
EMBEDDED SYSTEMS –
THEORY AND DESIGN

METHODOLOGY

Edited by Kiyofumi Tanaka

Embedded Systems – Theory and Design Methodology
Edited by Kiyofumi Tanaka

Published by InTech
Janeza Trdine 9, 51000 Rijeka, Croatia

Copyright © 2012 InTech
All chapters are Open Access distributed under the Creative Commons Attribution 3.0
license, which allows users to download, copy and build upon published articles even for
commercial purposes, as long as the author and publisher are properly credited, which
ensures maximum dissemination and a wider impact of our publications. After this work
has been published by InTech, authors have the right to republish it, in whole or part, in
any publication of which they are the author, and to make other personal use of the
work. Any republication, referencing or personal use of the work must explicitly identify
the original source.

As for readers, this license allows users to download, copy and build upon published
chapters even for commercial purposes, as long as the author and publisher are properly
credited, which ensures maximum dissemination and a wider impact of our publications.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors
and not necessarily those of the editors or publisher. No responsibility is accepted for the
accuracy of information contained in the published chapters. The publisher assumes no
responsibility for any damage or injury to persons or property arising out of the use of any
materials, instructions, methods or ideas contained in the book.

Publishing Process Manager Marina Jozipovic
Technical Editor Teodora Smiljanic
Cover Designer InTech Design Team

First published February, 2012
Printed in Croatia

A free online edition of this book is available at www.intechopen.com
Additional hard copies can be obtained from orders@intechweb.org

Embedded Systems – Theory and Design Methodology, Edited by Kiyofumi Tanaka
 p. cm.
ISBN 978-953-51-0167-3

Contents

Preface IX

Part 1 Real-Time Property,
Task Scheduling, Predictability, Reliability, and Safety 1

Chapter 1 Ways for Implementing Highly-Predictable
Embedded Systems Using
Time-Triggered Co-Operative (TTC) Architectures 3
Mouaaz Nahas and Ahmed M. Nahhas

Chapter 2 Safely Embedded Software
for State Machines in Automotive Applications 17
Juergen Mottok, Frank Schiller and Thomas Zeitler

Chapter 3 Vulnerability Analysis and Risk Assessment
for SoCs Used in Safety-Critical Embedded Systems 51
Yung-Yuan Chen and Tong-Ying Juang

Chapter 4 Simulation and Synthesis Techniques
for Soft Error-Resilient Microprocessors 73
Makoto Sugihara

Chapter 5 Real-Time Operating Systems
and Programming Languages for Embedded Systems 123
Javier D. Orozco and Rodrigo M. Santos

Part 2 Design/Evaluation Methodology,
Verification, and Development Environment 121

Chapter 6 Architecting Embedded
Software for Context-Aware Systems 123
Susanna Pantsar-Syväniemi

Chapter 7 FSMD-Based Hardware Accelerators for FPGAs 143
Nikolaos Kavvadias, Vasiliki Giannakopoulou
and Kostas Masselos

VI Contents

Chapter 8 Context Aware Model-Checking
for Embedded Software 167
Philippe Dhaussy, Jean-Charles Roger
and Frédéric Boniol

Chapter 9 A Visual Software Development
Environment that Considers Tests of Physical Units 185
Takaaki Goto, Yasunori Shiono, Tomoo Sumida,
Tetsuro Nishino, Takeo Yaku and Kensei Tsuchida

Chapter 10 A Methodology for Scheduling Analysis
Based on UML Development Models 203
Matthias Hagner and Ursula Goltz

Chapter 11 Formal Foundations for the Generation
of Heterogeneous Executable Specifications
in SystemC from UML/MARTE Models 227
Pablo Peñil, Fernando Herrera and Eugenio Villar

Chapter 12 Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off 251
F. Herrera and I. Ugarte

Chapter 13 SW Annotation Techniques
and RTOS Modelling for Native Simulation
of Heterogeneous Embedded Systems 277
Héctor Posadas, Álvaro Díaz and Eugenio Villar

Chapter 14 The Innovative Design of Low Cost
Embedded Controller
for Complex Control Systems 303
Meng Shao, Zhe Peng and Longhua Ma

Chapter 15 Choosing Appropriate Programming
Language to Implement Software for
Real-Time Resource-Constrained Embedded Systems 323
Mouaaz Nahas and Adi Maaita

Part 3 High-Level Synthesis,
SRAM Cells, and Energy Efficiency 339

Chapter 16 High-Level Synthesis
for Embedded Systems 341
Michael Dossis

Chapter 17 A Hierarchical C2RTL Framework
for Hardware Configurable Embedded Systems 367
Yongpan Liu, Shuangchen Li, Huazhong Yang and Pei Zhang

Contents VII

Chapter 18 SRAM Cells for Embedded Systems 387
Jawar Singh and Balwinder Raj

Chapter 19 Development of Energy Efficiency Aware Applications
Using Commercial Low Power Embedded Systems 407
Konstantin Mikhaylov, Jouni Tervonen and Dmitry Fadeev

Preface

Nowadays, embedded systems have permeated various aspects of industry. Therefore,
we can hardly discuss our life or society from now on without referring to embedded
systems. For wide-ranging embedded systems to continue their growth, a number of
high-quality fundamental and applied researches are indispensable.

This book addresses a wide spectrum of research topics on embedded systems,
including basic researches, theoretical studies, and practical work. The book consists of
nineteen chapters. In Part 1, real-time property, task scheduling, predictability,
reliability and safety, which are key factors in real-time embedded systems and will be
further treated as important, are introduced by five chapters.

Then, design/evaluation methodology, verification, and development environment,
which are indispensable to embedded systems development, are dealt with in Part 2,
through ten chapters.

In Part 3, two chapters present high-level synthesis technologies, which can raise
design abstraction and make system development periods shorter. The third chapter
reveals embedded low-power SRAM cells for future embedded system, and the last
one addresses the important issue, energy efficient applications.

Embedded systems are part of products that can be made only after fusing
miscellaneous technologies together. I expect that various technologies condensed in
this book would be helpful to researchers and engineers around the world.

The editor would like to express his appreciation to the authors of this book for
presenting their precious work. The editor would like to thank Ms. Marina Jozipovic,
the publishing process manager of this book, and all members of InTech for their
editorial assistance.

Kiyofumi Tanaka
School of Information Science

Japan Advanced Institute of Science and Technology
Japan

Part 1

Real-Time Property, Task Scheduling,
Predictability, Reliability, and Safety

1

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered

Co-Operative (TTC) Architectures
Mouaaz Nahas and Ahmed M. Nahhas

Department of Electrical Engineering, College of Engineering and Islamic Architecture,
Umm Al-Qura University, Makkah,

Saudi Arabia

1. Introduction
Embedded system is a special-purpose computer system which is designed to perform a
small number of dedicated functions for a specific application (Sachitanand, 2002; Kamal,
2003). Examples of applications using embedded systems are: microwave ovens, TVs, VCRs,
DVDs, mobile phones, MP3 players, washing machines, air conditions, handheld
calculators, printers, digital watches, digital cameras, automatic teller machines (ATMs) and
medical equipments (Barr, 1999; Bolton, 2000; Fisher et al., 2004; Pop et al., 2004). Besides
these applications, which can be viewed as “noncritical” systems, embedded technology has
also been used to develop “safety-critical” systems where failures can have very serious
impacts on human safety. Examples include aerospace, automotive, railway, military and
medical applications (Redmill, 1992; Profeta et al., 1996; Storey, 1996; Konrad et al., 2004).

The utilization of embedded systems in safety-critical applications requires that the system
should have real-time operations to achieve correct functionality and/or avoid any
possibility for detrimental consequences. Real-time behavior can only be achieved if the
system is able to perform predictable and deterministic processing (Stankovic, 1988; Pont,
2001; Buttazzo, 2005; Phatrapornnant, 2007). As a result, the correct behavior of a real-time
system depends on the time at which these results are produced as well as the logical
correctness of the output results (Avrunin et al., 1998; Kopetz, 1997). In real-time embedded
applications, it is important to predict the timing behavior of the system to guarantee that
the system will behave correctly and consequently the life of the people using the system
will be saved. Hence, predictability is the key characteristic in real-time embedded systems.

Embedded systems engineers are concerned with all aspects of the system development
including hardware and software engineering. Therefore, activities such as specification,
design, implementation, validation, deployment and maintenance will all be involved in the
development of an embedded application (Fig. 1). A design of any system usually starts
with ideas in people’s mind. These ideas need to be captured in requirements specification
documents that specify the basic functions and the desirable features of the system. The
system design process then determines how these functions can be provided by the system
components.

Embedded Systems – Theory and Design Methodology

4

Requirement
definition Implementation

System and
Software
design

Integration and
Testing

Operation and
Maintenance

Fig. 1. The system development life cycle (Nahas, 2008).

For successful design, the system requirements have to be expressed and documented in a
very clear way. Inevitably, there can be numerous ways in which the requirements for a
simple system can be described.

Once the system requirements have been clearly defined and well documented, the first step
in the design process is to design the overall system architecture. Architecture of a system
basically represents an overview of the system components (i.e. sub-systems) and the
interrelationships between these different components. Once the software architecture is
identified, the process of implementing that architecture should take place. This can be
achieved using a lower-level system representation such as an operating system or a
scheduler. Scheduler is a very simple operating system for an embedded application (Pont,
2001). Building the scheduler would require a scheduling algorithm which simply provides
the set of rules that determine the order in which the tasks will be executed by the scheduler
during the system operating time. It is therefore the most important factor which influences
predictability in the system, as it is responsible for satisfying timing and resource
requirements (Buttazzo, 2005). However, the actual implementation of the scheduling
algorithm on the embedded microcontroller has an important role in determining the
functional and temporal behavior of the embedded system.

This chapter is mainly concerned with so-called “Time-Triggered Co-operative” (TTC)
schedulers and how such algorithms can be implemented in highly-predictable, resource-
constrained embedded applications.

The layout of the chapter is as follows. Section 2 provides a detailed comparison between
the two key software architectures used in the design of real-time embedded systems,
namely "time-triggered" and "event-triggered". Section 3 introduces and compares the two
most known scheduling policies, "co-operative" and "pre-emptive", and highlights the
advantages of co-operative over pre-emptive scheduling. Section 4 discusses the
relationship between scheduling algorithms and scheduler implementations in practical
embedded systems. In Section 5, Time-Triggered Co-operative (TTC) scheduling algorithm
is introduced in detail with a particular focus on its strengths and drawbacks and how such
drawbacks can be addressed to maintain its reliability and predictability attributes. Section 6
discusses the sources and impact of timing jitter in TTC scheduling algorithm. Section 7
describes various possible ways in which the TTC scheduling algorithm can be
implemented on resource-constrained embedded systems that require highly-predictable
system behavior. In Section 8, the various scheduler implementations are compared and
contrasted in terms of jitter characteristics, error handling capabilities and resource
requirements. The overall chapter conclusions are presented in Section 9.

2. Software architectures of embedded systems
Embedded systems are composed of hardware and software components. The success of an
embedded design, thus, depends on the right selection of the hardware platform(s) as well

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

5

as the software environment used in conjunction with the hardware. The selection of
hardware and software architectures of an application must take place at early stages in the
development process (typically at the design phase). Hardware architecture relates mainly
to the type of the processor (or microcontroller) platform(s) used and the structure of the
various hardware components that are comprised in the system: see Mwelwa (2006) for
further discussion about hardware architectures for embedded systems.

Provided that the hardware architecture is decided, an embedded application requires an
appropriate form of software architecture to be implemented. To determine the most
appropriate choice for software architecture in a particular system, this condition must be
fulfilled (Locke, 1992): “The [software] architecture must be capable of providing a provable
prediction of the ability of the application design to meet all of its time constraints.”

Since embedded systems are usually implemented as collections of real-time tasks, the
various possible system architectures may then be determined by the characteristics of these
tasks. In general, there are two main software architectures which are typically used in the
design of embedded systems:

Event-triggered (ET): tasks are invoked as a response to aperiodic events. In this case, the
system takes no account of time: instead, the system is controlled purely by the response to
external events, typically represented by interrupts which can arrive at anytime (Bannatyne,
1998; Kopetz, 1991b). Generally, ET solution is recommended for applications in which
sporadic data messages (with unknown request times) are exchanged in the system (Hsieh
and Hsu, 2005).

Time-triggered (TT): tasks are invoked periodically at specific time intervals which are
known in advance. The system is usually driven by a global clock which is linked to a
hardware timer that overflows at specific time instants to generate periodic interrupts
(Bennett, 1994). In distributed systems, where multi-processor hardware architecture is
used, the global clock is distributed across the network (via the communication medium) to
synchronise the local time base of all processors. In such architectures, time-triggering
mechanism is based on time-division multiple access (TDMA) in which each processor-node
is allocated a periodic time slot to broadcast its periodic messages (Kopetz, 1991b). TT
solution can suit many control applications where the data messages exchanged in the
system are periodic (Kopetz, 1997).

Many researchers argue that ET architectures are highly flexible and can provide high
resource efficiency (Obermaisser, 2004; Locke, 1992). However, ET architectures allow
several interrupts to arrive at the same time, where these interrupts might indicate (for
example) that two different faults have been detected at the same time. Inevitably, dealing
with an occurrence of several events at the same time will increase the system complexity
and reduce the ability to predict the behavior of the ET system (Scheler and Schröder-
Preikschat, 2006). In more severe circumstances, the system may fail completely if it is
heavily loaded with events that occur at once (Marti, 2002). In contrast, using TT
architectures helps to ensure that only a single event is handled at a time and therefore the
behavior of the system can be highly-predictable.

Since highly-predictable system behavior is an important design requirement for many
embedded systems, TT software architectures have become the subject of considerable
attention (e.g. see Kopetz, 1997). In particular, it has been widely accepted that TT

Embedded Systems – Theory and Design Methodology

6

architectures are a good match for many safety-critical applications, since they can help to
improve the overall safety and reliability (Allworth, 1981; Storey, 1996; Nissanke, 1997;
Bates; 2000; Obermaisser, 2004). Liu (2000) highlights that TT systems are easy to validate,
test, and certify because the times related to the tasks are deterministic. Detailed
comparisons between the TT and ET concepts were performed by Kopetz (1991a and 1991b).

3. Schedulers and scheduling algorithms
Most embedded systems involve several tasks that share the system resources and
communicate with one another and/or the environment in which they operate. For many
projects, a key challenge is to work out how to schedule tasks so that they can meet their
timing constraints. This process requires an appropriate form of scheduler1. A scheduler can
be viewed as a very simple operating system which calls tasks periodically (or aperiodically)
during the system operating time. Moreover, as with desktop operating systems, a
scheduler has the responsibility to manage the computational and data resources in order to
meet all temporal and functional requirements of the system (Mwelwa, 2006).

According to the nature of the operating tasks, any real-time scheduler must fall under one
of the following types of scheduling policies:

Pre-emptive scheduling: where a multi-tasking process is allowed. In more details, a task
with higher priority is allowed to pre-empt (i.e. interrupt) any lower priority task that is
currently running. The lower priority task will resume once the higher priority task finishes
executing. For example, suppose that – over a particular period of time – a system needs to
execute four tasks (Task A, Task B, Task C, Task D) as illustrated in Fig. 2.

A

C

B

D
Time

Fig. 2. A schematic representation of four tasks which need to be scheduled for execution on
a single-processor embedded system (Nahas, 2008).

Assuming a single-processor system is used, Task C and Task D can run as required where
Task B is due to execute before Task A is complete. Since no more than one task can run at
the same time on a single-processor, Task A or Task B has to relinquish control of the CPU.

1 Note that schedulers represent the core components of “Real-Time Operating System” (RTOS) kernels.
Examples of commercial RTOSs which are used nowadays are: VxWorks (from Wind River), Lynx
(from LynxWorks), RTLinux (from FSMLabs), eCos (from Red Hat), and QNX (from QNX Software
Systems). Most of these operating systems require large amount of computational and memory
resources which are not readily available in low-cost microcontrollers like the ones targeted in this
work.

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

7

In pre-emptive scheduling, a higher priority might be assigned to Task B with the
consequence that – when Task B is due to run – Task A will be interrupted, Task B will run,
and Task A will then resume and complete (Fig. 3).

Time

BA - - A C D

Fig. 3. Pre-emptive scheduling of Task A and Task B in the system shown in Fig. 2: Task B,
here, is assigned a higher priority (Nahas, 2008).

Co-operative (or “non-pre-emptive”) scheduling: where only a single-tasking process is
allowed. In more details, if a higher priority task is ready to run while a lower priority task
is running, the former task cannot be released until the latter one completes its execution.
For example, assume the same set of tasks illustrated in Fig. 2. In the simplest solution, Task
A and Task B can be scheduled co-operatively. In these circumstances, the task which is
currently using the CPU is implicitly assigned a high priority: any other task must therefore
wait until this task relinquishes control before it can execute. In this case, Task A will
complete and then Task B will be executed (Fig. 4).

Time

B C DA

Fig. 4. Co-operative scheduling of Task A and Task B in the system shown in Fig. 2 (Nahas,
2008).

Hybrid scheduling: where a limited, but efficient, multi-tasking capabilities are provided
(Pont, 2001). That is, only one task in the whole system is set to be pre-emptive (this task is
best viewed as “highest-priority” task), while other tasks are running co-operatively (Fig. 5).
In the example shown in the figure, suppose that Task B is a short task which has to execute
immediately when it arrives. In this case, Task B is set to be pre-emptive so that it acquires
the CPU control to execute whenever it arrives and whether (or not) other task is running.

Time

B C - DA - - A B - C

Fig. 5. Hybrid scheduling of four-tasks: Task B is set to be pre-emptive, where Task A, Task
C and Task D run co-operatively (Nahas, 2008).

Overall, when comparing co-operative with pre-emptive schedulers, many researchers have
argued that co-operative schedulers have many desirable features, particularly for use in
safety-related systems (Allworth, 1981; Ward, 1991; Nissanke, 1997; Bates, 2000; Pont, 2001).
For example, Bates (2000) identified the following four advantages of co-operative
scheduling over pre-emptive alternatives:

Embedded Systems – Theory and Design Methodology

8

 The scheduler is simpler.
 The overheads are reduced.
 Testing is easier.
 Certification authorities tend to support this form of scheduling.

Similarly, Nissanke (1997) noted: “[Pre-emptive] schedules carry greater runtime overheads
because of the need for context switching - storage and retrieval of partially computed results. [Co-
operative] algorithms do not incur such overheads. Other advantages of co-operative algorithms
include their better understandability, greater predictability, ease of testing and their inherent
capability for guaranteeing exclusive access to any shared resource or data.”

Many researchers still, however, believe that pre-emptive approaches are more effective
than co-operative alternatives (Allworth, 1981; Cooling, 1991). This can be due to different
reasons. As in (Pont, 2001), one of the reasons why pre-emptive approaches are more widely
discussed and considered is because of confusion over the options available. Pont gave an
example that the basic cyclic scheduling, which is often discussed by many as an alternative
to pre-emptive, is not a representative of the wide range of co-operative scheduling
architectures that are available.

Moreover, one of the main issues that concern people about the reliability of co-operative
scheduling is that long tasks can have a negative impact on the responsiveness of the
system. This is clearly underlined by Allworth (1981): “[The] main drawback with this co-
operative approach is that while the current process is running, the system is not responsive to
changes in the environment. Therefore, system processes must be extremely brief if the real-time
response [of the] system is not to be impaired.”

However, in many practical embedded systems, the process (task) duration is extremely
short. For example, calculations of one of the very complicated algorithms, the
“proportional integral differential” (PID) controller, can be carried out on the most basic (8-
bit) 8051 microcontroller in around 0.4 ms: this imposes insignificant processor load in most
systems – including flight control – where 10 ms sampling rate is adequate (Pont, 2001).
Pont has also commented that if the system is designed to run long tasks, “this is often
because the developer is unaware of some simple techniques that can be used to break down these tasks
in an appropriate way and – in effect – convert long tasks called infrequently into short tasks called
frequently”: some of these techniques are introduced and discussed in Pont (2001).

Moreover, if the performance of the system is seen slightly poor, it is often advised to
update the microcontroller hardware rather than to use a more complex software
architecture. However, if changing the task design or microcontroller hardware does not
provide the level of performance which is desired for a particular application, then more
than one microcontroller can be used. In such cases, long tasks can be easily moved to
another processor, allowing the host processor to respond rapidly to other events as
required (for further details, see Pont, 2001; Ayavoo et al., 2007).

Please note that the very wide use of pre-emptive schedulers can simply be resulted from a
poor understanding and, hence, undervaluation of the co-operative schedulers. For
example, a co-operative scheduler can be easily constructed using only a few hundred lines
of highly portable code written in a high-level programming language (such as ‘C’), while
the resulting system is highly-predictable (Pont, 2001).

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

9

It is also important to understand that sometimes pre-emptive schedulers are more widely
used in RTOSs due to commercial reasons. For example, companies may have commercial
benefits from using pre-emptive environments. Consequently, as the complexity of these
environments increases, the code size will significantly increase making ‘in-house’
constructions of such environments too complicated. Such complexity factors lead to the
sale of commercial RTOS products at high prices (Pont, 2001). Therefore, further academic
research has been conducted in this area to explore alternative solutions. For example, over
the last few years, the Embedded Systems Laboratory (ESL) researchers have considered
various ways in which simple, highly-predictable, non-pre-emptive (co-operative)
schedulers can be implemented in low-cost embedded systems.

4. Scheduling algorithm and scheduler implementation
A key component of the scheduler is the scheduling algorithm which basically determines the
order in which the tasks will be executed by the scheduler (Buttazzo, 2005). More
specifically, a scheduling algorithm is the set of rules that, at every instant while the system
is running, determines which task must be allocated the resources to execute.

Developers of embedded systems have proposed various scheduling algorithms that can be
used to handle tasks in real-time applications. The selection of appropriate scheduling
algorithm for a set of tasks is based upon the capability of the algorithm to satisfy all timing
constraints of the tasks: where these constraints are derived from the application
requirements. Examples of common scheduling algorithms are: Cyclic Executive (Locke,
1992), Rate Monotonic (Liu & Layland, 1973), Earliest-Deadline-First (Liu & Layland, 1973;
Liu, 2000), Least-Laxity-First (Mok, 1983), Deadline Monotonic (Leung, 1982) and Shared-
Clock (Pont, 2001) schedulers (see Rao et al., 2008 for a simple classification of scheduling
algorithms). This chapter outlines one key example of scheduling algorithms that is widely
used in the design of real-time embedded systems when highly-predictable system behavior
is an essential requirement: this is the Time Triggered Co-operative scheduler which is a
form of cyclic executive.

Note that once the design specifications are converted into appropriate design elements, the
system implementation process can take place by translating those designs into software
and hardware components. People working on the development of embedded systems are
often concerned with the software implementation of the system in which the system
specifications are converted into an executable system (Sommerville, 2007; Koch, 1999). For
example, Koch interpreted the implementation of a system as the way in which the software
program is arranged to meet the system specifications.

The implementation of schedulers is a major problem which faces designers of real-time
scheduling systems (for example, see Cho et al., 2005). In their useful publication, Cho and
colleges clarified that the well-known term scheduling is used to describe the process of
finding the optimal schedule for a set of real-time tasks, while the term scheduler
implementation refers to the process of implementing a physical (software or hardware)
scheduler that enforces – at run-time – the task sequencing determined by the designed
schedule (Cho et al., 2007).

Embedded Systems – Theory and Design Methodology

10

Generally, it has been argued that there is a wide gap between scheduling theory and its
implementation in operating system kernels running on specific hardware, and for any
meaningful validation of timing properties of real-time applications, this gap must be
bridged (Katcher et al., 1993). The relationship between any scheduling algorithm and the
number of possible implementation options for that algorithm – in practical designs – has
generally been viewed as ‘one-to-many’, even for very simple systems (Baker & Shaw, 1989;
Koch; 1999; Pont, 2001; Baruah, 2006; Pont et al., 2007; Phatrapornnant, 2007). For example,
Pont et al. (2007) clearly mentioned that if someone was to use a particular scheduling
architecture, then there are many different implementation options which can be available.
This claim was also supported by Phatrapornnant (2007) by noting that the TTC scheduler
(which is a form of cyclic executive) is only an algorithm where, in practice, there can be
many possible ways to implement such an algorithm.

The performance of a real-time system depends crucially on implementation details that
cannot be captured at the design level, thus it is more appropriate to evaluate the real-time
properties of the system after it is fully implemented (Avrunin et al., 1998).

5. Time-triggered co-operative (TTC) scheduling algorithm
A key defining characteristic of a time-triggered (TT) system is that it can be expected to
have highly-predictable patterns of behavior. This means that when a computer system has
a time-triggered architecture, it can be determined in advance – before the system begins
executing – exactly what the system will do at every moment of time while the system is
operating. Based on this definition, completely defined TT behavior is – of course – difficult
to achieve in practice. Nonetheless, approximations of this model have been found to be
useful in a great many practical systems. The closest approximation of a “perfect” TT
architecture which is in widespread use involves a collection of periodic tasks which operate
co-operatively (or “non-pre-emptively”). Such a time-triggered co-operative (TTC)
architecture has sometimes been described as a cyclic executive (e.g. Baker & Shaw, 1989;
Locke, 1992).

According to Baker and Shaw (1989), the cyclic executive scheduler is designed to execute
tasks in a sequential order that is defined prior to system activation; the number of tasks is
fixed; each task is allocated an execution slot (called a minor cycle or a frame) during which
the task executes; the task – once interleaved by the scheduler – can execute until completion
without interruption from other tasks; all tasks are periodic and the deadline of each task is
equal to its period; the worst-case execution time of all tasks is known; there is no context
switching between tasks; and tasks are scheduled in a repetitive cycle called major cycle. The
major cycle can be defined as the time period during which each task in the scheduler
executes – at least – once and before the whole task execution pattern is repeated. This is
numerically calculated as the lowest common multiple (LCM) of the periods of the
scheduled tasks (Baker & Shaw, 1989; Xu & Parnas, 1993). Koch (1999) emphasized that
cyclic executive is a “proof-by-construction” scheme in which no schedulability analysis is
required prior to system construction.

Fig. 6 illustrates the (time-triggered) cyclic executive model for a simple set of four periodic
tasks. Note that the final task in the task-group (i.e. Task D) must complete execution before
the arrival of the next timer interrupt which launches a new (major) execution cycle.

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

11

Task B

Task C

Task D

Task A

Fig. 6. A time-triggered cyclic executive model for a set of four periodic tasks (Nahas,
2011b).

In the example shown, each task is executed only once during the whole major cycle which
is, in this case, made up of four minor cycles. Note that the task periods may not always be
identical as in the example shown in Fig. 6. When task periods vary, the scheduler should
define a sequence in which each task is repeated sufficiently to meet its frequency
requirement (Locke, 1992).

Fig. 7 shows the general structure of the time-triggered cyclic executive (i.e. time-triggered
co-operative) scheduler. In the example shown in this figure, the scheduler has a minor cycle
of 10 ms, period values of 20, 10 and 40 ms for the tasks A, B and C, respectively. The LCM
of these periods is 40 ms, therefore the length of the major cycle in which all tasks will be
executed periodically is 40 ms. It is suggested that the minor cycle of the scheduler (which is
also referred to as the tick interval: see Pont, 2001) can be set equal to or less than the
greatest common divisor value of all task periods (Phatrapornnant, 2007). In the example
shown in Fig. 7, this value is equal to 10 ms. In practice, the minor cycle is driven by a
periodic interrupt generated by the overflow of an on-chip hardware timer or by the arrival
of events in the external environment (Locke, 1992; Pont, 2001). The vertical arrows in the
figure represent the points at which minor cycles (ticks) start.

A C

Minor
cycle

Major cycle

t (ms)0 10 20

A

30 40

B BBB A B

Fig. 7. A general structure of the time-triggered co-operative (TTC) scheduler (Nahas, 2008).

Overall, TTC schedulers have many advantages. A key recognizable advantage is its
simplicity (Baker & Shaw, 1989; Liu, 2000; Pont, 2001). Furthermore, since pre-emption is not
allowed, mechanisms for context switching are, hence, not required and, as a consequence,
the run-time overhead of a TTC scheduler can be kept very low (Locke, 1992; Buttazzo,
2005). Also, developing TTC schedulers needs no concern about protecting the integrity of
shared data structures or shared resources because, at a time, only one task in the whole

Embedded Systems – Theory and Design Methodology

12

system can exclusively use the resources and the next due task cannot begin its execution
until the running task is completed (Baker & Shaw, 1989; Locke, 1992).

Since all tasks are run regularly according to their predefined order in a deterministic
manner, the TTC schedulers demonstrate very low levels of task jitter (Locke, 1992; Bate,
1998; Buttazzo, 2005) and can maintain their low-jitter characteristics even when complex
techniques, such as dynamic voltage scaling (DVS), are employed to reduce system power
consumption (Phatrapornnant & Pont, 2006). Therefore, as would be expected (and unlike
RM designs, for example), systems with TTC architectures can have highly-predictable
timing behavior (Baker & Shaw, 1989; Locke, 1992). Locke (1992) underlines that with cyclic
executive systems, “it is possible to predict the entire future history of the state of the machine, once
the start time of the system is determined (usually at power-on). Thus, assuming this future history
meets the response requirements generated by the external environment in which the system is to be
used, it is clear that all response requirements will be met. Thus it fulfills the basic requirements of a
hard real time system.”

Provided that an appropriate implementation is used, TTC architectures can be a good
match for a wide range of low-cost embedded applications. For example, previous studies
have described – in detail – how these techniques can be applied in various automotive
applications (e.g. Ayavoo et al., 2006; Ayavoo, 2006), a wireless (ECG) monitoring system
(Phatrapornnant & Pont, 2004; Phatrapornnant, 2007), various control applications (e.g.
Edwards et al., 2004; Key et al., 2004; Short & Pont, 2008), and in data acquisition systems,
washing-machine control and monitoring of liquid flow rates (Pont, 2002). Outside the ESL
group, Nghiem et al. (2006) described an implementation of PID controller using TTC
scheduling algorithm and illustrated how such architecture can help increase the overall
system performance as compared with alternative implementation methods.

However, TTC architectures have some shortcomings. For example, many researchers argue
that running tasks without pre-emption may cause other tasks to wait for some time and
hence miss their deadlines. However, the availability of high-speed, COTS microcontrollers
nowadays helps to reduce the effect of this problem and, as processor speeds continue to
increase, non-pre-emptive scheduling approaches are expected to gain more popularity in
the future (Baruah, 2006).

Another issue with TTC systems is that the task schedule is usually calculated based on
estimates of Worst Case Execution Time (WCET) of the running tasks. If such estimates
prove to be incorrect, this may have a serious impact on the system behavior (Buttazzo,
2005).

One recognized disadvantage of using TTC schedulers is the lack of flexibility (Locke, 1992;
Bate, 1998). This is simply because TTC is usually viewed as ‘table-driven’ static scheduler
(Baker & Shaw, 1989) which means that any modification or addition of a new functionality,
during any stage of the system development process, may need an entirely new schedule to
be designed and constructed (Locke, 1992; Koch, 1999). This reconstruction of the system
adds more time overhead to the design process: however, with using tools such as those
developed recently to support “automatic code generation” (Mwelwa et al., 2006; Mwelwa,
2006; Kurian & Pont, 2007), the work involved in developing and maintaining such systems
can be substantially reduced.

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

13

Another drawback of TTC systems, as noted by Koch (1999), is that constructing the cyclic
executive model for a large set of tasks with periods that are prime to each other can be
unaffordable. However, in practice, there is some flexibility in the choice of task periods (Xu
& Parnas, 1993; Pont, 2001). For example, Gerber et al. (1995) demonstrated how a feasible
solution for task periods can be obtained by considering the period harmonicity relationship
of each task with all its successors. Kim et al. (1999) went further to improve and automate
this period calibration method. Please also note that using a table to store the task schedule
is only one way of implementing TTC algorithm where, in practice, there can be other
implementation methods (Baker & Shaw, 1989; Pont, 2001). For example, Pont (2001)
described an alternative to table-driven schedule implementation for the TTC algorithm
which has the potential to solve the co-prime periods problem and also simplify the process
of modifying the whole task schedule later in the development life cycle or during the
system run-time.

Furthermore, it has also been reported that a long task whose execution time exceeds the
period of the highest rate (shortest period) task cannot be scheduled on the basic TTC
scheduler (Locke, 1992). One solution to this problem is to break down the long task into
multiple short tasks that can fit in the minor cycle. Also, possible alternative solution to this
problem is to use a Time-Triggered Hybrid (TTH) scheduler (Pont, 2001) in which a limited
degree of pre-emption is supported. One acknowledged advantage of using TTH scheduler
is that it enables the designer to build a static, fixed-priority schedule made up of a
collection of co-operative tasks and a single (short) pre-emptive task (Phatrapornnant, 2007).
Note that TTH architectures are not covered in the context of this chapter. For more details
about these scheduling approaches, see (Pont, 2001; Maaita & Pont, 2005; Hughes & Pont,
2008; Phatrapornnant, 2007).

Please note that later in this chapter, it will be demonstrated how, with extra care at the
implementation stage, one can easily deal with many of the TTC scheduler limitations
indicated above.

6. Jitter in TTC scheduling algorithm
Jitter is a term which describes variations in the timing of activities (Wavecrest, 2001). The
work presented in this chapter is concerned with implementing highly-predictable
embedded systems. Predictability is one of the most important objectives of real-time
embedded systems which can simply be defined as the ability to determine, in advance,
exactly what the system will do at every moment of time in which it is running. One way in
which predictable behavior manifests itself is in low levels of task jitter.

Jitter is a key timing parameter that can have detrimental impacts on the performance of
many applications, particularly those involving period sampling and/or data generation
(e.g. data acquisition, data playback and control systems: see Torngren, 1998). For example,
Cottet & David (1999) show that – during data acquisition tasks – jitter rates of 10% or more
can introduce errors which are so significant that any subsequent interpretation of the
sampled signal may be rendered meaningless. Similarly, Jerri (1977) discusses the serious
impact of jitter on applications such as spectrum analysis and filtering. Also, in control
systems, jitter can greatly degrade the performance by varying the sampling period
(Torngren, 1998; Marti et al., 2001).

Embedded Systems – Theory and Design Methodology

14

When TTC architectures (which represent the main focus of this chapter) are employed,
possible sources of task jitter can be divided into three main categories: scheduling overhead
variation, task placement and clock drift.

The overhead of a conventional (non-co-operative) scheduler arises mainly from context
switching. However, in some TTC systems the scheduling overhead is comparatively large
and may have a highly variable duration due to code branching or computations that have
non-fixed lengths. As an example, Fig. 8 illustrates how a TTC system can suffer release
jitter as a result of variations in the scheduler overhead (this relates to DVS system).

Speed
Over
head Task

OverheadTask

Task
Period

OverheadTask
Over
headTask

Task
Period

Task
Period

Fig. 8. Release jitter caused by variation of scheduling overhead (Nahas, 2011a).

Even if the scheduler overhead variations can be avoided, TTC designs can still suffer from
jitter as a result of the task placement. To illustrate this, consider Fig. 9. In this schedule
example, Task C runs sometimes after A, sometimes after A and B, and sometimes alone.
Therefore, the period between every two successive runs of Task C is highly variable.
Moreover, if Task A and B have variable execution durations (as in Fig. 8), then the jitter
levels of Task C will even be larger.

Speed

Task
A

Task
C

Task
Period

Task
Period

Task
Period

Task
C

Task
A

Task
C

Task
B

Task
C

Task
B

Fig. 9. Release jitter caused by task placement in TTC schedulers (Nahas, 2011a).

For completeness of this discussion, it is also important to consider clock drift as a source of
task jitter. In the TTC designs, a clock “tick” is generated by a hardware timer that is used
to trigger the execution of the cyclic tasks (Pont, 2001). This mechanism relies on the
presence of a timer that runs at a fixed frequency. In such circumstances, any jitter will arise
from variations at the hardware level (e.g. through the use of a low-cost frequency source,
such as a ceramic resonator, to drive the on-chip oscillator: see Pont, 2001). In the TTC
scheduler implementations considered in this study, the software developer has no control
over the clock source. However, in some circumstances, those implementing a scheduler
must take such factors into account. For example, in situations where DVS is employed (to
reduce CPU power consumption), it may take a variable amount of time for the processor’s
phase-locked loop (PLL) to stabilize after the clock frequency is changed (see Fig. 10).

Expected
Tick Period

Expected
Tick Period

Speed

Task

Expected
Tick Period
Expected

Tick Period
Timer

Counter

Task

Timer
Counter

Task

Timer
Counter

Fig. 10. Clock drift in DVS systems (Nahas, 2011a).

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

15

As discussed elsewhere, it is possible to compensate for such changes in software and
thereby reduce jitter (see Phatrapornnant & Pont, 2006; Phatrapornnant, 2007).

7. Various TTC scheduler implementations for highly-predictable embedded
systems
In this section, a set of “representative” examples of the various classes of TTC scheduler
implementations are reviewed. In total, the section reviews six TTC implementations.

7.1 Super loop (SL) scheduler

The simplest practical implementation of a TTC scheduler can be created using a “Super
Loop” (SL) (sometimes called an “endless loop: Kalinsky, 2001). The super loop can be used
as the basis for implementing a simple TTC scheduler (e.g. Pont, 2001; Kurian & Pont, 2007).
A possible implementation of TTC scheduler using super loop is illustrated in Listing 1.

int main(void)
 {
 ...
 while(1)
 {
 TaskA();
 Delay_6ms();
 TaskB();
 Delay_6ms();
 TaskC();
 Delay_6ms();
 }

 // Should never reach here
 return 1
 }

Listing 1. A very simple TTC scheduler which executes three periodic tasks, in sequence.

By assuming that each task in Listing 1 has a fixed duration of 4 ms, a TTC system with a
10 ms “tick interval” has been created using a combination of super loop and delay
functions (Fig. 11).

Time

System
Tick

Task A

10 ms

Task B Task C

4 ms 4 ms 4 ms

Fig. 11. The task executions resulting from the code in Listing 1 (Nahas, 2011b).

In the case where the scheduled tasks have variable durations, creating a fixed tick interval
is not straightforward. One way of doing that is to use a “Sandwich Delay” (Pont et al.,
2006) placed around the tasks. Briefly, a Sandwich Delay (SD) is a mechanism – based on a

Embedded Systems – Theory and Design Methodology

16

hardware timer – which can be used to ensure that a particular code section always takes
approximately the same period of time to execute. The SD operates as follows: [1] A timer is
set to run; [2] An activity is performed; [3] The system waits until the timer reaches a pre-
determined count value.

In these circumstances – as long as the timer count is set to a duration that exceeds the
WCET of the sandwiched activity – SD mechanism has the potential to fix the execution
period. Listing 2 shows how the tasks in Listing 1 can be scheduled – again using a 10 ms
tick interval – if their execution durations are not fixed

int main(void)
 {
 ...
 while(1)
 {
 // Set up a Timer for sandwich delay
 SANDWICH_DELAY_Start();
 // Add Tasks in the first tick interval
 Task_A();
 // Wait for 10 millisecond sandwich delay
 // Add Tasks in the second tick interval
 SANDWICH_DELAY_Wait(10);
 Task_B();
 // Wait for 20 millisecond sandwich delay
 // Add Tasks in the second tick interval
 SANDWICH_DELAY_Wait(20);
 Task_C();
 // Wait for 30 millisecond sandwich delay
 SANDWICH_DELAY_Wait(30);
 }
 // Should never reach here
 return 1
 }

Listing 2. A TTC scheduler which executes three periodic tasks with variable durations, in
sequence.

Using the code listing shown, the successive function calls will take place at fixed intervals,
even if these functions have large variations in their durations (Fig. 12). For further
information, see (Nahas, 2011b).

Time

System
Tick

10 ms

Task B Task CTask A

6 ms 9 ms 4 ms

Fig. 12. The task executions expected from the TTC-SL scheduler code shown in Listing 2
(Nahas, 2011b).

7.2 A TTC-ISR scheduler

In general, software architectures based on super loop can be seen simple, highly efficient
and portable (Pont, 2001; Kurian & Pont, 2007). However, these approaches lack the

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

17

provision of accurate timing and the efficiency in using the power resources, as the system
always operates at full-power which is not necessary in many applications.

An alternative (and more efficient) solution to this problem is to make use of the hardware
resources to control the timing and power behavior of the system. For example, a TTC
scheduler implementation can be created using “Interrupt Service Routine” (ISR) linked to
the overflow of a hardware timer. In such approaches, the timer is set to overflow at regular
“tick intervals” to generate periodic “ticks” that will drive the scheduler. The rate of the tick
interval can be set equal to (or higher than) the rate of the task which runs at the highest
frequency (Phatrapornnant, 2007).

