parameters on the basis of which the discrimination of a number of habitat classes was 
tested. These included the mean signal intensity of the 2 original sonar bands (at 100 and 500 
kHz frequencies: I100 and I500) and two statistical models of texture which created four extra 
data layers for the sonograms, two for each frequency available. Firstly, a circular variance 
filter was passed over each frequency backscatter layer where the value of the central 
effective unit in the data (the ‘texel, after Linnett et al., 1993) was the variance of the moving 
window over the original backscatter data. The result represents a measure of texture with a 
localised area (Var100 and Var500). The size and the shape of the moving window was 
optimized for the coral dominated classes; the high spatial resolution of the sonograms 
enabled the visual discrimination of individual coral mounds and the size of the kernel was 
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designed to coincide with the 3 m mean radius of coral mound aggregations found in the 
study site. In this context, variance is a 2nd-order algorithm, and the two textural layers 
produced were effectively measuring the coarseness or roughness of the original data bands 
in the two frequencies of operation. Homogeneous areas (e.g. sand beds) had a low variance 
while heterogeneous areas (e.g. rubble, coral patches) were characterised by high variance 
values. 
The second textural parameter was represented by the standard deviation of the texels 
within signature areas (SD100 and SD500). This parameter describes effectively the variation 
in texture coarseness and represents a measure of global nature as opposed with the 
previous parameter which has a local nature. The size of the signature areas varied between 
60 m2 and 400 m2 (20 x 20 m) depending on the habitat type, and was adjusted to ensure that 
it was not straddling class boundaries and encompassing adjacent classes. 

2.3 Biological surveys 
Biological surveys were carried out for the purpose of groundtruthing the satellite and side 
scan sonar images. The survey methodology was optimized for the 0.35 m side scan sonar as 
opposed to the 4 m resolution IKONOS data, employing a combination of transects and 1 x 1 
m and 0.25 x 0.25 m quadrats. The principal attribute recorded was percentage cover of the 
top layer of the dominant vegetation/lifeforms since this is the attribute recorded by optical 
remote sensors. In the case of seagrass and calcareous green algae, density was also 
recorded. Due to the penetrative nature of certain sonar frequencies (100 kHz or less, 
Blondel and Murton, 1997) which may penetrate the top few centimeters of sediments, 
detailed in situ notes of overlapping lifeforms and substrate to a depth of 5 cm below were 
also made, even when they were not exposed. Substrate types were recorded in the 
categories: bedrock, rubble, sand (coralline, terrigenous), mud, dead coral, boulders, and 
thin layer of sand on bedrock. Lifeforms were recorded most often to species level for hard 
corals, macroalgae and seagrass species and to a higher level taxon for soft corals, sponges, 
sea anemones, sea urchins and sea cucumbers. 
The biological surveys were conducted in two phases. The first phase (April-July 1999) 
collected rapid spot-check data to identify the broadscale habitats found around San 
Andres. Three replicate 1 x 1 m quadrats were employed at each site. General notes were 
also made of the type of habitats in the area within approximately a 5 m radius. Depth and 
position (DGPS) of each site were also recorded. A total of 57 spot-check sites were 
surveyed. During the second phase (September-October 2000) more detailed targeted 
surveys were conducted at 17 sites around the island, covering all available habitats, and 
guided by the results of the rapid spot check surveys. Each site measured 500 square metres 
(50 x 10 m), to match the average range of the sonar tracks (50 m). A 50 m transect, laid 
within a homogeneous patch of each habitat type at each site, was sampled at 10 m 
intervals, totalling 10 quadrats per site. These quadrats were not considered replicates since 
the distance of 10 m between them was enough in a number of cases to cause a change in the 
composition of the observed communities, and totalled to 170 samples. The depth at the 
individual sites, as with the spot-check surveys, ranged between 1 and 16 m. The start and 
the end of the central transect lines were positioned using DGPS, and the position of each 
quadrat was also determined. Video footage and still images of the whole transect and each 
quadrat were produced using a Hi-8 Sony Video recorder. Although the footage was not 
used to directly estimate benthic cover, it was used as a permanent record of the site and to 
support the surveyor’s results. 
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Classification scheme – With minor modifications, the hierarchical habitat classification 
system of Mumby and Harborne (1999) was used for this study (Table 1). This system was 
found suitable because it is based on field data from Caribbean habitats, and due to its 
hierarchical structure it could accommodate both the variable availability of data from the 
two phases of the groundtruthing surveys, as well as the different spatial scales of the 
satellite and sonar images. Some amendments were made in thresholds of different classes 
to account for regional differences. Only the first and second tiers (coarse and medium 
descriptive resolution) of the ecological component of the classification system were used to 
assign each spot-check or survey quadrat to a benthic class. The third tier (detailed 
descriptive resolution) of the scheme was considered too detailed for using with the 
remotely sensed data. In total, 4 coarse habitats were identified (coral, algal dominated, bare 
substratum, and seagrass dominated classes), and 20 bottom types in the medium 
descriptive resolution. 

2.4 Discriminant function analysis for habitat classification 
Discriminant function analysis (DFA) was used to test the discrimination of the sub-littoral 
habitat types found around San Andres, based on the IKONOS optical data and acoustic 
data in isolation and in combination. Water column corrected spectral and SSS acoustic 
backscatter and textural signatures for 125 of the detailed, ground-truthing sites were 
extracted. Only the areas for which acoustic data were also available were selected, so that 
the synergy of the two datasets could be tested. The DFA analysis was performed at both 
the coarse and medium descriptive habitat classification levels. To build a model of 
discrimination, individual bands or sonogram layers were chosen as independent variables 
within the DFA by a forward stepwise selection process. Confusion matrices were produced 
to assess the accuracy of the classifications at each level and to identify misclassifications, 
and overall accuracy rates and user’s accuracy for the individual classes were calculated. 
This was done by comparing the a posteriori classification of the habitat members with their a 
priori membership. Although this is a biased measure of discrimination, since the same 
datasets were used to derive the functions and evaluate the accuracy of the predictions (as 
opposed to using an independent dataset), this was necessary given the restricted number of 
data points available. These values were, however, useful for comparing accuracies between 
the results of the DFA based on the acoustic, optical, and combined datasets, as well as 
between the classifications at different descriptive resolutions. The study is also primarily 
concerned with estimating relative rather than absolute separability so this approach is a 
justifiable one. 

3. Results and discussion 
3.1 Optical results 
At both classification levels the stepwise DFA selected only the Blue IKONOS band, as best 
discriminating the habitat types and discarded the green and red bands as statistically 
redundant for separating the classes. Whilst this is expected for the red band as red light is 
attenuated within the top 1-3 m of the water column due to absorption by water itself, it was 
more surprising for the green band. The classification results are discussed bearing in mind 
that they were achieved on the basis of the blue band brightness alone. 
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Coarse level 
Label and 
characteristics 

Medium descriptive level 
Label and characteristics 

1. Coral classes 1.1 Branching corals - Majority of corals are branching (eg 
Acropora spp.) 

> 1% hard coral cover 1.2 Sheet corals - Majority of corals are branching (eg Agaricia 
spp.) 

 1.3 Blade fire corals with green calcified algae - Majority of 
corals are blade fire corals 

 1.4 Massive and encrusting corals - Majority of corals are 
massive and encrusting 

 1.5 Dead coral - Dead coral ≥ live coral 
 1.6 Gorgonians - Gorgonians ≥ hard coral  
2. Algal dominated 2.1 Green algae - Majority of algae are green 

≥ 50% algal cover & 2.2 Fleshy brown and sparse gorgonians - Majority of algae are 
fleshy brown 

< 1% hard coral cover 2.3 Lobophora - Monospecific Lobophora beds 

 2.4 Red fleshy and cructose algae - Majority of algae are red. 
Encrusting sponges present 

3. Bare substatum 3.1 Bedrock and rubble with dense gorgonians - ≥ 30% 
gorgonians and ca 30% algal cover 

> 50% bare substratum 3.2 Bedrock and rubble with sparse gorgonians - < 30% 
gorgonians and little algal cover  

< 1% hard coral 3.3 Sand and rubble with sparse algae - Both sand and rubble 
present and occasionally boulders; No gorgonians 

 3.4 Sand with sparse algae - No rubble present 
 3.5 Mud - Mud is the predominant substrate 

 3.6 Bedrock - Bedrock is the predominant substrate; Sand and 
algae met be present but sparse 

4. Seagrass dominated 4.1 Sparse seagrass - 10-30 % seagrass 
> 10% seagrass cover & 4.2 Medium density seagrass - 31-69 % seagrass 
< 50% algae 4.3 Dense seagrass - > 70 % seagrass 
 4.4 Seagrass with distinct coral patches 

Table 1. The hierarchy of classes contained within the ecological component of the modified 
classification scheme by Mumby and Harborne (1999) with quantitative diagnostic 
descriptors. 
The Discriminant function analysis (DFA) results from the extracted IKONOS signature data 
yielded an overall accuracy of 29% at the medium resolution level (10 classes) and 40% for 
the coarse level of descriptive resolution (4 classes). The greater accuracy at the coarser level 
is in agreement with findings of classification accuracies of similar habitats from optical 
imagery (Mumby and Edwards, 2002). Individual class (user’s) accuracies ranged from 12-
100% at the medium level, and 0-58% at the coarse level (Tables 2 and 3). At the medium 
descriptive level, the highest user’s accuracy was achieved for dense seagrass (100%) 
followed by sand and algae (50%), massive corals (45%) and sparse seagrass (43%). Least 
discrimination was achieved for the dead coral class (12%), sheet corals (16%) green algae 
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(17%), and medium density seagrass (18%). Most confusion at this descriptive level occurred 
between the different coral classes, the algal, coral and seagrass classes, the medium and 
dense seagrass classes, and the sand and sheet coral classes. 
 

Predicted class 
Actual class 

1.2 1.4 1.5 2.1 3.1 3.3 3.4 4.1 4.2 4.3 Ro
w

 
To

ta
l 

1.2 Sheet corals (mainly Agaricia) > 1% 4          4 
1.4 Massive and encrusting corals  13 4  1 3     21 
1.5 Dead coral (Dead > live coral cover) 3 4 2   1 1 1   12 
2.1 Green algae (≥ 50% algal cover,  
majority green algae)  2  1 1 1   1  6 

3.1 Bedrock and rubble with dense  
gorgonians (> 50% bare)   1  3 1     5 

3.3 Sand & rubble with some algae (> 50% 
bare) 2  3  3 2 1 1   12 

3.4 Sand with some algae (> 50% bare) 15  1 2 4  2 2 1  27 
4.1 Sparse seagrass and algae (<50%)  3 6  1   3   13 
4.2 Medium density seagrass and algae  
(<50%)  3  3     2  8 

4.3 Dense seagrass and algae (<50%)  4       7 3 14 
Column Total 24 29 17 6 13 8 4 7 11 3 122 

User classification accuracy (%) 16 45 12 17 23 25 50 43 18 100  

Table 2. Classification error matrix for spectral signatures extracted from IKONOS imagery 
at the medium descriptive resolution (10 classes). Cases in row categories are classified into 
column predicted classes. Overall classification accuracy: 29%. 

Although the coarser descriptive resolution achieved a greater overall accuracy of 40%, this 
is still poor for scientific or management applications. The best discrimination was achieved 
for the bare substratum class (58%, Table 3) which is in agreement with other IKONOS case 
studies that report sand to be always well classified (Andrefouet et al., 2003). Two-way 
misclassification existed between the bare substratum and algal dominated classes. The next 
best discriminated class was seagrass (53%) with the main confusion of this class being with 
algae. This is not surprising considering that the algal class here was dominated by green 
algae and which was spectrally similar to the seagrass class. These similarities contributed to 
the entire misclassification of the algal class. Similarly, the coral class was wholly 
misclassified as seagrass or bare substratum.  
There are difficulties in comparing classification accuracies between different reef studies. 
Green et al., (1996) pointed out this difficulty due to inconsistencies in the classification 
schemes used, the different number and type of classes, differences in in situ data collection, 
image processing methods, and the means by which accuracy is assessed. Furthermore, the 
particulars of the different sites, e.g. in depth and differences in the dominant species, will 
greatly influence the accuracy rates. However, our results are in general agreement with 
those obtained elsewhere using real or simulated IKONOS data where sand-dominated 
habitats are the best discriminated, while coral classes are generally poorly classified, 
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especially when algal-dominated areas or dense seagrass beds that are spectrally similar to 
deep corals are included in the analysis (Hochberg and Atkinson, 2003; Andrefouet et al., 
2003). 
 

Predicted class 
Actual class 1. Coral 

classes 
2. Algal 

dominated
3. Bare 

substratum
4. Seagrass 
dominated Row total 

1. Coral classes 0 7 15 17 39 
2. Algal dominated  0 3 4 7 
3. Bare substratum 3 15 25 1 44 
4. Seagrass dominated 1 9 0 25 35 

Column Total 4 31 43 47 125 
User classification accuracy (%) 0 0 58 53  

Table 3. Classification error matrix for spectral signatures extracted from IKONOS imagery 
at the coarse descriptive resolution (4 classes). Cases in row categories are classified into 
column predicted classes. Overall classification accuracy: 40%. 

The key factors which contribute to poor classification are the similarity in spectral 
signatures between many habitat classes and the limited umber of IKONOS wavebands. 
Seagrasses, algae and reef habitats are dominated by photosynthetic organisms resulting in 
similar spectral signatures. Differences between classes are often subtle and require high 
spectral resolution and often spectral derivative analysis for segregation (Clark et al., 2000; 
Hochberg and Atkinson, 2000; Hochberg et al., 2003; Karpouzli et al., 2004). IKONOS 
spectral bands are too broad and poorly placed to detect subtle differences needed to 
discriminate between such classes.  
Mumby and Edwards (2002) and many of the case studies in Andrefouet et al., (2003) 
reported higher overall classification accuracies, and higher coral class accuracies using 
IKONOS imagery. However, our results are not directly comparable with these studies 
which employed supervised image classifications rather than classifications from extracted 
spectral signatures using DFA. After supervised classification has been applied to an image 
it is possible to improve the map accuracy for the classified image by contextual editing 
where contextual rules can be used to reclassify misclassified classes to the correct categories 
to optimise results (Andrefouet et al., 2003). However, another study that did not use 
contextual editing to improve the accuracy of the classification of IKONOS data reported 
similarly disappointing user’s accuracies for coral classes of 9.7% and 9.5% for a nine-class 
medium resolution scheme and a four-class coarse resolution scheme, respectively 
(Capolsini et al., 2003). 