In the TTC-ISR scheduler, when the timer overflows and a tick interrupt occurs, the ISR will
be called, and awaiting tasks will then be activated from the ISR directly. Fig. 13 shows how
such a scheduler can be implemented in software. In this example, it is assumed that one of
the microcontroller’s timers has been set to generate an interrupt once every 10 ms, and
thereby call the function Update(). This Update() function represents the scheduler ISR.
At the first tick, the scheduler will run Task A then go back to the while loop in which the
system is placed in the idle mode waiting for the next interrupt. When the second interrupt
takes place, the scheduler will enter the ISR and run Task B, then the cycle continues. The
overall result is a system which has a 10 ms “tick interval” and three tasks executed in
sequence (see Fig. 14)

while(1)
{
Go_To_Sleep();
}

BACKGROUND
PROCESSING

FOREGROUND
PROCESSING

void Update(void)
{
Tick_G++;

switch(Tick_G)
{
case 1:

Task_A();
break;

case 2:
Task_B();
break;

case 3:
Task_C();
Tick_G = 0;

}
}

10ms timer
while(1)

{
Go_To_Sleep();
}

BACKGROUND
PROCESSING

FOREGROUND
PROCESSING

void Update(void)
{
Tick_G++;

switch(Tick_G)
{
case 1:

Task_A();
break;

case 2:
Task_B();
break;

case 3:
Task_C();
Tick_G = 0;

}
}

10ms timer

Fig. 13. A schematic representation of a simple TTC-ISR scheduler (Nahas, 2008).

Whether or not the idle mode is used in TTC-ISR scheduler, the timing observed is largely
independent of the software used but instead depends on the underlying timer hardware
(which will usually mean the accuracy of the crystal oscillator driving the microcontroller).
One consequence of this is that, for the system shown in Fig. 13 (for example), the successive
function calls will take place at precisely-defined intervals, even if there are large variations

Embedded Systems – Theory and Design Methodology

18

in the duration of tasks which are run from the Update()function (Fig. 14). This is very
useful behavior which is not easily obtained with implementations based on super loop.

C

Tick interval

TimeTick 0 Tick 1

B
Idle

mode

Tick 2

A

Major
cycle

Tick 3
Fig. 14: The task executions expected from the TTC-ISR scheduler code shown in Fig. 13
(Nahas, 2008).

The function call tree for the TTC-ISR scheduler is shown in Fig. 15. For further information,
see (Nahas, 2008).

Main () Sleep ()Task ()Update ()

Fig. 15: Function call tree for the TTC-ISR scheduler (Nahas, 2008).

7.3 TTC-dispatch scheduler

Implementation of a TTC-ISR scheduler requires a significant amount of hand coding (to
control the task timing), and there is no division between the “scheduler” code and the
“application” code (i.e. tasks). The TTC-Dispatch scheduler provides a more flexible
alternative. It is characterized by distinct and well-defined scheduler functions.

Like TTC-ISR, the TTC-Dispatch scheduler is driven by periodic interrupts generated from
an on-chip timer. When an interrupt occurs, the processor executes an Update() function.
In the scheduler implementation discussed here, the Update() function simply keeps track
of the number of ticks. A Dispatch() function will then be called, and the due tasks (if
any) will be executed one-by-one. Note that the Dispatch() function is called from an
“endless” loop placed in the function Main(): see Fig. 16. When not executing the
Update() or Dispatch() functions, the system will usually enter the low-power idle
mode.

In this TTC implementation, the software employs a SCH_Add_Task() and a
SCH_Delete_Task() functions to help the scheduler add and/or remove tasks during the
system run-time. Such scheduler architecture provides support for “one shot” tasks and
dynamic scheduling where tasks can be scheduled online if necessary (Pont, 2001). To add a
task to the scheduler, two main parameters have to be defined by the user in addition to the
task’s name: task’s offset, and task’s period. The offset specifies the time (in ticks) before the
task is first executed. The period specifies the interval (also in ticks) between repeated
executions of the task. In the Dispatch() function, the scheduler checks these parameters
for each task before running it. Please note that information about tasks is stored in a user-
defined scheduler data structure. Both the “sTask” data type and the “SCH_MAX_TASKS”
constant are used to create the “Task Array” which is referred to throughout the scheduler

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

19

as “sTask SCH_tasks_G[SCH_MAX_TASKS]”. See (Pont, 2001) for further details. The
function call tree for the TTC-Dispatch scheduler is shown in Fig. 16.

Main () Sleep ()Task ()Dispatch ()Update ()

Fig. 16. Function call tree for the TTC-Dispatch scheduler (Nahas, 2011a).

Fig. 16 illustrates the whole scheduling process in the TTC-Dispatch scheduler. For example,
it shows that the first function to run (after the startup code) is the Main() function. The
Main()calls Dispatch()which in turn launches any tasks which are currently scheduled
to execute. Once these tasks are complete, the control will return back to Main() which calls
Sleep() to place the processor in the idle mode. The timer interrupt then occurs which
will wake the processor up from the idle state and invoke the ISR Update(). The function
call then returns all the way back to Main(), where Dispatch() is called again and the
whole cycle thereby continues. For further information, see (Nahas, 2008).

7.4 Task Guardians (TG) scheduler

Despite many attractive characteristics, TTC designs can be seriously compromised by tasks
that fail to complete within their allotted periods. The TTC-TG scheduler implementation
described in this section employs a Task Guardian (TG) mechanism to deal with the impact
of such task overruns. When dealing with task overruns, the TG mechanism is required to
shutdown any task which is found to be overrunning. The proposed solution also provides
the option of replacing the overrunning task with a backup task (if required).

The implementation is again based on TTC-Dispatch (Section 7.3). In the event of a task
overrun with ordinary Dispatch scheduler, the timer ISR will interrupt the overrunning task
(rather than the Sleep() function). If the overrunning task keeps executing then it will be
periodically interrupted by Update() while all other tasks will be blocked until the task
finishes (if ever): this is shown in Fig. 17. Note that (a) illustrates the required task schedule,
and (b) illustrates the scheduler operation when Task A overrun by 5 tick interval.

A1 B1 A2 A3 A4 A5 A6 B2

t = 0 1 2 3 4 5 t (ms)

in
te

rr
up

t

A1 B1in
te

rru
pt

(a)

(b)

t = 0 1 2 3 4 5 t (ms)
Fig. 17. The impact of task overrun on a TTC scheduler (Nahas, 2008).

Embedded Systems – Theory and Design Methodology

20

In order for the TG mechanism to work, various functions in the TTC-Dispatch scheduler
are modified as follows:

 Dispatch() indicates that a task is being executed.
 Update() checks to see if an overrun has occurred. If it has, control is passed back to

Dispatch(), shutting down the overrunning task.
 If a backup task exists it will be executed by Dispatch().
 Normal operation then continues.

In a little more detail, detecting overrun in this implementation uses a simple, efficient
method employed in the Dispatch() function. It simply adds a “Task_Overrun” variable
which is set equal to the task index before the task is executed. When the task completes,
this variable will be assigned the value of (for example) 255 to indicate a successful
completion. If a task overruns, the Update() function in the next tick should detect this
since it checks the Task_overrun variable and the last task index value. The Update() then
changes the return address to an End_Task() function instead of the overrunning task. The
End_Task() function should return control to Dispatch. Note that moving control from
Update() to End_Task() is a nontrivial process and can be done by different ways
(Hughes & Pont, 2004).

The End_Task() has the responsibility to shutdown the overrunning task. Also, it
determines the type of function that has overrun and begins to restore register values
accordingly. This process is complicated which aims to return the scheduler back to its
normal operation making sure the overrun has been resolved completely. Once the overrun
is dealt with, the scheduler replaces the overrunning task with a backup task which is set to
run immediately before running other tasks. If there is no backup task defined by the user,
then the TTC-TG scheduler implements a mechanism which turns the priority of the task
that overrun to the lowest so as to reduce the impact of any future overrunning by this task.
The function call tree for the TTC-TTG scheduler can be shown in Fig. 18.

Main () Backup
Task ()Dispatch ()End Task ()Update ()

Fig. 18. Function call tree for the TTC-TG scheduler (Nahas, 2008).

Note that the scheduler structure used in TTC-TG scheduler is same as that employed in the
TTC-Dispatch scheduler which is simply based on ISR Update linked to a timer interrupt
and a Dispatch function called periodically from the Main code (Section 7.3). For further
details, see (Hughes & Pont, 2008).

7.5 Sandwich Delay (SD) scheduler

In Section 6, the impact of task placement on “low-priority” tasks running in TTC
schedulers was considered. The TTC schedulers described in Sections 7.1 - 7.4 lack the
ability to deal with jitter in the starting time of such tasks. One way to address this issue is to
place “Sandwich Delay” (Pont et al., 2006) around tasks which execute prior to other tasks in
the same tick interval.

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

21

In the TTC-SD scheduler described in this section, sandwich delays are used to provide
execution “slots” of fixed sizes in situations where there is more than one task in a tick
interval. To clarify this, consider the set of tasks shown in Fig. 19. In the figure, the required
SD prior to Task C – for low jitter behavior – is equal to the WCET of Task A plus the WCET
of Task B. This implies that in the second tick (for example), the scheduler runs Task A and
then waits for the period equals to the WCET of Task B before running Task C. The figure
shows that when SDs are placed around the tasks prior to Task C, the periods between
successive runs of Task C become equal and hence jitter in the release time of this task is
significantly reduced.

Task
A

Task
C

Task C
Period

Task
C

Task
B

t (Ticks)t = 0 1 2

Task C
Period

Task
C

Tick
Interrupt

Idle
ModeSD SD SDTask

A

Fig. 19: Using Sandwich Delays to reduce release jitter in TTC schedulers (Nahas, 2011a).

Note that – with this implementation – the WCET for each task is input to the scheduler
through a SCH_Task_WCET() function placed in the Main code. After entering task
parameters, the scheduler employs Calc_Sch_Major_Cycle() and
Calculate_Task_RT() functions to calculate the scheduler major cycle and the required
release time for the tasks, respectively. The release time values are stored in the “Task
Array” using the variable SCH_tasks_G[Index].Rls_time. Note that the required
release time of a task is the time between the start of the tick interval and the start time of
the task “slot” plus a little safety margin. For further information, see (Nahas, 2011a).

7.6 Multiple Timer Interrupts (MTI) scheduler

An alternative to the SD technique which requires a large computational time, a “gap
insertion” mechanism that uses “Multiple Timer Interrupts” (MTIs) can be employed.

In the TTC-MTI scheduler described in this section, multiple timer interrupts are used to
generate the predefined execution “slots” for tasks. This allows more precise control of
timing in situations where more than one task executes in a given tick interval. The use of
interrupts also allows the processor to enter an idle mode after completion of each task,
resulting in power saving. In order to implement this technique, two interrupts are required:

 Tick interrupt: used to generate the scheduler periodic tick.
 Task interrupt: used – within tick intervals – to trigger the execution of tasks.

The process is illustrated in Fig. 20. In this figure, to achieve zero jitter, the required release
time prior to Task C (for example) is equal to the WCET of Task A plus the WCET of Task B
plus scheduler overhead (i.e. ISR Update() function). This implies that in the second tick
(for example), after running the ISR, the scheduler waits – in idle mode – for a period of time
equals to the WCETs of Task A and Task B before running Task C. Fig. 20 shows that when
an MTI method is used, the periods between the successive runs of Task C (the lowest
priority task in the system) are always equal. This means that the task jitter in such

Embedded Systems – Theory and Design Methodology

22

implementation is independent on the task placement or the duration(s) of the preceding
task(s).

A C

Task C
Period

CB B

TimeTick 0 Tick 1 Tick 2

Task C
Period

C

Tick
Interrupt Task

Interrupts

Idle
Mode

Idle
Mode

I
S
R

I
S
R

I
S
R

Idle
Mode

Fig. 20. Using MTIs to reduce release jitter in TTC schedulers (Nahas, 2011a).

In the implementation considered in this section, the WCET for each task is input to the
scheduler through SCH_Task_WCET() function placed in the Main() code. The scheduler
then employs Calc_Sch_Major_Cycle() and Calculate_Task_RT() functions to
calculate the scheduler major cycle and the required release time for the tasks, respectively.
Moreover, there is no Dispatch() called in the Main() code: instead, “interrupt request
wrappers” – which contain Assembly code – are used to manage the sequence of operation
in the whole scheduler. The function call tree for the TTC-MTI scheduler is shown in Fig. 21
(compare with Fig. 16).

Main () Tick
Update () Sleep () Task

Update () Task () Sleep ()

If Task () is not the last due task in the tick
If Task () is the last due task in the tick

Fig. 21. Function call tree for the TTC-MTI scheduler (in normal conditions) (Nahas, 2011a).

Unlike the normal Dispatch schedulers, this implementation relies on two interrupt
Update() functions: Tick Update() and Task Update(). The Tick Update() – which
is called every tick interval (as normal) – identifies which tasks are ready to execute within
the current tick interval. Before placing the processor in the idle mode, the Tick Update()
function sets the match register of the task timer according to the release time of the first due
task running in the current interval. Calculating the release time of the first task in the
system takes into account the WCET of the Tick Update() code.

When the task interrupt occurs, the Task Update() sets the return address to the task that
will be executed straight after this update function, and sets the match register of the task
timer for the next task (if any). The scheduled task then executes as normal. Once the task
completes execution, the processor goes back to Sleep() and waits for the next task
interrupt (if there are following tasks to execute) or the next tick interrupt which launches a
new tick interval. Note that the Task Update() code is written in such a way that it always
has a fixed execution duration for avoiding jitter at the starting time of tasks.

It is worth highlighting that the TTC-MTI scheduler described here employs a form of “task
guardians” which help the system avoid any overruns in the operating tasks. More
specifically, the described MTI technique helps the TTC scheduler to shutdown any
overrunning task by the time the following interrupt takes place. For example, if the
overrunning task is followed by another task in the same tick, then the task interrupt –

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

23

which triggers the execution of the latter task – will immediately terminate the overrun.
Otherwise, the task can overrun until the next tick interrupt takes place which will terminate
the overrun immediately. The function call tree for the TTC-MTI scheduler – when a task
overrun occurs – is shown in Fig. 22. The only difference between this process and the one
shown in Fig. 21 is that an ISR will interrupt the overrunning task (rather than the Sleep()
function). Again, if the overrunning task is the last task to execute in a given tick, then it will
be interrupted and terminated by the Tick Update() at the next tick interval: otherwise, it
will be terminated by the following Task Update(). For further information, see (Nahas,
2011a).

Main () Tick
Update () Sleep () Task

Update () Task ()

If Task () is not the last due task in the tick
If Task () is the last due task in the tick

Fig. 22. Function call tree for the TTC-MTI scheduler (with task overrun) (Nahas, 2008).

8. Evaluation of TTC scheduler implementations
This section provides the results of the various TTC implementations considered in the
previous section. The results include jitter levels, error handling capabilities and resource
(i.e. CPU and memory) requirements. The section begins by briefing the experimental
methodology used in this study.

8.1 Experimental methodology

The empirical studies were conducted using Ashling LPC2000 evaluation board supporting
Philips LPC2106 processor (Ashling Microsystems, 2007). The LPC2106 is a modern 32-bit
microcontroller with an ARM7 core which can run – under control of an on-chip PLL – at
frequencies from 12 MHz to 60 MHz.

The compiler used was the GCC ARM 4.1.1 operating in Windows by means of Cygwin (a
Linux emulator for windows). The IDE and simulator used was the Keil ARM development
kit (v3.12).

For meaningful comparison of jitter results, the task-set shown in Fig. 23 was used to allow
exploring the impact of schedule-induced jitter by scheduling Task A to run every two ticks.
Moreover, all tasks were set to have variable execution durations to allow exploring the
impact of task-induced jitter.

For jitter measurements, two measures were recorded: Tick Jitter: represented by the
variations in the interval between the release times of the periodic tick, and Task Jitter:
represented by the variations in the interval between the release times of periodic tasks.
Jitter was measured using a National Instruments data acquisition card ‘NI PCI-6035E’
(National Instruments, 2006), used in conjunction with appropriate software LabVIEW 7.1
(LabVIEW, 2007). The “difference jitter” was reported which is obtained by subtracting the
minimum period (between each successive ticks or tasks) from the maximum period
obtained from the measurements in the sample set. This jitter is sometimes referred to as
“absolute jitter” (Buttazzo, 2005).

Embedded Systems – Theory and Design Methodology

24

B1

A1

B2

C1

t = 0 1

C2

t = 0 1

t (Ticks)t = 0 1

Task A

Task B

Task C

t (Ticks)

t (Ticks)

Major cycle

B3

A2

C3

2

2

2

Fig. 23. Graphical representation of the task-set used in jitter test (Nahas, 2011a).

The CPU overhead was measured using the performance analyzer supported by the Keil
simulator which calculates the time required by the scheduler as compared to the total
runtime of the program. The percentage of the measured CPU time was then reported to
indicate the scheduler overhead in each TTC implementation.

For ROM and RAM memory overheads, the CODE and DATA memory values required to
implement each scheduler were recorded, respectively. Memory values were obtained using
the “.map” file which is created when the source code is compiled. The STACK usage was
also measured (as DATA memory overhead) by initially filling the data memory with
‘DEAD CODE’ and then reporting the number of memory bytes that had been overwritten
after running the scheduler for sufficient period.

8.2 Results

This section summarizes the results obtained in this study. Table 1 presents the jitter levels,
CPU requirements, memory requirements and ability to deal with task overrun for all
schedulers. The jitter results include the tick and tasks jitter. The ability to deal with task
overrun is divided into six different cases as shown in Table 2. In the table, it is assumed
that Task A is the overrunning task.

Scheduler Tick Jitter
(µs)

Task A
Jitter
(µs)

Task B
Jitter
(µs)

Task C
Jitter
(µs)

CPU
%

ROM
(Bytes)

RAM
(Bytes) Ability to deal with task overrun

TTC-SL 1.2 1.5 4016.2 5772.2 100 2264 124 1b
TTC-ISR 0.0 0.1 4016.7 5615.8 39.5 2256 127 1a
TTC Dispatch 0.0 0.1 4022.7 5699.8 39.7 4012 325 1b
TTC-TG 0.0 0.1 4026.2 5751.9 39.8 4296 446 2b
TTC-SD 0.0 0.1 1.5 1.5 74.0 5344 310 1b
TTC-MTI 0.0 0.1 0.0 0.0 39.6 3620 514 3a

Table 1. Results obtained in the study detailed in this chapter.

From the table, it is difficult to obtain zero jitter in the release time of the tick in the TTC-SL
scheduler, although the tick jitter can still be low. Also, the TTC-SL scheduler always
requires a full CPU load (~ 100%). This is since the scheduler does not use the low-power
“idle” mode when not executing tasks: instead, the scheduler waits in a “while” loop. In the
TTC-ISR scheduler, the tick interrupts occur at precisely-defined intervals with no
measurable delays or jitter and the release jitter in Task A is equal to zero. Inevitably, the

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

25

memory values in the TTC-Dispatch scheduler are somewhat larger than those required to
implement the TTC-SL and TTC-ISR schedulers. The results from the TTC-TG scheduler are
very similar to those obtained from the TTC-Dispatch scheduler except that it requires
slightly more data memory. When the TTC-SD scheduler is used, the low-priority tasks are
executed at fixed intervals. However, there is still a little jitter in the release times of Tasks B
and Task C. This jitter is caused by variation in time taken to leave the software loop –
which is used in the SD mechanism to check if the required release time for the concerned
task is matched – and begin to execute the task. With the TTC-MTI scheduler, the jitter in the
release time of all tasks running in the system is totally removed, causing a significant
increase in the overall system predictability.

Regarding the ability to deal with task overrun, the TTC-TG scheduler detects and hence
terminates the overrunning task at the beginning of the tick following the one in which the
task overruns. Moreover, the scheduler allows running a backup task in the same tick in
which the overrun is detected and hence continues to run the following tasks. This means
that one tick shift is added to the schedule. Also, the TTC-MTI scheduler employs a simple
TG mechanism and – once an interrupt occurs – the running task (if any) will be terminated.
Note that the implementation employed here did not support backup tasks.

Schedule
Shut down
time (after
Ticks)

Backup task Comment

1a --- Not
applicable

Overrunning task is not shut down. The number of elapsed
ticks – during overrun – is not counted and therefore tasks due
to run in these ticks are ignored.

1b --- Not
applicable

Overrunning task is not shut down. The number of elapsed
ticks – during overrun – is counted and therefore tasks due to
run in these ticks are executed immediately after overrunning
task ends.

2a 1 Tick Not
available

Overrunning task is detected at the time of the next tick and
shut down.

2b 1 Tick Available –
BK(A)

Overrunning task is detected at the time of the next tick and
shut down: a replacement (backup) task is added to the
schedule.

3a WCET(Ax) Not
available

Overrunning task is shut down immediately after it exceeds its
estimated WCET.

3b WCET(Ax) Available –
BK(A)

Overrunning task is shut down immediately after it exceeds its
estimated WCET. A backup task is added to the schedule.

Table 2. Examples of possible schedules obtained with task overrun (Nahas, 2008).

9. Conclusions
The particular focus in this chapter was on building embedded systems which have severe
resource constraints and require high levels of timing predictability. The chapter provided
necessary definitions to help understand the scheduling theory and various techniques used
to build a scheduler for the type of systems concerned with in this study. The discussions
indicated that for such systems, the “time-triggered co-operative” (TTC) schedulers are a
good match. This was mainly due to their simplicity, low resource requirements and high
predictability they can offer. The chapter, however, discussed major problems that can affect

Embedded Systems – Theory and Design Methodology

26

the performance of TTC schedulers and reviewed some suggested solutions to overcome
such problems.

Then, the discussions focused on the relationship between scheduling algorithm and
scheduler implementations and highlighted the challenges faced when implementing
software for a particular scheduler. It was clearly noted that such challenges were mainly
caused by the broad range of possible implementation options a scheduler can have in
practice, and the impact of such implementations on the overall system behavior.

The chapter then reviewed six various TTC scheduler implementations that can be used for
resource-constrained embedded systems with highly-predictable system behavior. Useful
results from the described schedulers were then provided which included jitter levels,
memory requirements and error handling capabilities. The results suggested that a “one size
fits all” TTC implementation does not exist in practice, since each implementation has
advantages and disadvantages. The selection of a particular implementation will, hence, be
decided based on the requirements of the application in which the TTC scheduler is
employed, e.g. timing and resource requirements.

10. Acknowledgement
The research presented in this chapter was mainly conducted in the Embedded Systems
Laboratory (ESL) at University of Leicester, UK, under the supervision of Professor Michael
Pont, to whom the authors are thankful.

11. References
Allworth, S.T. (1981) “An Introduction to Real-Time Software Design”, Macmillan, London.
Ashling Microsystems (2007) “LPC2000 Evaluation and Development Kits datasheet”,

available online (Last accessed: November 2010)
 http://www.ashling.com/pdf_datasheets/DS266-EvKit2000.pdf
Avrunin, G.S., Corbett, J.C. and Dillon, L.K. (1998) “Analyzing partially-implemented real-

time systems”, IEEE Transactions on Software Engineering, Vol. 24 (8), pp.602-614.
Ayavoo, D. (2006) “The Development of Reliable X-by-Wire Systems: Assessing The

Effectiveness of a ‘Simulation First’ Approach”, PhD thesis, Department of
Engineering, University of Leicester, UK.

Ayavoo, D., Pont, M.J. and Parker, S. (2006) “Does a ‘simulation first’ approach reduce the
effort involved in the development of distributed embedded control systems?”, 6th
UKACC International Control Conference, Glasgow, Scotland, 2006.

Ayavoo, D., Pont, M.J., Short, M. and Parker, S. (2007) "Two novel shared-clock scheduling
algorithms for use with CAN-based distributed systems", Microprocessors and
Microsystems, Vol. 31(5), pp. 326-334.

Baker, T.P. and Shaw, A. (1989) “The cyclic executive model and Ada. Real-Time Systems”,
Vol. 1 (1), pp. 7-25.

Bannatyne, R. (1998) “Time triggered protocol-fault tolerant serial communications for real-
time embedded systems”, WESCON/98 Conference Proceedings, Anaheim, CA,
USA, pp. 86-91.

Barr, M. (1999) “Programming Embedded Systems in C and C++”, O'Reilly Media.

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

27

Baruah S.K. (2006) “The Non-preemptive Scheduling of Periodic Tasks upon
Multiprocessors”, Real-Time Systems, Vol. 32, pp. 9-20.

Bate, I.J. (1998), “Scheduling and Timing Analysis for Safety Critical Real-Time Systems”,
PhD thesis, Department of Computer Science, University of York.

Bates, I. (2000) “Introduction to scheduling and timing analysis”, in The Use of Ada in Real-
Time System, IEE Conference Publication 00/034.

Bolton, W. (2000) “Microprocessor Systems”, Longman.
Buttazzo, G. (2005), “Hard real-time computing systems: predictable scheduling algorithms

and applications”, Second Edition, Springer.
Cho, Y., Yoo, S., Choi, K., Zergainoh, N.E. and Jerraya, A. (2005) “Scheduler implementation

in MPSoC Design”, In: Asia South Pacific Design Automation Conference
(ASPDAC’05), pp. 151-156.

Cho, Y., Zergainoh, N-E., Yoo, S., Jerraya, A.A. and Choi, K. (2007) “Scheduling with
accurate communication delay model and scheduler implementation for
multiprocessor system-on-chip”, Design Automation for Embedded Systems, Vol.
11 (2-3), pp. 167-191.

Cooling, J.E. (1991) “Software design for real time systems”, Chapman and Hall.
Cottet, F. (2002) “Scheduling in Real-time Systems”, Wiley.
Fisher, J.A., Faraboschi, P. and Young, C. (2004) “Embedded Computing: A VLIW Approach

to Architecture, Compilers and Tools”, Morgan Kaufmann.
Hsieh, C-C. and Hsu, P-L. (2005) “The event-triggered network control structure for CAN-

based motion system”,Proceeding of the 2005 IEEE conference on Control
Applications, Toronto, Canada, August 28 – 31, 2005.

Hughes, Z.M. and Pont, M.J. (2008) “Reducing the impact of task overruns in resource-
constrained embedded systems in which a time-triggered software architecture is
employed”, Trans Institute of Measurement and Control.

Jerri, A.J. (1977), “The Shannon sampling theorem: its various extensions and applications a
tutorial review”, Proc. of the IEEE, Vol. 65, pp. 1565-1596.

Kalinsky, D. (2001) “ Context switch, Embedded Systems Programming”, Vol. 14(1), 94-105.
Kamal, R. (2003) “Embedded Systems: Architecture, Programming and Design”, McGraw-

Hill.
Katcher, D., Arakawa, H. and Strosnider, J. (1993) “Engineering and analysis of fixed

priority schedulers”, IEEE Transactions on Software Engineering, Vol. 19 (9), pp.
920-934.

Kim, N., Ryu, M., Hong, S. and Shin, H. (1999) “Experimental Assessment of the Period
Calibration Method: A Case Study”, Real-Time Systems, Vol. 17 (1), pp. 41-64.

Koch, B. (1999) “The Theory of Task Scheduling in Real-Time Systems: Compilation and
Systematization of the Main Results”, Studies thesis, University of Hamburg.

Konrad, S., Cheng, B.H. C. and Campbell, L.A. (2004) “Object analysis patterns for
embedded systems”, IEEE Transactions on Software Engineering, Vol. 30 (12), pp.
970- 992.

Kopetz, H. (1991a) “Event-triggered versus time-triggered real-time systems”, In:
Proceedings of the InternationalWorkshop on Operating Systems of the 90s and
Beyond, London, UK, Springer-Verlag, pp. 87-101.

Kopetz, H. (1991b), “Event-triggered versus time-triggered real-time systems”, Technical
Report 8/91, Technical University of Vienna, Austria.

Embedded Systems – Theory and Design Methodology

28

Kopetz, H. (1997) “Real-time systems: Design principles for distributed embedded
applications”, Kluwer Academic.

Kurian, S. and Pont, M.J. (2007) “Maintenance and evolution of resource-constrained
embedded systems created using design patterns”, Journal of Systems and
Software, Vol. 80 (1), pp. 32-41.

LabVIEW (2007) “LabVIEW 7.1 Documentation Resources”, WWW website (Last accessed:
November 2010)
http://digital.ni.com/public.nsf/allkb/06572E936282C0E486256EB0006B70B4

Leung J.Y.T. and Whitehead, J. (1982) “On the Complexity of Fixed-Priority Scheduling of
Periodic Real-Time Tasks”, Performance Evaluation, Vol. 2, pp. 237-250.

Liu, C.L. and Layland, J.W. (1973), “Scheduling algorithms for multi-programming in a hard
real-time environment”, Journal of the AVM 20, Vol. 1, pp. 40-61.

Liu, J.W.S. (2000), “Real-time systems”, Prentice Hall.
Locke, C.D. (1992), “Software architecture for hard real-time applications: cyclic executives

vs. fixed priority executives”, Real-Time Systems, Vol. 4, pp. 37-52.
Maaita, A. and Pont, M.J. (2005) “Using 'planned pre-emption' to reduce levels of task jitter

in a time-triggered hybrid scheduler”. In: Koelmans, A., Bystrov, A., Pont, M.J.,
Ong, R. and Brown, A. (Eds.), Proceedings of the Second UK Embedded Forum
(Birmingham, UK, October 2005), pp. 18-35. Published by University of Newcastle
upon Tyne

Marti, P. (2002), “Analysis and design of real-time control systems with varying control
timing constraints”, PhD thesis, Automatic Control Department, Technical
University of Catalonia.

Marti, P., Fuertes, J.M., Villa, R. and Fohler, G. (2001), “On Real-Time Control Tasks
Schedulability”, European Control Conference (ECC01), Porto, Portugal, pp. 2227-
2232.

Mok, A.K. (1983) “Fundamental Design Problems of Distributed Systems for the Hard Real-
Time Environment”, Ph.D Thesis, MIT, USA.

Mwelwa, C. (2006) “Development and Assessment of a Tool to Support Pattern-Based Code
Generation of Time-Triggered (TT) Embedded Systems”, PhD thesis, Department
of Engineering, University of Leicester, UK.

Mwelwa, C., Athaide, K., Mearns, D., Pont, M.J. and Ward, D. (2006) “Rapid software
development for reliable embedded systems using a pattern-based code generation
tool”, Paper presented at the Society of Automotive Engineers (SAE) World
Congress, Detroit, Michigan, USA, April 2006. SAE document number: 2006-01-
1457. Appears in: Society of Automotive Engineers (Ed.) “In-vehicle software and
hardware systems”, Published by Society of Automotive Engineers.

Nahas, M. (2008) “Bridging the gap between scheduling algorithms and scheduler
implementations in time-triggered embedded systems”, PhD thesis, Department of
Engineering, University of Leicester, UK.

Nahas, M. (2011a) "Employing two ‘sandwich delay’ mechanisms to enhance predictability
of embedded systems which use time-triggered co-operative architectures",
International Journal of Software Engineering and Applications, Vol. 4, No. 7, pp.
417-425

Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered Co-Operative (TTC) Architectures

29

Nahas, M. (2011b) "Implementation of highly-predictable time-triggered cooperative
scheduler using simple super loop architecture", International Journal of Electrical
and Computer Sciences,Vol. 11, No. 4, pp. 33-38.

National Instruments (2006) “Low-Cost E Series Multifunction DAQ – 12 or 16-Bit, 200 kS/s,
16 Analog Inputs”, available online (Last accessed: November 2010)
http://www.ni.com/pdf/products/us/4daqsc202-204_ETC_212-213.pdf

Nghiem, T., Pappas, G.J., Alur, R. and Girard, A. (2006) “Time-triggered implementations of
dynamic controllers”, Proceedings of the 6th ACM & IEEE International conference
on Embedded software, Seoul, Korea, pp. 2-11.

Nissanke, N. (1997) “Real-time Systems”, Prentice-Hall.
Obermaisser, R (2004) “Event-Triggered and Time-Triggered Control Paradigms”, Kluwer

Academic.
Phatrapornnant, T. (2007) “Reducing Jitter in Embedded Systems Employing a Time-

Triggered Software Architecture and Dynamic Voltage Scaling”, PhD thesis,
Department of Engineering, University of Leicester, UK.

Phatrapornnant, T. and Pont, M.J. (2004) “The application of dynamic voltage scaling in
embedded systems employing a TTCS software architecture: A case study”,
Proceedings of the IEE / ACM Postgraduate Seminar on “System-On-Chip Design,
Test and Technology”, Loughborough, UK, 15 September 2004. Published by IEE.
ISBN: 0 86341 460 5 (ISSN: 0537-9989), pp. 3-8.

Phatrapornnant, T. and Pont, M.J. (2006), “Reducing jitter in embedded systems employing
a time-triggered software architecture and dynamic voltage scaling”, IEEE
Transactions on Computers, Vol. 55 (2), pp. 113-124.

Pont, M.J. (2001) “Patterns for time-triggered embedded systems: Building reliable
applications with the 8051 family of microcontrollers”, ACM Press / Addison-
Wesley.

Pont, M.J. (2002) “Embedded C”, Addison-Wesley.
Pont, M.J., Kurian, S. and Bautista-Quintero, R. (2006) “Meeting real-time constraints using

‘Sandwich Delays’”, In: Zdun, U. and Hvatum, L. (Eds) Proceedings of the
Eleventh European conference on Pattern Languages of Programs (EuroPLoP '06),
Germany, July 2006: pp. 67-77. Published by Universitätsverlag Konstanz.

Pont, M.J., Kurian, S., Wang, H. and Phatrapornnant, T. (2007) “Selecting an appropriate
scheduler for use with time-triggered embedded systems”, Paper presented at the
twelfth European Conference on Pattern Languages of Programs (EuroPLoP 2007).

Pop et al., 2002
Pop, P., Eles, P. and Peng, Z. (2004) “Analysis and Synthesis of Distributed Real-Time

Embedded Systems”, Springer.
Profeta III, J.A., Andrianos, N.P., Bing, Yu, Johnson, B.W., DeLong, T.A., Guaspart, D. and

Jamsck, D. (1996) “Safety-critical systems built with COTS”, IEEE Computer, Vol.
29 (11), pp. 54-60.

Rao, M.V.P, Shet, K.C, Balakrishna, R. and Roopa, K. (2008) “Development of Scheduler for
Real Time and Embedded System Domain”, 22nd International Conference on
Advanced Information Networking and Applications - Workshops, 25-28 March
2008, AINAW, pp. 1-6.

Redmill, F. (1992) “Computers in safety-critical applications”, Computing & Control
Engineering Journal, Vol. 3 (4), pp.178-182.

Embedded Systems – Theory and Design Methodology

30

Sachitanand, N.N. (2002). “Embedded systems - A new high growth area”. The Hindu.
Bangalore.

Scheler, F. and Schröder-Preikschat, W. (2006) “Time-Triggered vs. Event-Triggered: A
matter of configuration?”, GI/ITG Workshop on Non-Functional Properties of
Embedded Systems (NFPES), March 27 – 29, 2006, Nürnberg, Germany.

Sommerville, I. (2007) “Software engineering”, 8th edition, Harlow: Addison-Wesley.
Stankovic, J.A. (1988) “Misconceptions about real-time computing”, IEEE Computers, Vol.

21 (10).
Storey, N. (1996) “Safety-critical computer systems”, Harlow, Addison-Wesley.
Torngren, M. (1998), “Fundamentals of implementing real-time control applications in

distributed computer systems”, Real-Time Systems, Vol. 14, pp. 219-250.
Ward, N.J. (1991) “The static analysis of a safety-critical avionics control systems”, Air

Transport safety: Proceedings of the Safety and Reliability Society Spring
Conference, In: Corbyn D.E. and Bray, N.P. (Eds.)

Wavecrest (2001), “Understanding Jitter: Getting Started”, Wavecrest Corporation.
Xu , J. and Parnas, D.L. (1993) “On satisfying timing constraints in hard - real - time

systems”, IEEE Transactions on Software Engineering, Vol. 19 (1), pp. 70-84.

0

Safely Embedded Software for State Machines in
Automotive Applications

Juergen Mottok1, Frank Schiller2 and Thomas Zeitler3

1Regensburg University of Applied Sciences
2Beckhoff Automation GmbH

3Continental Automotive GmbH
Germany

1. Introduction

Currently, both fail safe and fail operational architectures are based on hardware redundancy
in automotive embedded systems. In contrast to this approach, safety is either a result
of diverse software channels or of one channel of specifically coded software within the
framework of Safely Embedded Software. Product costs are reduced and flexibility is
increased. The overall concept is inspired by the well-known Vital Coded Processor approach.
There the transformation of variables constitutes an (AN+B)-code with prime factor A and
offset B, where B contains a static signature for each variable and a dynamic signature for
each program cycle. Operations are transformed accordingly.

Mealy state machines are frequently used in embedded automotive systems. The given Safely
Embedded Software approach generates the safety of the overall system in the level of the
application software, is realized in the high level programming language C, and is evaluated
for Mealy state machines with acceptable overhead. An outline of the comprehensive safety
architecture is given.

The importance of the non-functional requirement safety is more and more recognized in the
automotive industry and therewith in the automotive embedded systems area. There are two
safety categories to be distinguished in automotive systems:

• The goal of active safety is to prevent accidents. Typical examples are Electronic Stability
Control (ESC), Lane Departure Warning System (LDWS), Adaptive Cruise Control (ACC),
and Anti-lock Braking System (ABS).

• If an accident cannot be prevented, measures of passive safety will react. They act jointly in
order to minimize human damage. For instance, the collaboration of safety means such as
front, side, curtain, and knee airbags reduce the risk tremendously.

Each safety system is usually controlled by the so called Electronic Control Unit (ECU). In
contrast to functions without a relation to safety, the execution of safety-related functions on
an ECU-like device necessitates additional considerations and efforts.

The normative regulations of the generic industrial safety standard IEC 61508 (IEC61508, 1998)
can be applied to automotive safety functions as well. Independently of its official present and
future status in automotive industry, it provides helpful advice for design and development.

2

2 Will-be-set-by-IN-TECH

In the future, the automotive safety standard ISO/WD 26262 will be available. In general,
based on the safety standards, a hazard and risk graph analysis (cf. e. g. (Braband, 2005)) of
a given system determines the safety integrity level of the considered system functions. The
detailed safety analysis is supported by tools and graphical representations as in the domain
of Fault Tree Analysis (FTA) (Meyna, 2003) and Failure Modes, Effects, and Diagnosis Analysis
(FMEDA) (Boersoek, 2007; Meyna, 2003).

The required hardware and software architectures depend on the required safety integrity
level. At present, safety systems are mainly realized by means of hardware redundant
elements in automotive embedded systems (Schaueffele, 2004).

In this chapter, the concept of Safely Embedded Software (SES) is proposed. This concept is
capable to reduce redundancy in hardware by adding diverse redundancy in software, i.e. by
specific coding of data and instructions. Safely Embedded Software enables the proof of safety
properties and fulfills the condition of single fault detection (Douglass, 2011; Ehrenberger,
2002). The specific coding avoids non-detectable common-cause failures in the software
components. Safely Embedded Software does not restrict capabilities but can supplement
multi-version software fault tolerance techniques (Torres-Pomales, 2000) like N version
programming, consensus recovery block techniques, or N self-checking programming. The
new contribution of the Safely Embedded Software approaches the constitution of safety in
the layer of application software, that it is realized in the high level programming language C
and that it is evaluated for Mealy state machines with acceptable overhead.

In a recently published generic safety architecture approach for automotive embedded
systems (Mottok, 2006), safety-critical and safety-related software components are
encapsulated in the application software layer. There the overall open system architecture
consists of an application software, a middleware referred to as Runtime-Environment, a basic
software, and an operating system according to e. g. AUTOSAR (AUTOSAR, 2011; Tarabbia,
2005). A safety certification of the safety-critical and the safety-related components based on
the Safely Embedded Software approach is possible independently of the type of underlying
layers. Therefore, a sufficiently safe fault detection for data and operations is necessary in
this layer. It is efficiently realized by means of Safely Embedded Software, developed by the
authors.

The chapter is organized as follows: An overview of related work is described in Section 2. In
Section 3, the Safely Embedded Software Approach is explained. Coding of data, arithmetic
operations and logical operations is derived and presented. Safety code weaving applies these
coding techniques in the high level programming language C as described in Section 4. A case
study with a Simplified Sensor Actuator State Machine is discussed in Section 5. Conclusions and
statements about necessary future work are given in Section 6.

2. Related work

In 1989, the Vital Coded Processor (Forin, 1989) was published as an approach to design
typically used operators and to process and compute vital data with non-redundant hardware
and software. One of the first realizations of this technique has been applied to trains for
the metro A line in Paris. The Vital technique proposes a data mapping transformation also
referred to in this chapter. The Vital transformation for generating diverse coded data xc can
be roughly described by multiplication of a date x f with a prime factor A such that xc = A ∗ x f
holds. The prime A determines the error detection probability, or residual error probability,
respectively, of the system. Furthermore, an additive modification by a static signature for

32 Embedded Systems – Theory and Design Methodology

Safely Embedded Software for State Machines in Automotive Applications 3

each variable Bx and a dynamic signature for each program cycle D lead finally to the code of
the type xc = A ∗ x f + Bx + D. The hardware consists of a single microprocessor, the so called
Coded Monoprocessor, an additional dynamic controller, and a logical input/output interface.
The dynamic controller includes a clock generator and a comparator function. Further on, a
logical output interface is connected to the microprocessor and the dynamic controller. In
particular, the Vital Coded Processor approach cannot be handled as standard embedded
hardware and the comparator function is separated from the microprocessor in the dynamic
controller.

The ED4I approach (Oh, 2002) applies a commercial off-the-shelf processor. Error detection by
means of diverse data and duplicated instructions is based on the SIHFT technique that detects
both temporary and permanent faults by executing two programs with the same functionality
but different data sets and comparing their outputs. An original program is transformed into
a new program. The transformation consists of a multiplication of all variables and constants
by a diversity factor k. The two programs use different parts of the underlying hardware
and propagate faults in different ways. The fault detection probability was examined to
determine an adequate multiplier value k. A technique for adding commands to check the
correct execution of the logical program flow has been published in (Rebaudengo, 2003).
These treated program flow faults occur when a processor fetches and executes an incorrect
instruction during the program execution. The effectiveness of the proposed approach is
assessed by several fault injection sessions for different example algorithms.

Different classical software fail safe techniques in automotive applications are, amongst
others, program flow monitoring methods that are discussed in a survey paper (Leaphart,
2005).

A demonstration of a fail safe electronic accelerator safety concept of electronic control units
for automotive engine control can be found in (Schaueffele, 2004). The electronic accelerator
concept is a three-level safety architecture with classical fail safe techniques and asymmetric
hardware redundancy.

Currently, research is done on the Safely Embedded Software approach. Further results were
published in (Mottok, 2007; Steindl, 2009;?; Mottok, 2009; Steindl, 2010; Raab, 2011; Laumer,
2011). Contemporaneous Software Encoded Processing was published (Wappler, 2007). This
approach is based on the Vital transformation. In contrast to the Safely Embedded Software
approach it provides the execution of arbitrary programs given as binaries on commodity
hardware.

3. The safely embedded software approach

3.1 Overview

Safely Embedded Software (SES) can establish safety independently of a specific processing
unit or memory. It is possible to detect permanent errors, e. g. errors in the Arithmetic Logical
Unit (ALU) as well as temporary errors, e. g. bit-flips and their impact on data and control
flow. SES runs on the application software layer as depicted in Fig. 1. Several application
tasks have to be safeguarded like e. g. the evaluation of diagnosis data and the check of the
data from the sensors. Because of the underlying principles, SES is independent not only of
the hardware but also of the operating system.

Fig. 2 shows the method of Safety Code Weaving as a basic principle of SES. Safety Code
Weaving is the procedure of adding a second software channel to an existing software channel.

33Safely Embedded Software for State Machines in Automotive Applications

4 Will-be-set-by-IN-TECH

Safely Embedded Software

 application

Sensors
other components,
e. g. microcontroller

Actuators
other components,

e. g. microcontroller

A / D D / A

buffer / cache / registers

memory (RAM, ROM, Flash, ...)

memory areas
mapped with I/O

consistency check
of data from sensors

Fig. 1. The Safely Embedded Software approach.

In this way, SES adds a second channel of the transformed domain to the software channel of
the original domain. In dedicated nodes of the control flow graph, comparator functionality is
added. Though, the second channel comprises diverse data, diverse instructions, comparator
and monitoring functionality. The comparator or voter, respectively, on the same ECU has to
be safeguarded with voter diversity (Ehrenberger, 2002) or other additional diverse checks.

It is not possible to detect errors of software specification, software design, and software
implementation by SES. Normally, this kind of errors has to be detected with software
quality assurance methods in the software development process. Alternatively, software fault
tolerance techniques (Torres-Pomales, 2000) like N version programming can be used with
SES to detect software design errors during system runtime.

As mentioned above, SES is also a programming language independent approach. Its
implementation is possible in assembler language as well as in an intermediate or a high
programming language like C. When using an intermediate or higher implementation
language, the compiler has to be used without code optimization. A code review has to assure,
that neither a compiler code optimization nor removal of diverse instructions happened.
Basically, the certification process is based on the assembler program or a similar machine
language.

Since programming language C is the de facto implementation language in automotive
industry, the C programming language is used in this study exclusively. C code quality can be

34 Embedded Systems – Theory and Design Methodology

Safely Embedded Software for State Machines in Automotive Applications 5

variables

constants

coded
variables

coded
constants

OP 1

1st software channel (original domain)memory

OP 2

OP n
OP 3

coded
OP 1

2nd software channel (transformed domain)

coded
OP 2

coded
OP n

coded
OP 3

comp.
unit 1

comp.
unit 2

comp.
unit 3

comp.
unit nco

m
pa

ra
to

r
un

its

transform
(edit time)

transform (runtime)

memory

optional optional optional mandatory

Fig. 2. Safety Code Weaving.

assured by application of e. g. the MISRA-2 (MISRA, 2004). A safety argument for dedicated
deviation from MISRA-2 rules can be justified.

3.2 Detectable faults by means of safely embedded software

In this section, the kind of faults detectable by means of Safely Embedded Software is
discussed. For this reason, the instruction layer model of a generalized computer architecture
is presented in Fig. 3. Bit flips in different memory areas and in the central processing unit can
be identified.

Table 1 illustrates the Failure Modes, Effects, and Diagnosis Analysis (FMEDA). Different
faults are enumerated and the SES strategy for fault detection is related.

In Fig. 2 and in Table 1, the SES comparator function is introduced. There are two alternatives
for the location of the SES comparator. If a local comparator is used on the same ECU,
the comparator itself has also to be safeguarded. If an additional comparator on a remote
receiving ECU is applied, hardware redundancy is used implicitely, but the inter-ECU
communication has to be safeguarded by a safety protocol (Mottok, 2006). In a later system

35Safely Embedded Software for State Machines in Automotive Applications

6 Will-be-set-by-IN-TECH

central processing unit (CPU)

memory

control
unit

stack

heap

data segment

global data

code segment

MOV
ADD
...

A1, A2
A1, 5

program counter (PC)

stack pointer (SP)

general
purpose
registers

operand
register 1

operand
register 2

ALU

1

2 3

5

4

7

6

8

Fig. 3. Model of a generalized computer architecture (instruction layer). The potential
occurrence of faults are marked with a label.

FMEDA, the appropriate fault reaction has to be added, regarding that SES is working on the
application software layer.

The fault reaction on the application software layer depends on the functional and physical
constraints of the considered automotive system. There are various options to select a fault
reaction. For instance, fault recovery strategies, achieving degraded modes, shut off paths in
the case of fail-safe systems, or the activation of cold redundancy in the case of fail-operational
architectures are possible.

3.3 Coding of data

Safely Embedded Software is based on the (AN+B)-code of the Coded Monoprocessor (Forin,
1989) transformation of original integer data x f into diverse coded data xc. Coded data are
data fulfilling the following relation:

xc = A ∗ x f + Bx + D where xc, x f ∈ Z, A ∈ N+, Bx, D ∈ N0,

and Bx + D < A. (1)

The duplication of original instructions and data is the simplest approach to achieve a
redundant channel. Obviously, common cause failures cannot be detected as they appear
in both channels. Data are used in the same way and identical erroneous results could be
produced. In this case, fault detection with a comparator is not sufficient.

36 Embedded Systems – Theory and Design Methodology

Safely Embedded Software for State Machines in Automotive Applications 7

label area of action fault error detection

1 stack, bitflip incorrect data SES comparator
global data incorrect address SES logical program flow monitoring
and heap

2 code segment bitflip incorrect operator SES comparator
(but right PC) SES logical program flow monitoring

3 program counter bitflip jump to incorrect SES logical program flow monitoring
instruction
in the code

4 stack pointer bitflip incorrect data SES comparator
incorrect address SES logical program flow monitoring

5 general bitflip incorrect data SES comparator
purpose incorrect address SES logical program flow monitoring
registers

6 operand register bitflip incorrect data SES comparator
7 ALU bitflip incorrect operator SES comparator
8 control unit incorrect data SES comparator

incorrect operator SES logical program flow monitoring

Table 1. Faults, errors, and their detection ordered by their area of action. (The labels
correspond with the numbers presented in Fig. 3.)

The prime number A (Forin, 1989; Ozello, 1992) determines important safety characteristics
like Hamming Distance and residual error probability P = 1/A of the code. Number A has
to be prime because in case of a sequence of i faulty operations with constant offset f , the
final offset will be i ∗ f . This offset is a multiple of a prime number A if and only if i or f is
divisible by A. If A is not a prime number then several factors of i and f may cause multiples
of A. The same holds for the multiplication of two faulty operands. Additionally, so called
deterministic criteria like the above mentioned Hamming distance and the arithmetic distance
verify the choice of a prime number.

Other functional characteristics like necessary bit field size etc. and the handling of overflow
are also caused by the value of A. The simple transformation xc = A ∗ x f is illustrated in
Fig. 4.

The static signature Bx ensures the correct memory addresses of variables by using the
memory address of the variable or any other variable specific number. The dynamic signature
D ensures that the variable is used in the correct task cycle. The determination of the dynamic
signature depends on the used scheduling scheme (see Fig. 6). It can be calculated by a
clocked counter or it is offered directly by the task scheduler.

The instructions are coded in that way that at the end of each cycle, i. e. before the output
starts, either a comparator verifies the diverse channel results zc = A ∗ z f + Bz + D?, or the
coded channel is checked directly by the verification condition (zc − Bz − D) mod A = 0? (cf.
Equation 1).

In general, there are two alternatives for the representation of original and coded data. The
first alternative is to use completely unconnected variables for original data and the coded
ones. The second alternative uses a connected but separable code as shown in Fig. 5. In the

37Safely Embedded Software for State Machines in Automotive Applications

8 Will-be-set-by-IN-TECH

Fig. 4. Simple coding xc = A ∗ x f from the original into the transformation domain.

separable code, the transformed value xc contains the original value x f . Obviously, x f can be
read out easily from xc.

The coding operation for separable code is introduced in (Forin, 1989):

Separable coded data are data fulfilling the following relation:

xc = 2k ∗ x f + (−2k ∗ x f)modulo A + Bx + D (2)

The factor 2k causes a dedicated k-times right shift in the n-bit field. Therefore, one variable
can be used for representing original data x f and coded data xc.

Without loss of generality, independent variables for original data x f and coded data xc are
used in this study.

In automotive embedded systems, a hybrid scheduling architecture is commonly used, where
interrupts, preemptive tasks, and cooperative tasks coexist, e. g. in engine control units on
base of the OSEK operating system. Jitters in the task cycle have to be expected. An inclusion
of the dynamic signature into the check will ensure that used data values are those of the
current task cycle.

Measures for logical program flow and temporal control flow are added into the SES
approach.

One goal is to avoid the relatively high probability that two instruction channels using
the original data x f and produce same output for the same hardware fault. When using
the transformation, the corresponding residual error probability is basically given by the

38 Embedded Systems – Theory and Design Methodology

Safely Embedded Software for State Machines in Automotive Applications 9

Fig. 5. Separable code and conditions for its application.

reciprocal of the prime multiplier, A−1. The value of A determines the safe failure fraction
(SFF) in this way and finally the safety integrity level of the overall safety-related system
(IEC61508, 1998).

3.4 Coding of operations

A complete set of arithmetic and logical operators in the transformed domain can be derived.
The transformation in Equation (1) is used. The coding of addition follows (Forin, 1989)
whereas the coding of the Greater or Equal Zero operator has been developed within the
Safely Embedded Software approach.

A coded operator OPc is an operator in the transformed domain that corresponds to an
operator OP in the original domain. Its application to uncoded values provides coded values
as results that are equal to those received by transforming the result from the original domain
after the application OP for the original values. The formalism is defined, such that the
following statement is correct for all x f , y f from the original domain and all xc, yc from the
transformed domain, where xc = σ(x f) and yc = σ(y f) is valid:

x f
� � xc

y f
� � yc

z f
� � zc

z f = x f OP y f
� � xc OPc yc = zc (3)

39Safely Embedded Software for State Machines in Automotive Applications

10 Will-be-set-by-IN-TECH

Accordingly, the unary operators are noted as:

z f = OP y f
� � OPc yc = zc (4)

In the following, the derivation steps for the addition operation and some logical operations
in the transformed domain are explained.

3.4.1 Coding of addition

The addition is the simplest operation of the four basic arithmetic operations. Defining a
coded operator (see Equation (3)), the coded operation ⊕ is formalized as follows:

z f = x f + y f ⇒ zc = xc ⊕ yc (5)

Starting with the addition in the original domain and applying the formula for the inverse
transformation, the following equation can be obtained for zc:

z f = x f + y f

zc − Bz − D
A

=
xc − Bx − D

A
+

yc − By − D
A

zc − Bz − D = xc − Bx − D + yc − By − D

zc = xc − Bx − D + yc − By + Bz

zc = xc + yc + (Bz − Bx − By)︸ ︷︷ ︸
const.

−D (6)

The Equations (5) and (6) state two different representations of zc. A comparison leads
immediately to the definition of the coded addition ⊕:

zc = xc ⊕ yc = xc + yc + (Bz − Bx − By)− D (7)

3.4.2 Coding of comparison: Greater or equal zero

The coded (unary) operator geqzc (greater or equal zero) is applied to a coded value xc. geqzc
returns TRUEc, if the corresponding original value x f is greater than or equal to zero. It
returns FALSEc, if the corresponding original value x f is less than zero. (This corresponds to
the definition of a coded operator (see Definition 3) and the definition of the ≥ 0 operator of
the original domain.)

geqzc(xc) =

{
TRUEc, if x f ≥ 0,
FALSEc, if x f < 0.

(8)

Before deriving the transformation steps of the coded operator geqzc, the following theorem
has to be introduced and proved.

The original value x f is greater than or equal to zero, if and only if the coded value xc is greater
than or equal to zero.

x f ≥ 0 ⇔ xc ≥ 0 with x f ∈ Z and xc = σ(x f) = A ∗ x f + Bx + D

where A ∈ N+, Bx, D ∈ N0, Bx + D < A (9)

40 Embedded Systems – Theory and Design Methodology

Safely Embedded Software for State Machines in Automotive Applications 11

Proof.

xc ≥0
⇔ A ∗ x f + Bx + D ≥0

⇔ A ∗ x f ≥− (Bx + D)

⇔ x f ≥−

<A︷ ︸︸ ︷
Bx + D

A︸ ︷︷ ︸
∈]-1, 0]

⇔ x f ≥0, since x f ∈ Z

The goal is to implement a function returning TRUEc, if and only if the coded value xc (and
thus x f) is greater or equal to zero. Correspondingly, the function has to return FALSEc, if and
only if xc is less than zero. As an extension to Definition 8, ERRORc should be returned in case
of a fault, e. g. if xc is not a valid code word.

By applying the ≥ operator according to Equation (9), it can be checked whether xc is negative
or non-negative, but it cannot be checked whether xc is a valid code word. Additionally, this
procedure is very similar to the procedure in the original domain. The use of the unsigned
modulo function umod is a possible solution to that problem. This function is applied to the
coded value xc. The idea of this approach is based on (Forin, 1989):

xc umod A = unsigned(xc) mod A = unsigned(A ∗ x f + Bx + D) mod A

In order to resolve the unsigned function, two different cases have to be distinguished:

case 1: x f ≥ 0
xc umod A =unsigned(A ∗ x f + Bx + D︸ ︷︷ ︸

x f ≥0 ⇒ xc≥0 (cf. Eqn. (9))

) mod A

=((A ∗ x f) mod A︸ ︷︷ ︸
=0

+ Bx + D︸ ︷︷ ︸
<A

) mod A

=Bx + D

case 2: x f < 0
xc umod A =unsigned(A ∗ x f + Bx + D︸ ︷︷ ︸

x f <0 ⇒ xc<0 (cf. Eqn. (9))

) mod A

=(A ∗ x f + Bx + D + 2n︸ ︷︷ ︸
resolved unsigned function

) mod A

=((A ∗ x f) mod A︸ ︷︷ ︸
=0

+Bx + D + 2n) mod A

=(Bx + D + 2n) mod A
=(Bx + D + (2n mod A)︸ ︷︷ ︸

known constant

) mod A

41Safely Embedded Software for State Machines in Automotive Applications

12 Will-be-set-by-IN-TECH

Conclusion of these two cases:

Result of case 1:
x f ≥ 0 ⇒ xc umod A = Bx + D (10)

Result of case 2:
x f < 0 ⇒ xc umod A = (Bx + D + (2n mod A)) mod A (11)

Remark: The index n represents the minimum number of bits necessary for storing xc. If xc is
stored in an int32 variable, n is equal to 32.

It has to be checked, if in addition to the two implications (10) and (11) the following
implications

xc umod A = Bx + D ⇒ x f ≥ 0

xc umod A = (Bx + D + (2n mod A)) mod A ⇒ x f < 0

hold. These implications are only valid and applicable, if the two terms Bx + D and (Bx + D +
(2n mod A)) mod A are never equal. In the following, equality is assumed and conditions on
A are identified that have to hold for a disproof:

Bx + D = (Bx + D︸ ︷︷ ︸
∈ [0, A-1]

+ (2n mod A)︸ ︷︷ ︸
∈ [0, A-1]︸ ︷︷ ︸

∈ [0, 2A-2]

) mod A

case 1: 0 ≤ (Bx + D + (2n mod A)) < A

Bx + D = (Bx + D + (2n mod A)︸ ︷︷ ︸
∈ [0, A-1]

) mod A

⇔ Bx + D = Bx + D + (2n mod A)

⇔ 2n mod A = 0

⇔ 2n = k ∗ A ∀ k ∈ N+

⇔ A =
2n

k

Since A ∈ N+ and 2n is only divisible by powers of 2, k has to be a power of 2, and, therefore,
the same holds for A. That means, if A is not a number to the power of 2, inequality holds in
case 1.

case 2: A ≤ (Bx + D + (2n mod A)) ≤ 2A − 2

Bx + D = (Bx + D + (2n mod A)︸ ︷︷ ︸
∈ [A, 2A-2]

) mod A

⇔ Bx + D = Bx + D + (2n mod A)− A
⇔ A = 2n mod A︸ ︷︷ ︸

∈ [0, A-1]

42 Embedded Systems – Theory and Design Methodology

Safely Embedded Software for State Machines in Automotive Applications 13

This cannot hold since the result of the modulo-operation is always smaller than A.

The two implications (10) and (11) can be extended to equivalences, if A is chosen not as
a number to the power of 2. Thus for implementing the geqzc operator, the following
conclusions can be used:

1. IF xc umod A = Bx + D THEN x f ≥ 0.

2. ELSE IF xc umod A = (Bx + D + (2n mod A)) mod A THEN x f < 0.

3. ELSE xc is not a valid code word.

The geqzc operator is implemented based on this argumentation. Its application is presented
in Listing 2, whereas its uncoded form is presented in Listing 1.

4. Safety code weaving for C control structures

In the former sections, a subset of SES transformation was discussed. The complete set of
transformations for data, arithmetic operators, and Boolean operators are collected in a C
library. In the following, the principle procedure of safety code weaving is motivated for C
control structures. An example code is given in Listing 1 that will be safeguarded in a further
step.

Listing 1. Original version of the code. It will be safeguarded in further steps.

i n t af = 1 ;
i n t xf = 5 ;

i f (x f >= 0)
{

a f = 4 ;
}
else
{

a f = 9 ;
}

In general, there are a few preconditions for the original, non-coded, single channel C source
code: e. g. operations should be transformable and instructions with short expressions are
preferred in order to simplify the coding of operations.

Safety code weaving is realized in compliance with nine rules:

1. Diverse data. The declaration of coded variables and coded constants have to follow the
underlying code definition.

2. Diverse operations. Each original operation follows directly the transformed operation.

3. Update of dynamic signature. In each task cycle, the dynamic signature of each variable has
to be incremented.

4. Local (logical) program flow monitoring. The C control structures are safeguarded against
local program flow errors. The branch condition of the control structure is transformed
and checked inside the branch.

43Safely Embedded Software for State Machines in Automotive Applications

14 Will-be-set-by-IN-TECH

5. Global (logical) program flow monitoring. This technique includes a specific initial key value
and a key process within the program function to assure that the program function has
completed in the given parts and in the correct order (Leaphart, 2005). An alternative
operating system based approach is given in Raab (2011).

6. Temporal program flow monitoring. Dedicated checkpoints have to be added for monitoring
periodicity and deadlines. The specified execution time is safeguarded.

7. Comparator function. Comparator functions have to be added in the specified granularity
in the program flow for each task cycle. Either a comparator verifies the diverse channel
results zc = A ∗ z f + Bz + D?, or the coded channel is checked directly by checking the
condition (zc − Bz − D) mod A = 0?.

8. Safety protocol. Safety critical and safety related software modules (in the application
software layer) communicate intra or inter ECU via a safety protocol (Mottok, 2006).
Therefore a safety interface is added to the functional interface.

9. Safe communication with a safety supervisor. Fault status information is communicated to a
global safety supervisor. The safety supervisor can initiate the appropriate (global) fault
reaction (Mottok, 2006).

The example code of Listing 1 is transformed according to the rules 1, 2, 4, and 5 in
Listing 2. The C control structures while-Loop, do-while-Loop, for-Loop, if-statement, and
switch-statement are transformed in accordance with the complete set of rules. It can be
realized that the geqzc operator is frequently applied for safeguarding C control structures.

5. The case study: Simplified sensor actuator state machine

In the case study, a simplified sensor actuator state machine is used. The behavior of a sensor
actuator chain is managed by control techniques and Mealy state machines.

Acquisition and diagnosis of sensor signals are managed outside of the state machine in the
input management whereas the output management is responsible for control techniques
and for distributing the actuator signals. For both tasks, a specific basic software above
the application software is necessary for communication with D/A- or A/D-converters. As
discussed in Fig. 1, a diagnosis of D/A-converter is established, too.

The electronic accelerator concept (Schaueffele, 2004) is used as an example. Here diverse
sensor signals of the pedal are compared in the input management. The output management
provides diverse shut-off paths, e. g. power stages in the electronic subsystem.

Listing 2. Example code after applying the rule 1, 2, 4 and 5.

i n t af ; i n t ac ;
i n t xf ; i n t xc ;
i n t tmpf ; i n t tmpc ;

c f = 1 5 2 ; / * b e g i n b a s i c b l o c k 152 * /
af = 1 ; ac = 1*A + Ba + D; / / c o d e d 1
xf = 5 ; xc = 5*A + Bx + D; / / c o d e d 5
tmpf = (xf >= 0) ; tmpc = geqz_c (xc) ;

/ / g r e a t e r / e q u a l z e r o o p e r a t o r

i f (c f != 152) { ERROR } / * end b a s i c b l o c k 152 * /

44 Embedded Systems – Theory and Design Methodology

Safely Embedded Software for State Machines in Automotive Applications 15

i f (tmpf)
{

c f = 1 5 3 ; / * b e g i n b a s i c b l o c k 153 * /
i f (tmpc − TRUE_C) { ERROR }
af = 4 ; ac = 4*A + Ba + D; / / c o d e d 4
i f (c f != 153) { ERROR } / * end b a s i c b l o c k 153 * /

}
else
{

c f = 1 5 4 ; / * b e g i n b a s i c b l o c k 154 * /
i f (tmpc − FALSE_C) { ERROR }
af = 9 ; ac = 9*A + Ba + D; / / c o d e d 9
i f (c f != 154) { ERROR } / * end b a s i c b l o c k 154 * /

}

The input management processes the sensor values (s1 and s2 in Fig. 6), generates an event,
and saves them on a blackboard as a managed global variable. This is a widely used
implementation architecture for software in embedded systems for optimization performance,
memory consumption, and stack usage. A blackboard (Noble, 2001) is realized as a kind of
data pool. The state machine reads the current state and the event from the blackboard, if
necessary executes a transition and saves the next state and the action on the blackboard. If a
fault is detected, the blackboard is saved in a fault storage for diagnosis purposes.

Finally, the output management executes the action (actuator values a1, a2, a3, and a4 in
Fig. 6). This is repeated in each cycle of the task.

The Safety Supervisor supervises the correct work of the state machine in the application
software. Incorrect data or instruction faults are locally detected by the comparator function
inside the state machine implementation whereas the analysis of the fault pattern and the
initiation of a dedicated fault reaction are managed globally by a safety supervisor (Mottok,
2006). A similar approach with a software watchdog can be found in (Lauer, 2007).

The simplified state machine was implemented in the Safely Embedded Software approach.
The two classical implementation variants given by nested switch statement and table driven
design are implemented. The runtime and the file size of the state machine are measured and
compared with the non-coded original one for the nested switch statement design.

The measurements of runtime and file size for the original single channel implementation and
the transformed one contain a ground load corresponding to a simple task cycle infrastructure
of 10,000,000 cycles. Both the NEC Fx3 V850ES 32 bit microcontroller, and the Freescale S12X
16 bit microcontroller were used as references for the Safely Embedded Software approach.

5.1 NEC Fx3 V850ES microcontroller

The NEC Fx3 V850ES is a 32 bit microcontroller, being compared with the Freescale S12X
more powerful with respect to calculations. It runs with an 8 MHz quartz and internally
with 32 MHz per PLL. The metrics of the Simplified Sensor Actuator State Machine (nested
switch implemented) by using the embedded compiler for the NEC are shown in Table 2. The
compiler “Green Hills Software, MULTI v4.2.3C v800” and the linker “Green Hills Software,
MULTI v4.2.3A V800 SPR5843” were used.

45Safely Embedded Software for State Machines in Automotive Applications

16 Will-be-set-by-IN-TECH

St = State
Ev = Event
Ac = Action

 application state
fault storage and timestamp

Blackboard (Managed global variables)

State Machine

implemented with
nested switch or table driven

s1

s2

a1

a2

a3

a4

Ev

S
t,

E
v

S
t,

A
c

Ac

Sensors Actuators

I
N
P
U
T

M
A
N
A
G
E
M
E
N
T

O
U
T
P
U
T

M
A
N
A
G
E
M
E
N
T

Safety Supervisor

Task (Input)

Task (State Machine)

Task (Output)

Task (Safety Supervisor)

t

Task Cycle
D=i

Task Cycle
D=i+1

Scheduling Scheme

Task Cycle
D=i+2

Fig. 6. Simplified sensor actuator state machine and a scheduling schema covering tasks for
the input management, the state machine, the output management and the safety supervisor.
The task cycle is given by dynamic signature D, which can be realized by a clocked counter.

5.2 Freescale S12X microcontroller

The Freescale S12X is a 16 bit microcontroller and obviously a more efficient control unit
compared to the NEC Fx3 V850ES. It runs with an 8 MHz quartz and internally with 32 MHz
per PLL. The processor is exactly denominated as “PC9S12X DP512MFV”. The metrics of the
Simplified Sensor Actuator State Machine (nested switch implemented) by using the compiler
for the Freescale S12X are shown in Table 3. The compiler “Metrowerks 5.0.28.5073” and the
linker “Metrowerks SmartLinker 5.0.26.5051” were used.

46 Embedded Systems – Theory and Design Methodology

Safely Embedded Software for State Machines in Automotive Applications 17

minimal original trans- factor annotation
code code formed

code

CS
(init)

2 48 184 3.96 init code, run once

CS
(cycle)

2 256 2,402 9.45 state machine, run cyclic

CS
(lib)

0 0 252 - 8 functions for the transformed
domain used: add_c, div_c, geqz_c,
lz_c, ov2cv, sub_c, umod, updD

DS 0 40 84 2.10 global variables
SUM
(CS, DS)

4 344 2,922 8.58 sum of CS(init), CS(cycle), CS(lib)
and DS

RUN-
TIME

0.20 4.80 28.80 6.22 average runtime of the cyclic function
in μs

FILE-
SIZE

4,264,
264

4,267,
288

4,284,
592

6.72 size (in bytes) of the binary,
executable file

Table 2. Metrics of the Simplified Sensor Actuator State Machine (nested switch
implemented) using the NEC Fx3 V850ES compiler.

minimal original trans- factor annotation
code code formed

code

CS
(init)

1 41 203 5.05 init code, run once

CS
(cycle)

1 212 1,758 8.33 state machine, run cyclic

CS
(lib)

0 0 234 - 8 functions for the transformed
domain used: add_c, div_c, geqz_c,
lz_c, ov2cv, sub_c, umod, updD

DS 0 20 42 2.10 global variables
SUM
(CS, DS)

2 273 2,237 8.25 sum of CS(init), CS(cycle), CS(lib)
and DS

RUN-
TIME

0.85 6.80 63.30 10.50 average runtime of the cyclic function
in μs

FILE-
SIZE

2,079,
061

2,080,
225

2,088,
557

8.16 size (in bytes) of the binary,
executable file

Table 3. Metrics of the Simplified Sensor Actuator State Machine (nested switch
implemented) using the Freescale S12X compiler.

5.3 Results

The results in this section are based on the nested switch implemented variant of the
Simplified Sensor Actuator State Machine of Section 5. The two microcontrollers NEC Fx3
V850ES and Freescale S12X need roundabout nine times memory for the transformed code
and data as it is necessary for the original code and data. As expected, there is a duplication
of data segement size for both investigated controllers because of the coded data.

47Safely Embedded Software for State Machines in Automotive Applications

18 Will-be-set-by-IN-TECH

There is a clear difference with respect to the raise of runtime compared to the need of
memory. The results show that the NEC handles the higher computational efforts as a result
of additional transformed code much better than the Freescale does. The runtime of the NEC
only increases by factor 6 whereas the runtime of the Freescale increases by factor 10.

5.4 Optimization strategies

There is still a potential for optimizing memory consumption and performance in the SES
approach:

• Run time reduction can be achieved by using only the transformed channel.

• Reduction of memory consumption is possible by packed bit fields, but more effort with
bit shift operations and masking techniques.

• Using of macros like inline functions.

• Using initializations at compile time.

• Caching of frequently used values.

• Using efficient assembler code for the coded operations from the first beginning.

• First ordering frequently used cases in nested switch(Analogously: entries in the state
table).

• Coded constants without dynamic signature.

In the future, the table driven implementation variant will be verified for file size and runtime
with cross compilers for embedded platforms and performance measurements on embedded
systems.

6. Comprehensive safety architecture and outlook

Safely Embedded Software gives a guideline to diversify application software. A significant
but acceptable increase in runtime and code size was measured. The fault detection is realized
locally by SES, whereas the fault reaction is globally managed by a Safety Supervisor.

An overall safety architecture comprises diversity of application software realized with the
nine rules of Safely Embedded Software in addition to hardware diagnosis and hardware
redundancy like e. g. a clock time watchdog. Moreover environmental monitoring (supply
voltage, temperature) has to be provided by hardware means.

Temporal control flow monitoring needs control hooks maintained by the operation system
or by specialized basic software.

State of the art implementation techniques (IEC61508, 1998; ISO26262, 2011) like actuator
activation by complex command sequences or distribution of command sequences
(instructions) in different memory areas have been applied. Furthermore, it is recommended
to allocate original and coded variables in different memory branches.

Classical RAM test techniques can be replaced by SES since fault propagation techniques
ensures the propagation of the detectability up to the check just before the output to the plant.

A system partitioning is possible, the comparator function might be located on another
ECU. In this case, a safety protocol is necessary for inter ECU communication. Also a
partitioning of different SIL functions on the same ECU is proposed by coding the functions

48 Embedded Systems – Theory and Design Methodology

Safely Embedded Software for State Machines in Automotive Applications 19

with different prime multipliers A1, A2 and A3 depending on the SIL level. The choice of
the prime multiplier is determined by maximizing their pairwise lowest common multiple.
In this context, a fault tolerant architecture can be realized by a duplex hardware using in
each channel the SES approach with different prime multipliers Ai. In contrast to classical
faul-tolerant architectures, here a two channel hardware is sufficient since the correctness of
data of each channel are checked individually by determination of their divisibility by Ai.

An application of SES can be motivated by the model driven approach in the automotive
industry. State machines are modeled with tools like Matlab or Rhapsody. A dedicated safety
code weaving compiler for the given tools has been proposed. The intention is to develop a
single channel state chart model in the functional design phase. A preprocessor will add the
duplex channel and comparator to the model. Afterwards, the tool based code generation can
be performed to produce the required C code.

Either a safety certification (IEC61508, 1998; ISO26262, 2011; Bärwald, 2010) of the used tools
will be necessary, or the assembler code will be reviewed. The latter is easier to be executed in
the example and seems to be easier in general. Further research in theory as well as in practice
will be continued.

7. References

AUTOSAR consortium. (2011). AUTOSAR, Official AUTOSAR web site:www.AUTOSAR.org.
Braband, J. (2005). Risikoanalysen in der Eisenbahn-Automatisierung,Eurailpress, Hamburg.
Douglass, B. P. (2011). Safety-Critical Systems Design, i-Logix, Whitepaper.
Ehrenberger W. (2011). Software-Verifikation, Hanser, Munich.
Forin, P. (1989). Vital Coded Microprocessor Principles and Application for Various Transit Systems,

IFAC Control, Computers, Communications, pp. 79-84, Paris.
Hummel, M., Egen R., Mottok, J., Schiller, F., Mattes, T., Blum, M., Duckstein, F. (2006).

Generische Safety-Architektur für KFZ-Software, Hanser Automotive, 11, pp. 52-54,
Munich.

Mottok, J., Schiller, F., Völkl, T., Zeitler, T. (2007). Concept for a Safe Realization of a State
Machine in Embedded Automotive Applications, International Conference on Computer
Safety, Reliability and Security, SAFECOMP 2007, Springer, LNCS 4680, pp.283-288,
Munich.

Wappler, U., Fetzer, C. (2007). Software Encoded Processing: Building Dependable Systems with
Commodity Hardware, International Conference on Computer Safety, Reliability and
Security, SAFECOMP 2007, Springer, LNCS 4680, pp. 356-369, Munich.

IEC (1998). International Electrotechnical Commission (IEC):Functional Safety of Electrical /
Electronic / Programmable Electronic Safety-Related Systems.

ISO (2011). ISO26262 International Organization for Standardization Road Vehicles Functional
Safety, Final Draft International Standard.

Leaphart, E.G., Czerny, B.J., D’Ambrosio, J.G., Denlinger, C.L., Littlejohn, D. (2005). Survey
of Software Failsafe Techniques for Safety-Critical Automotive Applications, SAE World
Congress, pp. 1-16, Detroit.

Motor Industry Research Association (2004). MISRA-C: 2004, Guidelines for the use of the C
language in critical systems, MISRA, Nuneaton.

Börcsök, J. (2007). Functional Safety, Basic Principles of Safety-related Systems, Hüthig,
Heidelberg.

Meyna, A., Pauli, B. (2003). Taschenbuch der Zuverlässigkeits- und Sicherheitstechnik, Hanser,
Munich.

49Safely Embedded Software for State Machines in Automotive Applications

20 Will-be-set-by-IN-TECH

Noble, J., Weir, C.(2001). Small Memory Software, Patterns for Systems with Limited Memory,
Addison Wesley, Edinbourgh.

Oh, N., Mitra, S., McCluskey, E.J. (2002). 4I:Error Detection by Diverse Data and Duplicated
Instructions, IEEE Transactions on Computers, 51, pp. 180-199.

Rebaudengo, M., Reorda, M.S., Torchiano, M., Violante, M. (2003). Soft-error Detection Using
Control Flow Assertions, 18th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, pp. 581-588, Soston.

Ozello, P. (2002). The Coded Microprocessor Certification, International Conference on Computer
Safety, Reliability and Security, SAFECOMP 1992, Springer, pp. 185-190, Munich.

Schäuffele, J., Zurawka, T. (2004). Automotive Software Engineering, Vieweg, Wiesbaden.
Tarabbia, J.-F.(2004), An Open Platform Strategy in the Context of AUTOSAR, VDI Berichte Nr.

1907, pp. 439-454.
Torres-Pomales, W.(2000). Software Fault Tolerance: A Tutorial, NASA, Langley Research Center,

Hampton, Virginia.
Chen, X., Feng, J., Hiller, M., Lauer, V. (2007). Application of Software Watchdog as

Dependability Software Service for Automotive Safety Relevant Systems, The 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2007, Edinburgh.

Steindl, M., Mottok, J., Meier,H., Schiller, F., and Fruechtl, M. (2009). Diskussion des Einsatzes
von Safely Embedded Software in FPGA-Architekturen, In Proceedings of the 2nd
Embedded Software Engineering Congress, ISBN 978-3-8343-2402-3, pp. 655-661,
Sindelfingen.

Steindl, M. (200). Safely Embedded Software (SES) im Umfeld der Normen für funktionale Sicherheit,
Jahresrückblick 2009 des Bayerischen IT-Sicherheitsclusters, pp. 22-23, Regensburg.

Mottok, J. (2009) Safely Embedded Software,In Proceedings of the 2nd Embedded Software
Engineering Congress, pp. 10-12, Sindelfingen.

Steindl, M., Mottok, J. and Meier, H. (2010) SES-based Framework for Fault-tolerant Systems,
in Proceedings of the 8th IEEE Workshop on Intelligent Solutions in Embedded
Systems, Heraklion.

Raab, P., Kraemer, S., Mottok, J., Meier, H., Racek, S. (2011). Safe Software Processing by
Concurrent Execution in a Real-Time Operating System, in Proceedings, International
Conference on Applied Electronics, Pilsen.

Laumer, M., Felis, S., Mottok, J., Kinalzyk, D., Scharfenberg, G. (2011). Safely Embedded Software
and the ISO 26262, Electromobility Conference, Prague.

Bärwald, A., Hauff, H., Mottok, J. (2010). Certification of safety relevant systems - Benefits of using
pre-certified components, In Automotive Safety and Security, Stuttgart.

50 Embedded Systems – Theory and Design Methodology

3

Vulnerability Analysis and Risk Assessment
for SoCs Used in Safety-Critical

Embedded Systems
Yung-Yuan Chen and Tong-Ying Juang

National Taipei University
Taiwan

1. Introduction
Intelligent systems, such as intelligent automotive systems or intelligent robots, require a
rigorous reliability/safety while the systems are in operation. As system-on-chip (SoC)
becomes more and more complicated, the SoC could encounter the reliability problem due
to the increased likelihood of faults or radiation-induced soft errors especially when the chip
fabrication enters the very deep submicron technology [Baumann, 2005; Constantinescu,
2002; Karnik et al., 2004; Zorian et al., 2005]. SoC becomes prevalent in the intelligent safety-
related applications, and therefore, fault-robust design with the safety validation is required
to guarantee that the developed SoC is able to comply with the safety requirements defined
by the international norms, such as IEC 61508 [Brown, 2000; International Electrotechnical
Commission [IEC], 1998-2000]. Therefore, safety attribute plays a key metric in the design of
SoC systems. It is essential to perform the safety validation and risk reduction process to
guarantee the safety metric of SoC before it is being put to use.

If the system safety level is not adequate, the risk reduction process, which consists of the
vulnerability analysis and fault-robust design, is activated to raise the safety to the required
level. For the complicated IP-based SoCs or embedded systems, it is unpractical and not
cost-effective to protect the entire SoC or system. Analyzing the vulnerability of
microprocessors or SoCs can help designers not only invest limited resources on the most
crucial regions but also understand the gain derived from the investments [Hosseinabady et
al., 2007; Kim & Somani, 2002; Mariani et al., 2007; Mukherjee et al., 2003; Ruiz et al., 2004;
Tony et al., 2007; Wang et al., 2004].

The previous literature in estimating the vulnerability and failure rate of systems is based on
either the analytical methodology or the fault injection approach at various system modeling
levels. The fault injection approach was used to assess the vulnerability of high-performance
microprocessors described in Verilog hardware description language at RTL design level
[Kim & Somani, 2002; Wang et al., 2004]. The authors of [Mukherjee et al., 2003] proposed a
systematic methodology based on the concept of architecturally correct execution to
compute the architectural vulnerability factor. [Hosseinabady et al., 2007] and [Tony et al.,
2007] proposed the analytical methods, which adopted the concept of timing vulnerability
factor and architectural vulnerability factor [Mukherjee et al., 2003] respectively to estimate

Embedded Systems – Theory and Design Methodology

52

the vulnerability and failure rate of SoCs, where a UML-based real time description was
employed to model the systems.

The authors of [Mariani et al., 2007] presented an innovative failure mode and effects
analysis (FMEA) method at SoC-level design in RTL description to design in compliance
with IEC61508. The methodology presented in [Mariani et al., 2007] was based on the
concept of sensible zone to analyze the vulnerability and to validate the robustness of the
target system. A memory sub-system embedded in fault-robust microcontrollers for
automotive applications was used to demonstrate the feasibility of their FMEA method.
However, the design level in the scheme presented in [Mariani et al., 2007] is RTL level,
which may still require considerable time and efforts to implement a SoC using RTL
description due to the complexity of oncoming SoC increasing rapidly. A dependability
benchmark for automotive engine control applications was proposed in paper [Ruiz et al.,
2004]. The work showed the feasibility of the proposed dependability benchmark using a
prototype of diesel electronic control unit (ECU) control engine system. The fault injection
campaigns were conducted to measure the dependability of benchmark prototype. The
domain of application for dependability benchmark specification presented in paper [Ruiz
et al., 2004] confines to the automotive engine control systems which were built by
commercial off-the-shelf (COTS) components. While dependability evaluation is performed
after physical systems have been built, the difficulty of performing fault injection campaign
is high and the costs of re-designing systems due to inadequate dependability can be
prohibitively expensive.