3.2 Acoustic results 
Example sonograms of the two backscatter intensity bands (100 kHz and 500 kHz) from 
some of the habitat classes surveyed are shown in Figure 2. Areas of high backscatter appear 
bright, while low backscatter appears dark. Rocks and coral mounds can be seen as distinct 
features yielding a strong and highly textured return (Figure 2a, d). Due to their complex 
morphology and bathymetric relief, areas of acoustic shadows (appearing black in the SSS 
data) can be observed adjacent to them. The result is that for coral targets both 100 and 500 
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kHz images appear highly textured with rough and irregular surfaces; signatures from these 
areas would be expected to be characterized by high variance. Sand is less reflective and 
more homogeneous in character compared to the highly textured coral patch (Figure 2a). 
The 500 kHz sonogram shows a better definition of the coral mounds and higher reflectivity 
over sand. This is due to the fact that higher frequency sound experiences less attenuation in 
penetrating sediment than lower frequency sound, resulting in overall less penetration and 
a higher backscatter (Mitchell, 1993). 
Syringodium generates bright but fuzzy backscatter indicative of a strong echo return while 
the fuzziness indicates that the return is not from a distinct hard object (Figure 2b). Seagrass 
typically returns a strong echo in comparison to the sediment surrounding the beds, 
especially in the 100 kHz sonogram attributed to the existence of lacunae in the seagrass 
leaves (Sabol et al., 2002; Siljestrom et al., 2002). Mixed algal cover exhibits highly textured 
and strong backscatter of an intermediate coarseness (Figure 2c). Halimeda has also been 
reported to have a strong backscatter in other studies (Blondel and Murton, 1997), possibly 
due to its highly calcified leaves and stems. 
Medium-fine sand produces a much weaker acoustic return than either coral or rubble 
showing a fine texture especially in the 100 kHz band (Figure 2d). In this example, the 
gorgonian reef patch shows higher reflectivity in the direction of sonification and the long 
shadows of sparse massive coral mounds suggest a change in the angle of the seabed, and 
therefore the higher relief of the reef patch. This was confirmed by dive survey. Similar 
findings for rocky, gravel and sand substrates are reported from Barnhardt et al., (1998). 
The Discriminant function analysis (DFA) results for the acoustic data yielded higher 
accuracies compared with the optical data. At the medium level of resolution (10 classes) an 
overall accuracy of 34% was achieved, which was 5% higher than achieved for the optical 
data at the same level (Table 4). Similar to the DFA results of the optical data, classification 
accuracy increased at the coarse level of descriptive resolution reaching 50%, 10% more than 
achieved with the optical data at that level (Table 5). This finding is in agreement with 
findings of classification accuracies of similar habitats from acoustical single beam data 
(White et al., 2003). 
Individual class user’s accuracies ranged from 22-50% at the medium descriptive level, and 
5-78% at the coarse level of descriptive resolution (Tables 4 and 5). However, the results of 
the DFA at the medium level suggest that it is not possible to discriminate all classes on the 
basis of their acoustic properties alone. Among them the hard coral classes were best 
discriminated with user accuracies ranging from 40 – 50%, followed by dense gorgonian 
habitats (40%), the sand and rubble classes (40%), and the sand classes (40%). The seagrass 
classes had the lowest accuracies (22 – 29%) with misclassifications occurring between them, 
as well as between them and sand or rubble habitats with some algal cover. Most confusion 
occurred between the sparse seagrass classes and the sand and rubble with sparse algae 
classes, and the medium dense, and sparse seagrass classes (Table 4). The green algae class 
(2.1) was also poorly discriminated with a classification rate of only 25%. Confusion existed 
between that class and sand and algae (3.4), the sand with rubble class (3.3), the two 
seagrass classes, and the massive coral class (1.4). With the exception of the latter, the rest of 
the classes showed a similar coarseness in texture in the sonograms, especially the seagrass 
and algal habitats which may partly explain their poor discrimination. The typical green 
algal habitats found around San Andres were on sandy substrate and most often mixed with 
seagrass species which may explain their apparently similar acoustic responses. Coarse sand 
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and seagrass also had similar textures with the main difference being in the intensity of the 
backscatter and their different response in the two frequencies. 
  

10 m

Z22L5-A-100 Z22L5-A-500 

A 

Z12L12C-500Z12L12C-100 

B 

Z9L12-A-100 Z9L12-A-500 

C 

Z18L14B-100 Z18L14B-500

D 

 
Fig. 2. 100 kHz and 500 kHz side scan sonar images from a number of habitat classes 
surveyed. Frequency is indicated by “100” or “500” at the end of the area ID. Areas of high 
backscatter are bright, low backscatter is dark. A) Medium density massive and encrusting 
coral amongst sand, B) Syringodium seagrass among fine sand, C) Medium algal density 
(principally Dictyota and Halimeda) mixed with Syringodium, D) Medium fine sand with oval 
patch of dense gorgonian coral on bed rock. 

Reducing the descriptive resolution of the DFA increased the accuracies of all classes except 
for the algal class which was reduced to 5% from 25% (Table 5). This class was largely 
misclassified as seagrass although many seagrass cases were misclassified as algal classes. 
However, seagrass classification was improved over the medium level, demonstrating the 
potential for seagrass discrimination using acoustic data at a coarser level where subclasses 
of different densities are not considered. The bare substratum class also showed an increase 
of accuracy at the coarser level of resolution, to 52%. 
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Predicted class 
Actual class 

1.2 1.4 1.5 2.1 3.1 3.3 3.4 4.1 4.2 4.3 Ro
w

 
To

ta
l 

1.2 Sheet corals (mainly Agaricia) > 1% 3 1         4 

1.4 Massive and encrusting corals 2 6 2 3 2 2   4  21 

1.5 Dead coral (Dead > live coral 
cover) 1 2 6 1    1 1  12 

2.1 Green algae (≥ 50% algal cover, 
majority green algae)    4  2     6 

3.1 Bedrock & rubble with dense 
gorgonians (>50% bare) 1 1   2    1  5 

3.3 Sand & rubble with some algae 
(>50% bare)      8  3 1  12 

3.4 Sand with some algae  
(>50% bare)  2 4 4 1 4 2 2 5 3 27 

4.1 Sparse seagrass and algae (<50%)  2  2  4  4  1 13 

4.2 Medium density seagrass and 
algae (<50%)         5 3 8 

4.3 Dense seagrass and algae (<50%)  1  2   3 4 2 2 14 

Column Total 7 15 12 16 5 20 5 14 19 9 122 

User classification accuracy (%) 43 40 50 25 40 40 40 29 26 22  

Table 4. Classification error matrix for acoustic signatures extracted from the acoustic data at 
the medium descriptive resolution (10 classes). Cases in row categories are classified into 
column predicted classes. Overall classification accuracy: 34%. 

The class best discriminated on the basis of its textural parameters was coral with a user’s 
accuracy of 78% at the coarse descriptive resolution (Table 5). Many of the processes that 
drive coral reef dynamics such as recruitment processes or hurricane damage result in 
patchy distributions which, together with variable three dimensional structures, contribute 
to this class showing the greatest variance measures (Mumby & Edwards 2002). 
Few other studies have reported accuracy rates for mapping coral reef habitats using 
acoustic remote sensing methods (White et al., 2003; Riegl & Purkis, 2005, Lucieer, 2007). 
Whilst the results this study are not strictly comparable with those obtained using AGDS by 
White et al., (2003) and Riegl and Purkis (2005) their single beam acoustic signatures 
measured parameters of “roughness” and “hardness” of the habitats under investigation. 
White et al., (2003) reported similarly poor (28%) overall accuracies for a 10 class level of 
resolution and a higher overall accuracy (60%) at a coarser level of four classes. At the coarse 
level coral was the best discriminated class with a user’s accuracy of 68%, comparable to the 
results of this study. Riegl and Purkis (2005) presented similar classification accuracies of 
56% when attempting to classify 4 classes (coral, rock, algae and sand) on the basis of two 
signal frequencies, 50 and 200 kHz. 
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Predicted class 
Actual class 1. Coral 

classes 
2. Algal 

dominated
3. Bare 

substratum
4. Seagrass 
dominated Row total 

1. Coral classes 25 1 9 3 39 

2. Algal dominated  1 2 4 7 

3. Bare substratum 7 5 18 14 44 

4. Seagrass dominated  12 5 18 35 

Column Total 32 19 35 39 125 

User classification accuracy (%) 78 5 52 46  

Table 5. Classification error matrix for acoustic signatures extracted from the acoustic data at 
the coarse descriptive resolution (4 classes). Cases in row categories are classified into 
column predicted classes. Overall classification accuracy: 50%. 

Useful acoustic variables - At the coarse classification level, the stepwise procedure selected 
three acoustic variables as best discriminating the four habitat types and discarded the rest 
as redundant for separating these classes (Table 6). The variables selected were the mean 
values of the class signatures of the 2 texture bands (Var100 and Var500) and the class standard 
deviation of the 100 kHz frequency texture bands (SD100). At the medium classification level, 
the stepwise procedure selected slightly different acoustic variables to best discriminate the 
10 habitat classes (Table 6). The variables selected were the class mean values of the 500 kHz 
texture band (Var500) and the class standard deviations of the 100 kHz and 500 kHz 
frequencies texture bands (SD100 and SD500). At both classification levels, the mean signal 
intensity data bands (I100 and I500) were discarded. Similarly, among the variables selected 
SD100 had the largest discriminant coefficients for both the first and second discriminant 
functions indicating that it was the most significant variable at both classification levels. 
 

Coarse level Medium level 
Var100 Var500 
Var500 SD100 
SD100 SD500 

Table 6. The acoustic parameters identified by the stepwise discriminant analysis to provide 
the best discrimination between habitat classes at the coarse and medium descriptive levels. 

The standard deviation of the signature areas represents large-scale spatial variability in the 
images while the two texture (variance) layers indicate small-scale spatial variability in the 
backscatter signal. The kernel size of the moving window that produced the texture layers is 
significant in determining their texel values. These values would be directly related to the 
window homogeneity and the size of the objects in the original image would influence the 
choice of kernel size, e.g. in this case the size of coral mounds. Hence, it is perhaps 
inappropriate to measure all classes and objects with the same measure, and each data set 
and application should have different kernel sizes that maximize their discrimination. In the 
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case of this study, the size of the moving window was optimized for the coral classes and 
this must have contributed to the improved classification accuracy, when compared to the 
other classes. Further research could investigate using more texture layers created by 
changing kernel sizes to optimize them for different habitat types. The applicability of 
variogram-derived texture measures using a moving window, the size of which is 
determined by the range of the variogram could also be investigated. Such variogram-
derived texture measures have been extracted from microwave images of agricultural 
landscapes with partial success and warrants further investigation (Jakomulska & Stawiecka 
2002) 
The use of dual frequency sonograms improved texture and pattern recognition since 
products from both bands were selected by the DFA, even though the 500 kHz band seemed 
visually more noisy. The lower frequency (100 kHz) seemed more useful at the coarse 
classification level, while the higher frequency (500 kHz) was more useful for the 
discrimination of the detailed scale habitats. This may be partly due to the higher resolution 
provided by the 500 kHz band, resulting in more detailed sonograms, even after the re-
sampling process. This would be translated in the textural bands of the higher frequency. 
Additional frequency bands could potentially further improve the discrimination between 
the classes and increase the classification rates. 
The side scan sonar survey had a number of limitations which may have contributed to the 
misclassifications of some of the classes. Positional and locational errors are in general 
greater for acoustic data compared with satellite data (Malthus & Mumby, 2003). Positional 
errors may have been introduced from a variety of sources including inadequate positioning 
of the towfish in relation to the survey boat, and the approximate nature of the manual 
georectification of the sonograms. Similarly, system resolution, which dictates the minimum 
size of the feature identifiable at a particular distance from the survey instrument, is a 
function of both instrumental limitations (sonar instrument specifications) and 
practical/operational considerations which will be affected by navigational errors, location 
errors of the instrument and acoustic noise (Bates et al., 2002). 

3.2 Optical and acoustic synergy results 
With the inclusion of both optical and acoustic signatures in the DFA classification accuracy 
improved significantly compared to either method used in isolation, at both the coarse and 
medium level of descriptive resolution (Tables 7 and 8). The overall accuracy of the 
classifications improved to 52% at the medium level (10 classes) and to 61% at the coarse 
level (4 classes). 
The textural information derived from the high resolution side scan sonar data made a 
significant improvement to the user’s accuracies of each class at both discrimination levels 
compared to the original spectral discrimination performed used the IKONOS data alone 
(Table 10). All except one habitat class, showed an increase of at least 10% from their optical 
classification accuracy when the acoustic data were included in the DFA. The classes that 
benefited most from the inclusion of the textural acoustic data at the detailed level of 
resolution were the three coral classes (classes 1.2, 1.4 and 1.5), the green algae class and the 
sand class (3.4), where % increases were 27%, 19%, 38%, 23% and 28%, respectively. Even 
though the overall accuracy at this level is still low (52%) and probably inadequate for 
management purposes (Mumby and Edwards, 2002), at the individual class level, classes 1.4 
and 3.4 were well discriminated. This separation is further illustrated in scatterplots of the 
first three discriminant functions in Figure 3. 
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Predicted class 
Actual class 

1.2 1.4 1.5 2.1 3.1 3.3 3.4 4.1 4.2 4.3 Ro
w

 
To

ta
l 

1.2 Sheet corals (mainly Agaricia) > 1% 3      1    4 
1.4 Massive and encrusting corals  9  2 3 3   3 1 21 
1.5 Dead coral (Dead > live coral cover) 3 5 2     1  1 12 
2.1 Green algae (≥ 50% algal cover,     
majority green algae)    2  2    2 6 

3.1 Bedrock and rubble with dense     
gorgonians  (> 50% bare) 1  1  2    1  5 

3.3 Sand & rubble with some algae (> 50% 
bare)      6 3 3   12 

3.4 Sand with some algae (> 50% bare)   1  1 4 21    27 
4.1 Sparse seagrass and algae (<50%)       2 8  3 13 
4.2 Medium density seagrass and algae   
  (<50%)         5 3 8 

4.3 Dense seagrass and algae (<50%)    1    3 4 6 14 
Column Total 7 14 4 5 6 15 27 15 13 16 122 

User classification accuracy (%) 43 64 50 40 33 40 78 53 38 40  

Table 7. Classification error matrix for combined acoustic and optical signatures extracted 
from the sonar and IKONOS imagery at the medium descriptive resolution (10 classes). 
Cases in row categories are classified into column predicted classes. Overall classification 
accuracy 52%. 