It is well known that FMEA [Mikulak et al., 2008] and fault tree analysis (FTA) [Stamatelatos
et al., 2002] are two effective approaches for the vulnerability analysis of the SoC. However,
due to the high complexity of the SoC, the incorporation of the FMEA/FTA and fault-
tolerant demand into the SoC will further raise the design complexity. Therefore, we need to
adopt the behavioral level or higher level of abstraction to describe/model the SoC, such as
using SystemC, to tackle the complexity of the SoC design and verification. An important
issue in the design of SoC is how to validate the system dependability as early in the
development phase to reduce the re-design cost and time-to-market. As a result, a SoC-level
safety process is required to facilitate the designers in assessing and enhancing the
safety/robustness of a SoC with an efficient manner.

Previously, the issue of SoC-level vulnerability analysis and risk assessment is seldom
addressed especially in SystemC transaction-level modeling (TLM) design level [Thorsten et
al., 2002; Open SystemC Initiative [OSCI], 2003]. At TLM design level, we can more
effectively deal with the issues of design complexity, simulation performance, development
cost, fault injection, and dependability for safety-critical SoC applications. In this study, we
investigate the effect of soft errors on the SoCs for safety-critical systems. An IP-based SoC-
level safety validation and risk reduction (SVRR) process combining FMEA with fault
injection scheme is proposed to identify the potential failure modes in a SoC modeled at
SystemC TLM design level, to measure the risk scales of consequences resulting from
various failure modes, and to locate the vulnerability of the system. A SoC system safety
verification platform was built on the SystemC CoWare Platform Architect design
environment to demonstrate the core idea of SVRR process. The verification platform
comprises a system-level fault injection tool and a vulnerability analysis and risk assessment
tool, which were created to assist us in understanding the effect of faults on system

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

53

behavior, in measuring the robustness of the system, and in identifying the critical parts of
the system during the SoC design process under the environment of CoWare Platform
Architect.

Since the modeling of SoCs is raised to the level of TLM abstraction, the safety-oriented
analysis can be carried out efficiently in early design phase to validate the safety/robustness
of the SoC and identify the critical components and failure modes to be protected if
necessary. The proposed SVRR process and verification platform is valuable in that it
provides the capability to quickly assess the SoC safety, and if the measured safety cannot
meet the system requirement, the results of vulnerability analysis and risk assessment will
be used to help us develop a feasible and cost-effective risk reduction process. We use an
ARM-based SoC to demonstrate the robustness/safety validation process, where the soft
errors were injected into the register file of ARM CPU, memory system, and AMBA AHB.

The remaining paper is organized as follows. In Section 2, the SVRR process is presented. A
risk model for vulnerability analysis and risk assessment is proposed in the following
section. In Section 4, based on the SVRR process, we develop a SoC-level system safety
verification platform under the environment of CoWare Platform Architect. A case study with
the experimental results and a thorough vulnerability and risk analysis are given in Section
5. The conclusion appears in Section 6.

2. Safety validation and risk reduction process
We propose a SVRR process as shown in Fig. 1 to develop the safety-critical electronic
systems. The process consists of three phases described as follows:

Phase 1 (fault hypothesis): this phase is to identify the potential interferences and develop
the fault injection strategy to emulate the interference-induced errors that could possibly
occur during the system operation.

Phase 2 (vulnerability analysis and risk assessment): this phase is to perform the fault
injection campaigns based on the Phase 1 fault hypothesis. Throughout the fault injection
campaigns, we can identify the failure modes of the system, which are caused by the
faults/errors injected into the system while the system is in operation. The probability
distribution of failure modes can be derived from the fault injection campaigns. The risk-
priority number (RPN) [Mollah, 2005] is then calculated for the components inside the
electronic system. A component’s RPN aims to rate the risk of the consequence caused by
component’s failure. RPN can be used to locate the critical components to be protected. The
robustness of the system is computed based on the adopted robustness criterion, such as
safety integrity level (SIL) defined in the IEC 61508 [IEC, 1998-2000]. If the robustness of the
system meets the safety requirement, the system passes the validation; else the
robustness/safety is not adequate, so Phase 3 is activated to enhance the system
robustness/safety.

Phase 3 (fault-tolerant design and risk reduction): This phase is to develop a feasible risk-
reduction approach by fault-tolerant design, such as the schemes presented in [Austin, 1999;
Mitra et al., 2005; Rotenberg, 1999; Slegel et al., 1999;], to improve the robustness of the
critical components identified in Phase 2. The enhanced version then goes to Phase 2 to
recheck whether the adopted risk-reduction approach can satisfy the safety/robustness
requirement or not.

Embedded Systems – Theory and Design Methodology

54

Identify possible
interferences
Develop fault
injection strategy to
emulate interference-
induced errors

Perform fault
injection campaigns
Identify failure
modes
Assess risk-priority
number
Locate critical
components to be
protected

Robustness?

Robustness
criterion

(IEC 61508)
End

Add fault-tolerant
design to improve
the robustness of
critical components
identified in Phase 2

Phase 1:
Fault Hypothesis

Phase 2:
Vulnerability

Analysis & Risk
Assessment

Phase 3:
Risk

Reduction

Acceptable

Unacceptable

Fig. 1. Safety validation and risk reduction process.

3. Vulnerability analysis and risk assessment
Analyzing the vulnerability of SoCs or systems can help designers not only invest limited
resources on the most crucial region but also understand the gain derived from the
investment. In this section, we propose a SoC-level risk model to quickly assess the SoC’s
vulnerability at SystemC TLM level. Conceptually, our risk model is based on the FMEA
method with the fault injection approach to measure the robustness of SoCs. From the
assessment results, the rank of component vulnerability related to the risk scale of causing
the system failure can be acquired. The notations used in the risk model are developed
below.

 n: number of components to be investigated in the SoC;
 z: number of possible failure modes of the SoC;
 C(i): the ith component, where 1 i n;
 ER_C(i): raw error rate of the ith component;
 SFR_C(i): the part of SoC failure rate contributed from the error rate of the ith

component;
 SFR: SoC failure rate;
 FM(k): the kth failure mode of the SoC, where 1 k z;
 NE: no effect which means that a fault/error happening in a component has no impact

on the SoC operation at all;
 P (i, FM(K)): probability of FM(K) if an error occurs in the ith component;
 P (i, NE): probability of no effect for an error occurring in the ith component;
 P(i, SF): probability of SoC failure for an error occurring in the ith component;

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

55

 SR_FM(k): severity rate of the effect of kth failure mode, where 1 k z;
 RPN_C(i): risk priority number of the ith component;
 RPN_FM(k): risk priority number of the kth failure mode.

3.1 Fault hypothesis

It is well known that the rate of soft errors caused by single event upset (SEU) increases
rapidly while the chip fabrication enters the very deep submicron technology [Baumann,
2005; Constantinescu, 2002; Karnik et al., 2004; Zorian et al., 2005]. Radiation-induced soft
errors could cause a serious dependability problem for SoCs, electronic control units, and
nodes used in the safety-critical applications. The soft errors may happen in the flip-flop,
register file, memory system, system bus and combinational logic. In this work, single soft
error is considered in the derivation of risk model.

3.2 Risk model

The potential effects of faults on SoC can be identified from the fault injection campaigns.
We can inject the faults into a specific component, and then investigate the effect of
component’s errors on the SoC behaviors. Throughout the injection campaigns for each
component, we can identify the failure modes of the SoC, which are caused by the errors of
components in the SoC. The parameter P(i, FM(k)) defined before can be derived from the
fault injection campaigns.

In general, the following failure behaviors: fatal failure (FF), such as system crash or process
hang, silent data corruption (SDC), correct data/incorrect time (CD/IT), and infinite loop
(IL) (note that we declare the failure as IL if the execution of benchmark exceeds the 1.5
times of normal execution time), which were observed from our previous work, represent
the possible SoC failure modes caused by the faults occurring in the components. Therefore,
we adopt those four SoC failure modes in this study to demonstrate our risk assessment
approach. We note that a fault may not cause any trouble at all, and this phenomenon is
called no effect of the fault.

One thing should be pointed out that to obtain the highly reliable experimental results to
analyze the robustness/safety and vulnerability of the target system we need to perform the
adequate number of fault injection campaigns to guarantee the validity of the statistical data
obtained. In addition, the features of benchmarks could also affect the system response to
the faults. Therefore, several representative benchmarks are required in the injection
campaigns to enhance the confidence level of the statistical data.

In the derivation of P(i, FM(K)), we need to perform the fault injection campaigns to collect
the fault simulation data. Each fault injection campaign represents an experiment by
injecting a fault into the ith component, and records the fault simulation data, which will be
used in the failure mode classification procedure to identify which failure mode or no effect
the SoC encountered in this fault injection campaign. The failure mode classification
procedure inputs the fault-free simulation data, and fault simulation data derived from the
fault injection campaigns to analyze the effect of faults occurring in the ith component on the
SoC behavior based on the classification rules for potential failure modes.

The derivation process of P(i, FM(K)) by fault injection process is described below. Several
notations are developed first:

Embedded Systems – Theory and Design Methodology

56

 SoC_FM: a set of SoC failure modes used to record the possible SoC failure modes
happened in the fault injection campaigns.

 counter(i, k): an array which is used to count the number of the kth SoC failure mode
occurring in the fault injection experiments for the ith component, where 1 i n, and 1
 k z. counter(i, z+1) is used to count the number of no effect in the fault injection
campaigns.

 no_fi(i): the number of fault injection campaigns performed in the ith component, where
1 i n.

Fault injection process:

z = 4; SoC_FM = {FF, SDC, CD/IT, IL};
for i = 1 to n //fault injection experiments for the ith component;//
{for j = 1 to no_fi(i)

{//injecting a fault into the ith component, and investigating the effect of component’s
fault on the SoC behavior by failure mode classification procedure; the result of classification
is recorded in the parameter ‘classification’.//
 switch (classification)
{ case ‘FF’: counter(i, 1) = counter(i, 1) + 1;
case ‘SDC’: counter(i, 2) = counter(i, 2) + 1;
case ‘CD/IT’: counter(i, 3) = counter(i, 3) + 1;
case ‘IL’: counter(i, 4) = counter(i, 4) + 1;
case ‘NE’: counter(i, 5) = counter(i, 5) + 1;}

}}

The failure mode classification procedure is used to classify the SoC failure modes caused by
the component’s faults. For a specific benchmark program, we need to perform a fault-free
simulation to acquire the golden results that are used to assist the failure mode classification
procedure in identifying which failure mode or no effect the SoC encountered in this fault
injection campaign.

Failure mode classification procedure:

Inputs: fault-free simulation golden data and fault simulation data for an injection
campaign;

Output: SoC failure mode caused by the component’s fault or no effect of the fault in this
injection campaign.

{if (execution of fault simulation is complete)
then if (execution time of fault simulation is the same as execution time of fault-free

simulation)
then if (execution results of fault simulation are the same as execution results of

fault-free simulation)
then classification := ‘NE’;
else classification := ‘SDC’;

else if (execution results of fault simulation are the same as execution results of fault-
free simulation)

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

57

then classification := ‘CD/IT’;
else classification := ‘SDC’;

else if (execution of benchmark exceeds the 1.5 times of normal execution time)
then classification := ‘IL’;
else //execution of fault simulation was hung or crash due to the injected fault;//

classification := ‘FF’;

}

After carrying out the above injection experiments, the parameter of P(i, FM(K)) can be
computed by

 (,)(, ())
_ ()

counter i k
P i FM K

no fi i

Where 1 i n and 1 k z. The following expressions are exploited to evaluate the terms
of P(i, SF) and P(i, NE).

1

(,) (, ())
z

k

P i SF P i FM k

(,) 1 (,)P i NE P i SF

The derivation of the component’s raw error rate is out of the scope of this paper, so we here
assume the data of ER_C(i), for 1 i n, are given. The part of SoC failure rate contributed
from error rate of the ith component can be calculated by

_ () _ () (,)SFR C i ER C i P i SF

If each component C(i), 1 i n, must operate correctly for the SoC to operate correctly and
also assume that other components not shown in C(i) list are fault-free, the SoC failure rate
can be written as

1
_ ()

n

i

SFR SFR C i

The meaning of the parameter SR_FM(k) and the role it playing can be explained from the
aspect of FMEA process [Mollah, 2005]. The method of FMEA is to identify all possible failure
modes of a SoC and analyze the effects or consequences of the identified failure modes. In
general, an FMEA records each potential failure mode, its effect in the next level, and the cause
of failure. We note that the faults occurring in different components could cause the same SoC
failure mode, whereas the severity degree of the consequences resulting from various SoC
failure modes could not be identical. The parameter SR_FM(k) is exploited to express the
severity rate of the consequence resulting from the kth failure mode, where 1 k z.

We illustrate the risk evaluation with FMEA idea using the following example. An ECU
running engine control software is employed for automotive engine control. Its outputs are

Embedded Systems – Theory and Design Methodology

58

used to control the engine operation. The ECU could encounter several types of output failures
due to hardware or software faults in ECU. The various types of failure mode of ECU outputs
would result in different levels of risk/criticality on the controlled engine. A risk assessment is
performed to identify the potential failure modes of ECU outputs as well as the likelihood of
failure occurrence, and estimate the resulting risks of the ECU-controlled engine.

In the following, we propose an effective SoC-level FMEA method to assess the risk-priority
number (RPN) for the components inside the SoC and for the potential SoC failure modes. A
component’s RPN aims to rate the risk of the consequences caused by component’s faults. In
other words, a component’s RPN represents how serious is the impact of component’s errors
on the system safety. A risk assessment should be carried out to identify the critical
components within a SoC and try to mitigate the risks caused by those critical components.
Once the critical components and their risk scales have been identified, the risk-reduction
process, for example fault-tolerant design, should be activated to improve the system
dependability. RPN can also give the protection priority among the analyzed components.
As a result, a feasible risk-reduction approach can be developed to effectively protect the
vulnerable components and enhance the system robustness and safety.

The parameter RPN_C(i), i.e. risk scale of failures occurring in the ith component, can be
computed by

1
_ () _ () (, ()) _ ()

z

k

RPN C i ER C i P i FM k SR FM k

where 1 i n. The expression of RPN_C(i) contains three terms which are, from left to
right, error rate of the ith component, probability of FM(K) if a fault occurs in the ith
component, and severity rate of the kth failure mode. As stated previously, a component’s
fault could result in several different system failure modes, and each identified failure mode
has its potential impact on the system safety. So, RPN_C(i) is the summation of the following
expression ER_C(i) P (i, FM(K)) SR_FM(k), for k from one to z. The term of ER_C(i) P (i,
FM(K)) represents the occurrence rate of the kth failure mode, which is caused by the ith
component failing to perform its intended function.

The RPN_FM(k) represents the risk scale of the kth failure mode, which can be calculated by

1
_ () _ () _ () (, ())

n

i

RPN FM k SR FM k ER C i P i FM k

where 1 k z.
1

_ () (, ())
n

i

ER C i P i FM k

 expresses the occurrence rate of the kth failure mode

in a SoC. This sort of assessment can reveal the risk levels of the failure modes to its system
and identify the major failure modes for protection so as to reduce the impact of failures to
the system safety.

4. System safety verification platform
We have created an effective safety verification platform to provide the capability to quickly
handle the operation of fault injection campaigns and dependability analysis for the system

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

59

design with SystemC. The core of the verification platform is the fault injection tool [Chang
& Chen, 2007; Chen et al., 2008] under the environment of CoWare Platform Architect
[CoWare, 2006], and the vulnerability analysis and risk assessment tool. The tool is able to
deal with the fault injection at the following levels of abstraction [Chang & Chen, 2007; Chen
et al., 2008]: bus-cycle accurate level, untimed functional TLM with primitive channel
sc_fifo, and timed functional TLM with hierarchical channel. An interesting feature of our
fault injection tool is to offer not only the time-triggered but also the event-triggered
methodologies to decide when to inject a fault. Consequently, our injection tool can
significantly reduce the effort and time for performing the fault injection campaigns.
Combining the fault injection tool with vulnerability analysis and risk assessment tool, the
verification platform can dramatically increase the efficiency of carrying out the system
robustness validation and vulnerability analysis and risk assessment. For the details of our
fault injection tool, please refer to [Chang & Chen, 2007; Chen et al., 2008].

However, the IP-based SoCs designed by CoWare Platform Architect in SystemC design
environment encounter the injection controllability problem. The simulation-based fault
injection scheme cannot access the fault targets inside the IP components imported from
other sources. As a result, the injection tool developed in SystemC abstraction level may lack
the capability to inject the faults into the inside of the imported IP components, such as CPU
or DSP. To fulfill this need, we exploit the software-implemented fault injection scheme
[Sieh, 1993; Kanawati et al., 1995] to supplement the injection ability. The software-
implemented fault injection scheme, which uses the system calls of Unix-type operating
system to implement the injection of faults, allows us to inject the faults into the targets of
storage elements in processors, like register file in CPU, and memory systems. As discussed,
a complete IP-based SoC system-level fault injection tool should consist of the software-
implemented and simulation-based fault injection schemes.

Due to the lack of the support of Unix-type operating system in CoWare Platform Architect,
the current version of safety verification platform cannot provide the software-implemented
fault injection function in the tool. Instead, we employed a physical system platform built by
ARM-embedded SoC running Linux operating system to validate the developed software-
implemented fault injection mechanism. We note that if the CoWare Platform Architect can
support the UNIX-type operating system in the SystemC design environment, our software-
implemented fault injection concept should be brought in the SystemC design platform.
Under the circumstances, we can implement the so called hybrid fault injection approach,
which comprises the software-implemented and simulation-based fault injection
methodologies, in the SystemC design environment to provide more variety of injection
functions.

5. Case study
An ARM926EJ-based SoC platform provided by CoWare Platform Architect [CoWare, 2006]
was used to demonstrate the feasibility of our risk model. The illustrated SoC platform was
modeled at the timed functional TLM abstraction level. This case study is to investigate
three important components, which are register file in ARM926EJ, AMBA Advanced High-
performance Bus (AHB), and the memory sub-system, to assess their risk scales to the SoC-
controlled system. We exploited the safety verification platform to perform the fault
injection process associated with the risk model presented in Section 3 to obtain the risk-
related parameters for the components mentioned above. The potential SoC failure modes

Embedded Systems – Theory and Design Methodology

60

classified from the fault injection process are fatal failure (FF), silent data corruption (SDC),
correct data/incorrect time (CD/IT), and infinite loop (IL). In the following, we summarize
the data used in this case study.

 n = 3, {C(1), C(2), C(3)} = {AMBA AHB, memory sub-system, register file in
ARM926EJ}.

 z = 4, {FM(1), FM(2), FM(3), FM(4)} = {FF, SDC, CD/IT, IL}.
 The benchmarks employed in the fault injection process are: JPEG (pixels: 255 154),

matrix multiplication (M-M: 50 50), quicksort (QS: 3000 elements) and FFT (256
points).

5.1 AMBA AHB experimental results

The system bus, such as AMBA AHB, provides an interconnected platform for IP-based SoC.
Apparently, the robustness of system bus plays an important role in the SoC reliability. It is
evident that the faults happening in the bus signals will lead to the data transaction errors
and finally cause the system failures. In this experiment, we choose three bus signals
HADDR[31:0], HSIZE[2:0], and HDATA[31:0] to investigate the effect of bus errors on the
system. The results of fault injection process for AHB system bus under various benchmarks
are shown in Table 1 and 2. The results of a particular benchmark in Table 1 and 2 were
derived from the six thousand fault injection campaigns, where each injection campaign
injected 1-bit flip fault to bus signals. The fault duration lasts for the length of one-time data
transaction. The statistics derived from six thousand times of fault injection campaigns have
been verified to guarantee the validity of the analysis.

From Table 1, it is evident that the susceptibility of the SoC to bus faults is benchmark-
dependent and the rank of system bus vulnerability over different benchmarks is JPEG > M-
M > FFT > QS. However, all benchmarks exhibit the same trend in that the probabilities of
FF show no substantial difference, and while a fault arises in the bus signals, the occurring
probabilities of SDC and FF occupy the top two ranks. The results of the last row offer the
average statistics over four benchmarks employed in the fault injection process. Since the
probabilities of SoC failure modes are benchmark-variant, the average results illustrated in
Table 1 give us the expected probabilities for the system bus vulnerability of the developing
SoC, which are very valuable for us to gain the robustness of the system bus and the
probability distribution of failure modes. The robustness measure of the system bus is only
26.78% as shown in Table 1, which means that a fault occurring in the system bus, the SoC
has the probability of 26.78% to survive for that fault.

The experimental results shown in Table 2 are probability distribution of failure modes with
respect to the various bus signal errors for the used benchmarks. From the data illustrated in
the NE column, we observed that the most vulnerable part is the address bus HADDR[31:0].
Also from the data displayed in the FF column, the faults occurring in address bus will have
the probability between 38.9% and 42.3% to cause a serious fatal failure for the used
benchmarks. The HSIZE and HDATA signal errors mainly cause the SDC failure. In
summary, our results reveal that the address bus HADDR should be protected first in the
design of system bus, and the SDC is the most popular failure mode for the demonstrated
SoC responding to the bus faults or errors.

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

61

 FF (%) SDC (%) CD/IT (%) IL(%) SF (%) NE (%)
JPEG 18.57 45.90 0.16 15.88 80.51 19.49
M-M 18.95 55.06 2.15 3.57 79.73 20.27
FFT 20.18 21.09 15.74 6.38 63.39 36.61
QS 20.06 17.52 12.24 5.67 55.50 44.50

Avg. 19.41 38.16 7.59 8.06 73.22 26.78

Table 1. P (1, FM(K)), P (1, SF) and P (1, NE) for the used benchmarks.

 FF (%) SDC (%) CD/IT (%)
1 2 3 4 1 2 3 4 1 2 3 4

HADDR 38.9 39.7 42.3 42 42.9 43.6 18.2 15.2 0.08 1.94 14.4 11.4
HSIZE 0.16 0.0 0.0 0 68.2 67.6 25.6 22.6 0.25 9.64 37.4 38.5

HDATA 0.0 0.0 0.0 0 46.8 65.4 23.6 19.4 0.24 1.66 15.0 10.6

 IL (%) NE (%)
1 2 3 4 1 2 3 4

HADDR 11.5 2.02 3.41 2.02 6.62 12.7 21.7 29.4
HSIZE 11.6 2.38 6.97 7.53 19.8 20.4 30.0 31.4

HDATA 20.7 5.23 9.29 9.15 32.3 27.7 52.1 60.9

Table 2. Probability distribution of failure modes with respect to various bus signal errors
for the used benchmarks (1, 2, 3 and 4 represent the jpeg, m-m, fft and qs benchmark,
respectively).

5.2 Memory sub-system experimental results

The memory sub-system could be affected by the radiation articles, which may cause the bit-
flipped soft errors. However, the bit errors won’t cause damage to the system operation if
one of the following situations occurs:

 Situation 1: The benchmark program never reads the affected words after the bit errors
happen.

 Situation 2: The first access to the affected words after the occurrence of bit errors is the
‘write’ action.

Otherwise, the bit errors could cause damage to the system operation. Clearly, if the first
access to the affected words after the occurrence of bit errors is the ‘read’ action, the bit
errors will be propagated and could finally lead to the failures of SoC operation. So, whether
the bit errors will become fatal or not, it all depends on the occurring time of bit errors, the
locations of affected words, and the benchmark’s memory access patterns after the
occurrence of bit errors.

According to the above discussion, two interesting issues arise; one is the propagation
probability of bit errors and another is the failure probability of propagated bit errors. We
define the propagation probability of bit errors as the probability of bit errors which will be
read out and propagated to influence the execution of the benchmarks. The failure
probability of propagated bit errors represents the probability of propagated bit errors
which will finally result in the failures of SoC operation.

Embedded Systems – Theory and Design Methodology

62

Initially, we tried performing the fault injection campaigns in the CoWare Platform Architect
to collect the simulation data. After a number of fault injection and simulation campaigns,
we realized that the length of experimental time will be a problem because a huge amount
of fault injection and simulation campaigns should be conducted for each benchmark and
several benchmarks are required for the experiments. From the analysis of the campaigns,
we observed that a lot of bit-flip errors injected to the memory sub-system fell into the
Situation 1 or 2, and therefore, we must carry out an adequate number of fault injection
campaigns to obtain the validity of the statistical data.

To solve this dilemma, we decide to perform two types of experiments termed as Type 1
experiment and Type 2 experiment, or called hybrid experiment, to assess the propagation
probability and failure probability of bit errors, respectively. As explained below, Type 1
experiment uses a software tool to emulate the fault injection and simulation campaigns to
quickly gain the propagation probability of bit errors, and the set of propagated bit errors.
The set of propagated bit errors will be used in the Type 2 experiment to measure the failure
probability of propagated bit errors.

Type 1 experiment: we develop the experimental process as described below to measure the
propagation probability of bit errors. The following notations are used in the experimental
process.

 Nbench: the number of benchmarks used in the experiments.
 Ninj(j): the number of fault injection campaigns performed in the jth benchmark’s

experiment.
 Cp-b-err: counter of propagated bit errors.
 Np-b-err: the expected number of propagated bit errors.
 Sm: address space of memory sub-system.
 Nd-t: the number of read/write data transactions occurring in the memory sub-system

during the benchmark execution.
 Terror: the occurring time of bit error.
 Aerror: the address of affected memory word.
 Sp-b-err(j): set of propagated bit errors conducted in the jth benchmark’s experiment.
 Pp-b-err: propagation probability of bit errors.

Experimental Process: We injected a bit-flipped error into a randomly chosen memory
address at random read/write transaction time for each injection campaign. As stated
earlier, this bit error could either be propagated to the system or not. If yes, then we add one
to the parameter Cp-b-err. The parameter Np-b-err is set by users and employed as the terminated
condition for the current benchmark’s experiment. When the value of Cp-b-err reaches to Np-b-

err, the process of current benchmark’s experiment is terminated. The Pp-b-err can then be
derived from Np-b-err divided by Ninj. The values of Nbench, Sm and Np-b-err are given before
performing the experimental process.

for j = 1 to Nbench
{
Step 1: Run the jth benchmark in the experimental SoC platform under CoWare Platform

Architect to collect the desired bus read/write transaction information that include
address, data and control signals of each data transaction into an operational profile
during the program execution. The value of Nd-t can be obtained from this step.

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

63

Step 2: Cp-b-err = 0; Ninj(j) = 0;
While Cp-b-err < Np-b-err do

 {Terror can be decided by randomly choosing a number x between one and Nd-t. It
means that Terror is equivalent to the time of the xth data transaction occurring in the
memory sub-system. Similarly, Aerror is determined by randomly choosing an address
between one and Sm. A bit is randomly picked up from the word pointed by Aerror,
and the bit selected is flipped. Here, we assume that the probability of fault
occurrence of each word in memory sub-system is the same.

If ((Situation 1 occurs) or (Situation 2 occurs))
then {the injected bit error won’t cause damage to the system operation;}
else {Cp-b-err = Cp-b-err + 1;

record the related information of this propagated bit error to Sp-b-err(j)
including Terror, Aerror and bit location.}

//Situation 1 and 2 are described in the beginning of this Section. The operational
profile generated in Step 1 is exploited to help us investigate the resulting situation
caused by the current bit error. From the operational profile, we check the memory
access patterns beginning from the time of occurrence of bit error to identify which
situation the injected bit error will lead to. //
Ninj(j) = Ninj(j) + 1;}

}

For each benchmark, we need to perform the Step 1 of Type 1 experimental process once to
obtain the operational profile, which will be used in the execution of Step 2. We then created
a software tool to implement the Step 2 of Type 1 experimental process. We note that the
created software tool emulates the fault injection campaigns required in Step 2 and checks
the consequences of the injected bit errors with the support of operational profile derived
from Step 1. It is clear to see that the Type 1 experimental process does not utilize the
simulation-based fault injection tool implemented in safety verification platform as
described in Section 4. The reason why we did not exploit the safety verification platform in
this experiment is the consideration of time efficiency. The comparison of required
simulation time between the methodologies of hybrid experiment and the pure simulation-
based fault injection approach implemented in CoWare Platform Architect will be given later.

The Type 1 experimental process was carried out to estimate Pp-b-err, where Nbench, Sm and Np-b-

err were set as the values of 4, 524288, and 500 respectively. Table 3 shows the propagation
probability of bit errors for four benchmarks, which were derived from a huge amount of
fault injection campaigns to guarantee their statistical validity. It is evident that the
propagation probability is benchmark-variant and a bit error in memory would have the
probability between 0.866% and 3.551% to propagate the bit error from memory to system.
The results imply that most of the bit errors won’t cause damage to the system. We should
emphasize that the size of memory space and characteristics of the used benchmarks (such
as amount of memory space use and amount of memory read/write) will affect the result of
Pp-b-err. Therefore, the data in Table 3 reflect the results for the selected memory space and
benchmarks.

Type 2 experiment: From Type 1 experimental process, we collect Np-b-err bit errors for each
benchmark to the set Sp-b-err(j). Those propagated bit errors were used to assess the failure
probability of propagated bit errors. Therefore, Np-b-err simulation-based fault injection

Embedded Systems – Theory and Design Methodology

64

Benchmark Ninj Np-b-err Pp-b-err

M-M 14079 500 3.551%
QS 23309 500 2.145%
JPEG 27410 500 1.824%
FFT 57716 500 0.866%

Table 3. Propagation probability of bit errors.

campaigns were conducted under CoWare Platform Architect, and each injection campaign
injects a bit error into the memory according to the error scenarios recorded in the set Sp-b-

err(j). Therefore, we can examine the SoC behavior for each injected bit error.

As can be seen from Table 3, we need to conduct an enormous amount of fault injection
campaigns to reach the expected number of propagated bit errors. Without the use of Type 1
experiment, we need to utilize the simulation-based fault injection approach to assess the
propagation probability and failure probability of bit errors as illustrated in Table 3, 5, and
6, which require a huge number of simulation-based fault injection campaigns to be
conducted. As a result, an enormous amount of simulation time is required to complete the
injection and simulation campaigns. Instead, we developed a software tool to implement the
experimental process described in Type 1 experiment to quickly identify which situation the
injected bit error will lead to. Using this approach, the number of simulation-based fault
injection campaigns performed in Type 2 experiment decreases dramatically. The
performance of software tool adopted in Type 1 experiment is higher than that of
simulation-based fault injection campaign employed in Type 2 experiment. Therefore, we
can save a considerable amount of simulation time.

The data of Table 3 indicate that without the help of Type 1 experiment, we need to carry
out a few ten thousand simulation-based fault injection campaigns in Type 2 experiment. As
opposite to that, with the assistance of Type 1 experiment, only five hundred injection
campaigns are required in Type 2 experiment. Table 4 gives the experimental time of the
Type 1 plus Type 2 approach and pure simulation-based fault injection approach, where the
data in the column of ratio are calculated by the experimental time of Type 1 plus Type 2
approach divided by the experimental time of pure simulation-based approach. The
experimental environment consists of four machines to speed up the validation, where each
machine is equipped with Intel® Core™2 Quad Processor Q8400 CPU, 2G RAM, and
CentOS 4.6. In the experiments of Type 1 plus Type 2 approach and pure simulation-based
approach, each machine is responsible for performing the simulation task for one
benchmark. According to the simulation results, the average execution time for one
simulation-based fault injection experiment is 14.5 seconds. It is evident that the
performance of Type 1 plus Type 2 approach is quite efficient compared to the pure
simulation-based approach because Type 1 plus Type 2 approach employed a software tool
to effectively reduce the number of simulation-based fault injection experiments to five
hundred times compared to a few ten thousand simulation-based fault injection
experiments for pure simulation-based approach.

Given Np-b-err and Sp-b-err(j), i.e. five hundred simulation-based fault injection campaigns, the
Type 2 experimental results are illustrated in Table 5. From Table 5, we can identify the
potential failure modes and the distribution of failure modes for each benchmark. It is clear
that the susceptibility of a system to the memory bit errors is benchmark-variant, and the M-

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

65

M is the most critical benchmark among the four adopted benchmarks, according to the
results of Table 5.

We then manipulated the data of Table 3 and 5 to acquire the results of Table 6. Table 6
shows the probability distribution of failure modes if a bit error occurs in the memory sub-
system. Each datum in the row of ‘Avg.’ was obtained by mathematical average of the
benchmarks’ data in the corresponding column. This table offers the following valuable
information: the robustness of memory sub-system, the probability distribution of failure
modes and the impact of benchmark on the SoC dependability. Probability of SoC failure for
a bit error occurring in the memory is between 0.738% and 3.438%. We also found that the
SoC has the highest probability to encounter the SDC failure mode for a memory bit error. In
addition, the vulnerability rank of benchmarks for memory bit errors is M-M > QS > JPEG >
FFT.

Table 7 illustrates the statistics of memory read/write for the adopted benchmarks. The
results of Table 7 confirm the vulnerability rank of benchmarks as observed in Table 6.
Situation 2 as mentioned in the beginning of this section indicates that the occurring
probability of Situation 2 increases as the probability of performing the memory write
operation increases. Consequently, the robustness of a benchmark rises with an increase in
the probability of Situation 2.

Benchmark Type 1 + 2 (minute) Pure approach (minute) Ratio

M-M 312 1525 20.46%

QS 835 2719 30.71%

JPEG 7596 15760 48.20%

FFT 3257 9619 33.86%

Table 4. Comparison of experimental time between type 1 + 2 & pure simulation-based
approach.

Benchmark FF SDC CD/IT IL NE

M-M 0 484 0 0 16

QS 0 138 103 99 160

JPEG 0 241 1 126 132

FFT 0 177 93 156 74

Table 5. Type 2 experimental results.

Embedded Systems – Theory and Design Methodology

66

 FF (%) SDC (%) CD/IT (%) IL (%) SF (%) NE (%)

M-M 0.0 3.438 0.0 0.0 3.438 96.562

QS 0.0 0.592 0.442 0.425 1.459 98.541

JPEG 0.0 0.879 0.004 0.460 1.343 98.657

FFT 0.0 0.307 0.161 0.270 0.738 99.262

Avg. 0.0 1.304 0.152 0.289 1.745 98.255

Table 6. P (2, FM(K)), P (2, SF) and P (2, NE) for the used benchmarks.

 #R/W #R R(%) #W W(%)

M-M 265135 255026 96.187% 10110 3.813%

QS 226580 196554 86.748% 30027 13.252%

JPEG 1862291 1436535 77.138% 425758 22.862%

FFT 467582 240752 50.495% 236030 49.505%

Table 7. The statistics of memory read/write for the used benchmarks.

5.3 Register file experimental results

The ARM926EJ CPU used in the experimental SoC platform is an IP provided from CoWare
Platform Architect. Therefore, the proposed simulation-based fault injection approach has a
limitation to inject the faults into the register file inside the CPU. This problem can be solved
by software-implemented fault injection methodology as described in Section 4. Currently,
we cannot perform the fault injection campaigns in register file under CoWare Platform
Architect due to lack of the operating system support. We note that the literature [Leveugle
et al., 2009; Bergaoui et al., 2010] have pointed out that the register file is vulnerable to the
radiation-induced soft errors. Therefore, we think the register file should be taken into
account in the vulnerability analysis and risk assessment. Once the critical registers are
located, the SEU-resilient flip-flop and register design can be exploited to harden the register
file. In this experiment, we employed a similar physical system platform built by
ARM926EJ-embedded SoC running Linux operating system 2.6.19 to derive the
experimental results for register file.

The register set in ARM926EJ CPU used in this experiment is R0 ~ R12, R13 (SP), R14 (LR),
R15 (PC), R16 (CPSR), and R17 (ORIG_R0). A fault injection campaign injects a single bit-flip
fault to the target register to investigate its effect on the system behavior. For each
benchmark, we performed one thousand fault injection campaigns for each target register
by randomly choosing the time instant of fault injection within the benchmark simulation
duration, and randomly choosing the target bit to inject 1-bit flip fault. So, eighteen
thousand fault injection campaigns were carried out for each benchmark to obtain the data
shown in Table 8. From Table 8, it is evident that the susceptibility of the system to register
faults is benchmark-dependent and the rank of system vulnerability over different
benchmarks is QS > FFT > M-M. However, all benchmarks exhibit the same trend in that

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

67

while a fault arises in the register set, the occurring probabilities of CD/IT and FF occupy
the top two ranks. The robustness measure of the register file is around 74% as shown in
Table 8, which means that a fault occurring in the register file, the SoC has the probability of
74% to survive for that fault.

 FF (%) SDC (%) CD/IT (%) IL (%) SF (%) NE (%)
M-M 6.94 1.71 10.41 0.05 19.11 80.89
FFT 8.63 1.93 15.25 0.04 25.86 74.14
QS 5.68 0.97 23.44 0.51 30.59 69.41

Avg. 7.08 1.54 16.36 0.2 25.19 74.81

Table 8. P (3, FM(K)), P (3, SF) and P (3, NE) for the used benchmarks.

REG #
SoC failure probability

REG #
SoC failure probability

M-M (%) FFT (%) QS (%) M-M (%) FFT (%) QS (%)
R0 7.9 13.0 5.6 R9 12.4 7.3 20.6

R1 31.1 18.3 19.8 R10 23.2 32.5 19.9

R2 19.7 14.6 19.2 R11 37.5 25.3 19.2

R3 18.6 17.0 15.4 R12 22.6 13.1 25.3

R4 4.3 12.8 21.3 R13 34.0 39.0 20.3

R5 4.0 15.2 20.4 R14 5.1 100.0 100.0

R6 7.4 8.8 21.6 R15 100.0 100.0 100.0

R7 5.0 14.6 23.9 R16 3.6 8.3 49.4

R8 4.0 9.7 24.7 R17 3.6 15.9 24.0

Table 9. Statistics of SoC failure probability for each target register with various benchmarks.

Table 9 illustrates the statistics of SoC failure probability for each target register under the
used benchmarks. Throughout this table, we can observe the vulnerability of each register
for different benchmarks. It is evident that the vulnerability of registers quite depends on
the characteristics of the benchmarks, which could affect the read/write frequency and
read/write syndrome of the target registers. The bit errors won’t cause damage to the
system operation if one of the following situations occurs:

 Situation 1: The benchmark never uses the affected registers after the bit errors happen.
 Situation 2: The first access to the affected registers after the occurrence of bit errors is

the ‘write’ action.

It is apparent to see that the utilization and read frequency of R4 ~ R8 and R14 for
benchmark M-M is quite lower than FFT and QS, so the SoC failure probability caused by
the errors happening in R4 ~ R8 and R14 for M-M is significantly lower than FFT and QS as
illustrated in Table 9. We observe that the usage and write frequency of registers, which
reflects the features and the programming styles of benchmark, dominates the soft error
sensitivity of the registers. Without a doubt, the susceptibility of register R15 (program

Embedded Systems – Theory and Design Methodology

68

counter) to the faults is 100%. It indicates that the R15 is the most vulnerable register to be
protected in the register set. Fig. 2 illustrates the average SoC failure probabilities for the
registers R0 ~ R17, which are derived from the data of the used benchmarks as exhibited in
Table 9. According to Fig. 2, the top three vulnerable registers are R15 (100%), R14 (68.4%),
as well as R13 (31.1%), and the SoC failure probabilities for other registers are all below 30%.

Fig. 2. The average SoC failure probability from the data of the used benchmarks.

5.4 SoC-level vulnerability analysis and risk assessment
According to IEC 61508, if a failure will result in a critical effect on system and lead human’s
life to be in danger, then such a failure is identified as a dangerous failure or hazard. IEC 61508
defines a system’s safety integrity level (SIL) to be the Probability of the occurrence of a
dangerous Failure per Hour (PFH) in the system. For continuous mode of operation (high
demand rate), the four levels of SIL are given in Table 10 [IEC, 1998-2000].

SIL PFH
4 ≥10-9 to <10-8

3 ≥10-8 to <10-7

2 ≥10-7 to <10-6

1 ≥10-6 to <10-5

Table 10. Safety integrity levels.

In this case study, three components, ARM926EJ CPU, AMBA AHB system bus and memory
sub-system, were utilized to demonstrate the proposed risk model to assess the scales of
failure-induced risks in a system. The following data are used to show the vulnerability

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

69

analysis and risk assessment for the selected components {C(1), C(2), C(3)} = {AMBA AHB,
memory sub-system, register file in ARM926EJ}: {ER_C(1), ER_C(2), ER_C(3)} = {10-6 ~ 10-

8/hour }; {SR_FM(1), SR_FM(2), SR_FM(3), SR_FM(4)} = {10, 8, 4, 6}. According to the
expressions presented in Section 3 and the results shown in Section 5.1 to 5.3, the SoC failure
rate, SIL and RPN are obtained and illustrated in Table 11, 12 and 13.

ER_C/hour 1 10-6 0.5 10-6 1 10-7 0.5 10-7 1 10-8

SFR_C(1) 7.32 10-7 3.66 10-7 7.32 10-8 3.66 10-8 7.32 10-9

SFR_C(2) 1.75 10-8 8.73 10-9 1.75 10-9 8.73 10-10 1.75 10-10

SFR_C(3) 2.52 10-7 1.26 10-7 2.52 10-8 1.26 10-8 2.52 10-9

SFR 1.0 10-6 5.0 10-7 1.0 10-7 5.0 10-8 1.0 10-8

SIL 1 2 2 3 3

Table 11. SoC failure rate and SIL.