Predicted class 
Actual class 1. Coral 

classes 
2. Algal 

dominated
3. Bare 

substratum
4. Seagrass 
dominated 

Row 
total 

1. Coral classes 25 3 5 6 39 

2. Algal dominated  1 2 4 7 

3. Bare substratum 7 7 28 2 44 

4. Seagrass dominated  11 2 22 35 

Column Total 32 22 37 34 125 

User classification accuracy (%) 78 5 76 65  

Table 8. Classification error matrix for combined acoustic and optical signatures extracted 
from the sonar and IKONOS imagery at the coarse descriptive resolution (4 classes). Cases 
in row categories are classified into column predicted classes. Overall classification 
accuracy: 61%. 
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Coarse level Medium level 
Blue Ikonos Blue Ikonos 

Var100 Var100 
Var500 Var500 
SD100 SD100 

 SD500 

Table 9. The acoustic and optical parameters identified by the stepwise discriminant analysis 
to provide the best discrimination between habitat classes at the coarse and medium 
descriptive levels. 

The better discrimination achieved at the coarse level of descriptive resolution was 
demonstrated, with the exception of the algal class, by high class user’s accuracy values 
close to or over 70% (Table 10, Figure 4). Similar to the medium level classification, the class 
that showed the greatest improvement when the textural parameters were added to the 
DFA was the coral class exhibiting an improvement in its accuracy from 0% to 78%. This 
was followed by the bare substratum class with an increase from 58% to 76%, and by the 
seagrass class where accuracy increased from 53% to 65%. 
The only classes which did not benefit from the inclusion of the textural acoustic 
information in the DFA were dense seagrass class (medium classification level) and the algal 
class (coarse level). Dense seagrasses, along with the other seagrass classes, showed 
relatively poor discrimination based on their acoustic properties alone. At the coarse level, 
when all seagrass subclasses were amalgamated into one class, the sonar classification 
accuracy was higher (46%) which had the overall effect of improving the classification 
accuracy to 65% for the combined dataset. These results may indicate the inability of sonar 
data to differentiate between different seagrass densities, and demonstrates that if a class 
has very good discrimination on the basis of one dataset as in this case (100%) but low 
discrimination on the basis of the other, then it is best classified only on the basis of the 
single dataset that gives the best results. 
The advantages to be gained from synergistic use of the two datasets is best illustrated by 
the fact that, for most classes, the discrimination achieved when both datasets were used in 
combination was equal to or greater than the best discrimination achieved on the basis of 
each dataset in isolation. This was the case for eight out of the total of ten classes at the 
medium level and for all classes at the coarse level. However, the results also indicate that 
some classes will not be successfully differentiated using either dataset (e.g. algal class 2 at 
the coarse level). 
Mumby and Edwards (2002) used textural information to improve the spectral classification 
of IKONOS data for mapping coral reef habitats and found that their inclusion improved 
overall accuracy of the thematic map at the medium level by 9%, and at the coarse level by 
7%. This study achieved a much greater improvement in accuracy: 23% at the medium level 
and 21% at the coarse level, attributable to the higher spatial resolution of the sonar data, its 
greater depth penetration, and the information contained in the sonograms regarding the 
structural organisation of the habitats. As with the present study, the high coral cover 
classes showed the greatest texture due to their greater structural heterogeneity, while sand 
had the least, but both benefited from improved classification accuracy with its inclusion. 
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Fig. 3. DF scores from the analysis of the combined optical and acoustic signatures at the 
medium descriptive level projected in discriminant function space. First and second 
functions (top graph), first and third functions (bottom graph). 
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Classification IKONOS 
data 

Side Scan 
Sonar data 

IKONOS & 
side scan sonar 

data 
Medium resolution classification:    

1.2 Sheet corals (mainly Agaricia) > 1% 16 43 43 
1.4 Massive and encrusting corals 45 40 64 
1.5 Dead coral (Dead > live coral cover) 12 50 50 
2.1 Green algae (≥ 50% algal cover) 17 25 40 
3.1 Bedrock and rubble with dense   
  gorgonians  (> 50% bare) 23 40 33 

3.3 Sand & rubble with some algae (> 50% 
bare) 25 40 40 

3.4 Sand with some algae (> 50% bare) 50 40 78 
4.1 Sparse seagrass and algae (<50%) 43 29 53 
4.2 Medium density seagrass and algae 
  (<50%) 18 26 38 

4.3 Dense seagrass and algae (<50%) 100 22 38 
Overall accuracy (%): 29 34 52 

Coarse resolution classification:    
1. Coral classes 0 78 78 
2. Algal dominated 0 5 5 
3. Bare substratum 58 52 76 
4. Seagrass dominated 53 46 65 

Overall accuracy (%): 40 50 61 

Table 10. Individual class user’s accuracies and overall accuracies (%) from the discriminant 
function analysis of the optical, acoustic, and combined datasets at the medium and coarse 
descriptive levels. 

The improvement in the discrimination of the dead coral class with the inclusion of the 
acoustic textural data is particularly significant for monitoring coral health. The results of 
the optical classification showed that diseased coral cannot be discriminated spectrally on 
the basis of IKONOS bands alone as, due to their rapid colonization by macroalgae, they are 
spectrally indistinguishable from macroalgal beds. This is evident in the misclassifications of 
the other classes (seagrass, sand with algae, and massive coral classes into this class) into the 
dead coral class (Table 2). Even after the inclusion of the sonar data the classification 
accuracy of this class is still not satisfactory (50%), but the combination of the two datasets 
shows potential for improving the discrimination of diseased or dead coral. This may be 
attributed to the acoustic signatures of algae overlying dead coral mounds; it still identifies 
the distinct texture of coral, even though spectrally the signature is similar to algal or 
seagrass classes. 
Overall, the improvement in classification accuracies brought about by the inclusion of the 
acoustic data in the DFA was mainly due to the improved discrimination of spectrally 
similar classes but which had contrasting textural characteristics, or of classes whose 
distribution could not be resolved by the spatial resolution of the IKONOS imagery. A 
limitation of the combined dataset that may have resulted in misclassifications is the 
imperfection in the co-registration of the optical and sonar datasets. Scale differences 
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Fig. 4. DF scores from the analysis of the combined optical and acoustic signatures at the 
coarse resolution level projected in discriminant function space; first and second functions. 

between the two datasets exacerbate the co-registration process. Further improvements in 
the classification accuracies reported here could be expected to be achieved by improved 
methods of co-registration, using a supervised classifier on the IKONOS image and 
sonograms themselves, which would allow contextual editing to be implemented, or by 
entering complementary data in the classification process, such as bathymetry. 

4. Conclusion 
IKONOS imagery and dual frequency side scan sonar data were acquired in the coastal 
waters of San Andres island encompassing diverse coral, seagrass, algal and sediment 
habitats. The characteristics of both data types were compared with the aim of determining 
if synergistic use of both methods improved the accuracy of classification of these habitats. 
The optical classification showed that only a few classes can be discriminated by their 
IKONOS spectral signatures alone, and the incorporation of spatial information, in the form 
of fine scale, acoustically-derived texture, greatly improved the accuracy of the classification 
at both the coarse (habitat) and medium (community) levels. The results indicate that the 
combined use of both techniques provides a means by which the rich diversity of tropical 
reef ecosystems can be mapped and monitored with significantly greater accuracy than with 
either technique alone. 
In this study, greatest accuracies were achieved at both classification levels based on the 
Blue IKONOS water column corrected spectral band, and texture parameters derived from 
the dual frequency high spatial resolution sonograms, which best exploited the differences 
between classes, although fewer of these parameters were required at the coarse 
classification level of discrimination. 
Overall, the improvement in classification accuracies brought about by the inclusion of the 
acoustic data in the DFA was due to the improvement of the individual class accuracies that 
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were spectrally similar but had contrasting textural characteristics, or of classes whose 
distribution could not be resolved by the spatial resolution of the IKONOS imagery. 
Textural (spatial) information was of particular benefit for discriminating classes 
characterized by a complex spatial pattern, represented by heterogeneous acoustic response, 
and even though the overall classification accuracies were still not satisfactory (at 52% for 
the detailed level and 61% at the coarser level), the improvement from the optical 
classification of 23% at the fine level and 21% at the coarse level was very encouraging.  
The advantages of the synergistic use of the two datasets was illustrated by the fact that, for 
many classes, when both datasets were used in combination, accuracies were greater than 
the discrimination achieved on the basis of each of the datasets in isolation. Significant 
increases in classification accuracies were noted with the inclusion of the acoustic textural 
data, for the highly textured coral classes in particular, where individual class accuracy 
levels at 78% (coarse level resolution) were very satisfactory. The improvement in the 
discrimination of the dead coral class, the differentiation of which is very problematic when 
based on spectral data alone, has significant implications for monitoring coral health. 
The selection of a single IKONOS band for classification highlights the limited capacity of 
high and medium spatial resolution terrestrial satellite sensors to discriminate reef bottom 
types compared to higher spectral resolution systems (Maeder et al., 2002; Bouvet et al., 
2003; Karpouzli, 2003). These results confirm that sensors with wavebands different to those 
used by conventional terrestrial satellites are required for detailed mapping of reef biotic 
systems. It can be expected that higher spectral resolution data would further improve the 
classification accuracies obtained when optical and acoustic data are combined. Thus, the 
need for increased spectral resolution is highlighted – a conclusion also reached by other 
investigators (Hochberg & Atkinson 2003). 
The most obvious advantage of using acoustic and optical methods in combination is the 
different depth ranges to which each system operates. Knowledge of the upper and lower 
limits of habitats is important for management purposes (Malthus & Mumby, 2003), and the 
synergistic use of optical and acoustic data can be useful for such studies since optical 
systems perform best in shallow waters while sonar systems, are limited to depths generally 
over 2 m but can be used to depths of hundreds of metres, depending on the system 
employed. Similar conclusions were reached by Riegl and Purkis (2005) when investigating 
the synergy of IKONOS and single-beam sonar data. 
A limitation of this analysis was that the overall and user’s accuracies reported were not 
obtained from an independent dataset. Although these accuracies were useful for 
comparing relative accuracy levels between different classification levels and dataset, they 
do not necessarily reflect the accuracy with which another dataset would classify the same 
classes. This limits comparison with results from other studies where accuracies might be 
expected to be lower than those obtained here. However, as most studies report accuracies 
following supervised classification combined with contextual editing, it might be expected 
that the use of these techniques on combined optical and acoustic data may lead to greater 
accuracies than those achieved here using DFA. 
Overall, the results of this study are particularly encouraging for the benefits to be gained 
from the synergistic use of optical and acoustic data. It is perhaps easy to understand why 
the combination of texture or coarseness, and morphological information (represented by 
acoustic data) and ‘colour’ characteristics would facilitate the discrimination of different 
habitats instead of one based on colour alone. Limitations, such as those related to the side 
scan sonar survey, can be reduced or removed, and hence accuracy levels of the combined 
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dataset are likely to be higher. Discrimination of the habitats could be further improved 
with the use of contextual editing and the use of complementary data such as bathymetry. 
Few studies have used spectral and textural variables in conjunction to improve the 
classification of high spatial resolution images fewer still have derived textural parameters 
from high spatial resolution side scan sonar data. The lack of research in this area in general 
and the encouraging results presented here highlights the need for significant development 
in the synergistic use of optical remote sensing and acoustic data. 
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1. Introduction     
High-precision applications of airborne ultrasonic sensory systems have traditionally been 
restricted to indoor environments. The number of studies that have proposed the use of 
ultrasonic sensors outdoors is very limited and most times in a similar way that it has been 
made indoors. In applications like the guidance of vehicles and mobile robots, ultrasonic 
sensors are usually integrated in a more complex multi-sensory system, where they have 
been assigned low-precision tasks. Among these tasks are, for example,  the detection of 
very close obstacles with which there exists an imminent risk of collision, or the coarse 
ranging of large navigation landmarks (Langer & Thorpe, 1992), (Maeyama et al., 1994) (Guo 
et al., 2002).  
Sonar’s reputation as an unreliable sensing technology for outdoor applications is mainly 
due to the large influence that meteorological parameters have on the propagation of 
ultrasonic signals, which is a direct consequence of the mechanical nature of these waves. 
Changes in temperature and humidity, the presence of fog or rain in the atmosphere, and 
wind-induced refraction can cause strong variations in the attenuation of acoustic waves. As 
a result, a classical sonar system based on threshold detection of the signal envelope can 
provide very different results depending on the operating conditions. Furthermore, acoustic 
noise sources are more likely to be found outdoors. Aircrafts, pneumatic drills, bridge 
vibrations or even corona effects in high voltage cables are examples of ultrasonic sources 
which could render sonar in systems completely useless in certain environments. To 
overcome these problems, the research with ultrasonic sensors outdoors, has evolved to the 
use of special signal processing techniques such as the continuous transmission frequency 
modulated (CTFM) ultrasonic sensor used for path edge detection (Ratner & McKerrow, 
2003), the use of crosscorrelation with transmitted patterns for an outdoor sonar (Tanzawa et 
al., 1995) or the wind compensation method based on differential emitters for a positioning 
system (Jiménez & Seco, 2005).  
The first part of this chapter describes in detail the phenomenology associated with the 
propagation of acoustic waves in the atmosphere, placing an emphasis on the effects of the 
different mechanisms over the entire range of ultrasonic frequencies used in air. In the 
second part of the chapter, an outdoor sonar prototype is presented as an example of how 
the most recent signal coding and pulse compression techniques can be used to improve the 
reliability of sonar systems when operating under varying meteorological conditions. It will 
be seen that the transmission of ultrasonic encoded signals in the atmosphere entails a new 
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challenge because of the effects of turbulence on the amplitude and phase of these signals. 
This problem is examined and results worthy of future exploration are pointed out in this 
new, fascinating, and open field of research.  