ER_C/hour 1 10-6 0.5 10-6 1 10-7 0.5 10-7 1 10-8

RPN_C(1) 5.68 10-6 2.84 10-6 5.68 10-7 2.84 10-7 5.68 10-8

RPN_C(2) 1.28 10-7 6.38 10-8 1.28 10-8 6.38 10-9 1.28 10-9

RPN_C(3) 1.5 10-6 7.49 10-7 1.5 10-7 7.49 10-8 1.5 10-8

Table 12. Risk priority number for the target components.

ER_C/hour 1 10-6 0.5 10-6 1 10-7 0.5 10-7 1 10-8

RPN_FM(1) 2.65 10-6 1.32 10-6 2.65 10-7 1.32 10-7 2.65 10-8

RPN_FM(2) 3.28 10-6 1.64 10-6 3.28 10-7 1.64 10-7 3.28 10-8

RPN_FM(3) 9.64 10-7 4.82 10-7 9.64 10-8 4.82 10-8 9.64 10-9

RPN_FM(4) 5.13 10-7 2.56 10-7 5.13 10-8 2.56 10-8 5.13 10-9

Table 13. Risk priority number for the potential failure modes.

We should note that the components’ error rates used in this case study are only for the
demonstration of the proposed robustness/safety validation process, and the more realistic
components’ error rates for the considered components should be determined by process
and circuit technology [Mukherjee et al., 2003]. According to the given components’ error
rates, the data of SFR in Table 11 can be used to assess the safety integrity level of the
system. One thing should be pointed out that a SoC failure may or may not cause the
dangerous effect on the system and human life. Consequently, a SoC failure could be
classified into safe failure or dangerous failure. To simplify the demonstration, we make an
assumption in this assessment that the SoC failures caused by the faults occurring in the
components are always the dangerous failures or hazards. Therefore, the SFR in Table 11 is
used to approximate the PFH, and so the SIL can be derived from Table 10.

Embedded Systems – Theory and Design Methodology

70

With respect to safety design process, if the current design does not meet the SIL
requirement, we need to perform the risk reduction procedure to lower the PFH, and in the
meantime to reach the SIL requirement. The vulnerability analysis and risk assessment can
be exploited to identify the most critical components and failure modes to be protected. In
such approach, the system safety can be improved efficiently and economically.

Based on the results of RPN_C(i) as exhibited in Table 12, for i = 1, 2, 3, it is evident that the
error of AMBA AHB is more critical than the errors of register set and memory sub-system.
So, the results suggest that the AHB system bus is more urgent to be protected than the
register set and memory. Moreover, the data of RPN_FM(k) in Table 13, k from one to four,
infer that SDC is the most crucial failure mode in this illustrated example. Throughout the
above vulnerability and risk analyses, we can identify the critical components and failure
modes, which are the major targets for design enhancement. In this demonstration, the top
priority of the design enhancement is to raise the robustness of the AHB HADDR bus
signals to significantly reduce the rate of SDC and the scale of system risk if the system
reliability/safety is not adequate.

6. Conclusion
Validating the functional safety of system-on-chip (SoC) in compliance with international
standard, such as IEC 61508, is imperative to guarantee the dependability of the systems
before they are being put to use. It is beneficial to assess the SoC robustness in early design
phase in order to significantly reduce the cost and time of re-design. To fulfill such needs, in
this study, we have presented a valuable SoC-level safety validation and risk reduction
process to perform the hazard analysis and risk assessment, and exploited an ARM-based
SoC platform to demonstrate its feasibility and usefulness. The main contributions of this
study are first to develop a useful SVRR process and risk model to assess the scales of
robustness and failure-induced risks in a system; second to raise the level of dependability
validation to the untimed/timed functional TLM, and to construct a SoC-level system safety
verification platform including an automatic fault injection and failure mode classification
tool on the SystemC CoWare Platform Architect design environment to demonstrate the core
idea of SVRR process. So the efficiency of the validation process is dramatically increased;
third to conduct a thorough vulnerability analysis and risk assessment of the register set,
AMBA bus and memory sub-system based on a real ARM-embedded SoC.

The analyses help us measure the robustness of the target components and system safety,
and locate the critical components and failure modes to be guarded. Such results can be
used to examine whether the safety of investigated system meets the safety requirement or
not, and if not, the most critical components and failure modes are protected by some
effective risk reduction approaches to enhance the safety of the investigated system. The
vulnerability analysis gives a guideline for prioritized use of robust components. Therefore,
the resources can be invested in the right place, and the fault-robust design can quickly
achieve the safety goal with less cost, die area, performance and power impact.

7. Acknowledgment
The author acknowledges the support of the National Science Council, R.O.C., under
Contract No. NSC 97-2221-E-216-018 and NSC 98-2221-E-305-010. Thanks are also due to the

Vulnerability Analysis and Risk Assessment for SoCs Used in Safety-Critical Embedded Systems

71

National Chip Implementation Center, R.O.C., for the support of SystemC design tool –
CoWare Platform Architect.

8. References
Austin, T. (1999). DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design,

Proceedings of 32nd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 196-207, ISBN 076950437X, Haifa, Israel, Nov. 1999

Baumann, R. (2005). Soft Errors in Advanced Computer Systems. IEEE Design & Test of
Computers, Vol. 22, No. 3, (May-June 2005), pp. (258 – 266), ISSN 0740-7475

Bergaoui, S.; Vanhauwaert, P. & Leveugle, R. (2010) A New Critical Variable Analysis in
Processor-Based Systems. IEEE Transactions on Nuclear Science, Vol. 57, No. 4,
(August 2010), pp. (1992-1999), ISSN 0018-9499

Brown, S. (2000). Overview of IEC 61508 Design of electrical/electronic/programmable
electronic safety-related systems. Computing & Control Engineering Journal, Vol. 11,
No. 1, (February 2000), pp. (6-12), ISSN 0956-3385

International Electrotechnical Commission [IEC], (1998-2000). CEI International Standard
IEC 61508, 1998-2000

Chang, K. & Chen, Y. (2007). System-Level Fault Injection in SystemC Design Platform,
Proceedings of 8th International Symposium on Advanced Intelligent Systems, pp. 354-
359, Sokcho-City, Korea, Sept. 05-08, 2007

Chen, Y.; Wang, Y. & Peng, J. (2008). SoC-Level Fault Injection Methodology in SystemC
Design Platform, Proceedings of 7th International Conference on System Simulation and
Scientific Computing, pp. 680-687, Beijing, China, Oct. 10-12, 2008

Constantinescu, C. (2002). Impact of Deep Submicron Technology on Dependability of VLSI
Circuits, Proceedings of IEEE International Conference on Dependable Systems and
Networks, pp. 205-209, ISBN 0-7695-1597-5, Bethesda, MD, USA, June 23-26, 2002

CoWare, (2006). Platform Creator User’s Guide, IN: CoWare Model Library Product Version
V2006.1.2

Grotker, T.; Liao, S.; martin, G. & Swan, S. (2002). System Design with SystemC, Kluwer
Academic Publishers, ISBN 978-1-4419-5285-1, Boston, Massachusetts, USA

Hosseinabady, M.; Neishaburi, M.; Lotfi-Kamran P. & Navabi, Z. (2007). A UML Based
System Level Failure Rate Assessment Technique for SoC Designs, Proceedings of
25th IEEE VLSI Test Symposium, pp. 243 – 248, ISBN 0-7695-2812-0, Berkeley,
California, USA, May 6-10, 2007

Kanawati, G.; Kanawati, N. & Abraham, J. (1995). FERRARI: A Flexible Software-Based
Fault and Error Injection System. IEEE Transactions on Computers, Vol. 44, No. 2,
(Feb. 1995), pp. (248-260), ISSN 0018-9340

Karnik, T.; Hazucha, P. & Patel, J. (2004). Characterization of Soft Errors Caused by Single
Event Upsets in CMOS Processes. IEEE Transactions on Dependable and Secure
Computing, Vol. 1, No. 2, (April-June 2004), pp. (128-143), ISSN 1545-5971

Kim, S. & Somani, A. (2002). Soft Error Sensitivity Characterization for Microprocessor
Dependability Enhancement Strategy, Proceedings of IEEE International Conference on
Dependable Systems and Networks, pp. 416-425, ISBN 0-7695-1597-5, Bethesda, MD,
USA, June 23-26, 2002

Leveugle, R.; Pierre, L.; Maistri, P. & Clavel, R. (2009). Soft Error Effect and Register
Criticality Evaluations: Past, Present and Future, Proceedings of IEEE Workshop on

Embedded Systems – Theory and Design Methodology

72

Silicon Errors in Logic - System Effects, pp. 1-6, Stanford University, California, USA,
March 24-25, 2009

Mariani, R.; Boschi, G. & Colucci, F. (2007). Using an innovative SoC-level FMEA
methodology to design in compliance with IEC61508, Proceedings of 2007 Design,
Automation & Test in Europe Conference & Exhibition, pp. 492-497, ISBN
9783981080124, Nice, France, April 16-20, 2007

Mikulak, R.; McDermott, R. & Beauregard, M. (2008). The Basics of FMEA (Second Edition),
CRC Press, ISBN 1563273772, New York, NY, USA

Mitra, S.; Seifert, N.; Zhang, M.; Shi, Q. & Kim, K. (2005). Robust System Design with Built-
in Soft-Error Resilience. IEEE Computer, Vol. 38, No. 2, (Feb. 2005), pp. 43-52, ISSN
0018-9162

Mollah, A. (2005). Application of Failure Mode and Effect Analysis (FMEA) for Process Risk
Assessment. BioProcess International, Vol. 3, No. 10, (November 2005), pp. (12–20)

Mukherjee, S.; Weaver, C.; Emer, J.; Reinhardt, S. & Austin, T. (2003). A Systematic
Methodology to Compute the Architectural Vulnerability Factors for a High
Performance Microprocessor, Proceedings of 36th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 29-40, ISBN 0-7695-2043-X, San Diego,
California, USA, Dec. 03-05, 2003

Open SystemC Initiative (OSCI), (2003). SystemC 2.0.1 Language Reference Manual
(Revision 1.0), IN: Open SystemC Initiative, Available from: <
homes.dsi.unimi.it/~pedersin/AD/SystemC_v201_LRM.pdf>

Rotenberg, E. (1999). AR-SMT: A Microarchitectural Approach to Fault Tolerance in
Microprocessor, Proceedings of 29th Annual IEEE International Symposium on Fault-
Tolerant Computing, pp. 84-91, ISBN 076950213X, Madison , WI, USA, 1999

Ruiz, J.; Yuste, P.; Gil, P. & Lemus, L. (2004). On Benchmarking the Dependability of
Automotive Engine Control Applications, Proceedings of IEEE International
Conference on Dependable Systems and Networks, pp. 857 – 866, ISBN 0-7695-2052-9,
Palazzo dei Congressi, Florence, Italy, June 28 – July 01, 2004

Sieh, V. (1993). Fault-Injector using UNIX ptrace Interface, IN: Internal Report No.: 11/93,
IMMD3, Universität Erlangen-Nürnberg, Available from: <
http://www3.informatik.uni-erlangen.de/Publications/Reports/ir_11_93.pdf>

Slegel, T. et al. (1999). IBM’s S/390 G5 Microprocessor Design. IEEE Micro, Vol. 19, No. 2,
(March/April, 1999), pp. (12-23), ISSN 0272-1732

Stamatelatos, M.; Vesely, W.; Dugan, J.; Fragola, J.; Minarick III, J. & Railsback, J. (2002).
Fault Tree Handbook with Aerospace Applications (version 1.1), IN: NASA,
Available from: <www.hq.nasa.gov/office/codeq/doctree/fthb.pdf>

Tony, S.; Mohammad, H.; Mathew, J. & Pradhan, D. (2007). Soft-Error induced System-
Failure Rate Analysis in an SoC, Proceedings of 25th Norchip Conf., pp. 1-4, Aalborg,
DK, Nov. 19-20, 2007

Wang, N.; Quek, J.; Rafacz, T. & Patel, S. (2004). Characterizing the Effects of Transient
Faults on a High-Performance Processor Pipeline, Proceedings of IEEE International
Conference on Dependable Systems and Networks, pp. 61-70, ISBN 0-7695-2052-9,
Palazzo dei Congressi, Florence, Italy, June 28 – July 01, 2004

Zorian, Y.; Vardanian, V.; Aleksanyan, K. & Amirkhanyan, K. (2005). Impact of Soft Error
Challenge on SoC Design, Proceedings of 11th IEEE International On-Line Testing
Symposium, pp. 63 – 68, ISBN 0-7695-2406-0, Saint Raphael, French Riviera, France,
July 06-08, 2005

4

Simulation and Synthesis Techniques
for Soft Error-Resilient Microprocessors

Makoto Sugihara
Kyushu University

Japan

1. Introduction

A single event upset (SEU) is a change of state which is caused by a high-energy particle
striking to a sensitive node in semiconductor devices. An SEU in an integrated circuit (IC)
component often causes a false behavior of a computer system, or a soft error. A soft error
rate (SER) is the rate at which a device or system encounters or is predicted to encounter soft
errors during a certain time. An SER is often utilized as a metric for vulnerability of an IC
component.

May first discovered that particles emitted from radioactive substances caused SEUs in
DRAM modules (May & Wood, 1979). Occurrence of SEUs in SRAM memories is increasing
and becoming more critical as technology continues to shrink (Karnik et al., 2001; Seifert et
al., 2001a, 2001b). The feature size of integrated circuits has reached nanoscale and the nano-
scale transistors have become more soft-error sensitive (Baumann, 2005). Soft error
estimation and highly-reliable design have become of utmost concern in mission-critical
systems as well as consumer products. Shivakumar et al. predicted that the SER of
combinational logic would increase to be comparable to the SER of memory components in
the future (Shivakumar et al., 2002). Embedding vulnerable IC components into a computer
system deteriorates its reliability and should be carefully taken into account under several
constraints such as performance, chip area, and power consumption. From the viewpoint of
system design, accurate reliability estimation and design for reliability (DFR) are becoming
critical in order that one applies reasonable DFR to vulnerable part of the computer system
at an early design stage. Evaluating reliability of an entire computer system is essential
rather than separately evaluating that of each component because of the following reasons.

1. A computer system consists of miscellaneous IC components such as a CPU, an SRAM
module, a DRAM module, an ASIC, and so on. Each IC component has its own SER
which may be entirely different from one another.

2. Depending on DFR techniques such as parity coding, the SER, access latency and chip
area may be completely different among SRAM modules. A DFR technique should be
chosen to satisfy the design requirement of the computer system so that one can avoid a
superfluous cost rise, performance degradation, and power rise.

3. The behavior of a computer system is determined by hardware, software, and input to
the system. Largely depending on a program, the behavior of the computer system
varies from program to program. Some programs use large memory space and the

Embedded Systems – Theory and Design Methodology 74

others do not. Furthermore, some programs efficiently use as many CPU cores of a
multiprocessor system as possible and the others do not. The behavior of a computer
system determines temporal and spatial usage of vulnerable components.

This chapter reviews a simulation technique for soft error vulnerability of a microprocessor
system (Sugihara et al., 2006, 2007b) and a synthesis technique for a reliable microprocessor
system (Sugihara et al., 2009b, 2010b).

2. Simulation technique for soft error vulnerability of microprocessors

2.1 Introduction

Recently, several techniques for estimating reliability were proposed. Fault injection
techniques were discussed for microprocessors (Degalahal et al., 2004; Rebaudengo et al.,
2003; Wang et al., 2004). Soft error simulation in logic circuits was also studied and
developed (Tosaka, 1997, 1999, 2004a, 2004b). In contrast, the structure of memory modules
is so regular and monotonous that it is comparatively easy to estimate their vulnerability
because that can be calculated with the SERs obtained by field or accelerated tests.
Mukherjee et al. proposed a vulnerability estimation method for microprocessors
(Mukherjee et al., 2003). Their methodology estimates only vulnerability of a microprocessor
whereas a computer system consists of various components such as CPUs, SRAM modules
and DRAM modules. Their approach would be effective in case the vulnerability of a CPU is
most dominant in a computer system. Asadi et al. proposed a vulnerability estimation
method for computer systems that had L1 caches (Asadi et al., 2005). They pointed out that
SRAM-based L1 caches were most vulnerable in most of current designs and gave a
reliability model for computing critical SEUs in L1 caches. Their assumption is true in most
of current designs and false in some designs. Vulnerability of DRAM modules would be
dominant in entire vulnerability of a computer system if plain DRAM modules and ECC
SRAM ones are utilized. As technology proceeds, a latch becomes more vulnerable than an
SRAM memory cell (Baumann, 2005). It is important to obtain a vulnerability estimate of an
entire system by considering which part of a computer system is vulnerable.

An SER for a memory module is a vulnerability measurement characterizing it rather than
one reflecting its actual behavior. SERs of memory modules become pessimistic when they
are embedded into computer systems. More specifically, every SEU occurring in memory
modules is regarded as a critical error when memory modules are under field or accelerated
tests. This implicitly assumes that every SEU on memory cells of a memory module makes a
computer system faulty. Since memory modules are used spatially and temporally in
computer systems, some of SEUs on the memory modules make the computer system faulty
and the others not. Therefore, the soft errors in an entire computer system should be
estimated in a different way from the way used for memory modules.

Accurate soft error estimation of an entire computer system is one of the themes of urgent
concern. The SER is the rate at which a device or system encounters or is predicted to
encounter soft errors. The SER is quite effective measurement for evaluating memory
modules but not for computer systems. Accumulating SERs of all memories in a computer
system causes pessimistic soft error estimation because memory cells are used spatially and
temporally during program execution and some of SEUs make the computer system faulty.
This chapter models soft errors at the architectural level for a computer system, which has

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 75

several memory hierarchies with it, in order that one can accurately estimate the reliability
of the computer system within reasonable computation time. We define a critical SEU as one
which is a possible cause of faulty behavior of a computer system. We also define an SEU
vulnerability factor for a job to run on a computer system as the expected number of critical
SEUs which occur during executing the job on the computer system, unlike a classical
vulnerability factor such as the SER one. The architectural-level soft-error model identifies
which part of memory modules is utilized temporally and spatially and which SEUs are
critical to the program execution of the computer system at the cycle-accurate ISS
(instruction set simulation) level. Our architectural-level soft-error model is capable of
estimating the reliability of a computer system that has several memory hierarchies with it
and finding which memory module is vulnerable in the computer system. Reliability
estimation helps one apply reliable design techniques to vulnerable part of their design.

2.2 SEUs on a word item

Unlike memory components, the SER of a computer system varies every moment because

the computer system uses memory modules spatially and temporally. Since only active

part of the memory modules affects reliability of the computer system, it is essential to

identify the active part of memory modules for accurately estimating the number of soft

errors occurring in the computer system. A universal soft error metric other than an SER

is necessary to estimate reliability of computer systems because an SER is a reliability

metric suitable for components of regular and monotonous structure like memory

modules but not for computer systems. In this chapter, the number of soft errors which

occur during execution of a program is adopted as a soft error metric for computer

systems. In computer systems, a word item is a basic element for computation in CPUs. A

word item is an instruction item in an instruction memory while that is a data item in a

data memory. A collective of word items is required to be processed in order to run a

program. We consider the reliability to process all word items as the reliability of a

computer system. The total number of SEUs which are expected to occur on all the word

items is regarded as the number of SEUs of the computer system. This section discusses

an estimation model for the number of soft errors on a word item. A CPU-centric

computer system typically has the hierarchical structure of memory modules which

includes a register file, cache memory modules, and main memory modules. The

computer system at which we target has ���� levels of memory modules,

��, ��, ⋯ ,�	
�
 in order of accessibility from/to the CPU. In the hierarchical memory

system, instruction items are generally processed as follows.

1. Instruction items are generated by a compiler and loaded into a main memory. The
birth time of an instruction item is the time when the instruction item is loaded into the
main memory, from the viewpoint of program execution.

2. When the CPU requires an instruction item, it fetches the instruction item from the
memory module closest to it. The instruction item is duplicated into all levels of
memory modules which reside between the CPU and the source memory module.

Note that instruction items are basically read-only. Duplication of instruction items are
unidirectionally made from a low level to a high level of a memory module. Data items in
data memory are processed as follows.

Embedded Systems – Theory and Design Methodology 76

1. Some data items are given as initial values of a program when the program is generated
with a compiler. The birth time of such a data item is the time when the program is
loaded into a main memory. The other data items are generated during execution of the
program by the CPU. The birth time of the data item which is made on-line is the time
when the data item is made and saved to the register file.

2. When a data item is required by a CPU, the CPU fetches it from the memory module
closest to the CPU. If the write allocate policy is adopted, the data item is duplicated at
all levels of memory modules which reside between the CPU and the master memory
module, and otherwise it is not duplicated at the interjacent memory modules.

Note that data items are writable as well as readable. This means that data items can be
copied from a high level to a low level of a memory module, and vice versa. In CPU centric
computer systems, data items are utilized as constituent elements. The data items vary in
lifetime and the numbers of soft errors on the data items vary from data item to data item.

Let an SER of a word item in Memory Module �� be ����. When a word item � is retained

during Time ����(�) in Memory Module ��, the number of soft errors, �������(�), which is

expected to occur on the word item, is described as follows:

 �������(�) = ���� ∙ ����(�). (1)

Word item � is required to be retained during Time ������_������(�) in Memory Module

�� to transfer to the CPU. The number of soft errors, ����� !!_���"(�), which occur from the
birth time to the time when the CPU fetches is given as

 ����� !!_���"(�) = ∑ ���� ∙ ������_������(�)� (2)

where ������_������(�) is necessary and minimal time to transfer the word item from the

master memory module to the CPU, and depends on the memory architecture. This kind of
retention time is exactly obtained with cycle-accurate simulation of the computer system.

2.3 SEUs in instruction memory

Each instruction item has its own lifetime while a program runs. The lifetime of each

instruction item is different from that of one another and is not necessarily equal to the

execution time of a program. Generally speaking, the birth time of instruction items is the

time when they are loaded into main memory, from the viewpoint of program execution. It

is necessary to identify which part of retention time of an instruction item in a memory

module affects reliability of the computer system. Now let us break down into the number

of soft errors in an instruction item before we discuss the total number of soft errors in

instruction memory. The time when a CPU fetches an instruction item of Address � for the

�-th time is shown by �$(�, �). �$(�, 0) denotes the time when the instruction is loaded into

the main memory. An example of several instruction fetches is shown in Fig. 1. In this

figure, the boxes show that the copies of the instruction item reside in the corresponding

memory modules. The labels on the boxes show when the copies of the instruction items are

born. In this example, the instruction item is fetched three times by the CPU.

On the first instruction fetch for the instruction item, a copy of the instruction item exists in
neither the L1 nor L2 cache memories. The instruction item resides only in the main

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 77

Fig. 1. SEUs which are read by the CPU.

memory. The instruction item is required to be transferred from the main memory to the

CPU. On transferring the instruction item to the CPU, its copies are made in the L1 and L2

cache memory modules. In this example, we assume that some latency is necessary to

transfer the instruction item between memory modules. When the instruction item in a

source memory module is fetched by the CPU, any SEUs which occur after completing

transferring the instruction item have no influence on the instruction fetch. In the figure, the

boxes with slanting lines are the retention times whose SEUs make the instruction fetch at

�$(�, 1) faulty. The SEUs during any other retention times are unknown to make the

computer system faulty.

On the second instruction fetch for the instruction item, the instruction item resides only in

the main memory, same as on the first instruction fetch. The instruction item is fetched from

the main memory to the CPU, same as on the first instruction fetch. The dotted boxes are

found to be the retention times whose SEUs make the instruction fetch at �$(�, 2) faulty.

Note that the SEUs on the box with slanting lines in the main memory are already treated on

the instruction fetch at �$(�, 1) and are not treated on the one at �$(�, 2) in order to avoid

counting SEUs duplicately.

On the third instruction fetch for the instruction item, the highest level of memory module

that retains the instruction item is the L1 cache memory. SEUs on the gray boxes are treated

as the ones which make Instruction Fetch �$(�, 3) faulty. The SEUs on any other boxes are

not counted for the instruction fetch at �$(�, 3). Now assume that a program is executed in a

computer system. Given an input data to a program, let an instruction fetch sequence be

��, ��, ⋯ , �	inst to run the program. And let the necessary and minimal retention time for

Instruction Fetch �� to be on Memory Module �- be ������_�����.(��). The number of soft

errors on Instruction Fetch ��, �����(��), is given as follows.

 �����single_inst(��) = ∑ ���. ∙ ������_�����.(��)- . (3)

The total number of soft errors in the computer system is shown as follows:

�����all_insts(0) = ∑ �����single_inst(��)�

= ∑ ���. ∙ ������_�����.(��)�,- (4)

where i={ i_1,i_2,…,i_N_inst}. Given the program of the computer system, ������_�����.(��)
can be exactly obtained by performing cycle-accurate simulation for the computer system.

�Q¢���������������QQQQQQQQQQQQQQQ¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢���������
if(a,1) if(a,2) if(a,3)

Register

L1 Cache

L2 Cache

Time

RAM

SEUs counted on if(a,1) SEUs counted on if(a,2)��QQ¢¢SEUs counted on if(a,3) SEUs which does not affect the computer system

flush flushflush flush

���������������if(a,0) if(a,1)

if(a,0)if(a,0)

if(a,2)

if(a,2)

if(a,2)

if(a,2)

if(a,1)

if(a,1)

if(a,3)

flush

Embedded Systems – Theory and Design Methodology 78

2.4 SEUs in data memory

Data memory is writable as well as readable. It is more complex than instruction memory
because word items are bidirectionally transferred between a high level of memory and a
low level of memory. Some data items are given as an input to a program and the others are
born during the program execution. Some data items are used and the others are unused
even if they reside in memory modules. The SEUs which occur during some retention time
of a data item are influential in a computer system. The SEUs which occur during the other
retention time are not influential even if the data item is used by the CPU. A data item has
valid or invalid part of time with regard to soft errors of the computer system. It is quite
important to identify valid or invalid part of retention time of a data item in order to
accurately estimate the number of soft errors of a computer system. In this chapter, valid
retention time is sought out by using the following rules.

• A data item which is generated on compilation is born when it is loaded into main
memory.

• A data item as input to a computer system is born when it is inputted to the computer
system.

• A data item is born when the CPU issues a store instruction for the data item.

• A data item is valid at least until the time when the CPU loads the data item and uses it
in its operation.

• A data item which a user explicitly specifies as a valid one is valid even if the CPU does
not issue a load instruction for the data item.

The bidirectional copies between high-level and low-level memory modules must be taken
into account in data memory because data memory is writable as well as readable. There are
two basic options on cache hit when writing to the cache as follows (Hennessy & Patterson,
2002).

• Write through: the information is written to both the block in the cache and to the block
in the lower-level memory.

• Write back: the information is written only to the block in the cache. The modified cache
block is written to main memory only when it is replaced.

The write policies affect the estimation for the number of soft errors and should be taken
into account.

2.4.1 Soft error model in a write-back system

A soft-error estimation model in write-back systems is discussed in this section. Let the time

when the �-th store operation of a CPU at Address � is issued be 1(�, �) and the time when

the 2-th load operation at Address � is issued be 3(�, 2). Fig. 2 shows an example of the

behavior of a write-back system. Each box in the figure shows the existence of the data item

in the corresponding memory module. The labels on the boxes show when the data items

are born. In the example, two store operations and two load operations are executed. First, a

store operation is executed and only the L1 cache is updated with the data item. The L2

cache or main memory is not updated with the store operation. A load operation on the data

item which resides at Address � follows. The data item resides in the L1 cache memory and

is transferred from the L1 cache to the CPU. The SEUs on the boxes with slanting lines are

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 79

influential in reliability of the computer system by the issue of a load at 3(�, 1). The other

boxes with Label 1(�, 1) are unknown to be influential in the reliability. Next, the data item

in the L1 cache goes out to the L2 cache by the other data item. The L2 cache memory

becomes the highest level of memory which retains the data item. Next, a load operation at

3(�, 2) is issued and the data item is transferred from the L2 cache memory to the CPU. With

the load operation at 3(�, 2), the SEUs on the dotted boxes are found to be influential in

reliability of the computer system. SEUs on the white boxes labeled as 1(�, 2) are not

counted on the load at 3(�, 2).

Fig. 2. Critical time in the write-back system.

2.4.2 Soft error model in a write-through system

A soft-error estimation model in write-through systems is discussed in this section. An
example of the behavior of a write-through system is shown in Fig. 3. First, a store operation
at Address � is issued. The write-through policy makes multiple copies of the data item in
the cache memories and the main memory. Next, a load operation follows. The CPU fetches
the data item from the L1 cache and SEUs on the boxes with slanting lines are found to be
influential in reliability of the computer system. Next, a store operation at 1(�, 2) comes. The
previous data item at Address � is overridden and the white boxes labeled as 1(�, 1) are no
longer influential in reliability of the computer system. Next, the data item in the L1 cache is
replaced with the other data item. The L2 cache becomes the highest level of memory which
has the data item of Address �. Next, a load operation at 3(�, 2) follows and the data item is
transferred from the L2 cache to the CPU. With the load operation at 3(�, 2), SEUs on the
dotted boxes are found to be influential in reliability of the computer system.

Fig. 3. Critical time in the write-through system.

����QQQQ¢¢¢¢������
s(a,1)

Register

L1 Cache

L2 Cache

RAM

Timel(a,1) s(a,2) L1 flushed l(a,2)

SEUs counted on l(a,2)����QQQQ¢¢¢¢ SEUs which does not affect the computer systemSEUs counted on l(a,1)������ s(a,1) s(a,1) s(a,2)

s(a,2)

s(a,2)���������
s(a,1) �Q¢s(a,2)������QQQQQQ¢¢¢¢¢¢

s(a,2)

���������QQQQQQQQQ¢¢¢¢¢¢¢¢¢���������
s(a,1)

Register

L1 Cache

L2 Cache

RAM

Timel(a,1) s(a,2) L1 flushed l(a,2)

s(a,2)

s(a,1)

s(a,1)

s(a,1)

s(a,2)

s(a,2)

s(a,1)

s(a,2)������s(a,1) �Q¢s(a,2)
SEUs counted on l(a,2)����QQQQ¢¢¢¢ SEUs which does not affect the computer systemSEUs counted on l(a,1)������

Embedded Systems – Theory and Design Methodology 80

2.5 Simulation-based soft error estimation

As discussed in the previous sections, the retention time of every word item in memory

modules needs to be obtained so that the number of soft errors in a computer system can be

estimated. We adopted a cycle-accurate ISS which can obtain the retention time of every

word item. A simplified algorithm to estimate the number of soft errors for a computer

system to finish a program is shown in Fig. 4. The input to the algorithm is an instruction

sequence, and the output from the algorithm is the accurate number of soft errors,

�����"4"5��, which occur during program execution.

First, several variables are initialized. Variable �����"4"5�� is initialized with 0. The birth

times of all data items are initialized with the time when the program starts. A for-loop

sentence follows. A cycle-accurate ISS is executed in the for-loop. An iteration loop

corresponds to an execution of an instruction. The number of soft errors is counted for every

instruction item and is accumulated to variable �����"4"5��. When variable �����"4"5�� is

updated, the birth time of the corresponding word item is also updated with the present

time. Some computation is additionally done when the present instruction is a store or a

load operation. If the instruction is a load operation, the number of SEUs on the data item

which is found to be critical in the reliability of the computer system is added to variable

�����"4"5��. A load operation updates the birth time of the data item with the present time. If

the instruction is a store operation, the birth time of all changed word items is updated with

the present time. After the above procedure is applied to all instructions, �����"4"5�� is

outputted as the number of soft errors which occur during the program execution.

Fig. 4. A soft error estimation algorithm.

2.6 Experiments

Using several programs, we examined the number of soft errors during executing each of
them.

Procedure EstimateSoftError

Input: Instruction sequence given by a trace.

Output: the number of soft errors for the system, �����"4"5��

begin

 �����"4"5�� is initialized with 0.

 Birth time of every word iterm is initialized with the beginning time.

 for all instructions do

 // Computation for soft errors in instruction memory

 Add the number of critical soft errors of the instruction item to �����"4"5��.

 Update the birth time on the instruction item with the present time.

 // Computation for soft errors in data memory

 if the current instruction is a load then

�����

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 81

2.6.1 Experimental setup

We targeted a microprocessor-based system consisting of an ARM processor (ARMv4T,
200MHz), an instruction cache module, and a data cache module, and a main memory
module as shown in Fig. 5. The cache line size and the number of cache-sets are 32-byte and
32, respectively. We adopted the least recently used (LRU) policy as the cache replacement
policy. We evaluated reliability of computer systems with the two write policies, write-
through and write-back ones. The cell-upset rates of both SRAM and DRAM modules are
shown in Table 1. We used the cell-upset rates shown in (Slayman, 2005) as the cell-upset
rates of plain SRAMs and DRAMs. According to Baumann, error detection and correction
(EDAC) or error correction codes (ECC) protection will provide a significant reduction in
failure rates (typically 10k or more times reduction in effective error rates) (Baumann, 2005).
We assumed that introducing an ECC circuit makes reliability of memory modules 10k
times higher.

Fig. 5. The target system.

Cell Upset Rate

[FIT/bit] [errors/word/cycle]

w/o ECC w. ECC w/o ECC w. ECC

SRAM 1.0 × 1078 1.0 × 1079 4.4 × 107�8 4.4 × 107�9

DRAM 1.0 × 1079 1.0 × 107�� 4.4 × 107�8 4.4 × 107;�

Table 1. Cell upset rates for experiments.

We used three benchmark programs: Compress version 4.0 (Compress), JPEG encoder
version 6b (JPEG), and MPEG2 encoder version 1.2 (MPEG2). We used the GNU C compiler
and debugger to generate address traces. We chose to execute 100 million instructions in
each benchmark program. This allowed the simulations to finish in a reasonable amount of
time. All programs were compiled with “-O3” option. Table 2 shows the code size, activated
code size, and activated data size in words for each benchmark program. The activated code
and data sizes represent the number of instruction and data addresses which were accessed
during the execution of 100 million instructions, respectively.

Code size

<=>� [words]
Activated code size
?<=>� [words]

Activated data size
?> 5 [words]

Compress 10,716 1,874 140,198

JPEG 30,867 6,129 33,105

MPEG2 33,850 7,853 258,072

Table 2. Specification for benchmark programs.

I-Cache
CPU core

D-Cache
Main Memory

Embedded Systems – Theory and Design Methodology 82

2.6.2 Experimental results

Figures 6, 7, and 8 show the results of our soft error estimation method. Four different
memory configurations were considered as follows:

1. non-ECC L1 cache memory and non-ECC main memory,
2. non-ECC L1 cache memory and ECC main memory,
3. ECC L1 cache memory and non-ECC main memory,
4. and ECC L1 cache memory and ECC main memory.

Note that Asadi’s vulnerability estimation methodology (Asadi et al., 2005) does not cover

vulnerability estimation for the second configuration above because their approach is

dedicated to estimating vulnerability of L1 caches. The vertical axis presents the number of

soft errors occurring during the execution of 100 million instructions. The horizontal axis

presents the number of cache ways in a data cache. The other cache parameters, i.e., the line

size and the number of lines in a cache way, are unchanged. The size of the data cache is,

therefore, linear to the number of cache ways in this experiment. The cache sizes

corresponding to the values shown on the horizontal axis are 1 KB, 2 KB, 4 KB, 8 KB, 16 KB,

32 KB, and 64 KB, respectively.

Fig. 6. Experimental results for Compress.

 5e-13

 1e-12

 1.5e-12

 2e-12

 2.5e-12

 3e-12

 3.5e-12

 4e-12

 4.5e-12

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

Compress (non-ECC L1, non-ECC main memory)

Write Through
Write Back

 5e-13

 1e-12

 1.5e-12

 2e-12

 2.5e-12

 3e-12

 3.5e-12

 4e-12

 4.5e-12

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

Compress (non-ECC L1, ECC main memory)

Write Through
Write Back

 5e-15

 1e-14

 1.5e-14

 2e-14

 2.5e-14

 3e-14

 3.5e-14

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

Compress (ECC L1, non-ECC main memory)

Write Through
Write Back

 5e-17

 1e-16

 1.5e-16

 2e-16

 2.5e-16

 3e-16

 3.5e-16

 4e-16

 4.5e-16

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

Compress (ECC L1, ECC main memory)

Write Through
Write Back

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 83

 0

 1e-12

 2e-12

 3e-12

 4e-12

 5e-12

 6e-12

 7e-12

 8e-12

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

JPEG (non-ECC L1, non-ECC main memory)

Write Through
Write Back

 0

 1e-12

 2e-12

 3e-12

 4e-12

 5e-12

 6e-12

 7e-12

 8e-12

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

JPEG (non-ECC L1, ECC main memory)

Write Through
Write Back

 2e-16

 4e-16

 6e-16

 8e-16

 1e-15

 1.2e-15

 1.4e-15

 1.6e-15

 1.8e-15

 2e-15

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

JPEG (ECC L1, non-ECC main memory)

Write Through
Write Back

 0

 1e-16

 2e-16

 3e-16

 4e-16

 5e-16

 6e-16

 7e-16

 8e-16

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

JPEG (ECC L1, ECC main memory)

Write Through
Write Back

Fig. 7. Experimental results for JPEG.

 3e-13
 3.5e-13

 4e-13
 4.5e-13

 5e-13
 5.5e-13

 6e-13
 6.5e-13

 7e-13
 7.5e-13

 8e-13
 8.5e-13

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

MPEG2 (non-ECC L1, non-ECC main memory)

Write Through
Write Back

 3e-13
 3.5e-13

 4e-13
 4.5e-13

 5e-13
 5.5e-13

 6e-13
 6.5e-13

 7e-13
 7.5e-13

 8e-13
 8.5e-13

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

MPEG2 (non-ECC L1, ECC main memory)

Write Through
Write Back

 4e-16
 6e-16
 8e-16
 1e-15

 1.2e-15
 1.4e-15
 1.6e-15
 1.8e-15

 2e-15
 2.2e-15
 2.4e-15

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

MPEG2 (ECC L1, non-ECC main memory)

Write Through
Write Back

 3e-17
 3.5e-17

 4e-17
 4.5e-17

 5e-17
 5.5e-17

 6e-17
 6.5e-17

 7e-17
 7.5e-17

 8e-17
 8.5e-17

 64 32 16 8 4 2 1

#
 S

o
ft
 E

rr
o
rs

 (
1
/1

0
0
M

 I
n
s
ts

)

Cache Ways

MPEG2 (ECC L1, ECC main memory)

Write Through
Write Back

Fig. 8. Experimental results for MPEG2.

Embedded Systems – Theory and Design Methodology 84

According to the experimental results shown in Figures 6, 7, and 8, the number of soft errors
which occurred during a program execution depends on the reliability design of the
memory hierarchy. When the cell-upset rate of SRAMs was higher than that of DRAMs, the
soft errors on cache memories became dominant in the whole soft errors of the computer
systems. The number of soft errors in a computer system, therefore, increased as the size of
cache memories increased. When the cell-upset rate of SRAM modules was equal to that of
DRAM ones, the soft errors on main memories became dominant in the system soft errors in
contrast. The number of soft errors in a computer system, therefore, decreased as the size of
cache memories increased because the larger size of cache memories reduced runtime of a
program as well as usage of the main memory. Table 3 shows the number of CPU cycles to
finish executing the 100 million instructions of each program.

The number of cache ways in a cache memory (1 way = 1 KB)

1 2 4 8 16 32 64

Compress
WT 968 523 422 405 390 371 348

WB 1,058 471 325 303 286 267 243

JPEG
WT 548 455 364 260 247 245 244

WB 474 336 237 129 110 104 101

MPEG2
WT 497 179 168 168 167 167 167

WB 446 124 110 110 110 110 110

Table 3. The number of CPU cycles for 100 million instructions.

Table 4 shows the results of more naive approaches and our approach. The two naive

approaches, M1 and M2, calculated the number of soft errors using the following equations.

�� = @< <A� ∙ ��B + (<=>� + ?> 5) ∙ ��DE ∙ �<4<!�
�� = @< <A� ∙ ��B + (?<=>� + ?> 5) ∙ ��DE ∙ �<4<!�

(5)
(6)

where < <A�, <=>�, ?<=>�, ?> 5 , �<4<!�, ��B, ��D denote the cache size, the code size, the

activated code size, the activated data size, the number of CPU cycles, the SER per word per

cycle for SRAM, and the SER per word per cycle for DRAM, respectively. M1 and M2

appearing in Table 4 correspond to the calculations using Equations (5) and (6), respectively.

Our method corresponds to M3. It is obvious that the simple summation of SERs resulted in

large overestimation of soft errors. This indicates that accumulating SERs of all memory

modules in a system resulted in pessimistic estimation. The universal soft error metric other

than the SER is necessary to estimate reliability of computer systems which behave

dynamically. The number of soft errors which occur during execution of a program would

be the universal soft error metric of computer systems.

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 85

The number of cache ways

1 2 4 8 16 32 64

Compress

WT

M1 2267 2417 3869 7394 14216 27068 50755

M2 2263 2415 3867 7393 14214 27067 50754

M3 776 852 1248 1458 1541 1724 2446

WB

M1 2478 2175 2976 5530 10423 19461 35410

M2 2474 2173 2975 5529 10439 19460 35410

M3 999 881 1101 1372 1722 2484 4426

JPEG

WT

M1 1262 2083 3324 4735 9013 17867 35556

M2 1255 2078 3320 4732 9010 17864 35553

M3 384 670 1355 2209 3417 4801 7977

WB

M1 1092 1540 2160 2355 4024 7593 14759

M2 1087 1536 2157 2354 4023 7592 14758

M3 369 558 941 1147 1664 2323 3407

MPEG2

WT

M1 1197 838 1550 3167 6310 12217 24411

M2 1191 836 1548 3069 6118 12215 24410

M3 561 453 613 705 718 754 813

WB

M1 1073 578 1019 2016 4016 8017 16016

M2 1067 577 1018 2015 4015 8016 16015

M3 494 321 410 474 492 534 616

Table 4. The number of soft errors which occur during execution [107�Herrors/instruction].

2.7 Conclusion

This section discussed the simulation-based soft error estimation technique which sought the
accurate number of soft errors for a computer system to finish running a program. Depending
on application programs which are executed on a computer system, its reliability changes. The
important point to emphasize is that seeking for the number of soft errors to run a program is
essential for accurate soft-error estimation of computer systems. We estimated the accurate
number of soft errors of the computer systems which were based on ARM V4T architecture.
The experimental results clearly showed the following facts.

• It was found that there was a great difference between the number of soft errors
derived with our technique and that derived from the simple summations of the static
SERs of memory modules. The dynamic behavior of computer systems must be taken
into account for accurate reliability estimation.

• The SER of a computer system virtually increases with a larger cache memory adopted
because the SER is calculated by summing up the SERs of memory modules utilized in
the system. It was, however, found that the number of soft errors to finish a program
was reduced with larger cache memories in the computer system that had an ECC L1
cache and a non-ECC main memory. This is because the soft errors in cache memories
were negligible and the retention time of data items in the main memory was reduced
by the performance improvement.

Embedded Systems – Theory and Design Methodology 86

3. Reliable microprocessor synthesis for embedded systems

DFR is one of the themes of urgent concern. Coding and parity techniques are popular
design techniques for detecting or correcting SEUs in memory modules. Exploiting triple
modular redundancy (TMR) is also a popular design technique which decides a correct
value by voting on a correct value among three identical modules. These techniques have
been well studied and developed. Elakkumanan et al. proposed a DFR technique for logic
circuits, which exploits time redundancy by using scan flip-flops (Elakkumanan, 2006).
Their approach updates a pair of flip-flops at different moments for an output signal to
duplicate for higher reliability. Their approach is effective in ICs which have scan paths. We
reported that there exists a trade-off between performance and reliability in a computer
system and proposed a DFR technique by adjusting the size of vulnerable cache memory
online (Sugihara et al., 2007a, 2008b). The work presented a reliable cache architecture which
offered performance and reliability modes. More cache memory is used in the performance
mode while less cache memory is used in the reliability mode to avoid SEUs. All tasks are
statically scheduled under real-time and reliability constraints. The demerit of the approach
is that switching operation modes causes performance and area overheads and might be
unacceptable to high-performance or general-purpose microprocessors. We also proposed a
task scheduling scheme which minimized SEU vulnerability of a heterogeneous
multiprocessor under real-time constraints (Sugihara, 2008a, 2009a). Architectural
heterogeneity among CPU cores offers a variety of reliability for a task. We presented a task
scheduling problem which minimized SEU vulnerability of an entire system under a real-
time constraint. The demerit of the approach is that the fixed heterogeneous architecture
loses general-purpose programmability. We also presented a dynamic continuous signature
monitoring technique which detects a soft error on a control signal (Sugihara, 2010a, 2011).

This section reviews a system synthesis approach for a heterogeneous multiprocessor
system under performance and reliability constraints (Sugihara, 2009b, 2010b). To our best
knowledge, this is the first study to synthesize a heterogeneous multiprocessor system with
a soft error issue taken into account. In this section we use the SEU vulnerability factor as a
vulnerability factor. The other vulnerability factors, however, are applicable to our system
synthesis methodology as far as they are capable to estimating task-wise vulnerability on a
processor. If a single event transient (SET) is a dominant factor to fail a system, a
vulnerability factor which can treat SETs should be used in our heterogeneous
multiprocessor synthesis methodology. Our methodology assumes that a set of tasks are
given and that several variants of processors are given as building blocks. It also assumes
that real-time and vulnerability constraints are given by system designers. Simulation with
every combination of a processor model and a task characterizes performance and
reliability. Our system synthesis methodology uses the values of the chip area of every
building block, the characterized runtime and vulnerability, and the given real-time and
vulnerability constraints in order to synthesize a heterogeneous multiprocessor system
whose chip area is minimal under the constraints.

3.1 Performance and reliability in various processor configurations

A processor configuration, which specifies instruction set architecture, the number of
pipeline stages, the size of cache memory, cache architecture, coding redundancy, structural
redundancy, temporal redundancy, and so on, is a major factor to determine chip area,

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 87

performance and reliability of a computer system. One must carefully select a processor
configuration for each processor core of their products so that they can make the price of
their products competitive. From the viewpoint of reliability, processor configurations are
mainly characterized by the following design parameters.

• Coding techniques, i.e. parity and Hamming codes.

• Modular redundancy techniques i.e. double modular redundancy (DMR) and triple
modular redundancy (TMR).

• Temporal redundancy techniques, i.e. multiple executions of a task and multi-timing
sampling of outputs of a combinational circuit.

• The size of cache memory. We reported that SRAM is a vulnerable component and the
size of cache memory would be one of the factors which characterize processor
reliability (Sugihara et al., 2006, 2007b).

Design parameters are required to offer various alternatives which cover a wide range of
chip area, performance, and reliability for building a reliable and small multiprocessor. This
chapter mainly focuses on the size of cache memory as an example of variable design
parameters in explanation of our design methodology. The other design parameters as
mentioned above, however, are applicable to our heterogeneous multiprocessor synthesis
paradigm.

Fig. 9. Cache size vs SEU vulnerability and performance for susan (input_small, smooth).

Fig. 9 is an example that the cache size, which is one of design parameters, changes runtime
and reliability of a computer system. We assumed that the cache line size is 32 bytes and
that the number of cache-sets is 32. Changing the number of cache ways from 0 to 64 ranges
from 0 to 64 KB of cache memory. For plotting the graph, we utilized an ARM CPU core
(ARMv4T instruction set, 200 MHz) and a benchmark program susan, which is a program
from the MiBench benchmark suite (Guthaus et al., 2001), with an input file input small and
an option “-s”. We utilized the vulnerability estimation approach we had formerly proposed
(Sugihara, 2006, 2007b). For the processor configuration, we assumed that SRAM and
DRAM modules have their own SEC-DED (single error correction and double error
detection) circuits. We regarded SETs in logic circuitry as negligible ones because of its
infrequency. Note that vulnerability of SRAM in the L1 cache is dominant in the entire
vulnerability of the system and that of DRAM in main memory is too small to see in the
figure. The figure shows that, as the cache size increases, runtime decreases and SEU

���
0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

1.60E+08

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

0 1 2 4 8 16 32 64

V
u
ln
e
ra
b
il
it
y
[1
0
^
− 2
0
e
rr
o
rs
/
ta
sk
]

Cache size [kB]�� ����� ��L1 cache (instruction) L1 cache (data)

Main memory (instruction) RuntimeMain memory (data)

Embedded Systems – Theory and Design Methodology 88

vulnerability increases. The figure shows that the SEU vulnerability converged at 16 KB of a
cache memory. This is because using more cache ways than 16 ones did not contribute to
reducing conflict misses and did not increase temporal and spatial usage of the cache
memory, which determined the SEU vulnerability factor. The cache size at which SEU
vulnerability converges depends on a program, input to the program, and cache parameters
such as the size of a cache line, the number of cache sets, the number of cache ways, and its
replacement policy. The figure shows that most of SEU vulnerability of a system is caused
by SRAM circuitry. It clearly shows that there is a trade-off between performance and
reliability. A design paradigm in which chip area, performance and reliability can be taken
into account is of critical importance in the multi-CPU core era.

3.2 Heterogeneous multiprocessor synthesis

It is quite important to consider the trade-off among chip area, performance, and reliability

of a system which one develops. As we discussed in the previous section, chip area,

performance and reliability vary among processor configurations. This section discusses a

heterogeneous multiprocessor synthesis methodology in which an optimal set of processor

configurations are sought under real-time and reliability constraints so that the chip area of

a multiprocessor system is minimized.

3.2.1 Overview of heterogeneous multiprocessor synthesis

We show an overview of a heterogeneous multiprocessor synthesis methodology, that is a
design paradigm in which a heterogeneous multiprocessor is synthesized and its chip area
is minimized under real-time and SEU vulnerability constraints. Figure 10 shows the design
flow based on our design paradigm. In the design flow, designers begin with specifying
their system. Once they fix their specification, they begin to develop their hardware and
software. They may use IP (intellectual property) of processor cores which they designed or
purchased before. They may also develop a new processor core if they do not have one
appropriate to their system. Various processor configurations are to be prepared by
changing design parameters such as their cache size, structural redundancy, temporal
redundancy, coding redundancy, and anything else which strongly affects vulnerability,
performance, and chip area. Increasing design parameters expands the number of processor
configurations, enlarges design space to explore, and causes a long synthesis time. Design
parameters should be chosen to offer design alternatives among chip area, performance, and
reliability. Even if any design parameter can be treated in a general optimization procedure,
design parameters should be carefully chosen in order to avoid large design space
exploration. A design parameter which offers slight difference regarding chip area,
performance, and reliability would result in a long synthesis time and should be possibly
excluded from our multiprocessor synthesis. Software is mainly developed at a granularity
level of tasks. ISS is performed with the object codes for obtaining accurate runtime and SEU
vulnerability on every processor configuration. SEU vulnerability can be easily obtained
with the vulnerability estimation techniques previously mentioned. We used the reliability
estimation technique (Sugihara et al., 2006, 2007b) throughout this chapter but any other
technique can be used as far as it is capable of estimating task-wise reliability on a processor
configuration. When SETs become dominant in reliability of a computer system, one should
use a reliability estimation technique which treats SETs. Our heterogeneous multiprocessor

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 89

synthesis paradigm is basically independent of a reliability estimation technique as far as it
characterizes task-wise runtime and vulnerability. One should specify reliability and
performance constraints from which one obtains the upper bound of the SEU vulnerability
factor for every task, the upper bound of the SEU vulnerability for total tasks, and arrival
and deadline times of all tasks. From the specification and the hardware and software
components which one has given, a mixed integer linear programming (MILP) model to
synthesize a heterogeneous multiprocessor system is automatically generated. By solving
the MILP model with the generic solving procedure, an optimal configuration of the
heterogeneous multiprocessor is sought. This chapter mainly focuses on defining the
heterogeneous multiprocessor synthesis problem and building an MILP model to synthesize
a heterogeneous multiprocessor system. Subsection 3.2.2 formally defines the heterogeneous
multiprocessor synthesis problem and Subsection 3.2.3 gives an MILP model for the
problem.

Fig. 10. Our design paradigm.

3.2.2 Problem definition

We now address a mathematical problem in which we synthesize a heterogeneous
multiprocessor system and minimize its chip area under real-time and SEU vulnerability
constraints. We synthesize a heterogeneous multiprocessor on which �5 "O tasks are
executed. �PQR processor configurations are given as building blocks for the heterogeneous
multiprocessor system. The chip area of Processor Configuration S, 1 ≤ S ≤ �PQR, is given
with ?U. We assume that all the tasks are non-preemptive on the heterogeneous
multiprocessor system. Preemption causes large deviations between the worst-case

Determine all
specification items

of the system

Specification

Specify possible
processor

configurations
Code all tasks

Programs

Compile

Object codes
Area and delay of

all processors

Peform ISS to estimate
runtime and

SEU vulnerability

Estimates for
runtime and

SEU vulnerability

Generate an MILP model
to synthesize a heterogeneous

multiprocessor system

A heterogeneous
multiprocessor

Specify timing and
reliability constraints

Synthesize a netlist with
RTL data for all processor

configurations

Architecture
models

Arrival and deadline
times of all tasks and
the upper bounds of

SEU vulnerability factors

Embedded Systems – Theory and Design Methodology 90

execution times (WCET) of tasks that can be statically guaranteed and average-case
behavior. Non-preemptivity gives a better predictability on runtime since the worst-case is
closer to the average case behavior. Task �, 1 ≤ � ≤ �5 "O, becomes available to start at its
arrival time V WWXY !� and must finish by its deadline time V>� >!XZ��. Task � runs for Duration

[W\Z5X���,] on Processor Configuration S. The SEU vulnerability factor for Task � to run on

Processor Configuration S, �̂,U, is the number of critical SEUs which occur during the task

execution. We assume that one specifies the upper bound of the SEU vulnerability factor of
Task �, <̂=Z"5�, and the upper bound of the SEU vulnerability factor of the total tasks, <̂=Z"5_`` .

The heterogeneous multiprocessor synthesis problem that we address in this subsection is to

minimize the chip area of a heterogeneous multiprocessor system by optimally determining

a set of processor cores constituting a heterogeneous multiprocessor system, the start times

1�, 1�, ⋯ , 1	a_bc for all tasks, and assignments of a task to a processor core. The heterogeneous

multiprocessor synthesis problem defB is formally stated as follows.

• defB: For given �5 "O tasks, �PQR processor configurations, the chip area ?U of Processor

Configuration S, arrival and deadline times of Task �, V WWXY !� and V>� >!XZ��, duration

[W\Z5X���,] for which Task � runs on Processor Configuration S, the SEU vulnerability

factor �̂,U for Task � to run on Processor Configuration S, the upper bound of the SEU

vulnerability factor for Task �, <̂=Z"5� , and the upper bound of the SEU vulnerability

factor for total tasks, <̂=Z"5_`` , determine an optimal set of processor cores, assign every

task to an optimal processor core, and determine the optimal start time of every task

such that (1) every task is executed on a single processor core, (2) every task starts at or

after its arrival time and completes by its deadline, (3) the SEU vulnerability of every

task is less than or equal to that given by system designers, (4) the total SEU

vulnerability of the system is less than or equal to that given by system designers and

(5) the chip area is minimized.

3.2.3 Problem definition

We now build an MILP model for Problem defB. From the assumption of non-preemptivity,

the upper bound of the number of processors of the multiprocessor system is given by the

number of tasks, �5 "O. Let g�,-, 1 ≤ � ≤ �5 "O, 1 ≤ 2 ≤ �5 "O be a binary variable defined as

follows:

 g�,- = h1 if	Task	�	is	assigned	to	Processor	2,
0 otherwise.																																														 (7)

Let s-,U, 1 ≤ 2 ≤ �5 "O, 1 ≤ S ≤ �PQR be a binary variable defined as follows:

 s-,U = t1 if one takes Processor Configuration	S as the one of Processor 2,
0 otherwise.																																																						 (8)

The chip area of the heterogeneous multiprocessor is the sum of the total chip areas of all

processor cores used in the system. The total chip area ?<AXu, which is the objective function,

is, therefore, stated as follows:

 ?<AXu = ∑ ?Us-,U-,U . (9)

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 91

The assumption of non-preemptivity causes a task to run on only a single processor. The
following constraint is, therefore, introduced.

 ∑ g�,-- = 1, 1 ≤ ∀� ≤ �5 "O. (10)

If a task is assigned to a single processor, the processor must have its entity. The following
constraint, therefore, is introduced.

 g�,- = 1 → ∑ s-,UU = 1, 1 ≤ ∀� ≤ �5 "O, 1 ≤ ∀2 ≤ �5 "O. (11)

The reliability requirement varies among tasks, depending on the disprofit of a failure event
of a task. We assume that one specifies the upper bound of the SEU vulnerability factor for
each task. The SEU vulnerability factor of Task � must be less than or equal to <̂=Z"5�. The

SEU vulnerability factor of a task is determined by assignment of the task to a processor.
The following constraint, therefore, is introduced.

 ∑ �̂,U-,U g�,-s-,U ≤ <̂=Z"5� , 1 ≤ ∀� ≤ �5 "O. (12)

The SEU vulnerability factor of the heterogeneous multiprocessor system is the sum of the
SEU vulnerability factors of all tasks. The SEU vulnerability of the computer system <̂AXu,

therefore, is stated as follows.

 <̂AXu = ∑ �̂,U�,-,U g�,-s-,U. (13)

We assume that one specifies an SEU vulnerability constraint, which is the upper bound of
the SEU vulnerability of the system, and so the following constraint is introduced.

 <̂AXu ≤ <̂=Z"5_`` . (14)

Task � starts between its arrival time V WWXY !� and its deadline time V>� >!XZ��. A variable for

start time 1� is, therefore, bounded as follows.

 V WWXY !� ≤ 1� ≤ V>� >!XZ��, 1 ≤ ∀� ≤ �5 "O (15)

Task � must finish by its deadline time V>� >!XZ��. A constraint on the deadline time of the

task is introduced as follows.

 1� + ∑ [W\Z5X���,]-,U g�,-s-,U ≤ V>� >!XZ��, 1 ≤ ∀� ≤ �5 "O (16)

Now assume that two tasks �1 and �2 are assigned to Processor 2 and that its processor
configuration is Processor Configuration S. Formal expressions for these assumptions are
shown as follows:

 g��,- = g��,- = s-,U = 1. (17)

Two tasks are simultaneously inexecutable on the single processor. The two tasks must be
sequentially executed on the single processor. Two tasks i1 and i2 are inexecutable on the
single processor if 1�� < 1�� + [W\Z5X���y,] and 1�� + [W\Z5X���z,] > 1��. The two tasks, inversely,

are executable on the processor under the following constraints.

 g��,- = g��,- = s-,U = 1 → |}1�� + [W\Z5X���z,] ≤ 1��~ ∨ }1�� + [W\Z5X���y,] ≤ 1��~�,

Embedded Systems – Theory and Design Methodology 92

 1 ≤ ∀�1 < ∀�2 ≤ �5 "O, 1 ≤ ∀2 ≤ �5 "O, and 1 ≤ ∀S ≤ �PQR. (18)

The heterogeneous multiprocessor synthesis problem is now stated as follows.

Minimize the cost function ?<AXu = ∑ ?U-,U s-,U

subject to

1. ∑ g�,-- = 1, 1 ≤ ∀� ≤ �5 "O.

2. g�,- = 1 → ∑ s-,UU = 1, 1 ≤ ∀� ≤ �5 "O, 1 ≤ ∀2 ≤ �5 "O.

3. ∑ �̂,U-,U g�,-s-,U ≤ <̂=Z"5� , 1 ≤ ∀� ≤ �5 "O.

4. ∑ �̂,U-,U g�,-s-,U ≤ <̂=Z"5_`` .

5. 1� + ∑ [W\Z5X���,]-,U g�,-s-,U ≤ V>� >!XZ�� , 1 ≤ ∀� ≤ �5 "O.
6. g��,- = g��,- = s-,U = 1 → |}1�� + [W\Z5X���z,] ≤ 1��~ ∨ }1�� + [W\Z5X���y,] ≤ 1��~�, 1 ≤ ∀�1 <

∀�2 ≤ �5 "O, 1 ≤ ∀2 ≤ �5 "O, and	1 ≤ ∀S ≤ �PQR.
Variables

• g�,- is a binary variable, 1 ≤ ∀� ≤ �5 "O, 1 ≤ ∀2 ≤ �5 "O.
• s-,U is a binary variable, 1 ≤ ∀2 ≤ �5 "O, 1 ≤ ∀S ≤ �PQR.
• 1� is a real variable, 1 ≤ ∀� ≤ �5 "O.	
Bounds

• V WWXY !� ≤ 1� ≤ V>� >!XZ�� , 1 ≤ ∀� ≤ �5 "O.

The above nonlinear mathematical model can be transformed into a linear one using

standard techniques (Williams, 1999) and can be solved with an LP solver. Seeking optimal

values for the above variables determines hardware and software for the heterogeneous

system. Variables g�,- and 1� determine the optimal software and Variable s-,U determines

the optimal hardware. The other variables are the intermediate ones in the problem. As we

showed in Subsection 3.2.2, the values �5 "O, �PQR, ?U, V WWXY !� , [W\Z5X���,] , �̂,U, <̂=Z"5� , and

<̂=Z"5_`` are given. Once these values are given, the above MILP model can be generated

automatically. Solving the generated MILP model optimally determines a set of processors,

assignment of every task to a processor core, and start time of every task. The set of

processors constitutes a heterogeneous multiprocessor system which satisfies the minimal

chip area under real-time and SEU vulnerability constraints.

3.3 Experiments and results

3.3.1 Experimental setup

We experimentally synthesized heterogeneous multiprocessor systems under real-time and
SEU vulnerability constraints. We prepared several processor configurations in which the
system consists of multiple ARM CPU cores (ARMv4T, 200 MHz). Table 5 shows all the

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 93

processor configurations we hypothetically made. They are different from one another
regarding their cache sizes. For the processor configurations, we adopted write-through
policy (Hennessy & Patterson, 2002) as write policy on hit for the cache memory. We also
adopted the LRU policy (Hennessy & Patterson, 2002) for cache line replacement. For
experiment, we assumed that each of ARM cores has its own memory space and does not
interfere the execution of the others. The cache line size and the number of cache-sets are 32
bytes and 32, respectively. We did not adopt error check and correct (ECC) circuitry for all
memory modules. Note that the processor configurations given in Table 5 are just examples
and the other design parameters such as coding redundancy, structural redundancy,
temporal redundancy, and anything else which one wants, are available. The units for
runtime and vulnerability in the table are M cycles/execution and 107�9 errors/execution
respectively.

 L1 cache size [KB] Hypothetical chip area [a.u.]

Conf. 1 0 64

Conf. 2 1 80

Conf. 3 2 96

Conf. 4 4 128

Conf. 5 8 192

Conf. 6 16 320

Table 5. Hypothetical processor configurations for experiment.

We used 11 benchmark programs from MiBench, the embedded benchmark suite (Guthaus
et al., 2001). We assumed that there were 25 tasks with the 11 benchmark programs. Table 6
shows the runtime, the SEU vulnerability, and the SER of a task on every processor
configuration.

As the size of input to a program affects its execution time, we regarded execution instances
of a program, which are executed for distinct input sizes, as distinct jobs. We also assumed
that there was no inter-task dependency. The table shows runtime and SEU vulnerability for
every task to run on all processor configurations. These kinds of vulnerabilities can be
obtained by using the estimation techniques formerly mentioned. In our experiments, we
assumed that the SER of SRAM modules is 1.0 × 1078 [FIT/bit], for which we referred to
Slayman’s paper (Slayman, 2005), and utilized the SEU vulnerability estimation technique
which mainly estimated the SEU vulnerability of the memory hierarchy of systems
(Sugihara et al., 2006, 2007b). Note that our synthesis methodology does not restrict
designers to a certain estimation technique. Our synthesis technique is effective as far as the
trade-off between performance and reliability exists among several processor
configurations.

We utilized an ILOG CPLEX 11.2 optimization engine (ILOG, 2008) for solving MILP
problem instances shown in Section 3.2 so that optimal heterogeneous multiprocessor
systems whose chip area was minimal were synthesized. We solved all heterogeneous
multiprocessor synthesis problem instances on a PC which has two Intel Xeon X5365
processors with 2 GB memory. We gave 18000 seconds to each problem instance for
computation. We took a temporal schedule for unfinished optimization processes.

Embedded Systems – Theory and Design Methodology 94

 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

Program name bscmth bitcnts bf bf bf crc dijkstra

Input bscmth_sml bitcnts_sml bf_sml1 bf_sml2 bf_sml3 crc_sml dijkstra_sml

Runtime on Conf. 1 1980.42 239.91 328.69 1.37 2.46 188.22 442.41

Runtime on Conf. 2 1011.63 53.32 185.52 1.05 1.66 43.72 187.67

Runtime on Conf. 3 834.11 53.25 93.68 0.32 0.63 42.97 134.31

Runtime on Conf. 4 684.62 53.15 75.03 0.26 0.51 42.97 93.31

Runtime on Conf. 5 448.90 53.15 74.86 0.26 0.51 42.97 86.51

Runtime on Conf. 6 205.25 53.15 74.86 0.26 0.51 42.97 83.05

Vulnerability on Conf. 1 4171.4 315.1 376.1 1.7 3.1 171.2 2370.3

Vulnerability on Conf. 2 965179.8 41038.1 334963.9 1708.0 2705.0 132178.3 277271.4

Vulnerability on Conf. 3 1459772.8 94799.9 546614.4 1540.6 3154.7 152849.7 385777.1

Vulnerability on Conf. 4 2388614.3 222481.6 709463.0 1301.9 3210.0 186194.8 591639.0

Vulnerability on Conf. 5 5602028.0 424776.5 740064.1 1354.9 3367.6 191300.9 846289.5

Vulnerability on Conf. 6 6530436.1 426503.9 740064.1 1354.9 3367.6 193001.8 1724177.3

Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Task 16

dijkstra fft fft jpeg jpeg jpeg jpeg qsort sha

dijkstra_lrg fft_sml1 fft_sml2 jpeg_sml1 jpeg_sml2 jpeg_lrg1 jpeg_lrg2 qsort_sml sha_sml

2057.38 850.96 1923.92 238.82 66.30 896.22 229.97 153.59 95.28

832.04 412.71 935.99 86.04 32.56 319.03 111.72 75.57 20.04

626.39 286.91 641.06 58.85 18.51 270.63 59.29 46.12 17.23

434.72 224.98 479.29 52.79 14.62 198.36 51.36 45.00 17.06

400.41 183.04 417.04 51.17 14.12 192.59 50.00 44.05 16.74

382.88 182.60 417.02 50.89 14.12 191.62 49.23 43.04 16.74

11417.5 3562.3 12765.0 4160.3 169.2 56258.2 755.9 10589.2 140.6

1252086.8 463504.7 1091299.2 140259.8 53306.2 11540509.4 161705.0 118478.2 30428.2

1811976.1 667661.5 1598447.8 184417l.5 70113.3 11850739.6 206141.0 130503.2 46806.2

2880579.7 1133958.1 2651166.5 316602.2 118874.8 1151005.5 415712.0 174905.9 88481.7

4148898.8 1476214.0 3038682.2 501870.4 197558.2 1855734.6 620950.8 223119.3 153368.5

8638330.6 4042453.5 3223703.4 655647.4 283364.1 2480431.9 1181311.0 323458.3 153589.2

Task 17 Task 18 Task 19 Task 20 Task 21 Task 22 Task 23 Task 24 Task 25

sha strsrch strsrch ssn ssn ssn ssn ssn ssn

sha_lrg strgsrch_sml strsrch_lrg ssn_sml1 ssn_sml2 ssn_sml3 ssn_lrg1 ssn_lrg2 ssn_lrg3

991.69 1.75 43.02 143.30 28.42 12.13 2043.75 849.21 226.69

208.21 1.04 23.63 30.08 11.71 5.10 390.87 379.17 105.44

177.25 0.62 14.33 20.96 7.45 2.82 282.18 245.82 58.83

173.88 0.45 10.49 20.25 5.09 2.42 279.57 148.28 43.05

173.88 0.45 10.48 20.24 5.07 2.42 279.48 147.57 43.02

173.88 0.45 10.48 20.24 5.05 2.42 279.45 147.57 43.01

1465.8 1.2 68.7 222.9 121.9 44.3 16179.7 38144.7 11476.0

317100.1 1106.5 27954.0 52800.4 12776.3 7369.5 515954.7 467280.9 267585.5

487613.4 1611.7 51986.9 55307.3 21487.3 8247.0 665690.1 930325.9 309314.3

929878.2 1732.8 80046.3 79470.4 24835.8 10183.9 2215638.8 1152520.6 315312.6

1618482.9 1773.3 87641.1 168981.9 31464.6 13495.2 2748450.9 1373224.1 377518.1

1620777.6 1773.3 89015.0 196048.8 46562.1 16895.8 2896506.3 1662613.3 439999.9

Table 6. Benchmark programs.

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 95

3.3.2 Experimental results

We synthesized heterogeneous multiprocessor systems under various real-time and SEU
vulnerability constraints so that we could examine their chip areas. We assumed that the
arrival time of every task was zero and that the deadline time of every task was same as the
others. We also assumed that there was no SEU vulnerability constraint on each task, that is

<̂=Z"5W XZ5� = ∞. Generally speaking, the existence of loosely-bounded variables causes long

computation time. It is quite easy to guess that the assumptions make exploration space
huge and result in long computation time. The assumption, however, is helpful to obtaining
the lower bound on chip area for given SEU vulnerability constraints. The deadline time of
all tasks ranged from 3500 to 9500 million cycles and SEU vulnerability constraints of an
entire system ranged from 500 to 50000 [107�� errors/system]. Fig. 11 shows the results of
heterogeneous multiprocessor synthesis. Chip area ranged from 80 to 320 in arbitrary unit.
When we tightened the SEU vulnerability constraints under fixed real-time constraints,
more processor cores which have no cache memory were utilized. Similarly, when we
tightened the real-time constraints under fixed SEU vulnerability constraints, more
processor cores which had a sufficient and minimal size of cache memory were utilized.
Tighter SEU vulnerability constraints worked for selecting a smaller size of a cache memory
while tighter real-time constraints worked for selecting a larger size of a cache memory. The
figure clearly shows that relaxing constraints reduced the chip area of a multiprocessor
system.

Fig. 11. Heterogeneous multiprocessor synthesis result.

We show four synthesis examples in Tables 7, 8, 9, and 10. We name them ��, ��, �;,
and �8 respectively. For Synthesis ��, we gave the constraints that V>� >!XZ�� = 3500 [M

cycles] and <̂=Z"5_`` = 5000 [107�� errors/system]. In this synthesis, a heterogeneous

multiprocessor was synthesized which had two Conf. 1 processor cores and a Conf. 2
processor core as shown in Table 7.

Real time constraint

(deadline time)

[M cycles]

SEU vulnerability

constraint

[10 errors/system]-15

3500
4500

5500
6500

7500
8500

9500 50000
10000

5000
1000

500

Chip area

[a.u.]

0

50

100

150

200

250

300

350

Embedded Systems – Theory and Design Methodology 96

For Synthesis ��, we gave the constraints that V>� >!XZ�� = 3500 [M cycles] and <̂=Z"5_`` =
500 [107�� errs/syst]. Only the constraint on <̂=Z"5_`` became tighter in Synthesis �� than in

Synthesis ��. Table 8 shows that more reliable processor cores were utilized for achieving

the tighter vulnerability constraint.

For Synthesis �;, we gave the constraints that V>� >!XZ�� = 3500 [M cycles] and <̂=Z"5_`` =
50000 [107�� errs/syst]. Only the constraint on <̂=Z"5_`` became looser than in Synthesis ��.

In this synthesis, a single Conf. 4 processor core was utilized as shown in Table 9. The looser

constraint caused that a more vulnerable and greater processor core was utilized. The chip

area was reduced in total.

For Synthesis �8, we gave the constraints that T>� >!XZ�� = 4500 and <̂=Z"5_`` = 5000 [107��

errs/syst]. Only the constraint on V>� >!XZ�� became looser than in Synthesis ��. In this

synthesis, a Conf. 1 processor core and a Conf. 2 processor core were utilized as shown in

Table 10. The looser constraint on deadline time caused that a subset of the processor cores

in Synthesis �� were utilized to reduce chip area.

 Tasks

CPU 1 (Conf. 1) {10, 13, 20, 25}
CPU 2 (Conf. 1) {17, 23}
CPU 3 (Conf. 2) {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 24}

Table 7. Result for �� (Vdeadline� = 3.5 × 10�		cycles, ĉonstall
= 5 × 107��	errs/syst).

 Tasks

CPU 1 (Conf. 1) {1, 2, 3, 4, 5, 6, 7, 11, 18, 22}
CPU 2 (Conf. 1) {8, 9, 14, 15, 16, 21}
CPU 3 (Conf. 1) {10, 12, 13, 19, 25}
CPU 4 (Conf. 1) {17, 20, 23}
CPU 5 (Conf. 1) {24}

Table 8. Result for �� (Vdeadline� = 3.5 × 10�		cycles, ĉonstall
= 5 × 107�;	errs/syst).

 Tasks

CPU 1 (Conf. 4) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

Table 9. Result for �; (Vdeadline� = 3.5 × 10�		cycles, ĉonstall
= 5 × 107��	errs/syst).

 Tasks

CPU 1 (Conf. 1) {1, 6, 10, 14, 16, 19, 21, 25}
CPU 2 (Conf. 2) {2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 20, 22, 23, 24}

Table 10. Result for �8 (Vdeadline� = 4.5 × 10�		cycles, ĉonstall
= 5 × 107��	errs/syst).

3.3.3 Conclusion

We reviewed a heterogeneous multiprocessor synthesis paradigm in which we took real-

time and SEU vulnerability constraints into account. We formally defined a heterogeneous

multiprocessor synthesis problem in the form of an MILP model. By solving the problem

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 97

instances, we synthesized heterogeneous multiprocessor systems. Our experiment showed

that relaxing constraints reduced chip area of heterogeneous multiprocessor systems. There

exists a trade-off between chip area and another constraint (performance or reliability) in

synthesizing heterogeneous multiprocessor systems.

In the problem formulation we mainly focused on heterogeneous “multi-core” processor

synthesis and ignored inter-task communication overhead time under two assumptions: (i)

computation is the most dominant factor in execution time, (ii) sharing main memory and

communication circuitry among several processor cores does not affect execution time.

From a practical point of view, runtime of a task changes, depending on the other tasks

which run simultaneously because memory accesses from multiple processor cores may

collide on a shared hardware resource such as a communication bus. If task collisions on a

shared communication mechanism cause large deviation on runtime, system designers may

generate a customized on-chip network design with both a template processor configuration

and the Drinic’s technique (Drinic et al., 2006) before heterogeneous system synthesis so that

such collisions are reduced.

From the viewpoint of commodification of ICs, we think that a heterogeneous

multiprocessor consisting of a reliable but slow processor core and a vulnerable but fast one

would be sufficient for many situations in which reliability and performance requirements

differ among tasks. General-purpose processor architecture should be studied further for

achieving both reliability and performance in commodity processors.

4. Concluding remarks

This chapter presented simulation and synthesis technique for a computer system. We

presented an accurate vulnerability estimation technique which estimates the

vulnerability of a computer system at the ISS level. Our vulnerability estimation technique

is based on cycle-accurate ISS level simulation which is much faster than logic, transistor,

and device simulations. Our technique, however, is slow for simulating large-scale

programs. From the viewpoint of practicality fast vulnerability estimation techniques

should be studied.

We also presented a multiprocessor synthesis technique for an embedded system. The

multiprocessor synthesis technique is powerful to develop a reliable embedded system. Our

synthesis technique offers system designers a way to a trade-off between chip area,

reliability, and real-time execution. Our synthesis technique is mainly specific to “multi-

core” processor synthesis because we simplified overhead time for bus arbitration. Our

synthesis technique should be extended to “many-core” considering overhead time for

arbitration of communication mechanisms.

5. References

Asadi, G. H.; Sridharan, V.; Tahoori, M. B. & Kaeli, D. (2005). Balancing performance and
reliability in the memory hierarchy, Proc. IEEE Int’l Symp. on Performance Analysis of
Systems and Software, pp. 269-279, ISBN 0-7803-8965-4, Austin, Texas, USA, March
2005

Embedded Systems – Theory and Design Methodology 98

Asadi, H.; Sridharan, V.; Tahoori, M. B. & Kaeli, D. (2006). Vulnerability analysis of L2 cache
elements to single event upsets, Proc. Design, Automation and Test in Europe Conf.,
pp. 1276–1281, ISBN 3-9810801-0-6, Leuven, Belgium, March 2006

Baumann, R. B. Radiation-induced soft errors in advanced semiconductor technologies,
IEEE Trans. on device and materials reliability, Vol. 5, No. 3, (September 2005), pp. 305-
316, ISSN 1530-4388

Biswas, A.; Racunas, P.; Cheveresan, R.; Emer, J.; Mukherjee, S. S. & Rangan, R. (2005).
Computing architectural vulnerability factors for address-based structures, Proc.
IEEE Int’l Symp. on Computer Architecture, pp. 532–543, ISBN 0-7695-2270-X,
Madison, WI, USA, June 2005

Degalahal, V.; Vijaykrishnan, N.; Irwin, M. J.; Cetiner, S.; Alim, F. & Unlu, K. (2004). SESEE:
soft error simulation and estimation engine, Proc. MAPLD Int’l Conf., Submission
192, Washington, D.C., USA, September 2004

Drinic, M.; Krovski, D.; Megerian, S. & Potkonjak, M. (2006). Latency guided on-chip bus-
network design, IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 25, No. 12, (December 2006), pp. 2663-2673, ISSN 0278-0070

Elakkumanan, P.; Prasad, K. & Sridhar, R. (2006). Time redundancy based scan flip-flop
reuse to reduce SER of combinational logic, Proc. IEEE Int’l Symp. on Quality
Electronic Design, pp. 617-622, ISBN 978-1-4244-6455-5, San Jose, CA, USA, March
2006

Guthaus, M. R.; Ringenberg, J. S.; Ernst, D.; Austin, T. M.; Mudge, T. & Brown, R. B. (2001).
MiBench: A Free, commercially representative embedded benchmark suite, Proc.
IEEE Workshop on Workload Characterization, ISBN 0-7803-7315-4, Austin, TX, USA,
December 2001

Hennessy, J. L. & Patterson, D. A. (2002). Computer architecture: a quantitative approach,
Morgan Kaufmann Publishers Inc., ISBN 978-1558605961, San Francisco, CA, USA

Karnik, T.; Bloechel, B.; Soumyanath, K.; De, V. & Borkar, S. (2001). Scaling trends of cosmic

ray induced soft errors in static latches beyond 0.18 µm, Proc. Symp. on VLSI
Circuits, pp. 61–62, ISBN 4-89114-014-3, Tokyo, Japan, June 2001

Li, X.; Adve, S. V.; Bose, P. & Rivers, J. A. (2005). SoftArch: An architecture level tool for
modeling and analyzing soft errors, Proc. IEEE Int’l Conf. on Dependable Systems and
Networks, pp. 496–505, ISBN 0-7695-2282-3, Yokohama, Japan, June 2005

May, T. C. & Woods, M. H. (1979). Alpha-particle-induced soft errors in dynamic memories,
IEEE Trans. on Electron Devices, vol. 26, Issue 1, (January 1979), pp. 2–7, ISSN 0018-
9383

Mukherjee, S. S.; Weaver, C.; Emer, J.; Reinhardt, S. K. & Austin, T. (2003). A systematic
methodology to compute the architectural vulnerability factors for a high-
performance microprocessor, Proc. IEEE/ACM Int’l Symp. on Microarchitecture, pp.
29-40, ISBN 0-7695-2043-X, San Diego, CA, USA, December 2003.

Mukherjee, S. S.; Emer, J. & Reinhardt, S. K. (2005). The soft error problem: an architectural
perspective, Proc. IEEE Int’l Symp. on HPCA, pp.243-247, ISBN 0-7695-2275-0, San
Francisco, CA, USA, February 2005

Rebaudengo, M.; Reorda, M. S. & Violante, M. (2003). An accurate analysis of the effects of
soft errors in the instruction and data caches of a pipelined microprocessor, Proc.
Design, Automation and Test in Europe, pp.10602-10607, ISBN 0-7695-1870-2, Munich,
Germany, 2003

Simulation and Synthesis Techniques for Soft Error-Resilient Microprocessors 99

Seifert, N.; Moyer, D.; Leland, N. & Hokinson, R. (2001a). Historical trend in alpha-particle
induced soft error rates of the Alpha(tm) microprocessor,” Proc. IEEE Int’l
Reliability Physics Symp., pp. 259–265, ISBN 0-7803-6587-9, Orlando, FL, USA, April
2001.

Seifert, N.; Zhu, X.; Moyer, D.; Mueller, R.; Hokinson, R.; Leland, N.; Shade, M. &
Massengill, L. (2001b). Frequency dependence of soft error rates for sub-micron
CMOS technologies, Technical Digest of Int’l Electron Devices Meeting, pp. 14.4.1–
14.4.4, ISBN 0-7803-7050-3, Washington, DC, USA, December 2001

Shivakumar, P.; Kistler, M.; Keckler, S. W.; Burger, D. & Alvisi, L. (2002). Modeling the effect
of technology trends of the soft error rate of combinational logic, Proc. Int’l Conf. on
Dependable Systems and Networks, pp. 389-398, ISBN 0-7695-1597-5, Bethesda, MD,
June 2002

Slayman, C. W. (2005) Cache and memory error detection, correction and reduction
techniques for terrestrial servers and workstations, IEEE Trans. on Device and
Materials Reliability, vol. 5, no. 3, (September 2005), pp. 397-404, ISSN 1530-4388

Sugihara, M.; Ishihara, T.; Hashimoto, K. & Muroyama, M. (2006). A simulation-based soft
error estimation methodology for computer systems, Proc. IEEE Int’l Symp. on
Quality Electronic Design, pp. 196-203, ISBN 0-7695-2523-7, San Jose, CA, USA,
March 2006

Sugihara, M.; Ishihara, T. & Murakami, K. (2007a). Task scheduling for reliable cache
architectures of multiprocessor systems, Proc. Design, Automation and Test in Europe
Conf., pp. 1490-1495, ISBN 978-3-98108010-2-4, Nice, France, April 2007

Sugihara, M.; Ishihara, T. & Murakami, K. (2007b). Architectural-level soft-error modeling
for estimating reliability of computer systems, IEICE Trans. Electron., Vol. E90-C,
No. 10, (October 2007), pp. 1983-1991, ISSN 0916-8524

Sugihara, M. (2008a). SEU vulnerability of multiprocessor systems and task scheduling for
heterogeneous multiprocessor systems, Proc. Int’l Symp. on Quality Electronic Design,
ISBN 978-0-7695-3117-5, pp. 757-762, San Jose, CA, USA, March 2008

Sugihara, M.; Ishihara, T. & Murakami, K. (2008b). Reliable cache architectures and task
scheduling for multiprocessor systems, IEICE Trans. Electron., Vol. E91-C, No. 4,
(April 2008), pp. 410-417, ISSN 0916-8516

Sugihara, M. (2009a). Reliability inherent in heterogeneous multiprocessor systems and task
scheduling for ameliorating their reliability, IEICE Trans. Fundamentals, Vol. E92-A,
No. 4, (April 2009), pp. 1121-1128, ISSN 0916-8508

Sugihara, M. (2009b). Heterogeneous multiprocessor synthesis under performance and
reliability constraints, Proc. EUROMICRO Conf. on Digital System Design, pp. 333-
340, ISBN 978-0-7695-3782-5, Patras, Greece, August 2009.