2. Propagation of ultrasonic waves in the atmosphere 
Sound propagation in the atmosphere has been the subject of intensive research since the 
second half of the twentieth century. This research has been mainly motivated by the 
increasing necessity to control noise generated by an ever more industrialized society.  
There are several phenomena which have a significant effect on the propagation of acoustic 
waves through the atmosphere and these phenomena can be divided into three groups:  
• Attenuation mechanisms 
• Mechanisms affecting propagation speed 
• Turbulence 
Regarding the first group, useful conclusions for ultrasonic signals can be drawn by merely 
extrapolating the results already well established in the case of audio frequencies. A more 
detailed analysis is necessary when dealing with the other two categories. 

2.1 Attenuation mechanisms 
Geometrical spreading, atmospheric absorption and the attenuation caused by the presence 
of fog or rain are included in this group of phenomena. 
Geometrical spreading is defined as the amplitude decay of an elastic wave caused by the 
expansion of its wave-front away from the source. Therefore, it does not depend on the 
propagation medium but on the features of the transducer employed. The acoustic field 
generated by a transducer with a certain level of symmetry in a point of spherical 
coordinates (r, φ, θ) can be written as 

 ( , , ) ( ) ( , )axP r P r Dϕ θ ϕ θ= ⋅   (1) 

where Pax(r) is the acoustic pressure over the transducer (Pax(r) = P0 /r) and D(ϕ,θ) is the 
directional factor whose value depends on the symmetry that characterizes the transducer. 
For a typical circular piston-shaped transducer, the directional factor is given by the first 
order Bessel function of the first kind J1(·) as 

 12 ( sin )( , ) ( )
sin

J k aD D
k a

θϕ θ θ
θ

⋅ ⋅
= =

⋅
  (2) 

where a is the piston radius and k is the wave number (k = 2π/λ). In the region close to the 
transducer axis, D(θ) ≈ 1 and the attenuation is that of spherical waves P = P0 /r (6 dB loss 
when distance to the source is doubled). 
In addition to the loss associated with geometrical spreading, when an acoustic wave 
propagates through the atmosphere part of its energy is dissipated into thermal energy 
causing the exponential decay of pressure with travelled distance. Thus, the acoustic field 
can be written as 

 ( , , ) ( ) ( , ) abs r
axP r P r D e αϕ θ ϕ θ − ⋅= ⋅ ⋅   (3) 
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where αabs is the absorption coefficient, whose value depends on the mechanisms involved 
in this phenomenon. Air is one of the polyatomic gases which has been the subject of more 
in-depth study, and currently it is known that there are basically two different mechanisms 
that cause absorption of acoustic waves: the viscothermal losses (or classical absorption) and 
the oxygen and nitrogen molecular relaxation processes. The theoretical analysis of both 
processes led to a set of equations that have been later experimentally adjusted to increase 
agreement with real data. Today, these equations are grouped into the ISO-9613 standard 
(ISO, 1993). This rule establishes that the absorption coefficient can be calculated as 
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where f is the sound frequency in Hz, P is the atmospheric pressure in Pa (Pref = 101 325 Pa), 
T is the absolute temperature in K (Tref = 293.15 K), and frO, frN represent the relaxation 
frequencies of oxygen and nitrogen, respectively. As can be seen from Eq. (4), atmospheric 
absorption of acoustic waves depends on four parameters: wave frequency, temperature, 
humidity and pressure, although the dependence with the latter parameter is negligible if 
one takes into account the range of variation of this magnitude in practice.  Fig. 1(a) shows 
the dependence of α with frequency for T = 20 ºC, H = 70 % and P = 1 atm, together with the 
individual contribution of the different phenomena involved in this process. As can be seen, 
atmospheric absorption increases rapidly with frequency, being the vibrational relaxation of 
oxygen the dominant mechanism between 2 kHz and 100 kHz. Fig. 1(b) shows the 
dependence of α with temperature and humidity for a fixed frequency of 50 kHz and a 
pressure of 1 atm. The values shown in this figure range between a minimum of 0.37 dB/m 
for T = −20ºC and H =0%, and a maximum of 2.55 dB/m for T= 50ºC and H = 13%. In the 
design of an ultrasonic sensory system intended for outdoor operation, one must take into 
account that the signal absorption in a warm summer afternoon can be more than six times 
greater than that of a cold winter morning. 
Geometrical spreading and atmospheric absorption are always present when an acoustic 
signal is transmitted through the air. However, when this transmission is performed 
outdoors, there are other phenomena such as the presence of rain, fog or turbulence that can 
cause an additional attenuation of these signals. The effect of turbulence deserves special 
attention, and will be analysed later in this section. As for the other phenomena, a 
theoretical expression that can be used to estimate the attenuation caused by fog is that 
obtained by Cole and Dobbins (Cole and Dobbins, 1970): 
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where coefficients Ci are thermodynamic parameters depending on temperature, k is the 
wave number, Cm is the ratio between the drops mass and the mass of the gaseous phase per 
unit volume, and τt, τd are adimensional relaxation times characterizing the processes of 
energy and momentum interchange responsible for the attenuation −see (Cole and Dobbins, 
1970) for details−. These last three parameters depend on the droplet radius R and on the 
number of droplets per unit volume N: 
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where ρl is the droplets density, ρm is the gaseous phase density, and ηl andν are the thermal 
diffusivity and cinematic viscosity coefficients of air respectively. From these expressions it 
can be concluded that, at a given temperature, the attenuation undergone by an acoustic 
wave propagating in a foggy atmosphere depends basically on three parameters: the 
droplets concentration, their radius and the wave frequency. In a given fog (R and N 
constants), this attenuation increases with frequency until it reaches a saturation value that 
remains stable for higher frequencies.  Since atmospheric absorption increases with the 
frequency to the power of two, a limit frequency exists above which atmospheric absorption 
is the dominant mechanism. Fig. 2 shows the attenuation values given by Eq. (5) in the 
range of frequencies 100 Hz – 100 kHz for T = 23 ºC. Two types of fog are represented in this 
figure, a dense fog (N = 2000 drops/cm3 with R = 6 µm) and a light fog (N = 400 drops/ cm3 
with R = 10 µm). The attenuation associated with atmospheric absorption (Eq. (1)) has also 
been included in the same figure. Clearly, the dominant mechanism above 10 kHz is 
atmospheric absorption, although a dense fog can cause an additional attenuation as large 
as ≈ 0.1 dB/m in this range of frequencies. 
 

  
(a) (b) 

Fig. 1. Dependence of the atmospheric absorption coefficient αabs on different parameters.     
(a) Dependence on frequency for fixed temperature (T = 20ºC), humidity (H = 70%) and 
pressure (P = 1 atm). (b) Dependence on temperature and humidity for fixed frequency (f  = 
50 kHz) and pressure and (P = 1atm). 

With respect to rain, the drop size is so large in this case that the acoustic wave propagates 
through it without significant perturbation. Only a very intense rain can cause an 
appreciable attenuation. For frequencies greater than 20 kHz Shamanaeva (Shamanaeva, 
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1988) provides a very simple expression for the attenuation as a function of frequency and 
rain intensity I (mm/h): 

 28 4.9 1.51.63 10    (Np/m)rain f Iα −= ⋅   (7) 

Figure 2 also shows the results provided by Eq. (7) for an intense rain of 80 mm/h and a 
light rain of 5 mm/h. As can be seen, an intense rain can cause in a 50 kHz ultrasonic wave 
an attenuation similar to that caused by a dense fog (≈ 0.1 dB/m), and this attenuation is 
even greater for higher frequencies, although it is always less than atmospheric absorption. 
For frequencies below 50 kHz or in less intense rains this attenuation is negligible in 
practice. 
 

 
Fig. 2. Attenuation caused by the presence of fog and rain as a function of frequency. 

2.2 Mechanisms affecting the propagation speed 
Temperature and wind are the two meteorological parameters that have a stronger influence 
on sound speed propagation, whose apparent value s can be given as: 

 
2

( ) 1
( )

n
p

vs v c T
c T

⎛ ⎞
= + ⋅ − ⎜ ⎟

⎝ ⎠
  (8) 

where c(T) is the propagation speed of the undulatory phenomenon (temperature 
dependent); and vp and vn are respectively, the parallel and normal to the direction of 
propagation components of wind which is responsible for convective transportation. 
Assuming that the normal component of the wind vn is small compared to the wave speed c, 
a reasonable approximation for the apparent speed is 

 ( ) 331.6 1
273.15p p

Ts v c T v≈ + = + ⋅ +   (9) 

where T is the temperature in Celsius. In the atmosphere, both temperature and wind speed 
are functions that are strongly dependent on height, a dependency inherited by sound speed 
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that causes the refraction of ultrasonic waves propagating outdoors. Figure 3 shows the 
effects of temperature-induced refraction. During the day the ground is heated by solar 
radiation, and this heat is transferred to the lower layers of air that progressively cool with 
increasing height z. This negative gradient of temperature causes the upward curvature of 
the acoustic rays, a situation depicted in Fig. 3a. The opposite situation occurs at night, 
when the ground rapidly cools by radiation and air temperatures are colder near the 
ground. In this case, the acoustic rays are bent downwards as shown in Fig. 3b. 
 

 
(a) (b) 

Fig. 3. Temperature-induced refraction. 

A similar effect is caused by wind speed dependence on height. Due to the friction between 
the ground and the moving air, wind speed increases from zero at ground level to a 
practically constant value at an altitude of several hundreds of meters, a phenomenon 
known as wind shear. According to Eq. (9) an acoustic wave propagating downwind will be 
bent downwards, because the apparent sound speed is smaller, and the opposite effect will 
occur with a wave propagating upwind. Both situations are depicted in Fig. 4. 
 

 
Fig. 4. Wind-induced refraction. 

The quantitative analysis of this phenomenon requires an expression for the apparent sound 
speed as a function of height, s = s(z). Then, it will be possible to calculate the trajectory 
followed by an acoustic ray using Snell's law 
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where s0 represents the propagation speed at a reference height and θ is the angle between 
the acoustic ray and the horizontal plane. The expression for s(z) can be obtained from Eq. 
(9) if the profiles for temperature T(z) and wind velocity v(z) are known. In the surface layer 
of the atmosphere, whose height may vary from 10 m on clear nights to 100 m on windy 
days, these profiles can be obtained from the Monin-Obukhov similarity theory (Monin & 
Obukhov, 1954): 

 ( )0
0 0

0

( ) ( ) ln T
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In these expressions Ka is Von Karman’s constant, whose value is approximately 0.4; cp is the 
air specific heat at constant pressure; and G0 is the gravitational acceleration module. 
Constants T* and v* represent two scale values for temperature and wind speed respectively 
and their values are usually experimentally adjusted. Constant z0 is the roughness length, and 
it is a measure of the minimum height below which the profiles above are not valid. Its 
value depends on the roughness characteristics of the terrain and can be obtained with 
reasonable accuracy from tables by simple inspection of the terrain – see for example 
(Panofsky & Dutton, 1984) – 
Functions ψT and ψv appearing in the equations above depend on the type of atmosphere. 
These functions have been empirically adjusted to obtain the following expressions: 
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being x = (1 – 16z/Lmo) ¼. 
Finally, Lmo is the Monin-Obukhov length that basically depends on the vertical flux of heat at 
the surface. Since this flux cannot be easily measured experimentally, Lmo is not directly 
calculated in practice. Instead, its value is inferred from the relation of this parameter with 
the roughness length and Turner classes found by Golder (Golder, 1972). Turner classes 
constitute a classification method for different types of atmospheres, which is based on the 
relative importance that thermal convection and mechanical turbulence have on a particular 
atmosphere. Seven classes exist numbered from 1 to 7. The first three classes correspond to 
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unstable atmospheres, where thermal convection prevails over mechanical turbulence 
(sunny days with light winds), class 4 represents neutral atmospheres where thermal 
convection does not exist and only mechanical turbulence is present (days and nights with 
strong winds), and the last three classes correspond to stable atmospheres characterized by 
an inversion of the temperature gradient (clear nights with light winds). The class a certain 
atmosphere belongs to, may be directly calculated from the solar altitude (which determines 
the intensity of the radiation received), the cloud cover, and the wind speed at a reference 
height. The relation experimentally obtained by Golder between z0, Lmo and Turner classes is 
represented in Fig. 5 

 
Fig. 5. Relation between z0, Lmo and Turner classes (Golder, 1972). 

Let us now focus on the influence that this phenomenon has on the signal emitted by a sonar 
system. Due to atmospheric absorption, a signal horizontally emitted can cover a maximum 
distance of several tens of meters before reaching an object, and the maximum vertical 
deviation caused by refraction is not expected to exceed a few meters even in the most 
unfavorable conditions. In such a situation, it can be generally assumed that the apparent 
sound speed depends linearly on height, and then, the departure angle of a ray that is 
detected by a receiver placed at a distance r from the emitter in the same horizontal plane is 
given by: 
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  (13) 

where g = ds/dz  is the constant speed gradient and s0 is the apparent sound speed at the 
height of the sensor. The constant gradient can be obtained as the average sound speed 
variation in the first Fresnel ellipsoid. This ellipsoid is represented in Fig. 6, and it is defined 
as the region of the space where the differences between the length of the direct path and 
the length of any diffracted path is less than a half wavelength: 



Outdoor Sonar Sensing 

 

199 

 1 2 2
r r r λ

+ − =   (14) 

From this figure, the constant gradient can be expressed as: 

 max min( ) ( )

F

s h s hg
h
−

=   (15) 

where hF represents the ellipsoid height, which depends both on the wavelength λ and on 
the emitter-receiver distance r as shown 

   ·
4 4Fh rλ λ⎛ ⎞= +⎜ ⎟

⎝ ⎠
  (16) 

The evaluation of Eq. (13) is a tedious task which involves many previous calculations that 
are necessary to obtain the constant speed gradient g. An algorithm performing all these 
calculations has been used in (Alvarez et al., 2008) to study a particular ultrasonic system 
installed at a height of 150 cm over a terrain a short grass where maximum wind speeds of 
7.6 m/s were registered during a period of 6 months. This algorithm predicted a maximum 
departure angle of 1.6º under the worst conditions of wind, assuming a propagation 
distance of 14 m. This angle causes a negligible additional attenuation of 0.2 dB in the signal 
received at the same height if a Polaroid series 600 transducer (Polaroid, 1999) is employed 
in the emission. 
This conclusion should not be generalized, though. If transducers with narrower emission 
patterns are used, longer propagation distances are considered, or if the system is installed 
in locations where greater speed gradients can occur then the effect of refraction might not 
be insignificant. 
 

 
Fig. 6. Fresnel ellipsoid. 

2.3 Turbulence 
Wind is rarely stationary in the lower layers of the atmosphere and almost always random 
fluctuations of its behavior appear in the form of highly rotational fluxes. These turbulent 
eddies cause local random fluctuations in wind velocity and temperature, two parameters 
that have a strong influence on the propagation velocity of acoustic waves as was seen 
above.  Each one of these eddies causes a sudden change on the refraction index and the 
subsequent scattering of part of the wave energy. An immediate consequence of this 
scattering is the additional attenuation undergone by a wave propagating through a 
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turbulent medium. The average value of this attenuation was obtained by Brown and 
Clifford (Brown & Clifford, 1976) as 

  ( )12/5 2 6/5 12/5
010log 1 0.48    (dB)turb nA k d r C= +   (17) 

where k is the wave number; d0 is the diameter of the transducer; r is the travelled distance 
and Cn2 is the refractive index structure parameter which characterizes the turbulence 
strength. Equation (17) provides attenuation values far below those associated with 
atmospheric absorption in the range of frequencies 100 Hz – 100 kHz, as shown in Fig. 7. 

 
Fig. 7. Attenuation associated with the presence of turbulence as a function of frequency. 

Nevertheless, it is important to note that this attenuation is an average value and that the 
instantaneous values can vary widely around it. When an acoustic wave propagates through 
a turbulent region, it encounters a variety of eddies with different sizes, velocities and 
temperatures. Their combined effect alters the initial coherence of the wavefronts, which 
will no longer be spherical  nor have identical amplitude after crossing the turbulent region. 
This situation is depicted in Fig. 8. A receiver placed at a certain distance from the emitter 
will record random fluctuations in the amplitude and phase of the acquired signals. This 
effect can be characterized through a coherence time tc, defined as the time during which the 
characteristics of an acoustic wave propagating through a turbulent region remain 
essentially invariant. 
Turbulence theory provides a means to estimate the value of this time theoretically. Random 
fluctuations of wind velocity and temperature in a turbulent atmosphere cannot be 
described as stationary random fields through the spatial correlation function 

  ( )1 2 1 1 2 2, ( ) ( ) ( ) ( )uC r r u r u r u r u r⎡ ⎤ ⎡ ⎤= − ⋅ −⎣ ⎦ ⎣ ⎦   (18) 

where u represents a generic magnitude;  < • > is the spatial average operator; and r1, r2 two 
arbitrary positions. These meteorological fields do not have constant mean and Eq. (18) is 
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not invariant under translations. In this case, the three dimensional behavior is best 
described through the so-called structure functions, first introduced by Kolmogorov 
(Kolmogorov, 1941) 

  ( ) { }2

1 2 1 1 2 2, ( ) ( ) ( ) ( )uD r r u r u r u r u r⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦   (19) 

 

 
Fig. 8. Propagation of an acoustic wave through a turbulent medium. 

Although the statistical properties of these random fields depend on location, it can be 
assumed that difference between values taken at any two points depends on the distance  
|r1 − r2|whenever this distance is not excessively large, a property known as local 
homogeneity. Then, if isotropy is also assumed Eq. (19) takes the simpler form: 

  ( ) [ ]2

0 0( ) ( )uD r u r r u r= + −   (20) 

This structure function is related to the three dimensional power spectrum Φu(k) (Fourier 
transform of the correlation function) according to the following expression 
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where k = 2π/λ is the spatial wavenumber. The spectral analysis of random fields in a 
turbulent medium is very useful because such a regime can be characterized by several 
length scales. The longer scale is named outer scale or integral scale L0 and represents the size 
of the larger eddies in the atmosphere. These eddies are very energetic and low dissipative, 
and their size is in the range of some tens of meters, although it may vary according to local 
conditions. The energy of these eddies is redistributed without loss to eddies of decreasing 
size until it is converted into heat by viscous dissipation (see Fig. 9). The size of the smaller 
eddies is named inner scale or microscale l0 and it measures approximately a few milimeters. 
Taking into account that the amount of kinetic energy per unit mass is proportional to v2, 
and assuming that the rate of transfer of energy from the largest eddies of size L is 
proportional to v/L, then the rate of energy supply to the small-scale eddies is in the order of 
v3/L. The range of distances between the outer scale and the inner scale is named the inertial 
subrange and, as the energy is transported from large eddies to small eddies in this range 



 Advances in Sonar Technology 

 

202 

without piling up at any scale, the rate of energy supply must be equal to the dissipation 
rate ε, and then v2  L2/3. This dimensional analysis was carried out by Kolmogorov who 
concluded that in the inertial subrange the structure functions of some meteorological 
magnitudes such as wind velocity, temperature and refraction index must exhibit the same 
dependence on distance, i.e 

  ( ) 2 2 3
u uD r C r= ⋅   (22) 

Cu2 is a constant called structure parameter of magnitude u fluctuations, and it depends on the 
turbulence strength. Combining Eq. (22) and Eq. (21) the Kolmogorov power spectrum is 
obtained 

  ( ) 2 11/3
, 0.033· ·u K uk C k −Φ =   (23) 

 

 
Fig. 9. Kolmogorov model of Turbulence. 

The spatial coherence of an acoustic wave is usually described by means of the mutual 
coherence function (MCF), defined as the cross-correlation function of the complex pressure 
field in a plane perpendicular to the direction of propagation 

  ( ) ( )rPrPrMCF ,,),( * rρrρ ⋅+=   (24) 

where ρ is the separation along the plane that is perpendicular to the direction of 
propagation and located at a distance r from the source. Tatarskii (Tatarskii, 1971) showed 
that a simple relation exists between the MCF and the phase and log-amplitude structure 
functions given by DΦ and Dχ respectively 
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From this expression, and assuming that scattering angles are small, Tatarskii obtained the 
following expression valid for spherical waves propagating in an isotropic medium 
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where J0 is the zero order Bessel function of the first kind. A further simplification of Eq. (26) 
requires selecting a model for atmospheric turbulence through the power spectrum of the 
refraction index Φn(k). The model to be selected is determined by the size of the eddies that 
have a larger scattering effect, which are the ones whose size is about one Fresnel Zone 
(λ·r)1/2. For an ultrasonic wave of about 50 kHz traveling over some tens of meters, the 
Fresnel Zone is clearly within the inertial region and Φn(k) must be selected as a 
Kolmogorov spectrum (Eq. (23)). Introducing Eq. (23) into Eq. (26) provides a method to 
measure the size of the coherent wavefront as the lateral separation value ρ0 where the MCF 
is 1/e times lower than its on-axis value, i.e. MCF(ρ0,r)=1/e. This length is called lateral 
coherence length and can be calculated as follows 
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where the lengths rc and ri defining the range of validity of the above expression are given by 
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These expressions were first obtained by Yura (Yura, 1971) for optical waves, but they are 
still valid for acoustic if the structure parameter of the refraction index is replaced with a 
new efficient structure parameter defined as (Ostashev, 1997) 
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where T is the temperature; c is the sound speed; and CT2, Cv2 represent the structure 
parameters of temperature and wind velocity respectively.  
From the lateral coherence length, it is possible to estimate the temporal coherence of a 
received wave if a "Frozen Model" for the turbulent atmosphere is assumed. This model 
establishes that in a turbulent atmosphere the collection of eddies remains frozen in relation 
to one another while the entire collection moves with mean wind velocity v. In this case a 
direct relation exists between the spatial and temporal behaviors of the statistical fields: 

  ( ) ( )ttuttu ,, ′⋅−=′+ vrr   (30) 

In a first approximation, the effects derived from the longitudinal displacement of the 
pattern are negligible when compared to those derived from the transversal one. Then, the 
time for which a signal received at a certain distance remains coherent is equal to the time 
that the pattern of the eddies takes to travel over the lateral coherence length. This coherence 
time is given by (Álvarez et al., 2006) 
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where vn  is the transversal component of the wind. For an ultrasonic signal of 50 kHz and a 
reference propagation distance of r = 14 m, this expression yields a minimum value of 8.2 
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ms for the coherence time when strong turbulence conditions (Cn2 = 10-5 m-2/3) and vn = 10 
m/s are assumed. For greater values of wind velocity small scattering angles cannot be 
assumed and Eq. (31) is no longer valid. 

3. Reliable outdoor operation: signal coding and pulse compression 
It is clear from the results obtained in the previous section that a classical sonar system 
whose echoes are detected when they or their envelopes first exceed a certain threshold, 
cannot reliably operate outdoors. The amplitude of the echo generated by the same object at 
the same distance can vary largely depending on meteorological conditions of temperature, 
humidity, rain, fog and wind, giving rise to very different measurements of time-of-flight 
(TOF). This problem could be partially overcome by adapting the detection threshold to the 
average attenuation associated to current values of these conditions. However, the random 
and wide variations of amplitude and phase induced by turbulence are very difficult to deal 
with. 
Classical systems are very sensitive to ultrasonic noise too, since such noise is added to the 
received echo modifying the instant in which it or its envelope exceeds the threshold. High 
intensity noise could even be confused with real echoes giving rise to phantom reflectors 
(artifacts). Obviously, robustness to noise can be improved by increasing the energy of the 
emissions, but there is always a physical limit for the maximum amplitude than can be 
transmitted with a given transducer. If envelope detection is used, another alternative 
would be to increase the duration of the emissions, but at the expense of degrading the 
system precision (two overlapped echoes cannot be distinguished by these systems).   
Signal coding and pulse compression techniques emerge as an attractive alternative in the 
development of reliable outdoor sonars. These techniques have been already used in the 
design of high performance indoor sonars that are capable of simultaneously measuring the 
TOF of echoes coming from different emissions with a precision of microseconds. Instead of 
ultrasonic pulses, these systems emit modulated binary codes with good correlation 
properties that are detected through matched filtering. Thus, a correlation peak is obtained 
only when the code matched to the corresponding filter is received, the relative height of 
this peak being proportional to the length (and not the amplitude) of the code. With these 
techniques the system has a resolution similar to that obtained with the emission of short 
pulses, still maintaining the high robustness to noise achieved with the emission of long 
pulses (hence the name pulse compression). Strong variations in the amplitude of the 
received echoes modify the height, but not the position, of the correlation peak and the 
results provided by the system would be the same regardless of the attenuation of the signal 
if the detection threshold for this peak is sensitive enough. Moreover, an adequate selection 
of codes with low values of cross-correlation allows a system composed of several 
transducers to perform simultaneous measurements under exactly the same operating 
conditions. 
However, random fluctuations of amplitude and phase induced by turbulence are still a 
problem. If the coherence time that characterizes this phenomenon (Eq. (31)) is much shorter 
than the length of the emitted code, this code could be completely distorted before arriving 
at the receiver and it could not be properly detected by matched filtering. The following 
sections deal with the analysis of this phenomenon. 
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3.1 Outdoor prototype 
The outdoor propagation of encoded signals has been studied with the help of the prototype 
shown in Fig. (10). In this system, a Polaroid series 600 electrostatic transducer (Polaroid, 
1999) placed 1.5 meters over the ground is used as the emitter. A high-frequency 
microphone placed at 14 meters from the emitter in the same horizontal plane has been used 
as the receiver. In order to minimize the filtering effect associated with the acoustic pattern 
peculiarities of both the emitter and the receiver, a laser pointer was used to align their axes. 
All the process has been controlled by a PC equipped with an acquisition board that 
simultaneously sends the emission pattern to the amplifier driving the transducer and 
acquires the signal coming from the microphone. Figure 10a shows a picture of the 
experimental site with the emitter in the background. This emitter, together with the 
anemometer, can be seen in more detail in Fig. 10b. 
 

 
Fig. 10. Experimental site (a) and detailed view of the transducer with the anemometer (b). 

This system has been used to conduct the emission of complementary sets of four sequences 
with different lengths. A set of 4 binary sequences {xi[n], 1 ≤ i ≤ 4}, whose elements are either 
+1 or -1, is a complementary set if the sum of their aperiodic autocorrelation functions φxixi 
equals zero for all non-zero time shifts 

 [ ] [ ] [ ] [ ]1 1 2 2 3 3 4 4

4 0
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where L is the length of the sequences. One main advantage that complementary sequences 
have against other codes used for pulse compression, such as Barker codes or m-sequences, 
is the existence of orthogonal families. Two sets with the same number of sequences {xi[n], 
yi[n]; 1 ≤ i ≤ 4} are said to be orthogonal when the sum of the corresponding cross-correlation 
functions equals zero 

 [ ] [ ] [ ] [ ]1 1 2 2 3 3 4 4 0    x y x y x y x yn n n n nφ φ φ φ+ + + = ∀   (33) 

This property allows the simultaneous emission of different signals with ideal null 
interference. The other main advantage of using these sequences is the existence of an 
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efficient correlation system called Efficient Sets of Sequences Correlator (ESSC), that notably 
reduces the total number of operations carried out from 4 x 2 x (L-1) to 4 x log2L in order to 
perform the correlations with the four sequences in a set (Álvarez et al., 2004). This digital 
filter, shown in Fig. 11, is formed by log2L similar stages, each one with 3 delay elements 
and 8 adders/substracters. Coefficients Wi,j appearing in this figure take values +1 or -1 and 
are not implemented as amplifiers in practice. 
In our prototype, the four sequences composing the set have been simultaneously 
transmitted through the Polaroid transducer first by interleaving these sequences to 
generate a new 4L-bit sequence defined as:  

 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1 2 3 4 1 2 3 41 1 1 1is x x x x x L x L x L x L⎡ ⎤= ⎣ ⎦   (34) 

and then by implementing the BPSK modulation of the new sequence with a symbol formed 
of two cycles of a 50 kHz carrier. The modulated signal has a centralized bandwidth of 
about 12.4 kHz that allows its efficient transmission through the ≈20 kHz bandwidth of this 
transducer. The total duration of the emission is proportional to the length of the sequences 
and is given by: 

 4  (bits) 2 (cycles) 20 160  et L s L sμ μ= × × =   (35) 

 
 

 
 
Fig. 11. Efficient Sets of Sequences Correlator (ESSC). 