Sugihara, M. (2010a). Dynamic control flow checking technique for reliable microprocessors,
Proc. EUCROMICRO Conf. on Digital System Design, pp. 232-239, ISBN 978-1-4244-
7839-2, Lille, France, September 2010

Sugihara, M. (2010b). On synthesizing a reliable multiprocessor for embedded systems,
IEICE Trans. Fundamentals, Vol. E93-A, No. 12, (December 2010), pp. 2560-2569,
ISSN 0916-8508

Sugihara, M. (2011). A dynamic continuous signature monitoring technique for reliable
microprocessors, IEICE Trans. Electron., Vol. E94-C, No. 4, (April 2011), pp. 477-486,
ISSN 0916-8524

Embedded Systems – Theory and Design Methodology 100

Tosaka, Y.; Satoh, S. & Itakura, T. (1997). Neutron-induced soft error simulator and its
accurate predictions, Proc. IEEE Int’l Conf. on SISPAD, pp. 253–256, ISBN 0-7803-
3775-1, Cambridge, MA , USA, September 1997

Tosaka, Y.; Kanata, H.; Itakura, T. & Satoh, S. (1999). Simulation technologies for cosmic ray
neutron-induced soft errors: models and simulation systems, IEEE Trans. on Nuclear
Science, vol. 46, (June, 1999), pp. 774-780, ISSN 0018-9499

Tosaka, Y.; Ehara, H.; Igeta, M.; Uemura, T & Oka, H. (2004a). Comprehensive study of soft
errors in advanced CMOS circuits with 90/130 nm technology, Technical Digest of
IEEE Int’l Electron Devices, pp. 941–948, ISBN 0-7803-8684-1, San Francisco, CA,
USA, December 2004

Tosaka, Y.; Satoh, S. & Oka, H. (2004b). Comprehensive soft error simulator NISES II, Proc.
IEEE Int’l Conf. on SISPAD, pp. 219–226, ISBN 978-3211224687, Munich, Germany,
September 2004

Wang, N. J.; Quek, J.; Rafacz, T. M. & Patel, S. J. (2004). Characterizing the effects of transient
faults on a high-performance processor pipeline, Proc. IEEE Int’l Conf. on Dependable
Systems and Networks, pp.61-70, ISBN 0-7695-2052-9, Florence, Italy, June 2004

Williams, H. P. (1999). Model Building in Mathematical Programming, John Wiley & Sons,
1999

ILOG Inc., CPLEX 11.2 User’s Manual, 2008

0

Real-Time Operating Systems and Programming
Languages for Embedded Systems

Javier D. Orozco and Rodrigo M. Santos
Universidad Nacional del Sur - CONICET

Argentina

1. Introduction

Real-time embedded systems were originally oriented to industrial and military special
purpose equipments. Nowadays, mass market applications also have real-time requirements.
Results do not only need to be correct from an arithmetic-logical point of view but they
also need to be produced before a certain instant called deadline (Stankovic, 1988). For
example, a video game is a scalable real-time interactive application that needs real-time
guarantees; usually real-time tasks share the processor with other tasks that do not have
temporal constraints. To organize all these tasks, a scheduler is typically implemented.
Scheduling theory addresses the problem of meeting the specified time requirements and it is
at the core of a real-time system.

Paradoxically, the significant growth of the market of embedded systems has not been
accompanied by a growth in well-established developing strategies. Up to now, there is not an
operating system dominating the market; the verification and testing of the systems consume
an important amount of time.

A sign of this is the contradictory results between two prominent reports. On the one hand,
The Chaos Report (The Chaos Report, 1994) determined that about 70 % had problems; 60 % of
those projects had problems with the statement of requirements. On the other hand, a more
recent evaluation (Maglyas et al., 2010) concluded that about 70% of them could be considered
successful. The difference in the results between both studies comes from the model adopted
to analyze the collected data. While in The Chaos Report (1994) a project is considered to be
successful if it is completed on time and budget, offering all features and functions as initially
specified, in (Maglyas et al., 2010) a project is considered to be successful even if there is a
time overrun. In fact, in (Maglyas et al., 2010) only about 30% of the projects were finished
without any overruns, 40% have time overrun and the rest of the projects have both overruns
(budget and time) or were cancelled. Thus, in practice, both studies coincide in that 70 % of
the projects had some kind of overrun but they differ in the criteria used to evaluate a project
as successful.

In the literature there is no study that conducts this kind of analysis for real time projects in
particular. The evidence from the reports described above suggests that while it is difficult
to specify functional requirements, specifying non functional requirements such as temporal
constraints, is likely to be even more difficult. These usually cause additional redoes and
errors motivated by misunderstandings, miscommunications or mismanagement. These

5

2 Will-be-set-by-IN-TECH

errors could be more costly on a time critical application project than on a non real time one
given that not being time compliant may cause a complete re-engineering of the system. The
introduction of non-functional requirements such as temporal constraints makes the design
and implementation of these systems increasingly costly and delays the introduction of the
final product into the market. Not surprisingly, development methodologies for real-time
frameworks have become a widespread research topic in recent years.

Real-time software development involves different stages: modeling, temporal
characterization, implementation and testing. In the past, real-time systems were developed
from the application level all the way down to the hardware level so that every piece of code
was under control in the development process. This was very time consuming. Given that the
software is at the core of the embedded system, reducing the time needed to complete these
activities reduces the time to market of the final product and, more importantly, it reduces the
final cost. In fact, as hardware is becoming cheaper and more powerful, the actual bottleneck
is in software development. In this scenario, there is no guarantee that during the software
life time the hardware platform will remain constant or that the whole system will remain
controlled by a unique operating system running the same copy of the operating embedded
software. Moreover, the hardware platform may change even while the application is being
developed. Therefore, it is then necessary to introduce new methods to extend the life time of
the software (Pleunis, 2009).

In this continuously changing environment it is necessary to introduce certainty for the
software continuity. To do such a thing, in the last 15 years the paradigm Write Once Run
Anywhere (WORA) has become dominant. There are two alternatives for this: Java and
.NET. The first one was first introduced in the mid nineties and it is supported by Sun
Microsystems and IBM among others (Microsystems, 2011). Java introduces a virtual machine
that eventually runs on any operating system and hardware platform. .NET was released at
the beginning of this century by Microsoft and is oriented to Windows based systems only
and does not implement a virtual machine but produces a specific compilation of the code for
each particular case. (Zerzelidis & Wellings, 2004) analyze the requirements for a real-time
framework for .NET.

Java programming is well established as a platform for general purpose applications.
Nevertheless, hardware independent languages like Java are not used widely for the
implementation of control applications because of low predictability, no real-time garbage
collection implementation and cumbersome memory management (Robertz et al., 2007).
However, this has changed in the last few years with the definition and implementation of
the Real-Time Specification for Java. In 2002, the specification for the real-time Java (RTSJ)
proposed in (Gosling & Bollella, 2000) was finally approved (Microsystems, 2011). The first
commercial implementation was issued in the spring of 2003. In 2005, the RTSJ 1.0.1 was
released together with the Real-Time Specification (RI). In September 2009 Sun released the
Java Real-Time System 2.2 version which is the latest stable one. The use of RTSJ as a
development language for real-time systems is not generalized, although there have been
many papers on embedded systems implementations based on RTSJ and even several full Java
microprocessors on different technologies have been proposed and used (Schoeberl, 2009).
However, Java is penetrating into more areas ranging from Internet based products to small
embedded mobile products like phones as well as from complex enterprise systems to small
components in a sensor network. In order to extend the life of the software, even over a
particular device, it becomes necessary to have transparent development platforms to the

102 Embedded Systems – Theory and Design Methodology

Real-Time Operating Systems and Programming Languages for Embedded Systems 3

hardware architecture, as it is the case of RTSJ. This is undoubtedly a new scenario in the
development of embedded real time systems. There is a wide range of hardware possibilities
in the market (microcontrollers, microprocessors and DSPs); also there are many different
programming languages, like C, C++, C#, Java, Ada; and there are more than forty real-time
operating systems (RTOS) like RT-Linux, Windows Embedded or FreeRTOS. This chapter
offers a road-map for the design of real-time embedded systems evaluating the pros and cons
of the different programming languages and operating systems.

Organization: This chapter is organized in the following way. Section 2 describes the
main characteristics that a real-time operating system should have. Section 3 discusses the
scope of some of the more well known RTOSs. Section 4 introduces the languages used
for real-time programming and compares the main characteristics. Section 5 presents and
compares different alternatives for the implementation of real-time Java. Finally, Section 6
concludes.

2. Real time operating system

The formal definition of a real-time system was introduced in Section 1. In a nutshell these
are systems which have additional non-functional requirements that are as important as the
functional ones for the correct operation. It is not enough to produce correct logical-arithmetic
results; these results must also be accomplished before a certain deadline (Stankovic, 1988).
This timeliness behavior imposes extra constraints that should be carefully considered during
the whole design process. If these constraints are not satisfied, the system risks severe
consequences. Traditionally, real-time systems are classified as hard, firm and soft. The first
class is associated to critical safety systems where no deadlines can be missed. The second
class covers some applications where occasional missed deadlines can be tolerated if they
follow a certain predefined pattern. The last class is associated to systems where the missed
deadlines degrade the performance of the applications but do not cause severe consequences.
An embedded system is any computer that is a component of a larger system and relies on
its own microprocessor (Wolf, 2002). It is said to work in real-time when it has to comply
with time constraints, being hard, firm or soft. In this case, the software is encapsulated in
the hardware it controls. There are several examples of real-time embedded systems such as
the controller for the power-train in cars, voice processing in digital phones, video codecs for
DVD players or Collision Warning Systems in cars and video surveillance cam controllers.

RTOS have special characteristics that make them different to common OS. In the particular
case of embedded systems, the OS usually allows direct access to the microprocessor registers,
program memory and peripherals. These characteristics are not present in traditional OS as
they preserve the kernel areas from the user ones. The kernel is the main part of an operating
system. It provides the task dispatching, communication and synchronization functions. For
the particular case of embedded systems, the OS is practically reduced to these main functions.
Real-time kernels have to provide primitives to handle the time constraints for the tasks and
applications (deadlines, periods, worst case execution times (WCET)), a priority discipline to
order the execution of the tasks, fast context switching, a small footprint and small overheads.

The kernel provides services to the tasks such as I/O and interrupt handling and memory
allocation through system-calls. These may be invoked at any instant. The kernel has to be
able to preempt tasks when one of higher priority is ready to execute. To do this, it usually has
the maximum priority in the system and executes the scheduler and dispatcher periodically

103Real-Time Operating Systems and Programming Languages for Embedded Systems

4 Will-be-set-by-IN-TECH

based on a timer tick interrupt. At these instants, it has to check a ready task queue structure
and if necessary remove the running task from the processor and dispatch a higher priority
one. The most accepted priority discipline used in RTOS is fixed priorities (FP) (eCosCentric,
2011; Enea OSE, 2011; LynxOS RTOS, The real-time operating system for complex embedded systems,
2011; Minimal Real-Time Operating System, 2011; RTLinuxFree, 2011; The free RTOS Project,
2011; VxWorks RTOS, 2011; Windows Embedded, 2011). However, there are some RTOSs that
are implementing other disciplines like earliest deadline first (EDF) (Erika Enterprise: Open
Source RTOS for single- and multi-core applications, 2011; Service Oriented Operating System, 2011;
S.Ha.R.K.: Soft Hard Real-Time Kernel, 2007). Traditionally, real-time systems scheduling theory
starts considering independent, preemptive and periodic tasks. However, this simple model
is not useful when considering a real application in which tasks synchronize, communicate
among each other and share resources. In fact, task synchronization and communication
are two central aspects when dealing with real-time applications. The use of semaphores
and critical sections should be controlled with a contention policy capable of bounding the
unavoidable priority inversion and preventing deadlocks. The most common contention
policies implemented at kernel level are the priority ceiling protocol (Sha et al., 1990) and
the stack resource policy (Baker, 1990). Usually, embedded systems have a limited memory
address space because of size, energy and cost constraints. It is important then to have a
small footprint so more memory is available for the implementation of the actual application.
Finally, the time overhead of the RTOS should be as small as possible to reduce the interference
it produces in the normal execution of the tasks.

The IEEE standard, Portable Operating System Interface for Computer Environments (POSIX
1003.1b) defines a set of rules and services that provide a common base for RTOS (IEEE, 2003).
Being POSIX compatible provides a standard interface for the system calls and services that
the OS provides to the applications. In this way, an application can be easily ported across
different OSs. Even though this is a desirable feature for an embedded RTOS, it is not always
possible to comply with the standard and keep a small footprint simultaneously. Among the
main services defined in the POSIX standard, the following are probably the most important
ones:

• Memory locking and Semaphore implementations to handle shared memory accesses and
synchronization for critical sections.

• Execution scheduling based on round robin and fixed priorities disciplines with thread
preemption. Thus the threads can be waiting, executing, suspended or blocked.

• Timers are at the core of any RTOS. A real-time clock, usually the system clock should
be implemented to keep the time reference for scheduling, dispatching and execution
of threads.Memory locking and Semaphore implementations to handle shared memory
accesses and synchronization for critical sections.

2.1 Task model and time constraints

A real-time system is temporally described as a set of tasks S(m) = {τ1, . . . , τi, . . . , τm}
where each task is described by a tuple (WCETi, Ti, Di) where Ti is the period or minimum
interarrival time and Di is the relative deadline that should be greater than or equal to the
worst case response time. With this description, the scheduling conditions of the system for
different priority disciplines can be evaluated. This model assumes that the designer of the
system can measure in a deterministic way the worst case execution time of the tasks. Yet,

104 Embedded Systems – Theory and Design Methodology

Real-Time Operating Systems and Programming Languages for Embedded Systems 5

this assumes knowledge about many hardware dependent aspects like the microprocessor
architecture, context switching times and interrupts latencies. It is also necessary to know
certain things about the OS implementation such as the timer tick and the priority discipline
used to evaluate the kernel interference in task implementation. However, these aspects are
not always known beforehand so the designer of a real-time system should be careful while
implementing the tasks. Avoiding recursive functions or uncontrolled loops are basic rules
that should be followed at the moment of writing an application. Programming real-time
applications requires the developer to be specially careful with the nesting of critical sections
and the access to shared resources. Most commonly, the kernel does not provide a validation
of the time constraints of the tasks, thus these aspects should be checked and validated at the
design stage.

2.2 Memory management

RTOS specially designed for small embedded system should have very simple memory
management policies. Even if dynamic allocations can provide a better performance and
usage, they add an important degree of complexity. If the embedded system is a small one
with a small address space, the application is usually compiled together with the OS and the
whole thing is burnt into the ROM memory of the device. If the embedded system has a
large memory address space, such as the ones used in cell phones or tablets, the OS behaves
more like a traditional one and thus, dynamic handling of memory allocations for the different
tasks is possible. The use of dynamic allocations of memory also requires the implementation
of garbage collector functions for freeing the memory no longer in use.

2.3 Scheduling algorithms

To support multi-task real-time applications, a RTOS must be multi-threaded and
preemptible. The scheduler should be able to preempt any thread in the system and dispatch
the highest priority active thread. Sometimes, the OS allows external interrupts to be enabled.
In that case, it is necessary to provide proper handlers for these. These handlers include
a controlled preemption of the executing thread and a safe context switch. Interrupts are
usually associated to kernel interrupt service routines (ISR), such as the timer tick or serial port
interfaces management. The ISR in charge of handling the devices is seen by the applications
like services provided by the OS.

RTOS should provide a predictable behavior and respond in the same way to identical
situations. This is perhaps the most important requirement that has to be satisfied. There are
two approaches to handle the scheduling of tasks: time triggered or event triggered. The main
characteristic of the first approach is that all activities are carried out at certain points in time
known a prori. For this, all processes and their time specifications must be known in advance.
Otherwise, an efficient implementation is not possible. Furthermore, the communication and
the task scheduling on the control units have to be synchronized during operation in order
to ensure the strict timing specifications of the system design (Albert, 2004). In this case the
task execution schedule is defined off-line and the kernel follows it during run time. Once
a feasible schedule is found, it is implemented with a cycle-executive that repeats itself each
time. It is difficult to find an optimum schedule but onces it is found the implementation is
simple and can be done with a look-up table. This approach does not allow a dynamic system
to incorporate new tasks or applications. A modification on the number of executing tasks
requires the recomputation of the schedule and this is rather complex to be implemented on

105Real-Time Operating Systems and Programming Languages for Embedded Systems

6 Will-be-set-by-IN-TECH

line. In the second approach, external or internal events are used to dispatch the different
activities. This kind of designs involve creating systems which handle multiple interrupts.
For example, interrupts may arise from periodic timer overflows, the arrival of messages on a
CAN bus, the pressing of a switch, the completion of an analogue-to-digital conversion and so
on. Tasks are ordered following a priority order and the highest priority one is dispatched each
time. Usually, the kernel is based on a timer tick that preempts the current executing task and
checks the ready queue for higher priority tasks. The priority disciplines most frequently used
are round robin and fixed priorities. For example, the Department of Defense of the United
States has adopted fixed priorities Rate Monotonic Sheduling (priority is assigned in reverse
order to periods, giving the highest priority to the shortest period) and with this has made
it a de facto standard Obenza (1993). The event triggered scheduling can introduce priority
inversions, deadlocks and starvation if the access to shared resources and critical sections
is not controlled in a proper manner. These problems are not acceptable in safety critical
real-time applications. The main advantage of event-triggered systems is their ability to fastly
react to asynchronous external events which are not known in advance (Albert & Gerth, 2003).
In addition, event-triggered systems possess a higher flexibility and allow in many cases the
adaptation to the actual demand without a redesign of the complete system (Albert, 2004).

2.4 Contention policies for shared resources and critical sections

Contention policies are fundamental in event-triggered schedulers. RTOSs have different
approaches to handle this problem. A first solution is to leave the control mechanism in hands
of the developers. This is a non-portable, costly and error prone solution. The second one
implements a contention protocol based on priority inheritance (Sha et al., 1990). This solution
bounds the priority inversions to the longest critical section of each lower priority task. It does
not prevent deadlocks but eliminates the possibility of starvation. Finally, the Priority Ceiling
Protocol (PCP) (Sha et al., 1990) and the Stack Resource Policy (SRP) (Baker, 1990) bound the
priority inversion to the longest critical section of the system, avoid starvation and deadlocks.
Both policies require an active kernel controlling semaphores and shared resources. The SRP
performs better since it produces an early blocking avoiding some unnecessary preemptions
present in the PCP. However, both approaches are efficient.

3. Real time operating system and their scope

This section presents a short review on some RTOS currently available. The list is not
exhaustive as there are over forty academic and commercial developments. However, this
section introduces the reader to a general view of what can be expected in this area and the
kind of OS available for the development of real-time systems.

3.1 RTOS for mobile or small devices

Probably one of the most frequently used RTOS is Windows CE. Windows CE is now known
as Windows Embedded and its family includes Windows Mobile and more recently Windows
Phone 7 (Windows Embedded, 2011). Far from being a simplification of the well known OS
from Microsoft, Windows CE is a RTOS with a relatively small footprint and is used in several
embedded systems. In its actual version, it works on 32 bit processors and can be installed
in 12 different architectures. It works with a timer tick or time quantum and provides 256
priority levels. It has a memory management unit and all processes, threads, mutexes, events

106 Embedded Systems – Theory and Design Methodology

Real-Time Operating Systems and Programming Languages for Embedded Systems 7

and semaphores are allocated in virtual memory. It handles an accuracy of one millisecond
for SLEEP and WAIT related operations. The footprint is close to 400 KB and this is the main
limitation for its use in devices with small memory address spaces like the ones present in
wireless sensor networks microcontrollers.

eCos is an open source real-time operating system intended for embedded applications
(eCosCentric, 2011). The configurability technology that lies at the heart of the eCos system
enables it to scale from extremely small memory constrained SOC type devices to more
sophisticated systems that require more complex levels of functionality. It provides a highly
optimized kernel that implements preemptive real-time scheduling policies, a rich set of
synchronization primitives, and low latency interrupt handling. The eCos kernel can be
configured with one of two schedulers: The Bitmap scheduler and the Multi-Level Queue
(MLQ) scheduler. Both are preemptible schedulers that use a simple numerical priority to
determine which thread should be running. The number of priority levels is configurable
up to 32. Therefore thread priorities will be in the range of 0 to 31, with 0 being the highest
priority. The bitmap scheduler only allows one thread per priority level, so if the system is
configured with 32 priority levels then it is limited to only 32 threads and it is not possible
to preempt the current thread in favor of another one with the same priority. Identifying
the highest-priority runnable thread involves a simple operation on the bitmap, and an array
index operation can then be used to get hold of the thread data structure itself. This makes the
bitmap scheduler fast and totally deterministic. The MLQ scheduler allows multiple threads
to run at the same priority. This means that there is no limit on the number of threads
in the system, other than the amount of memory available. However operations such as
finding the highest priority runnable thread are a slightly bit more expensive than for the
bitmap scheduler. Optionally the MLQ scheduler supports time slicing, where the scheduler
automatically switches from one runnable thread to another when a certain number of clock
ticks have occurred.

LynxOS (LynxOS RTOS, The real-time operating system for complex embedded systems, 2011)
is a POSIX-compatible, multiprocess, multithreaded OS. It has a wide target of hardware
architectures as it can work on complex switching systems and also in small embedded
products. The last version of the kernel follows a microkernel design and has a minimum
footprint of 28KB. This is about 20 times smaller than Windows CE. Besides scheduling,
interrupt, dispatch and synchronize, there are additional services that are provided in the
form of plug-ins so the designer of the system may choose to add the libraries it needs for
a special purposes such as file system administration or TCP/IP support. The addition of
these services obviously increases the footprint but they are optional and the designer may
choose to have them or not. LynxOS can handle 512 priority levels and can implement several
scheduling policies including prioritized FIFO, dynamic deadline monotonic scheduling,
prioritized round robin, and time slicing among others.

FreeRTOS is an open source project (The free RTOS Project, 2011). It provides porting to 28
different hardware architectures. It is a multi-task operating system where each task has its
own stack defined so it can be preempted and dispatched in a simple way. The kernel provides
a scheduler that dispatches the tasks based on a timer tick according to a Fixed Priority
policy. The scheduler consists of an only-memory-limited queue with threads of different
priority. Threads in the queue that share the same priority will share the CPU with the round
robin time slicing. It provides primitives for suspending, sleeping and blocking a task if a

107Real-Time Operating Systems and Programming Languages for Embedded Systems

8 Will-be-set-by-IN-TECH

synchronization process is active. It also provides an interrupt service protocol for handling
I/O in an asynchronous way.

MaRTE OS is a Hard Real-Time Operating System for embedded applications that follows
the Minimal Real-Time POSIX.13 subset (Minimal Real-Time Operating System, 2011). It was
developed at University of Cantabria, Spain, and has many external contributions that have
provided drivers for different communication interfaces, protocols and I/O devices. MaRTE
provides an easy to use and controlled environment to develop multi-thread Real-Time
applications. It supports mixed language applications in ADA, C and C++ and there is
an experimental support for Java as well. The kernel has been developed with Ada2005
Real-Time Annex (ISO/IEC 8526:AMD1:2007. Ada 2005 Language Reference Manual (LRM),
2005). Ada 2005 Language Reference Manual (LRM), 2005). It offers some of the services
defined in the POSIX.13 subset like pthreads and mutexes. All the services have a time
bounded response that includes the dynamic memory allocation. Memory is managed as a
single address space shared by the kernel and the applications. MaRTE has been released
under the GNU General Public License 2.

There are many other RTOS like SHArK (S.Ha.R.K.: Soft Hard Real-Time Kernel, 2007), Erika
(Erika Enterprise: Open Source RTOS for single- and multi-core applications, 2011), SOOS (Service
Oriented Operating System, 2011), that have been proposed in the academic literature to validate
different scheduling and contention policies. Some of them can implement fault-tolerance and
energy-aware mechanisms too. Usually written in C or C++ these RTOSs are research oriented
projects.

3.2 General purpose RTOS

VxWorks is a proprietary RTOS. It is cross-compiled in a standard PC using both Windows
or Linux (VxWorks RTOS, 2011). It can be compiled for almost every hardware architecture
used in embedded systems including ARM, StrongARM and xScale processors. It provides
mechanisms for protecting memory areas for real-time tasks, kernel and general tasks. It
implements mutual exclusion semaphores with priority inheritance and local and distributed
messages queues. It is able to handle different file systems including high reliability file
systems and network file systems. It provides the necessary elements to implement the Ipv6
networking stack. There is also a complete development utility that runs over Eclipse.

RT-Linux was developed at the New Mexico School of Mines as an academic project
(RTLinuxFree, 2011)(RTLinuxFree, 2011). The idea is simple and consists in turning the base
GNU/Linux kernel into a thread of the Real-Time one. In this way, the RTKernel has control
over the traditional one and can handle the real-time applications without interference from
the applications running within the traditional kernel. Later RT-Linux was commercialized by
FMLabs and finally by Wind River that also commercializes VxWorks. GNU/Linux drivers
handle almost all I/O. First-In-First-Out pipes (FIFOs) or shared memory can be used to share
data between the operating system and RTCore. Several distributions of GNU/Linux include
RTLinux as an optional package.

RTAI is another real-time extension for GNU/Linux (RTAI - the RealTime Application Interface
for Linux, 2010). It stands for Real-Time Application Interface. It was developed for several
hardware architectures such as x86, x86_64, PowerPC, ARM and m68k. RTAI consists in
a patch that is applied to the traditional GNU/Linux kernel and provides the necessary
real-time primitives for programming applications with time constraints. There is also a

108 Embedded Systems – Theory and Design Methodology

Real-Time Operating Systems and Programming Languages for Embedded Systems 9

toolchain provided, RTAI-Lab, that facilitates the implementation of complex tasks. RTAI
is not a commercial development but a community effort with base at University of Padova.

QNX is a unix like system that was developed in Canada. Since 2009 it is a proprietary OS
(QNX RTOS v4 System Documentation, 2011). It is structured in a microkernel fashion with the
services provided by the OS in the form of servers. In case an specific server is not required it is
not executed and this is achieved by not starting it. In this way, QNX has a small footprint and
can run on many different hardware platforms. It is available for different hardware platforms
like the PowerPC, x86 family, MIPS, SH-4 and the closely related family of ARM, StrongARM
and XScale CPUs. It is the main software component for the Blackberry PlayBook. Also Cisco
has derived an OS from QNX.

OSE is a proprietary OS (Enea OSE, 2011). It was originally developed in Sweden. Oriented
to the embedded mobile systems market, this OS is installed in over 1.5 billion cell phones in
the world. It is structured in a microkernel fashion and is developed by telecommunication
companies and thus it is specifically oriented to this kind of applications. It follows an event
driven paradigm and is capable of handling both periodic and aperiodic tasks. Since 2009, an
extension to multicore processors has been available.

4. Real-time programming languages

Real-time software is necessary to comply not only with functional application requirements
but also with non functional ones like temporal restrictions. The nature of the applications
requires a bottom-up approach in some cases a top-down approach in others. This makes
the programming of real-time systems a challenge because different development techniques
need to be implemented and coordinated for a successful project.

In a bottom-up approach one programming language that can be very useful is assembler. It
is clear that using assembler provides access to the registers and internal operations of the
processor. It is also well known that assembler is quite error prone as the programmer has to
implement a large number of code lines. The main problem however is that using assembler
makes the software platform dependent on the hardware and it is almost impossible to port
the software to another hardware platform. Another language that is useful for a bottom-up
approach is C. C provides an interesting level of abstraction and still gives access to the
details of the hardware, thus allowing for one last optimization pass of the code. There
are C compilers developed for almost every hardware platform and this gives an important
portability to the code. The characteristics of C limits the software development in some
cases and this is why in the last few years the use of C++ has become popular. C++ extends
the language to include an object-oriented paradigm. The use of C++ provides a more
friendly engineering approach as applications can be developed based on the object- oriented
paradigm with a higher degree of abstraction facilitating the modeling aspects of the design.
C++ compilers are available for many platforms but not for so many as in the C case. With this
degree of abstraction, ADA is another a real-time language that provides resources for many
different aspects related to real-time programming as tasks synchronization and semaphores
implementations. All the programming languages mentioned up to now require a particular
compiler to execute them on a specific hardware platform. Usually the software is customized
for that particular platform. There is another approach in which the code is written once and
runs anywhere. This approach requires the implementation of a virtual machine that deals
with the particularities of the operating system and hardware platform. The virtual machine

109Real-Time Operating Systems and Programming Languages for Embedded Systems

10 Will-be-set-by-IN-TECH

presents a simple interface for the programmer, who does not have to deal with these details.
Java is probably the most well known WORA language and has a real-time extension that
facilitates the real-time programming.

In the rest of this section the different languages are discussed highlighting their pros and
cons in each case are given so the reader can decide which is the best option for his project.

4.1 Assembler

Assembler gives the lowest possible level access to the microprocessor architecture such as
registers, internal memory, I/O ports and interrupts handling. This direct access provides the
programmer with full control over the platform. With this kind of programming, the code
has very little portability and may produce hazard errors. Usually the memory management,
allocation of resources and synchronization become a cumbersome job that results in very
complex code structures. The programmer should be specialized on the hardware platform
and should also know the details of the architecture to take advantage of such a low level
programming. Assembler provides predictability on execution time of the code as it is
possible to count the clock states to perform a certain operation.

There is total control over the hardware and so it is possible to predict the instant at which the
different activities are going to be done.

Assembler is used in applications that require a high degree of predictability and are
specialized on a particular kind of hardware architecture. The verification, validation and
maintenance of the code is expensive. The life time of the software generated with this
language is limited by the end-of-life of the hardware.

The cost associated to the development of the software, which is high due to the high degree
of specialization, the low portability and the short life, make Assembler convenient only for
very special applications such as military and space applications.

4.2 C

C is a language that was developed by Denis Ritchie and Brian Kernighan. The language
is closely related to the development of the Unix Operating System. In 1978 the authors
published a book of reference for programming in C that was used for a 25 years. Later,
C was standardized by ANSI and the second edition of the book on included the changes
incorporated in the standardization of the language (ISO/IEC 9899:1999 - Programming
languages - C, 1999). Today, C is taught in all computer science and engineering courses and
has a compiler for almost every available hardware platform.

C is a function oriented language. This important characteristic allows the construction of
special purpose libraries that implement different functions like Fast Fourier Transforms,
Sums of Products, Convolutions, I/O ports handling or Timing. Many of these are available
for free and can be easily adapted to the particular requirements of a developer.

C offers a very simple I/O interface. The inclusion of certain libraries facilitates the
implementation of I/O related functions. It is also possible to construct a Hardware
Adaptation Layer in a simple way and introduce new functionalities in this way . Another
important aspect in C is memory management. C has a large variety of variable types that

110 Embedded Systems – Theory and Design Methodology

Real-Time Operating Systems and Programming Languages for Embedded Systems 11

include, among others, char, int, long, float and double. C is also capable of handling pointers
to any of the previous types of variables and arrays. The combination of pointers, arrays and
types produce such a rich representation of data that almost anything is addressable. Memory
management is completed with two very important operations: calloc and malloc that
reserve space memory and the corresponding free operation to return the control of the
allocated memory to the operating system.

The possibility of writing a code in C and compiling it for almost every possible hardware
platform, the use of libraries, the direct access and handling of I/O resources and the memory
management functions constitute excellent reasons for choosing this programming language
at the time of developing a real-time application for embedded systems.

4.3 C++

The object-oriented extension of C was introduced by Bjarne Stroustrup in 1985. In 1999
the language received the status of standard (ISO/IEC 14882:2003 - Programming languages
C++, 2003). C++ is backward compatible with C. That means that a function developed in
C can be compiled in C++ without errors. The language introduces the concept of Classes,
Constructors, Destructors and Containers. All these are included in an additional library that
extends the original C one.

In C++ it is possible to do virtual and multiple inheritance. As an object oriented language it
has a great versatility for implementing complex data and programming structures. Pointers
are extended and can be used to address classes and functions enhancing the rich addressable
elements of C. These possibilities require an important degree of expertise for the programmer
as the possibility of introducing errors is important.

C++ compilers are not as widespread as the C ones. Although the language is very powerful
in the administration of hardware, memory management and modeling, it is quite difficult
to master all the aspects it includes. The lack of compilers for different architectures limits
its use for embedded systems. Usually, software developers prefer the C language with its
limitations to the use of the C++ extensions.

4.4 ADA

Ada is a programming language developed for real-time applications (ISO/IEC
8526:AMD1:2007. Ada 2005 Language Reference Manual (LRM), 2005). Like C++ it supports
structured and object-oriented programming but also provides support for distributed and
concurrent programming. Ada provides native synchronization primitives for tasks. This is
important when dealing with real-time systems as the language provides the tools to solve a
key aspect in the programming of this kind of systems. Ada is used in large scale programs.
The platforms usually involve powerful processors and large memory spaces. Under these
conditions Ada provides a very secure programming environment. On the other hand, Ada is
not suitable for small applications running on low end processors like the ones implementing
wireless sensors networks with reduced memory spaces and processor capacities.

Ada uses a safe type system that allows the developer to construct powerful abstractions
reflecting the real world while the compiler can detect logic errors. The software can be built in
modules facilitating development of large systems by teams. It also separates interfaces from

111Real-Time Operating Systems and Programming Languages for Embedded Systems

12 Will-be-set-by-IN-TECH

implementation providing control over visibility. The strict definition of types and the syntax
allow the code to be compiled without changes on different compliant compilers on different
hardware platforms. Another important feature is the early standardization of the language.
Ada compilers are officially tested and are accepted only after passing the test for military
and commercial work. Ada also has support for low level programming features. It allows
the programmer to do address arithmetic, directly access to memory address space, perform
bit wise operations and manipulations and the insert of machine code. Thus Ada is a good
choice for programming embedded systems with real-time or safety-critical applications.
These important features have facilitated the maintainability of the code across the life time
of the software and this facilitates its use in aerospace, defense, medical, rail-road and nuclear
applications.

4.5 C#

Microsoft’s integrated development environment (.NET) includes a new programming
language C# which targets the .NET Framework. Microsoft does not claim that C# and .NET
are intended for real-time systems. In fact, C# and the .NET platform do not support many
of the thread management constructs that real-time systems, particularly hard ones, often
require. Even Anders Hejlsberg (Microsoft’s C# chief architect) states, “I would say that ’hard
real-time’ kinds of programs wouldn’t be a good fit (at least right now)” for the .NET platform
(Lutz & Laplante, 2003). For instance, the Framework does not support thread creation at a
particular instant in time with the guarantee that it will be completed by a certain in time. C#
supports many thread synchronization mechanisms but none with high precision.

Windows CE has significantly improved thread management constructs. If properly
leveraged by C# and the .NET Compact Framework, it could potentially provide a reasonably
powerful thread management infrastructure. Current enumerations for thread priority in
the .NET Framework, however, are largely unsatisfactory for real-time systems. Only five
levels exist: AboveNormal, BelowNormal, Highest, Lowest, and Normal. By contrast
Windows CE, specifically designed for real time systems has 256 thread priorities. Microsoft’s
ThreadPriority enumeration documentation also states that “the scheduling algorithm used
to determine the order of thread execution varies with each operating system.” This
inconsistency might cause real-time systems to behave differently on different operating
systems.

4.6 Real-time java

Java includes a number of technologies ranging from JavaCard applications running in tens
of kilobytes to large server applications running with the Java 2 Enterprise Edition requiring
many gigabytes of memory. In this section, the Real-time specification for Java (RTSJ) is
described in detail. This specification proposes a complete set of tools to develop real-time
applications. None of the other languages used in real-time programming provide classes,
templates and structures on which the developer can build the application. When using other
languages, the programmer needs to construct classes, templates and structures and then
implement the application taking care of the scheduler, periodic and sporadic task handling
and the synchronization mechanism.

RTSJ is a platform developed to handle real-time applications on top of a Java Virtual
Machine (JVM). The JVM specification describes an abstract stack machine that executes

112 Embedded Systems – Theory and Design Methodology

Real-Time Operating Systems and Programming Languages for Embedded Systems 13

bytecodes, the intermediate code of the Java language. Threads are created by the JVM
but are eventually scheduled by the operating system scheduler over which it runs. The
Real-Time Specification for Java (Gosling & Bollella, 2000; Microsystems, 2011) provides a
framework for developing real-time scheduling mostly on uniprocessors systems. Although
it is designed to support a variety of schedulers only the PriorityScheduler is currently
defined and is a preemptive fixed priorities one (FPP). The implementation of this abstraction
could be handled either as a middleware application on top of stock hardware and
operating systems or by a direct hardware implementation (Borg et al., 2005). RTS Java
guarantees backward compatibility so applications developed in traditional Java can be
executed together with real-time ones. The specification requires an operating system
capable of handling real-time threads like RT-Linux. The indispensable OS capabilities
must include a high-resolution timer, program-defined low-level interrupts, and a robust
priority-based scheduler with deterministic procedures to solve resource sharing priority
inversions. RTSJ models three types of tasks: Periodic, Sporadic and Aperiodic. The
specification uses a FPP scheduler (PriorityScheduler) with 28 different priority levels.
These priority levels are handled under the Schedulable interface which is implemented
by two classes: RealtimeThread and AsyncEventHandler. The first ones are tasks
that run under the FPP scheduler associated to one of the 28 different priority levels and
are implementations of the javax.realtime.RealtimeThread, RealtimeThread for
short. Sporadic tasks are not in the FPP scheduler and are served as soon as they are
released by the AsyncEventHandler. The last ones do not have known temporal parameters
and are handled as standard java.lang.Thread (Microsystems, 2011). There are two
classes of parameters that should be attached to a schedulable real-time entity. The first
one is specified in the class SchedulingParameters. In this class the parameters that are
necessary for the scheduling, for example the priority, are defined. The second one, is the
class ReleaseParameters. In this case, the parameters related to the mode in which the
activation of the thread is done such as period, worst case computation time, and offset are
defined.

Traditional Java uses a Garbage Collector (GC) to free the region of memory that is not
referenced any more. The normal memory space for Java applications is the HeapMemory.
The GC activity interferes with the execution of the threads in the JVM. This interference is
unacceptable in the real-time domain as it imposes blocking times for the currently active
threads that are neither bounded nor can they be determined in advance. To solve this, the
real-time specification introduces a new memory model to avoid the interference of the GC
during runtime. The abstract class MemoryAreamodels the memory by dividing it in regions.
There are three types of memory: HeapMemory, ScopedMemory and InmortalMemory. The
first one is used by non real time threads and is subject to GC activity. The second one, is used
by real time threads and is a memory that is used by the thread while it is active and it is
immediately freed when the real-time thread stops. The last one is a very special type of
memory that should be used very carefully as even when the JVM finishes it may remain
allocated. The RTSJ defines a sub-class NoHeapRealtimeThread of RealtimeThread
in which the code inside the method run() should not reference any object within the
HeapMemory area. With this, a real-time thread will preempt the GC if necessary. Also when
specifying an AsyncEventHandler it is possible to avoid the use of HeapMemory and define
instead the use of ScopedMemory in its constructor.

113Real-Time Operating Systems and Programming Languages for Embedded Systems

14 Will-be-set-by-IN-TECH

4.6.1 Contention policy for shared resources and task synchronization

The RTSJ virtual machine supports priority-ordered queues and performs by default a basic
priority inheritance and a ceiling priority inheritance called priority ceiling emulation. The
priority inheritance protocol has the problem that it does not prevent deadlocks when a wrong
nested blocking occurs. The priority ceiling protocol avoids this by assigning a ceiling priority
to a critical section which is equal to the highest priority of any task that may lock it. This is
effective but it is more complex to implement. The mix of the two inheritance protocols avoid
unbounded priority inversions caused by low priority thread locks.