The signal received by the microphone placed at 14 m from the transducer is first sampled at 
a rate of 800 ksps, and then demodulated with a digital correlator matched to the 
modulation symbol (32 samples). Actually, this filter correlates the acquired signal with a 
binarized version of the symbol, simplifying the operations at the expense of a nearly 
negligible decrease in the output SNR. The signal from the demodulator is an interpolated 
version of the sequence obtained by interleaving the complementary sequences (Eq. (34)), 
with an interpolation factor of 32. Thus, in this signal, two samples belonging to the same 
sequence are 4 x 32 = 128 samples apart, and it is necessary to decimate the signal by the 
same factor prior to carrying out the correlations. This decimation can be easily achieved 
just by multiplying the values of all the delay stages in the ESSC by 128. Finally, taking into 
account that the bits of the interleaved sequences are delayed 32 samples, it is necessary to 
add three additional delay stages at the outputs of the ESSC in order to perform the in-
phase sum of the autocorrelation functions. 
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In the precise moment in which the last sample of the set matched to the correlator is 
acquired, a maximum value, ideally proportional to φx1x1[0]+ φx2x2[0]+ φx3x3[0]+ φx4x4[0], is 
obtained at the input of the peak detector. However, as a consequence of the asynchronism 
characterizing the detection process, this maximum value always appears with self-induced 
noise depending on the shape of the modulation symbol. A parameter commonly used to 
measure the quality of this signal is the Sidelobe-to-Mainlobe Ratio (SMR), defined as the ratio 
between the higher value obtained outside the vecinity of the main peak and the value of 
this peak. 

3.2 Experimental results 
In order to investigate the effect of turbulence on the performance of the prototype 
described in the previous section, a continuous emission of the codes has been conducted. 
Fig. 12 shows the received and processed signals when complementary sequences of 64 bits 
(te = 10.24 ms) are emitted under very weak and very strong turbulent conditions. As can be 
seen in this figure, in both cases all the sets are properly detected, although the scattering of 
energy caused by turbulence is evident in Fig 12b, with the consequent deterioration of the 
SMR. Figure 13 shows the same signals when sequences of 256 bits (te = 40.96 ms) are 
emitted. As can be seen in Fig. 13a, under weak turbulent conditions the sets are still 
property detected, but when the coherence time is clearly shorter than the emission time 
spurious peaks appear that may confuse the system. In this case, when the received signal is 
compared to the emission pattern, slight compressions and expansions can be clearly 
visualized which are deteriorating the phase coherence required by the correlation process. 
This comparison is represented in Figs. 14 and 15 for very weak and very strong turbulence 
respectively. 
The observed increase in SMR has been experimentally studied under different conditions 
of turbulence, and the results are presented in Table 1. The SMR remains below 0.3 even 
under very strong turbulence when 64-bit sequences are transmitted, showing the good 
performance of the system in all cases. The same result is true with 256-bit sequences except  
 
 

 
(a) (b) 

Fig. 12. Detection process of 64-bit sequences (te = 10.24ms) under very weak (a) and very 
strong (b) turbulence conditions. 
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(a) (b) 

Fig. 13. Detection process of 256-bit sequences (te = 40.96 ms) under very weak (a) and very 
strong (b) turbulence conditions. 

 

 
Fig. 14. Comparison between the emitted and the received signals under very weak 
turbulence conditions ( L = 256). 

under very strong turbulence, when the coherence time is clearly shorter than the emission 
time. In this case the average SMR raises to 0.45 and, even more remarkable, the standard 
deviation is nearly three times this value. In this case, represented in Fig. 13b, very large 
sidepeaks are obtained whose height is occasionally higher than that of the corresponding 
main peak, given rise to values of SMR above 1. The system cannot reliably operate under 
these circumstances since these sidepeks could be erroneously validated as sets arrivals. 
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Fig. 15. Comparison between the emitted and the received signals under very strong 
turbulence conditions ( L = 256). 
 

 64 bits 256 bits 
TURBULENCE Mean Std Mean Std 

Very weak 
(cloudy, wind < 2m/s) 

0.1809 0.0225 0.1311 0.0268 

Weak 
(sunny, wind < 2m/s) 0.1979 0.0441 0.1611 0.0660 

Medium 
(cloudy, 2<wind < 4 m/s) 0.2032 0.0561 0.1630 0.0484 

Strong 
(sunny, 2<wind < 4 m/s) 0.2396 0.1042 0.1924 0.0863 

Very Strong 
Wind > 4 m/s 0.2622 0.1289 0.4507 1.3012 

Table 1.  Average Sidelobe-to-Mainlobe Ratio (SMR) under different turbulence conditions. 

In addition to the appearance of spurious peaks, another phenomenon was observed during 
the experimentation. Although the arrivals of the sets are still correctly detected even when 
the coherence time is shorter than the emission time, the peaks associated to these arrivals 
appear more shifted from their expected positions with increasing turbulence intensity. The 
quantitative analysis of this phenomenon is summarized in Table 2. Note that when 64-bit 
sequences are transmitted, the average shift is always below 5 μs (4 samples!), although in 
all cases the dispersion is significant. The shift is even smaller with 256-bit sequences under 
similar conditions of turbulence, except again, when the coherence time is shorter than the 
emission time. In this case, the average shift jumps to nearly 60 μs (3 carrier cycles) and the 
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deviation goes up to 313 μs, showing that the actual values of shift vary wildly between a 
few μs and several tenths of ms. 
 

 64 bits 256 bits 
TURBULENCE Mean (μs) Std (μs) Mean (μs) Std (μs) 

Very weak 
(cloudy, wind < 2m/s) 

0.1762 0.4356 0.5842 0.6539 

Weak 
(sunny, wind < 2m/s) 0.2513 0.5016 0.4755 0.6377 

Medium 
(cloudy, 2<wind < 4 m/s) 1.2304 4.0418 0.7609 0.7852 

Strong 
(sunny, 2<wind < 4 m/s) 2.1508 5.5043 1.8503 2.2120 

Very Strong 
Wind > 4 m/s 4.8890 9.3993 55.927 313.42 

Table 2.  Average shift of the autocorrelation peaks. 

4. Discussion and future research 
The design of high performance outdoor sonars seems to require the use of encoding and 
signal processing techniques to ensure the reliable operation of the system under changing 
meteorological conditions. This task introduces new problems mainly due to turbulence 
phenomenon and its random effect on the amplitude and phase of the emitted signals. We 
have seen that this effect can be characterized through a coherence time that is a measure of 
the time during which the features of the received signal remain essentially invariant. Some 
experimental results have been conducted showing that emissions below this time can be 
properly detected through matched filtering. Also, the deterioration of the correlated signal 
with decreasing coherence times has been verified by measuring the increase of its SMR and 
the autocorrelation peak shift. 
Although we know that turbulence causes random variations on the amplitude and phase of 
acoustic signals, little is known about the statistical properties of these variations. An 
accurate model for this phenomenon would allow a precise prediction of the effects that a 
turbulent atmosphere has on the performance of advanced sonar systems where encoded 
signals are transmitted. It would also allow to clearly define the limits of operation for these 
systems. Moreover, this model could be used to determine the type of encoding and 
modulation schemes that would be more appropriate to operate under adverse conditions. 
Future research in this field should be focused on obtaining this model, as well as 
experimentally determining the accuracy of Eq. (31) that gives the coherence time 
dependence on frequency, turbulence intensity, normal component of wind and travelled 
distance. 
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1. Introduction    
1.1 The localization problem 
Nowadays, nearly all mobile robotic tasks require some knowledge of the robot location in 
the environment. For example, those tasks involving the robot to reach a specific target 
require knowledge about the current robot pose in order to plan a path to the goal. Also, 
exploration tasks require some estimate of the robot pose in order to decide whether a 
specific region has been already visited by the robot or not.  The problem of computing the 
robot pose is known as the mobile robot localization problem. 
The mobile robot localization problem appears in many flavours. In some cases, only a 
qualitative pose estimate is needed. For example, for high level spatial reasoning, the robot 
may only need to know if a certain area, such as a room, has been previously visited or not. 
This kind of localization is commonly named weak localization. In some other cases, 
quantitative pose estimates with respect to a fixed reference frame are required. For example, 
to build metric maps, such as occupancy grids, the robot needs accurate numerical estimates 
of its pose in the space. This approach to localization is usually referred to as strong 
localization. 
Both weak and strong localization problems can be defined in a global or in a local context, 
constituting the so called global localization and local localization problems respectively. The 
former refers to the obtention of the robot pose without an a priori estimate of its location. It 
is called global localization by analogy with global function minimization, whereby an 
optimum must be found without a reliable initial guess. On the contrary, local localization, 
sometimes named pose maintenance, refers to a continuous refinement of the robot pose, 
starting with an initial guess. 
This chapter focuses on the strong localization problem in the local context. From now on, in 
the context of this document, the terms localization and mobile robot localization will refer 
to the strong localization problem in the local context. A common approach to confront this 
localization problem is the use of exteroceptive sensors, such as range finders or cameras, 
measuring the external environment. Exteroceptive sensor data is correlated at subsequent 
robot poses to compute displacement estimates, usually based on initial guesses provided 
by proprioceptive sensors, such as odometers or inertial units. As a consequence of this, the 
quality of the pose estimates is strongly related to the quality of the measurements provided 
by the exteroceptive sensors.  
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1.2 The sonar sensors 
Many recent localization strategies rely on accurate sensors, such as laser range scanners  
(Hähnel et al. 2003; Biber & Straβer 2003; Montesano et al. 2005; Minguez et al. 2006). Today, 
off the shelf laser sensors provide thousands of readings per second with a sub degree 
angular resolution. Other sensors, such as standard Polaroid ultrasonic range finders, are 
only able to provide tenths of readings per second, with angular resolutions one or two 
orders of magnitude worse than laser. Moreover, effects such as multiple reflections or 
cross-talking are very frequent in sonar sensing, producing large amounts of readings not 
corresponding to real objects in the environment. Figure 1 compares the sets of readings 
gathered simultaneously by a laser scanner and an ultrasonic range finder along the same 
trajectory. The laser set contains 150 times more readings than the sonar set. This provides a 
clear idea of the sparse sets of readings provided by ultrasonic range finders when 
compared to laser scanners. Also, it can be observed how the ultrasonic set contains large 
amounts of wrong readings, due to the previously mentioned effects. 
 

 
Fig. 1. Example of readings gathered by a laser scanner (left) and a ring of 16 ultrasonic 
range finders (right). 

Nevertheless, ultrasonic range finders have interesting properties that make them appealing 
in the mobile robotics community (Lee 1996). On the one hand, their size, power 
consumption and price are better than those of laser scanners. Consequently, they are well 
suited for low cost and domestic robots, such as automatic vacuum cleaners. On the other 
hand, their basic behaviour is shared with underwater sonar sensors, which are vastly used 
in underwater and marine robotics. Thus, typical underwater sonar, although being far 
more complex than standard Polaroid ultrasonic range finders, can take profit of those 
localization techniques accounting for sonar limitations. In the context of this work, the 
terms sonar, ultrasonic range finder and ultrasonic sensor will be used interchangeably, and will 
refer to standard time-of-flight Polaroid ultrasonic range finders. 
The validity of ultrasonic range finders to perform localization has been demonstrated by 
different researchers.  For instance, Tardós et al. (Tardós et al. 2002) use a perceptual 
grouping technique to identify and localize environmental features, such as lines and 
corners. These features are correlated using robust data association to perform SLAM with 
sonar sensors. Also, Groβmann et al. (Groβmann & Poli 2001) confront the sonar localization 
problem by means of the Hough transform and probability grids to detect walls and 
corners. Burguera et al. (Burguera et al. 2008a) adopt a different approach, named spIC 
(sonar probabilistic Iterative Correspondence), not requiring environmental features to be 
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detected. They have shown that scan matching localization, even in its most basic expression 
(Burguera et al. 2005), can be applied to sonar sensors if their limitations and uncertainties 
are appropriately taken into account. Also, a recent laser scan matching technique, the NDT 
(Normal Distributions Transform) (Biber & Straβer 2003) has been adapted to work with sonar 
sensors (Burguera et al. 2008b). 

1.3 Probabilistic methods 
It is broadly accepted that probabilistic methods are the most promising ones to deal with 
sensor and pose uncertainties in real-time (Thrun et al. 2005). A key concept in probabilistic 
robotics is that of belief. The beliefs, which reflect the robot’s internal knowledge about its 
state, are represented by probability distributions. In the localization context, the beliefs 
reflect the robot’s internal knowledge about its pose in the space. The most general 
approach to compute beliefs is the Bayes filter, which determines the belief distribution from 
control data and measurements. However, the general Bayes filter algorithm is not a 
tractable implementation for continuous state spaces, such as the one of robot poses.  
Gaussian filters are one of the earlier tractable implementations of Bayes filters. One 
particular Gaussian filter, the Kalman filter (Kalman 1960), has been vastly used to perform 
mobile robot localization and SLAM. A Kalman filter represents the belief by means of a 
normal distribution. Mainly due to the normal distribution assumption, Kalman filters fail 
to represent ambiguities and to recover from localization (Neira & Tardós 2001; Castellanos 
et al. 2004). These problems are especially relevant when dealing with ultrasonic range 
finders. On the one hand, the low sonar angular resolution may lead to ambiguous robot 
pose estimates. On the other hand, wrong readings due to multiple reflections and cross-
talking combined with the low measurement rate of ultrasonic range finders may lead the 
filter to unrecoverable localization failures. 
An alternative tractable implementation of the Bayes filter is the Particle filter (Metropolis 
and Ulam 1949, Doucet et al. 2001). In particle filters, the belief distribution is represented by 
a set of samples, called particles, randomly drawn from the belief itself. The particle filter is 
in charge of recursively updating the particle set. Dellaert et al. (Dellaert et al. 1999) and Fox 
et al. (Fox et al. 1999) introduced particle filters in the localization context, defining the so-
called MCL (Monte Carlo Localization). Since then, particle filters have been successfully 
applied to SLAM (Montemerlo et al. 2002; Hähnel et al. 2003), multi-robot localization (Fox 
et al. 2000) and localization given an a priori map both using laser (Yaqub & Katupitiya 2007) 
and sonar sensors (Thrun et al. 2001), among many other applications.  
Particle filters are nonparametric implementations of Bayes filters. They are said to have two 
important advantages. First, they can approximate a wide range of probability distributions, 
even multimodal. When compared to Kalman filters, which can only deal with normal 
distributions, this feature constitutes an important benefit. These filters are much better 
suited than Kalman filters to represent ambiguities and to cope with localization failures. 
The second advantage of particle filters is that, even its most straightforward 
implementation exhibits very good results when applied to localization. Thus, a particle 
filter constitutes an excellent tool to perform localization using ultrasonic range finders as 
exteroceptive sensors. 
A key point in a particle filter is the so called measurement model. Broadly speaking, the 
measurement model is in charge of determining how likely the current sensor readings can 
be explained by each particle. This is usually accomplished by means of an a priori map. The 
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current sensor readings are matched against the map and the degree of matching defines the 
measurement model.  
Silver et al. (Silver et al. 2004) proposed a method not requiring any a priori map and dealing 
with underwater sonar sensors. Their proposal was to store a small local history of range 
readings for each particle, so that the current readings could be matched against each of the 
local histories. In order to compute the degree of matching, they borrowed a concept from 
the scan matching community. They compute the degree of matching as a function of the 
ICP (Iterative Closest Point) scan matching error (Lu & Milios 1997). Although this approach 
was only tested in simulation, it does not require any a priori map and exhibits very good 
results. 

1.4 Chapter overview 
In this document we describe the use of the ICP scan matching as a measurement model in a 
particle filter to perform mobile robot localization using standard, terrestrial, Polaroid 
ultrasonic range finders. The particles are augmented with local environment information. 
This local information is recursively updated at each time step, allowing the localization 
process to be performed without any a priori map. Also, the aim of this local information is 
to deal with the sparseness of the sets of sonar readings.  
In order to validate and measure the quality of this approach, sonar and laser data has been 
simultaneously gathered in different environments. Using the laser readings, a ground truth 
has been constructed. Then, the sonar-based particle localization is evaluated by comparing 
its results to the ground truth. The presented evaluation method takes into account the 
whole robot trajectory, instead of only its end points. The experiments evaluate different 
algorithm’s parameters. The experimental results show how the proposed approach to 
sonar-based localization is able to provide robust and accurate robot pose estimates. 
This chapter is structured as follows. The general particle filter operation, as well as the 
specific details of the sonar-based particle localization, is provided in Section 2. The notation 
used along the paper is also presented in this section. Section 3 focuses on the measurement 
model and the introduction of local environment information on the particles. A 
quantitative evaluation method is presented in Section 4. Also in this section, the 
experimental results evaluating the algorithm are shown and discussed. Section 5 concludes 
the chapter, and some proposals of future work are given in Section 6. 

2. The particle filter 
2.1 Overview and notation 
The key idea in mobile robot localization is to estimate the robot pose from sensor data. 
Thus, in the localization context, the robot pose is the state to be estimated. However, the 
robot pose is usually not directly observable by sensors. In consequence, the robot pose has 
to be inferred from sensor data. In order to accomplish this state estimation process, at least 
two models are necessary. On the one hand, a model describing the evolution of the robot 
poses with time. On the other hand, a model that relates the sensor measurements to the 
robot poses. The former is commonly named the motion model, although it is also referred to 
as the system model or the plant model. The latter is the so called measurement model. 
As stated previously, Bayes filters constitute a general, widely used, approach to state 
estimation. They are recursive estimators consisting on two main steps: the control update 
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and the measurement update. The control update predicts the robot pose one time step 
forward, by means of the motion model. The measurement update uses the latest sensor 
readings and the measurement model to modify the prediction. This update is based on the 
Bayes theorem, and that is why these recursive estimators are named Bayes filters. 
The general Bayes filter algorithm involves integration over the whole state space. In 
localization, the state space is the continuous space of robot poses. In consequence, the 
general Bayes filter algorithm is not computationally tractable in most of the localization 
problems. Nevertheless, there exist several tractable implementations of the Bayes filter. 
Among them the particle filter is capturing the attention of the localization community. The 
key idea is to represent the belief by a set of weighted random samples called particles. 
Thanks to this, the filter is able to deal with arbitrary probability distributions, not 
necessarily unimodal. Thus, they are particularly well suited to perform sonar-based 
localization, and they will focus the attention of this chapter. Additionally, the presented 
approach does not require an a priori map of the environment. The particular 
implementation of the particle filter to perform such task is described in detail in Section 2.2. 
Now, some notation is provided. 
Let  and  denote the sonar measurements and the control vector, respectively, at time 
step t. In the context of this chapter,  corresponds to odometry data. Let the set of particles 
at time step t be defined as follows:  

  (1) 

where M is the number of particles. Each  is a concrete instantiation of the robot pose 
 at time t. Each  is the particle importance factor, also referred to as weight, so 

that . A key issue in the presented approach is , a short history of the 
most recent k sets of sonar readings. This history constitutes the particle local map, and it is 
intended to cope with the low amount of readings provided by ultrasonic range finders. 
Also, these local maps are recursively updated during the filter operation, letting the 
localization process work without the use of a priori maps. The use and on-line building of 

 is one of the novelties of the presented approach, and will be described in detail in 
Section 3. In the context of this chapter, the terms local map, history and readings history will 
be used interchangeably and will refer to . 
Let  denote the relative robot motion from time step t-1 to time step t according to the 
particle m. Finally, let the operators  and  denote the inversion and the compounding 
transformations, similarly to those defined by Smith et al. (Smith et al. 1990). These 
operators will be now described, together with two additional compounding operators for 
transforming the references of a point (Tardós et al. 2002) and of a set of points.  
Only to perform such description, the following notation will be used. Let 

denote the location of a coordinate frame B relative to a coordinate frame 
A. Let be defined similarly. Finally, let  denote the 
location of the point p relative to the coordinate frame B. The compounding  
denotes the location of the coordinate frame C relative to A, and is computed as follows: 

 

(2) 
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The inversion  denotes the location of coordinate frame A relative to B as follows: 

 

(3) 

The compounding  denotes the location of the point p relative to the 
coordinate frame A as follows: 

 
(4) 

Finally, if the right-hand operand of the compounding transformation is a set of points, the 
transformation is applied individually to each point and, thus, the compounding returns the 
resulting set of points. Figure 2 summarizes the notation used along this chapter. 

2.2 Sonar-based particle localization 
A particle filter builds the particle set  recursively from the particle set  one time step 
earlier. Thus, it is necessary to start the recursion by defining the initial particle set . If an 
a priori map is available, this initialization is accomplished by uniformly distributing  
over the free space in the map. However, the presented approach uses local maps to avoid 
the need for previous information. In consequence, the particle set initialization has to be in 
charge of building .  
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Fig. 2. Notation used for sonar-based particle filtering 

To initialize the particle set, the robot has to move during k time steps computing its pose 
using odometry. Then, the robot pose  for all particles is set to the odometric pose 
estimate after the mentioned k time steps. During this initialization, k sets of sonar readings 
are gathered. Their coordinates are represented with respect to a coordinate frame 
located in  using the odometry estimates. The initial local map  for all particles is 
then set to the mentioned k sets of sonar readings. 
Although this initial dependence on odometry may seem problematic, it is not if the value of 
k is appropriately chosen. Different values for this parameter will be tested and 
experimentally evaluated along this chapter. It will be shown that good values for this 
parameter are around k=100. So, let us assume for the moment this value. Let also assume a 
mobile robotic platform providing odometric and sonar readings at steps of 100ms. This 
time step is quite common. In this case, the robot has to rely solely on odometry during the 
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first 10s of operation. In many robot applications, the odometric error accumulated during 
10s is negligible if compared to the whole mission execution.  
After the initialization process, the sonar-based particle filter localization algorithm is 
executed at each time step. Figure 3-a shows the algorithm, where two loops involving the 
whole particle set can be observed. The first loop, from line 1 to line 3, predicts the robot 
pose by means of the motion model. Thus, it constitutes the control update. The second 
loop, from line 4 to line 8, updates the particle set according to the sensor readings and 
constitutes the measurement update. It is important to remark that, although the 
measurement model is executed in line 3, the weights it computes are not used until line 5. 
Thus, the measurement update is performed from line 4 to 8 although the measurement 
model appears in line 3. 
Line 2 is in charge of sampling the motion model. As stated previously, in order to perform 
a state estimation process, a motion model is necessary. In general terms, the motion model 
describes the evolution of the robot pose with time. Thus, in general, the motion model 
provides an estimate of where the robot is at time t, given its previous pose at time t-1 and 
the current control vector . However, our proposal for the motion model is not to compute 
the absolute robot pose at time t, but relative motions from one time step to the next. In 
consequence, line 2 generates hypothetical robot motions   from time step t-1 to time 
step t using a stochastic motion model that does not depend on . This step involves 
sampling from the distribution , where  represents a robot motion from time step 
t-1 to time step t. This distribution depends on the specific robot configuration, and it is out 
of the scope of this chapter to discuss it. Relevant information on this subject can be found 
on (Thrun et al. 2005). 
 

(a) 
 

(b) 

Fig. 3. Sonar-Based Particle Localization algorithm (a) and Low Variance Sampling 
algorithm (b). 
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The second model necessary to perform the state estimation is the measurement model, 
which relates the sonar readings to the robot pose. Line 3 uses the measurement model to 
incorporate the current readings  into the particle set by computing the importance factor 

. Those particles with the relative motions that better explain the current readings will 
have better weights. This is accomplished by correlating  and  by means of an ICP-like 
approach and will be described in Section 3. 
Line 5 executes the so called resampling, also referred to as importance sampling. The 
importance sampling is the core of the measurement update step. At this point, the 
algorithm draws with replacement M particles. The probability of drawing each particle is 
proportional to its importance factor. Differently speaking, during the importance sampling, 
those particles with better weights have higher probability to remain in the particle set. 
There is a problem in particle filters directly related to the importance sampling. The 
statistics extracted from the particles may differ from the statistic of the original density, 
because the particle set only holds a finite number of random samples. This problem may 
lead to a degeneracy phenomenon through repetitive resampling (Sanjeev Arulampalam et al. 
2002). Degeneracy appears when, after a number of resampling steps, all but one particle 
have negligible weights.  Among the existing resampling strategies, the low variance sampling 
has proved to be very efficient, in computational terms, while reducing the degeneracy 
phenomenon. The underlying idea is to select the samples in a sequential stochastic process 
instead of independently. A comprehensible description of the algorithm is available in 
(Thrun et al. 2005). Because of the mentioned advantages, the low variance sampling has 
been adopted in the present work. The algorithm is presented in Figure 3-b.  
Going back to Figure 3-a, the line 6 is in charge of updating the global robot pose for each 
particle selected during the resampling step. This is accomplished by compounding the 
global robot pose at time t-1 with the relative motion from time step t-1 to time step t. This 
idea is illustrated in Figure 2. 
Line 7 is in charge of building the new local map of each particle, by adding the current set 
of sonar readings and discarding to oldest readings so that the map size remains constant 
along the whole mission execution. This process will be described in Section 3. 
Finally, line 8 constructs the new particle set . After this step, depending on the specific 
robot application, the particle set may be treated in different ways. For instance, some 
applications need a single vector   informing the most likely robot pose. In that 
cases, the mean of   may be used. Some other applications require a continuous 
probability density function to be extracted from the samples. In those cases, techniques 
such as Gaussian approximation, K-Means or Kernel Density Estimation can be used. The reader 
is directed to (Thrun et al. 2005) to learn more about these density extraction techniques. 

3. Matching sets of readings 
3.1 Overview and notation 
In particle filters, the measurement model is in charge of computing the weights of the 
particles. In particle filter localization, the weights represent the likelihood of having the 
current set of readings  at the robot pose . Thus, . This dependence 
on the absolute robot pose is useful if an a priori map is available, because the range readings 
can be matched against the global map using the absolute robot pose. 
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However, one advantage of the presented approach is that it does not require a previously 
constructed map. Instead, local maps are recursively built during the mission execution. For 
a given particle, the local map  is represented with respect to the coordinate frame in 

 (see Figure 2). Also, the presented motion model generates , the relative motions 
from time step t-1 to time step t. Taking into account that the current set of readings  has 
been gathered at time t, the particle weight can be computed by evaluating the degree of 
matching between  and . Figure 2 clarifies this point. Thus, in our approach, 

. Broadly speaking, the idea is to weight the particles according to 
the existing overlap between the current set of readings and the stored maps. Computing 
the overlap between two sets of range readings is a common practice in the scan matching 
community. Thus, some scan matching concepts will be used in this section. Next, some 
notation is introduced. 
 

r
ti

ir t

mxt
mxt-1

mxt-2  

Fig. 4. Relations between the coordinate frames used by the measurement model. The 
circular sector represents the sonar beam. The dashed cross is the robot coordinate frame. 
Let  represent the range reading provided by the i-th sonar sensor at time step t. Let this 
reading be represented with respect to a coordinate frame located on the sonar sensor and 
aligned with the ultrasonic acoustic axis. Thus,  has the form , where r is the raw 
range provided by the sensor. 
Let  denote the relative position of the sonar sensor i with respect to the robot reference 
frame. Ultrasonic range finders are assumed to be at fixed positions on the robot body. 
Consequently,  does not change over time. That is why the subindex t has been dropped. 
Figure 4 illustrates the notation.  

3.2 Building the local maps 
At time t, the array of ultrasonic range sensors provides a set of raw range readings. The set 

 is built from the raw range readings as follows: 

  (5) 

where   is the set of sonar sensors that have generated a reading during the time step t. 
Each item in  will be denoted , meaning that it was gathered at time t and produced by 
the i-th sonar sensor.  
Let  be defined as the set of readings in  represented with respect to the coordinate 
frame of   using the relative motion   proposed by the particle: 

  (6) 
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Each item in  will be denoted by , meaning that it has been generated from . 
To ease notation, let  denote the local map . It was stated previously that all the 
readings in  are represented with respect to the coordinate frame of . This is 
accomplished by building  as follows: 

 

(7) 

where k is the local map size. By observing the previous equation it is easy to see that  
can be obtained recursively from ,  and . This recursive update, which is 
performed by the update history function in line 7 of Figure 3-a, can be expressed as follows: 

  (8) 

First, the readings in  are represented with respect to the coordinate frame of  by 
compounding them with . Then, the new set of readings  is added. Finally, although 
not been represented in Equation (8), the oldest readings in the resulting set have to be 
deleted so that the size of the local maps remains constant along the whole mission 
execution. 

3.3 The measurement model 
There exist many algorithms to match sets of range readings in the scan matching literature] 
(Lu & Milios 1997; Rusinkiewicz & Levoy 2001; Pfister et al. 2004; Burguera et al. 2008a). 
Most of them follow the structure proposed by the ICP algorithm. The key step in the ICP 
algorithm is the establishment of point to point correspondences between readings in two 
consecutive range scans. These correspondences are established by means of the Euclidian 
distance, and they give information about the degree of matching between two sets of 
readings. Our proposal is to measure the degree of matching between  and  in that 
way. This will constitute our measurement model. 
Let  and  be points in  and  respectively. To decide whether a correspondence 
between  and  can be established or not, the Euclidian distance is used: 

  (9) 

For each , the closest point  according to the distance in Equation (9) is 
selected to be the corresponding point. Thus, the set C of correspondences is defined as 
follows: 

  (10) 

Broadly speaking, the idea is to establish correspondences between the points in  and 
 that are closer in the Euclidian sense. This is commonly referred to as the closest point 

rule.  
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The sum of Euclidian distances between pairs of corresponding points is a good indicator of 
the degree of matching between  and : the worse the matching, the bigger the sum 
of distances. However, the importance factor represents the opposite idea: particles that 
produce better matching should have higher weights. In consequence, the importance factor 
for a particle m is computed as follows: 

 
(11)

In order to avoid numerical problems, those situations where the sum of distances is close to 
zero should be especially taken into account. However, experimental results suggest that, 
due to the noisy nature of sonar sensors, these situations are extremely unusual. 

4. Experimental results 
4.1 Experimental setup 
In order to evaluate the presented approach, a Pioneer 3-DX robot, endowed with 16 
Polaroid ultrasonic range finders and a Hokuyo URG-04LX laser scanner, has been used. 
The robot has moved in four different environments in our university, gathering various 
data sets. Each data set contains the odometry information, the sonar range readings and the 
laser range readings. The laser readings have only been used to obtain ground truth pose 
estimates. In order to obtain such ground truth, the ICP scan matching algorithm has been 
applied to the laser readings. Then, the wheel encoder readings have been corrupted with 
Gaussian noise (  and ) to simulate worse floor conditions. Thus, the 
quality of our algorithm operating with noisy and sparse sets of sonar readings in bad floor 
conditions is compared to a well known localization algorithm operating with dense and 
high quality laser readings and good floor conditions. 
 

  

Fig. 5. Fragment of a real trajectory (left) and the polyline that approximates it (right). The 
dots represent the vertexes. 

In order to quantitatively compare odometry and the different particle filter configurations, 
the following procedure has been used. First, the trajectories obtained by odometry, particle 
filter and ground truth are approximated by polylines. The vertex density of each polyline 
increases in those regions with significant amount of robot rotation. Also, the maximum 
robot motion between two vertexes has been set to 1m. This kind of approximation is useful 
to overcome the local perturbations in the individual motion estimates, both for odometry, 
particle filter and ground truth. Figure 5 exemplifies the polyline approximation. Then, the 
individual edges of the trajectory being evaluated are locally compared to those of the 
ground truth. The Euclidian distance between their end points is used as a measure of the 
edge error. Finally, the edge errors for the trajectory being evaluated are summed. This sum 
is normalized, using the path lengths between vertexes and the number of edges, and 
constitutes the trajectory error. Due to the mentioned normalization, the errors of different 
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trajectories can be compared. It is important to remark that, as a result of the mentioned 
procedure, the evaluation takes into account the whole trajectory, not only its end points. 
Two different experiments have been performed. The first experiment evaluates our 
approach with respect to the number of particles, M. The second experiment evaluates our 
approach with respect to the local map size, k. 

4.2 Evaluating the influence of the number of particles 
The first experiment evaluates the quality and the execution time of our approach with 
respect to the number of particles. The values of M that have been tested are 10 and 50, to 
observe how the algorithm behaves with a low number of particles, and then 100, 200 and 
400 particles. The local map sizes has been set to k=100. The trajectory error has been 
computed for odometry and particle filter using the mentioned number of particles.  
 

(a) 
 

(b) 

Fig. 6. Experimental results obtained using different numbers of particles and setting the 
history size to k=100. (a) Means and standard deviations of the trajectory errors. (b) Means 
and standard deviations of the execution time per data set item on a Matlab implementation. 

Figure 6-a depicts the mean and the standard deviation of the obtained trajectory errors for 
all data sets. The graphical representation of the standard deviation has been reduced to a 
20% to provide a clear representation, both for odometry and particle filter. Also, although 
the odometric error does not depend on the number of particles, it has been included on the 
figure for comparison purposes.  
The first thing to be noticed is that the presented approach is able to reduce the odometric 
error in all cases. Even if only 10 particles are used, the resulting trajectory is, in mean, a 
21.9% better than odometry. In the case of 400 particles, the resulting trajectory achieves, in 
mean, a 60% of improvement with respect to odometry. Also, the standard deviations of the 
particle filter errors are significantly lower than those of odometry. This suggests that the 
quality of the particle filter estimates is barely influenced by the initial odometric error. 
The second thing to be noticed is that a large error reduction appears from 10 to 50 particles. 
From this number of particles onward, the error reduction is very small. This suggests that 
the behaviour of our algorithm does not strongly depend on the number of particles. It also 
suggests that using a number of particles between 50 and 100 would be a good choice, more 
if the execution times are taken into account.  
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Figure 6-b shows the mean and the standard deviation of the execution times per data set 
item, with respect to the number of particles. It is important to remark that these execution 
times correspond to a non optimized Matlab implementation. Thus, the absolute values are 
meaningless as a C++ implementation will greatly increase the execution speed. The interest 
of these results is that the execution time is strongly linear with the number of particles. This 
linear relation reinforces the idea that using between 50 and 100 particles is the better choice: 
the small improvement of using more particles does not compensate the increase in 
computation time. 

4.3 Evaluating the influence of the local maps size 
The second experiment evaluates the quality and the execution time of our approach with 
respect to the local maps size. Now, the number of particles is set to 100, as it has shown to be a 
good choice, and the history sizes k=25, k=50, k=100, k=200, k=400 and k=800 are tested.  
 

(a) 
 

(b) 

Fig. 7. Experimental results obtained using different local map sizes and setting the number 
of particles to M=100. (a) Means and standard deviations of the trajectory errors. (b) Means 
and standard deviations of the execution time per data set item on a Matlab implementation. 

Figure 7-a shows the mean and the standard deviation of the trajectory errors, both for 
odometry and particle filter. The standard deviation has been graphically reduced to a 20% 
to provide a clear representation. 
It can be observed how the effects of the history size are more noticeable than those of the 
number of particles. For example, if the very short history k=25 is used, the resulting 
trajectory is worse than the one provided by odometry. The reason of this problem is that, 
using a very short history, the influence of spurious and wrong readings in the 
measurement model is not negligible. Also, it is clear that increasing the history size may 
lead to better results than increasing the number of particles. For instance, the trajectory 
obtained using M=100 and k=400 is an 87% better than the odometric one, while the 
trajectory obtained using M=400 and k=100 is only a 60% better.  
It is important to remark that the quality of the particle filter slightly decreases for k=800. 
This quality reduction is mainly due to the initialization process. As stated previously, the 
time spent to build the initial particle set  depends on the value of k. In our 
implementation, setting k=800 means that the robot has to solely rely on odometry during 1 
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minute and 20 seconds at the beginning of its operation. This dependence on odometry is 
responsible of the mentioned quality reduction. 
Figure 7-b shows the mean and the standard deviation of the execution times per data set 
item. As in the previous experiment, these times correspond to a non optimized Matlab 
implementation. Thus, the interest of the execution times does not reside on their absolute 
values but on their evolution with respect to the history size.  
Similarly to the previous experiment, the execution time is strongly linear with the history 
size. Looking at the Figures 6-b and 7-b , it is clear that taking into account the time 
consumption, the better choice is to increase the history size rather than the number of 
particles. For instance, the errors for M=400 and k=100 are similar to those of M=100 and 
k=200, but the mean execution time for the former is more than twice the execution time of 
the latter.  

4.4 Qualitative evaluation 
In order to provide a clear understanding of the results, some images are provided for visual 
inspection. Different trajectories have been plotted, as well as the sonar readings according 
to each trajectory. 
Figure 8 visually depicts some of the results of the first experiment. The quality of the 
algorithm with respect to the number of particles can be observed. The first row shows the 
initial odometry estimates in four different environments. The second, third and fourth rows 
depict the results using an increasing number of particles (10, 100 and 400). All of them 
correspond to a history size of k=100. Finally, the fifth row shows the results of applying ICP 
to the laser readings. It is important to remark that, although ground truth trajectory has 
been obtained by matching laser range readings, the visual map shown in the last row has 
been plotted with the sonar readings to make the visual comparison easier.  
It can be observed how, as the number of particles increases, the resulting trajectory 
becomes more similar to the ground truth. Even in the large environment of the fourth 
column, where the robot has moved more than 150m, the final pose estimate is very close to 
the ground truth. The environment in the third column deserves special attention. By 
observing the initial odometric estimate, it is easy to see that a significant error appears at 
the beginning of the trajectory. Because the initial particle set  construction requires for 
the robot to be confident on odometry at the beginning of its operation, this initial error can 
not be fully corrected. That is why the particle filter provides a visual map rotated with 
respect to the ground truth. However, the shape of the trajectory is almost identical to the 
one of the ground truth.  
The Figure 9 visually depicts some of the results of the second experiment. The quality of 
the algorithm with respect to the history size can be observed. The first and fifth rows, 
which correspond to the initial odometric estimates and the ground truth respectively, are 
the same that in Figure 8, and are plotted here again to provide a clear idea of the evolution 
of the pose estimates. The second, third and fourth row correspond to history sizes of k=25, 
k=50 and k=200. In all of them, the number of particles used is M=100. Thus, the results for 
k=100 can be observed in the third row of Figure 8. 
It can be observed how the changes in the history size are clearly reflected in the quality of 
the resulting trajectory. Very accurate trajectories appear when a history size of 200 is used. 
As stated previously, the last row corresponds to the localization results of the well known 
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ICP algorithm applied to accurate and dense sets of laser range readings. On the contrary, 
our algorithm operates with the sparse and noisy sets of readings provided by standard 
Polaroid ultrasonic range finders. Moreover, our algorithm operated on a corrupted 
odometry, simulating bad floor conditions. Thus, it is remarkable that the presented 
approach is able to provide localization results close to the ones provided by a standard 
laser scan matching algorithm. 
 

Fig. 8. Trajectories and sonar readings according to odometry (first row), particle filter using 
10, 100 and 400 particles respectively (second to fourth row) and ICP laser scan matching 
(fifth row). The local map size used is k=100. 
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Fig. 9. Trajectories and sonar readings according to odometry (first row), particle filter using 
history sizes of k=25, k=50 and k=200 respectively (second to fourth row) and ICP laser scan 
matching (fifth row). The number of particles used is M=100. 
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5. Conclusion 
Localization is a key issue in mobile robotics nowadays. Nearly all robotic tasks require 
some knowledge of the robot location in the environment. A common way to perform 
localization is to correlate exteroceptive sensor data at subsequent robot poses. This 
approach is strongly dependant on the exteroceptive sensor quality. Because of this, many 
localization algorithms rely on accurate laser range finders, providing dense sets of 
readings.  
Standard ultrasonic range finders are not able to provide such dense and accurate 
information. That is why they are not frequently used in terrestrial mobile robot localization. 
However, they are appealing in terms of size, prize and power consumption. Moreover, 
their basic behaviour is shared with underwater sonar, which is extensively used in 
underwater and marine robotics. Consequently, a localization technique involving 
ultrasonic range finders is of great interest in the mobile robotics community. 
In this chapter, particle filters have been proposed as a tool to perform localization using 
ultrasonic range finders. One of the advantages of the presented approach is that it does not 
require the use of previously constructed maps. Thus, it is suitable even for environments 
where no a priori knowledge is available. This is accomplished by recursively building local 
maps, which represent the local view that each particle in the filter has about the 
surrounding environment. Being the local map size constant, the time consumption required 
to deal with them is also constant.  
The measurement model, which is in charge of computing the weights for the particles, has 
been defined similarly to the closest point rule of the ICP scan matching algorithm. The idea 
for the measurement model is to use the closest point rule to decide the amount of existing 
overlap between the current set of sonar readings and each of the local maps. 
An experimental setup, involving the construction of a ground truth using accurate and 
dense laser readings, has been presented. Also, a technique to quantitatively compare 
different trajectories is discussed. By comparing different particle filter configurations with 
the ground truth, numerical error measures are obtained.  
Two experiments have been defined. The first evaluates the effects of different sizes for the 
particle set. The second measures the effects of different sizes for the local maps. In both 
experiments, both the quality of the estimates and the time consumption has been observed. 
The results suggest that, thanks to the use of particle filters high quality localization results 
can be obtained using standard Polaroid ultrasonic range finders. These results are 
comparable to those obtained by standard scan matching algorithms applied to laser 
readings.  

6. Future work 
The presented measurement model is based on the ICP scan matching algorithm. This 
algorithm, which has been vastly used by the localization community, has also proved to be 
effective when applied to sonar readings (Burguera et al. 2005). However, recent works 
show that other matching approaches are able to provide more accurate and robust 
estimates (Burguera et al. 2008a; Burguera et al. 2008b). In consequence, it is reasonable to 
assume that the presented particle filter approach could benefit of these recent matching 
techniques in the measurement model. 
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