Each thread has a base and an active priority. The base priority is the priority allocated by the
programmer. The active priority is the priority that the scheduler uses to sort the run queue.
As mentioned before, the real-time JVM must support priority-ordered queues and perform
priority inheritance whenever high priority threads are blocked by low priority ones. The
active priority of a thread is, therefore, the maximum of its base priority and the priority it has
inherited.

The RTSJ virtual machine supports priority-ordered queues and performs by default a basic
priority inheritance and a ceiling priority inheritance called priority ceiling emulation. The
priority inheritance protocol has the problem that it does not prevent deadlocks when a wrong
nested blocking occurs. The priority ceiling protocol avoids this by assigning a ceiling priority
to a critical section which is equal to the highest priority of any task that may lock it. This is
effective but it is more complex to implement. The mix of the two inheritance protocols avoid
unbounded priority inversions caused by low priority threads locks.

Each thread has a base and an active priority. The base priority is the priority allocated by the
programmer. The active priority is the priority that the scheduler uses to order the run queue.
As mentioned before, the real-time JVM must support priority-ordered queues and perform
priority inheritance whenever high priority threads are blocked by low priority ones. The
active priority of a thread is, therefore, the maximum of its base priority and the priority it has
inherited.

4.7 C/C++ or RTJ

In real-time embedded systems development flexibility, predictability and portability are
required at the same time. Different aspects such as contention policies implementation and
asynchronous handling, are managed naturally in RTSJ. Other languages, on the other hand,
require a careful programming by the developer. However, RTSJ has some limitations when it
is used in small systems where the footprint of the system should be kept as small as possible.
In the last few years, the development of this kind of systems has been dominated by C/C++.
One reason for this trend is that C/C++ exposes low-level system facilities more easily and the
designer can provide ad-hoc optimized solutions in order to reach embedded-system real time
requirements. On the other hand, Java runs on a Virtual Machine, which protects software
components from each other. In particular, one of the common errors in a C/C++ program
is caused by the memory management mechanism of C/C++ which forces the programmers
to allocate and deallocate memory manually. Comparisons between C/C++ and Java in the
literature recognize pros and cons for both. Nevertheless, most of the ongoing research on this
topic concentrates on modifying and adapting Java. This is because its environment presents
some attributes that make it attractive for real-time developers. Another interesting attribute
from a software designer point of view is that Java has a powerful, portable and continuously

114 Embedded Systems – Theory and Design Methodology

Real-Time Operating Systems and Programming Languages for Embedded Systems 15

updated standard library that can reduce programming time and costs. In Table 1 the different
aspects of the languages discussed are summarized. VG stands for very good, G for good, R
for regular and B for bad.

Language Portability Flexibility Abstraction Resource Handling Predictability
Assembler B B B VG VG
C G G G VG G
C++ R VG VG VG G
Ada R VG VG VG G
RTSJ VG VG VG R R

Table 1. Languages characteristics

5. Java implementations

In this section different approaches to the implementation of Java are presented. As explained,
a java application requires a virtual machine. The implementation of the JVM is a fundamental
aspect that affects the performance of the system. There are different approaches for this. The
simplest one, resolves everything at software level. The jave bytecodes of the application are
interpreted by the JVM that passes the execution code to the RTOS and this dispatches the
thread. Another option consists in having a Just in Time (JIT) compiler to transform the java
code in machine code and directly execute it within the processor. And finally, it is possible
to implement the JVM in hardware as a coprocessor or directly as a processor. Each solution
has pros and cons that are discussed in what follows for different cases. Figure 1 shows the
different possibilities in a schematic way.

Fig. 1. Java layered implementations

In the domain of small embedded devices, the JVM turns out to be slow and requires
an important amount of memory resources and processor capabilities. These are serious
drawbacks to the implementation of embedded systems with RTSJ. In order to overcome these
problems, advances in JIT compilers promote them as the standard execution mode of the JVM
in desktop and server environments. However, this approach introduces uncertainties to the
execution time due to runtime compilation. Thus execution times are not predictable and this
fact prevents the computation of the WCET forbidding its use in hard real-time applications.
Even if the program execution speeds up, it still requires an important amount of memory.
The solution is not practical for small embedded systems.

115Real-Time Operating Systems and Programming Languages for Embedded Systems

16 Will-be-set-by-IN-TECH

In the embedded domain, where resources are scarce, a Java processors or coprocessors are
more promising options. There are two types of hardware JVM implementations:

• A coprocessor works in concert with a general purpose processor translating java byte
codes to a sequence of instructions specific to this coupled CPU.

• Java chips entirely replace the general CPU. In the Java Processors the JVM bytecode is the
native instruction set, therefore programs are written in Java. This solution can result in
quite a small processor with little memory demand.

In the embedded domain, where resources are scarce, a Java processors or coprocessors are
more promising options. There are two types of hardware JVM implementations:

• A coprocessor works in concert with a general purpose processor translating java
bytecodes to a sequence of instructions specific for this coupled CPU.

• Java chips entirely replace the general CPU. In the Java Processors the JVM bytecode is the
native instruction set, therefore programs are written in Java. This solution can result in
quite a small processor with little memory demand.

Table 2 shows a short list of Java processors.

Name Target technology Size Speed [MHz]
JOP Altera, Xilinx FPGA 2050 LCs, 3KB Ram 100

picoJava No realization 128K gates, 38KB
picoJava II Altera Cyclone FPGA 27.5 K LCs; 47.6 KB

aJile aJ102 aJ200 ASIC 0.25μ 100
Cjip ASIC 0.35μ 70K gates, 55MB ROM, RAM 80

Moon Altera FPGA 3660 LCs, 4KB RAM
Lightfoot Xilinx FPGA 3400 LCs 40

LavaCORE Xilinx FPGA 3800 LCs 30K gates 33
Komodo 2600 LCs 33

FemtoJava Xilinx FPGA 2710 LCs 56

Table 2. Java Processors List

In 1997 Sun introduced the first version of picoJava and in 1999 it launched the picoJava-II
processor. Its core provides an optimized hardware environment for hosting a JVM
implementing most of the Java virtual machine instructions directly. Java bytecodes are
directly implemented in hardware. The architecture of picoJava is a stack-based CISC
processor implementing 341 different instructions (O’Connor & Tremblay, 1997). Simple Java
bytecodes are directly implemented in hardware and some performance critical instructions
are implemented in microcode. A set of complex instructions are emulated by a sequence
of simpler instructions. When the core encounters an instruction that must be emulated,
it generates a trap with a trap type corresponding to that instruction and then jumps to an
emulation trap handler that emulates the instruction in software. This mechanism has a high
variability latency that prevents its use in real-time because of the difficulty to compute the
WCET (Borg et al., 2005; Puffitsch & Schoeberl, 2007).

Komodo (Brinkschulte et al., 1999) is a Java microcontroller with an event handling
mechanism that allows handling of simultaneous overlapping events with hard real-time

116 Embedded Systems – Theory and Design Methodology

Real-Time Operating Systems and Programming Languages for Embedded Systems 17

requirements. The Komodo microcontroller design adds multithreading to a basic Java design
in order to attain predictability of real time threads requirements. The exclusive feature of
Komodo is the instruction fetch unit with four independent program counters and status flags
for four threads. A priority manager is responsible for hardware real-time scheduling and can
select a new thread after each bytecode instruction. The microcontroller holds the contexts of
up to four threads. To scale up for larger systems with more than three real-time threads the
authors suggest a parallel execution on several microcontrollers connected by a middleware
platform.

FemtoJava is a Java microcontroller with a reduced-instruction-set Harvard architecture (Beck
& Carro, 2003). It is basically a research project to build an -application specific- Java dedicated
microcontroller. Because it is synthesized in an FPGA, the microcontroller can also be adapted
to a specific application by adding functions that could includes new Java instructions.
The bytecode usage of the embedded application is analyzed and a customized version of
FemtoJava is generated (similar to LavaCORE) in order to minimize resource usage: power
consumption, small program code size, microarchitecture optimizations (instruction set, data
width, register file size) and high integration (memory communications on the same die).

Hardware designs like JOP (Java Optimized Processor) and AONIX PERC processors
currently provide a safety certifiable, hard real-time virtual machine that offers throughput
comparable to optimized C or C++ solutions (Schoeberl, 2009)

The Java processor JOP (Altera or Xilinx FPGA) is a hardware implementation of the Java
virtual machine (JVM). The JVM bytecodes are the native instruction set of JOP. The main
advantage of directly executing bytecode instructions is that WCET analysis can be performed
at the bytecode level. The WCET tool WCA is part of the JOP distribution. The main
characteristics of JOP architecture are presented in (Schoeberl, 2009). They include a dynamic
translation of the CISC Java bytecodes to a RISC stack based instruction set that can be
executed in a three microcode pipeline stages: microcode fetch, decode and execute. The
processor is capable of translating one bytecode per cycle giving a constant execution time
for all microcode instructions without any stall in the pipeline. The interrupts are inserted
in the translation stage as special bytecodes and are transparent to the microcode pipeline.
The four stages pipeline produces short branch delays. There is a simple execution stage with
the two top most stack elements (registers A and B). Bytecodes have no time dependencies
and the instructions and data caches are time-predictable since ther are no prefetch or store
buffers (which could have introduced unbound time dependencies of instructions). There is
no direct connection between the core processor and the external world. The memory interface
provides a connection between the main memory and the core processor.

JOP is designed to be an easy target for WCET analysis. WCET estimates can be obtained
either by measurement or static analysis. (Schoeberl, 2009) presents a number of performance
comparisons and finds that JOP has a good average performance relative to other non
real-time Java processors, in a small design and preserving the key characteristics that
define a RTS platform. A representative ASIC implementation is the aJile aJ102 processor
(Ajile Systems, 2011). This processor is a low-power SOC that directly executes Java Virtual
Machine (JVM) instructions, real-time Java threading primitives, and secured networking. It
is designed for a real-time DSP and networking. In addition, the aJ-102 can execute bytecode
extensions for custom application accelerations. The core of the aJ102 is the JEMCore-III

117Real-Time Operating Systems and Programming Languages for Embedded Systems

18 Will-be-set-by-IN-TECH

low-power direct execution Java microprocessor core. The JEMCore-III implements the entire
JVM bytecode instructions in silicon.

JOP includes an internal microprogrammed real-time kernel that performs the traditional
operating system functions such as scheduling, context switching, interrupt preprocessing,
error preprocessing, and object synchronization. As explained above, a low-level analysis
of execution times is of primary importance for WCET analysis. Even though the
multiprocessors systems are a common solution to general purpose equipments it makes
static WCET analysis practically impossible. On the other hand, most real-time systems are
multi-threaded applications and performance could be highly improved by using multi core
processors on a single chip. (Schoeberl, 2010) presents an approach to a time-predictable chip
multiprocessor system that aims to improve system performance while still enabling WCET
analysis. The proposed chip uses a shared memory statically scheduled with a time-division
multiple access (TDMA) scheme which can be integrated into the WCET analysis. The static
schedule guarantees that thread execution times on different cores are independent of each
other.

6. Conclusions

In this chapter a critical review of the state of the art in real-time programming languages and
real-time operating systems providing support to them has been presented. The programming
lan guages are limited mainly to five: C, C++, Ada, RT Java and for very specific applications,
Assembler. The world of RTOS is much wider. Virtually every research group has created its
own operating system. In the commercial world there is also a range of RTOS. At the top of
the preferences appear Vxworks, QNX, Windows CE family, RT Linux, FreeRTOS, eCOS and
OSE. However, there are many others providing support in particular areas. In this paper, a
short list of the most well known ones has been described.

At this point it is worth asking why while there are so many RTOSs available there are
so few programming languages. The answer probably is that while a RTOS is oriented to
a particular application area such as communications, low end microprocessors, high end
microprocessors, distributed systems, wireless sensors network and communications among
others, the requirements are not universal. The programming languages, on the other hand
need to be and are indeed universal and useful for every domain.

Although the main programming languages for real-time embedded systems are almost
reduced to five the actual trend reduces these to only C/C++ and RT Java. The first option
provides the low level access to the processor architecture and provides an object oriented
paradigm too. The second option has the great advantage of a WORA language with
increasing hardware support to implement the JVM in a more efficient.

In the last few years, there has been an important increase in ad-hoc solutions based on special
processors created for specific domains. The introduction of Java processors changes the
approach to embedded systems design since the advantages of the WORA programming are
added to a simple implementation of the hardware.

The selection of an adequate hardware platform, a RTOS and a programming language will be
tightly linked to the kind of embedded system being developed. The designer will choose the
combination that best suits the demands of the application but it is really important to select
one that has support along the whole design process.

118 Embedded Systems – Theory and Design Methodology

Real-Time Operating Systems and Programming Languages for Embedded Systems 19

7. References

Ajile Systems (2011). http://www.ajile.com/.
Albert, A. (2004). Comparison of event-triggered and time-triggered concepts with regard to

distributed control systems, Embedded World 2004, pp. 235–252.
Albert, A. & Gerth, W. (2003). Evaluation and comparison of the real-time performance of can

and ttcan, 9th international CAN in Automation Conference, p. 05/01–05/08.
Baker, T. (1990). A stack-based resource allocation policy for realtime processes, Real-Time

Systems Symposium, 1990. Proceedings., 11th pp. 191–200.
Beck, A. & Carro, L. (2003). Low power java processor for embedded applications, 12th IFIP

International Conference on Very Large Scale Integration.
Borg, A., Audsley, N. & Wellings, A. (2005). Real-time java for embedded devices: The

javamen project, Perspectives in Pervasive Computing, pp. 1–10.
Brinkschulte, U., Krakowski, C., Kreuzinger, J. & Ungerer, T. (1999). A multithreaded java

microcontroller for thread-oriented real-time event-handling, Parallel Architectures
and Compilation Techniques, 1999. Proceedings. 1999 International Conference on, pp. 34
–39.

eCosCentric (2011). http://www.ecoscentric.com/index.shtml.
Enea OSE (2011). http://www.enea.com/software/products/rtos/ose/.
Erika Enterprise: Open Source RTOS for single- and multi-core applications (2011). http://www.

evidence.eu.com/content/view/27/254/.
Gosling, J. & Bollella, G. (2000). The Real-Time Specification for Java, Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.
IEEE (2003). ISO/IEC 9945:2003, Information Technology–Portable Operating System Interface

(POSIX), IEEE.
ISO/IEC 14882:2003 - Programming languages C++ (2003).
ISO/IEC 8526:AMD1:2007. Ada 2005 Language Reference Manual (LRM) (2005).

http://www.adaic.org/standards/05rm/html/RM-TTL.html.
ISO/IEC 9899:1999 - Programming languages - C (1999). http://www.open-std.org/

JTC1/SC22/WG14/ www/docs/n1256.pdf.
Lutz, M. & Laplante, P. (2003). C# and the .net framework: ready for real time?, Software, IEEE

20(1): 74–80.
LynxOS RTOS, The real-time operating system for complex embedded systems (2011).

http://www.lynuxworks.com/rtos/rtos.php.
Maglyas, A., Nikula, U. & Smolander, K. (2010). Comparison of two models of success

prediction in software development projects, 6th Central and Eastern European Software
Engineering Conference (CEE-SECR), 2010, pp. 43–49.

Microsystems, S. (2011). Real-time specification for java documentation, http://www.
rtsj.org/.

Minimal Real-Time Operating System (2011). http://marte.unican.es/.
Obenza, R. (1993). Rate monotonic analysis for real-time systems, Computer 26: 73–74.

URL: http://portal.acm.org/citation.cfm?id=618978.619872
O’Connor, J. & Tremblay, M. (1997). picojava-i: the java virtual machine in hardware, Micro,

IEEE 17(2): 45 –53.
Pleunis, J. (2009). Extending the lifetime of software-intensive systems, Technical

report, Information Technology for European Advancement, http://www.itea2.org/
innovation_reports.

119Real-Time Operating Systems and Programming Languages for Embedded Systems

20 Will-be-set-by-IN-TECH

Puffitsch, W. & Schoeberl, M. (2007). picojava-ii in an fpga, Proceedings of the 5th international
workshop on Java technologies for real-time and embedded systems, JTRES ’07, ACM, New
York, NY, USA, pp. 213–221.
URL: http://doi.acm.org/10.1145/1288940.1288972

QNX RTOS v4 System Documentation (2011). http://www.qnx.com/developers/qnx4/
documentation.html.

Robertz, S. G., Henriksson, R., Nilsson, K., Blomdell, A. & Tarasov, I. (2007). Using real-time
java for industrial robot control, Proceedings of the 5th international workshop on Java
technologies for real-time and embedded systems, JTRES ’07, ACM, New York, NY, USA,
pp. 104–110.
URL: http://doi.acm.org/10.1145/1288940.1288955

RTAI - the RealTime Application Interface for Linux (2010). https://www.rtai.org/.
RTLinuxFree (2011). http://www.rtlinuxfree.com/.
Schoeberl, M. (2009). JOP Reference Handbook: Building Embedded Systems with

a Java Processor, number ISBN 978-1438239699, CreateSpace. Available at
http://www.jopdesign.com/doc/handbook.pdf.
URL: http://www. jopdesign.com/ doc/handbook.pdf

Schoeberl, M. (2010). Time-predictable chip-multiprocessor design, Signals, Systems and
Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference
on, pp. 2116 –2120.

Service Oriented Operating System (2011). http://www.ingelec.uns.edu.ar/rts/soos.
Sha, L., Rajkumar, R. & Lehoczky, J. P. (1990). Priority inheritance protocols: An approach to

real-time synchronization, IEEE Trans. Comput. 39(9): 1175–1185.
S.Ha.R.K.: Soft Hard Real-Time Kernel (2007). http://shark.sssup.it/.
Stankovic, J. A. (1988). Misconceptions about real-time computing, IEEE Computer

21(17): 10–19.

The free RTOS Project (2011). http://www.freertos.org/.
VxWorks RTOS (2011). http://www.windriver.com/products/vxworks/.
Windows Embedded (2011). http://www.microsoft.com/windowsembedded/en-us/develop/

windows-embedded-products-for-developers.aspx.
Wolf, W. (2002). What is Embedded Computing?, IEEE Computer 35(1): 136–137.
Zerzelidis, A. & Wellings, A. (2004). Requirements for a real-time .net framework, Technical

Report YCS-2004-377, Dep. of Computer Science, University of York.

The Chaos Report (1994). www.standishgroup.com/sample_ research/PDFpages/Chaos1994.pdf.
h f () h // f /

120 Embedded Systems – Theory and Design Methodology

Part 2

Design/Evaluation Methodology, Verification,
and Development Environment

6

Architecting Embedded Software
for Context-Aware Systems

Susanna Pantsar-Syväniemi
VTT Technical Research Centre of Finland

Finland

1. Introduction
During the last three decades the architecting of embedded software has changed by i) the
ever-enhancing processing performance of processors and their parallel usage, ii) design
methods and languages, and iii) tools. The role of software has also changed as it has
become a more dominant part of the embedded system. The progress of hardware
development regarding size, cost and energy consumption is currently speeding up the
appearance of smart environments. This necessitates the information to be distributed to our
daily environment along with smart, but separate, items like sensors. The cooperation of the
smart items, by themselves and with human beings, demands new kinds of embedded
software.

The architecting of embedded software is facing new challenges as it moves toward smart
environments where physical and digital environments will be integrated and interoperable.
The need for human beings to interact is decreasing dramatically because digital and
physical environments are able to decide and plan behavior by themselves in areas where
functionality currently requires intervention from human beings, such as showing a barcode
to a reader in the grocery store. The smart environment, in our mind, is not exactly an
Internet of Things (IoT) environment, but it can be. The difference is that the smart
environment that we are thinking of does not assume that all tiny equipment is able to
communicate via the Internet. Thus, the smart environment is an antecedent for the IoT
environment.

At the start of the 1990s, hardware and software co-design in real time and embedded
systems were seen as complicated matters because of integration of different modeling
techniques in the co-design process (Kronlöf, 1993). In the smart environment, the co-design
is radically changing, at least from the software perspective. This is due to the software
needing to be more and more intelligent by, e.g., predicting future situations to offer
relevant services for human beings. The software needs to be interoperable, as well as
scattered around the environment, with devices that were previously isolated because of
different communication mechanisms or standards.

Research into pervasive and ubiquitous computing has been ongoing for over a decade,
providing many context-aware systems and a multitude of related surveys. One of those
surveys is a literature review of 237 journal articles that were published between 2000 and

Embedded Systems – Theory and Design Methodology

124

2007 (Hong et al., 2009). The review presents that context-aware systems i) are still
developing in order to improve, and ii) are not fully implemented in real life. It also
emphasizes that context-awareness is a key factor for new applications in the area of
ubiquitous computing, i.e., pervasive computing. The context-aware system is based on
pervasive or ubiquitous computing. To manage the complexity of pervasive computing,
the context-aware system needs to be designed in new way—from the bottom up—while
understanding the eligible ecosystem, and from small functionalities to bigger ones. The
small functionalities are formed up to the small architectures, micro-architectures.
Another key issue is to reuse the existing, e.g., communication technologies and devices,
as much as possible, at least at the start of development, to minimize the amount of new
things.

To get new perspective on the architecting of context-aware systems, Section two
introduces the major factors that have influenced the architecting of embedded and real-
time software for digital base stations, as needed in the ecosystem of the mobile network.
This introduction also highlights the evolution of the digital base station in the revolution
of the Internet. The major factors are standards and design and modeling approaches, and
their usefulness is compared for architecting embedded software for context-aware
systems. The context of pervasive computing calms down when compared to the context
of digital signal processing software as a part of baseband computing which is a part of
the digital base station. It seems that the current challenges have similarities in both
pervasive and baseband computing. Section two is based on the experiences gathered
during software development at Nokia Networks from 1993 to 2008 and subsequently in
research at the VTT Technical Research Centre of Finland. This software development
included many kinds of things, e.g., managing the feature development of subsystems,
specifying the requirements for the system and subsystem levels, and architecting
software subsystems. The research is related to enable context-awareness with the help of
ontologies and unique micro-architecture.

Section three goes through the main research results related to designing context-aware
applications for smart environments. The results relate to context modeling, storing, and
processing. The latter includes a new solution, a context-aware micro-architecture (CAMA),
for managing context when architecting embedded software for context-aware systems.
Section four concludes this chapter.

2. Architecting real-time and embedded software in the 1990s and 2000s
2.1 The industrial evolution of the digital base station

Figure 1 shows the evolution of the Internet compared with a digital base station (the base
station used from now on) for mobile networks. It also shows the change from proprietary
interfaces toward open and Internet-based interfaces. In the 1990s, the base station was not
built for communicating via the Internet. The base station was isolated in the sense that it
was bound to a base station controller that controlled a group of base stations. That meant
that a customer was forced to buy both the base stations and the base station controller from
the same manufacturer.

In the 2000s, the industrial evolution brought the Internet to the base station and it opened
the base station for module business by defining interfaces between modules. It also

Architecting Embedded Software for Context-Aware Systems

125

dissolved the “engagement” between the base stations and their controllers as it moved
from the second generation mobile network (2G) to third one (3G). Later, the baseband
module of the base station was also reachable via the Internet. In the 2010s, the baseband
module will go to the cloud to be able to meet the constantly changing capacity and
coverage demands on the mobile network. The baseband modules will form a centralized
baseband pool. These demands arise as smartphone, tablet and other smart device users
switch applications and devices at different times and places (Nokia Siemens Networks,
2011).

Fig. 1. The evolution of the base station.

The evolution of base-band computing in the base station changes from distributed to
centralized as a result of dynamicity. The estimation of needed capacity per mobile user was
easier when mobiles were used mainly for phone calls and text messaging. The more fancy
features that mobiles offer and users demand, the harder it is to estimate the needed base-
band capacity.

The evolution of the base station goes hand-in-hand with mobile phones and other network
elements, and that is the strength of the system architecture. The mobile network ecosystem
has benefited a lot from the system architecture of, for example, the Global System for
Mobile Communications (GSM). The context-aware system is lacking system architecture
and that is hindering its breakthrough.

2.2 The standardization of mobile communication

During the 1980s, European telecommunication organizations and companies reached a
common understanding on the development of a Pan-European mobile communication
standard, the Global System for Mobile Communications (GSM), by establishing a dedicated
organization, the European Telecommunications Standards Institute (ETSI, www.etsi.org),
for the further evolvement of the GSM air-interface standard. This organization has
produced the GSM900 and 1800 standard specifications (Hillebrand, 1999). The
development of the GSM standard included more and more challenging features of
standard mobile technology as defined by ETSI, such as High Speed Circuit Switched Data
(HSCSD), General Packet Radio Service (GPRS), Adaptive Multirate Codec (AMR), and
Enhanced Data rates for GSM Evolution (EDGE) (Hillebrand, 1999).

 1990 2005 2020

Embedded Systems – Theory and Design Methodology

126

The Universal Mobile Telecommunication System (UMTS) should be interpreted as a
continuation of the regulatory regime and technological path set in motion through GSM,
rather than a radical break from this regime. In effect, GSM standardization defined a path
of progress through GPRS and EDGE toward UMTS as the major standard of 3G under the
3GPP standardization organization (Palmberg & Martikainen, 2003). The technological path
from GSM to UMTS up to LTE is illustrated in Table 1. High-Speed Downlink Packet Access
(HSDPA) and High-Speed Uplink Packet Access (HSUPA) are enhancements of the UMTS
to offer a more interactive service for mobile (smartphone) users.

GSM -> HSCD, GPRS, AMR, EDGE UMTS -> HSDPA, HSUPA LTE
 2G => 3G => 4G

Table 1. The technological path of the mobile communication system

It is remarkable that standards have such a major role in the telecommunication industry.
They define many facts via specifications, like communication between different parties. The
European Telecommunications Standards Institute (ETSI) is a body that serves many players
such as network suppliers and network operators. Added to that, the network suppliers
have created industry forums: OBSAI (Open Base Station Architecture Initiative) and CPRI
(Common Public Radio Interface). The forums were set up to define and agree on open
standards for base station internal architecture and key interfaces. This, the opening of the
internals, enabled new business opportunities with base station modules. Thus, module
vendors were able to develop and sell modules that fulfilled the open, but specified,
interface and sell them to base station manufacturers. In the beginning the OBSAI was
heavily driven by Nokia Networks and the CPRI respectively by Ericsson. Nokia Siemens
Networks joined CPRI when it was merged by Nokia and Siemens.

The IoT ecosystem is lacking a standardization body, such as ETSI has been for the mobile
networking ecosystem, to create the needed base for the business. However, there is the
Internet of Things initiative (IoT-i), which is working and attempting to build a unified IoT
community in Europe, www.iot-i.eu.

2.3 Design methods

The object-oriented approach became popular more than twenty years ago. It changed the
way of thinking. Rumbaugh et al. defined object-oriented development as follows, i) it is a
conceptual process independent of a programming language until the final stage, and ii) it is
fundamentally a new way of thinking and not a programming technique (Rumbaugh et al.,
1991). At the same time, the focus was changing from software implementation issues to
software design. In those times, many methods for software design were introduced under
the Object-Oriented Analysis (OOA) method (Shlaer & Mellor, 1992), the Object-Oriented
Software Engineering (OOSE) method (Jacobson et al., 1992), and the Fusion method
(Coleman et al., 1993). The Fusion method highlighted the role of entity-relationship graphs
in the analysis phase and the behavior-centered view in the design phase.

The Object Modeling Technique (OMT) was introduced for object-oriented software
development. It covers the analysis, design, and implementation stages but not integration
and maintenance. The OMT views a system via a model that has two dimensions
(Rumbaugh et al., 1991). The first dimension is viewing a system: the object, dynamic, or

Architecting Embedded Software for Context-Aware Systems

127

functional model. The second dimension represents a stage of the development: analysis,
design, or implementation. The object model represents the static, structural, “data” aspects
of a system. The dynamic model represents the temporal, behavioral, “control” aspects of a
system. The functional model illustrates the transformational, “function” aspects of a
system. Each of these models evolves during a stage of development, i.e. analysis, design,
and implementation.

The OCTOPUS method is based on the OMT and Fusion methods and it aims to provide a
systematic approach for developing object-oriented software for embedded real-time
systems. OCTOPUS provides solutions for many important problems such as concurrency,
synchronization, communication, interrupt handling, ASICs (application-specific integrated
circuit), hardware interfaces and end-to-end response time through the system (Awad et al.,
1996). It isolates the hardware behind a software layer called the hardware wrapper. The
idea for the isolation is to be able to postpone the analysis and design of the hardware
wrapper (or parts of it) until the requirements set by the proper software are realized or
known (Awad et al., 1996).

The OCTOPUS method has many advantages related to the system division of the
subsystems, but without any previous knowledge of the system under development the
architect was able to end up with the wrong division in a system between the controlling
and the other functionalities. Thus, the method was dedicated to developing single and
solid software systems separately. The OCTOPUS, like the OMT, was a laborious method
because of the analysis and design phases. These phases were too similar for there to be any
value in carrying them out separately. The OCTOPUS is a top-down method and, because of
that, is not suitable to guide bottom-up design as is needed in context-aware systems.

Software architecture started to become defined in the late 1980s and in the early 1990s.
Mary Shaw defined that i) architecture is design at the level of abstraction that focuses on
the patterns of system organization which describe how functionality is partitioned and the
parts are interconnected and ii) architecture serves as an important communication,
reasoning, analysis, and growth tool for systems (Shaw, 1990). Rumbaugh et al. defined
software architecture as the overall structure of a system, including its partitioning into
subsystems and their allocation to tasks and processors (Rumbaugh et al., 1991). Figure 2
represents several methods, approaches, and tools with which we have experimented and
which have their roots in object-oriented programming.

For describing software architecture, the 4+1 approach was introduced by Philippe
Krüchten. The 4+1 approach has four views: logical, process, development and physical. The
last view, the +1 view, is for checking that the four views work together. The checking is
done using important use cases (Krüchten, 1995). The 4+1 approach was part of the
foundation for the Rational Unified Process, RUP. Since the introduction of the 4+1
approach software architecture has had more emphasis in the development of software
systems. The most referred definition for the software architecture is the following one:

The structure or structures of the system, which comprises software elements, the
externally visible properties of those elements, and the relationships among them,
(Bass et al., 1998)

Views are important when documenting software architecture. Clements et al. give a
definition for the view: “A view is a representation of a set of system elements and the

Embedded Systems – Theory and Design Methodology

128

relationships associated with them”. Different views illustrate different uses of the software
system. As an example, a layered view is relevant for telling about the portability of the
software system under development (Clements, 2003). The views are presented using, for
example, UML model elements as they are more descriptive than pure text.

Fig. 2. From object-oriented to design methods and supporting tools.

Software architecture has always has a role in base station development. In the beginning it
represented the main separation of the functionalities, e.g. operation and maintenance,
digital signal processing, and the user interface. Later on, software architecture was
formulated via architectural views and it has been the window to each of these main
functionalities, called software subsystems. Hence, software architecture is an efficient
media for sharing information about the software and sharing the development work, as
well.

2.4 Modeling

In the model-driven development (MDD) vision, models are the primary artifacts of
software development and developers rely on computer-based technologies to transform
models into running systems (France & Rumpe, 2007). The Model-Driven Architecture
(MDA), standardized by the Object Management Group (OMG, www.omg.org), is an
approach to using models in software development. MDA is a known technique of MDD. It
is meant for specifying a system independently of the platform that supports it, specifying
platforms, choosing a particular platform for the system, and transforming the system
specification into a particular platform. The three primary goals of MDA are portability,
interoperability and reusability through the architectural separation of concerns (Miller &
Mukerji, 2003).

MDA advocates modeling systems from three viewpoints: computational-independent,
platform-independent, and platform-specific viewpoints. The computational-independent
viewpoint focuses on the environment in which the system of interest will operate in and on
the required features of the system. This results in a computation-independent model (CIM).
The platform-independent viewpoint focuses on the aspects of system features that are not
likely to change from one platform to another. A platform-independent model (PIM) is used
to present this viewpoint. The platform-specific viewpoint provides a view of a system in
which platform-specific details are integrated with the elements in a PIM. This view of a
system is described by a platform-specific model (PSM), (France & Rumpe, 2007).

Architecting Embedded Software for Context-Aware Systems

129

The MDA approach is good for separating hardware-related software development from the
application (standard-based software) development. Before the separation, the maintenance
of hardware-related software was done invisibly under the guise of application
development. By separating both application- and hardware-related software development,
the development and maintenance of previously invisible parts, i.e., hardware-related
software, becomes visible and measurable, and costs are easier to explicitly separate for the
pure application and the hardware-related software.

Two schools exist in MDA for modeling languages: the Extensible General-Purpose
Modeling Language and the Domain Specific Modeling Language. The former means
Unified Modeling Language (UML) with the possibility to define domain-specific extensions
via profiles. The latter is for defining a domain-specific language by using meta-modeling
mechanisms and tools. The UML has grown to be a de facto industry standard and it is also
managed by the OMG. The UML has been created to visualize object-oriented software but
also used to clarify the software architecture of a subsystem that is not object-oriented.

The UML is formed based on the three object-oriented methods: the OOSE, the OMT, and
Gary Booch’s Booch method. A UML profile describes how UML model elements are
extended using stereotypes and tagged values that define additional properties for the
elements (France & Rumpe, 2007). A Modeling and Analysis of Real-Time Embedded
Systems (MARTE) profile is a domain-specific extension for UML to model and analyze real
time and embedded systems. One of the main guiding principles for the MARTE profile
(www.omgmarte.org) has been that it should support independent modeling of both
software or hardware parts of real-time and embedded systems and the relationship
between them. OMG’s Systems Modeling Language (SysML, www.omgsysml.org) is a
general-purpose graphical modeling language. The SysML includes a graphical construct to
represent text-based requirements and relate them to other model elements.

Microsoft Visio is usually used for drawing UML–figures for, for example, software
architecture specifications. The UML–figures present, for example, the context of the
software subsystem and the deployment of that software subsystem. The MARTE and
SysML profiles are supported by the Papyrus tool. Without good tool support the MARTE
profile will provide only minimal value for embedded software systems.

Based on our earlier experience and the MARTE experiment, as introduced in (Pantsar-
Syväniemi & Ovaska, 2010), we claim that MARTE is not as applicable to embedded systems
as base station products. The reason is that base station products are dependent on long-
term maintenance and they have a huge amount of software. With the MARTE, it is not
possible to i) model a greater amount of software and ii) maintain the design over the years.
We can conclude that the MARTE profile has been developed from a hardware design point
of view because software reuse seems to have been neglected.

Many tools exist, but we picked up on Rational Rhapsody because we have seen it used for
the design and code generation of real-time and embedded software. However, we found
that the generated code took up too much of the available memory, due to which Rational
Rhapsody was considered not able to meet its performance targets. The hard real-time and
embedded software denotes digital signal processing (DSP) software. DSP is a central part
of the physical layer baseband solutions of telecommunications (or mobile wireless)
systems, such as mobile phones and base stations. In general, the functions of the physical

Embedded Systems – Theory and Design Methodology

130

layer have been implemented in hardware, for example, ASIC (application-specific
integrated circuits), and FPGA (field programmable gate arrays), or near to hardware
(Paulin et al., 1997), (Goossens et al., 1997).

Due to the fact that Unified Modeling Language (UML) is the most widely accepted
modeling language, several model-driven approaches have emerged (Kapitsaki et al., 2009),
(Achillelos et al., 2010). Typically, these approaches introduce a meta-model enriched with
context-related artifacts, in order to support context-aware service engineering. We have
also used UML for designing the collaboration between software agents and context storage
during our research related to the designing of smart spaces based on the ontological
approach (Pantsar-Syväniemi et al., 2011a, 2012).

2.5 Reuse and software product lines

The use of C language is one of the enabling factors of making reusable DSP software
(Purhonen, 2002). Another enabling factor is more advanced tools, making it possible to
separate DSP software development from the underlying platform. Standards and
underlying hardware are the main constraints for DSP software. It is essential to note that
hardware and standards have different lifetimes. Hardware evolves according to ‘Moore’s
Law’ (Enders, 2003), according to which progress is much more rapid than the evolution of
standards. From 3G base stations onward, DSP software has been reusable because of the
possibility to use C language instead of processor-specific assembly language. The
reusability only has to do with code reuse, which can be regarded as a stage toward overall
reuse in software development, as shown in Figure 3.

Regarding the reuse of design outputs and knowledge, it was the normal method of
operation at the beginning of 2G base station software developments and was not too tightly
driven by development processes or business programs. We have presented the
characteristics of base station DSP software development in our previous work (Pantsar-
Syväniemi et al., 2006) that is based on experiences when working at Nokia Networks. That
work introduces the establishment of reuse actives in the early 2000s. Those activities were
development ‘for reuse’ and development ‘with reuse’. ‘For reuse’ means development of
reusable assets and ‘with reuse’ means using the assets in product development or
maintenance (Karlsson, 1995).

Fig. 3. Toward the overall reuse in the software development.

Architecting Embedded Software for Context-Aware Systems

131

The main problem within this process-centric, ‘for reuse’ and ‘with reuse’, development was
that it produced an architecture that was too abstract. The reason was that the domain was
too wide, i.e., the domain was base station software in its entirety. In addition to that, the
software reuse was “sacrificed” to fulfill the demand to get a certain base station product
market-ready. This is paradoxical because software reuse was created to shorten products’
time-to-market and to expand the product portfolio. The software reuse was due to business
demands.

In addition to Karlsson’s ‘for and with reuse’ book, we highlight two process-centric reuse
books among many others. To design and use software architectures is written by Bosch
(Bosch, 2000). This book has reality aspects when guiding toward the selection of a suitable
organizational model for the software development work that was meant to be built around
software architecture. In his paper, (Bosch, 1999), Bosch presents the main influencing
factors for selecting the organization model: geographical distribution, maturity of project
management, organizational culture, and the type of products. In that paper, he stated that a
software product built in accordance with the software architecture is much more likely to
fulfill its quality requirements in addition to its functional requirements.

Bosch emphasized the importance of software architecture. His software product line (SPL)
approach is introduced according to these phases: development of the architecture and
component set, deployment through product development and evolution of the assets
(Bosch, 2000). He presented that not all development results are sharable within the SPL but
there are also product-specific results, called artifacts.

The third interesting book introduces the software product line as compared to the
development of a single software system at a time. This book shortly presents several ways
for starting software development according to the software product line. It is written by
Pohl et al. (Pohl et al., 2005) and describes a framework for product-line engineering. The
book stresses the key differences of software product-line engineering in comparison with
single-software system development:

 The need for two distinct development processes: domain engineering and application
engineering. The aim of the domain-engineering process is to define and realize the
commonality and the variability of the software product line. The aim of the
application-engineering process is to derive specific applications by exploiting the
variability of the software product line.

 The need to explicitly define and manage variability: During domain engineering,
variability is introduced in all domain engineering artifacts (requirements, architecture,
components, test cases, etc.). It is exploited during application engineering to derive
applications tailored to the specific needs of different customers.

A transition from single-system development to software product-line engineering is not
easy. It requires investments that have to be determined carefully to get the desired benefits
(Pohl et al., 2005). The transition can be introduced via all of its aspects: process,
development methods, technology, and organization. For a successful transition, we have to
change all the relevant aspects, not just some of them (Pohl et al., 2005). With the base
station products, we have seen that a single-system development has been powerful when
products were more hardware- than software-oriented and with less functionality and
complexity. The management aspect, besides the development, is taken into account in the

Embedded Systems – Theory and Design Methodology

132

product line but how does it support long-life products needing maintenance over ten
years? So far, there is no proposal for the maintenance of long-life products within the
software product line. Maintenance is definitely an issue to consider when building up the
software product line.

The strength of the software product line is that it clarifies responsibility issues in creating,
modifying and maintaining the software needed for the company’s products. In software
product-line engineering, the emphasis is to find the commonalities and variabilities and
that is the huge difference between the software product-line approach and the OCTOPUS
method. We believe that the software product-line approach will benefit if enhanced with a
model-driven approach because the latter strengthens the work with the commonalities and
variabilities.

Based on our experience, we can identify that the software product-line (SPL) and model-
driven approach (MDA) alike are used for base station products. Thus, a combination of
SPL and MDA is good approach when architecting huge software systems in which
hundreds of persons are involved for the architecting, developing and maintaining of the
software. A good requirement tool is needed to keep track of the commonalities and
variabilities. The more requirements, the more sophisticated tool should be with the
possibility to tag on the requirements based on the reuse targets and not based on a single
business program.

The SPL approach needs to be revised for context-aware systems. This is needed to guide
the architecting via the understanding of an eligible ecosystem toward small functionalities
or subsystems. Each of these subsystems is a micro-architecture with a unique role. Run-
time security management is one micro-architecture (Evesti & Pantsar-Syväniemi, 2010) that
reuses context monitoring from the context-awareness micro-architecture, CAMA (Pantsar-
Syväniemi et al., 2011a). The revision needs a new mindset to form reusable micro-
architectures for the whole context-aware ecosystem. It is good to note that micro-
architectures can differ in the granularity of the reuse.

2.6 Summary of section 2

The object-oriented methods, like Fusion, OMT, and OCTOPUS, were dedicated for single-
system development. The OCTOPUS was the first object-oriented method that we used for
an embedded system with an interface to the hardware. Both the OCTOPUS and the OMT
were burdening the development work with three phases: object-oriented analysis (OOA)
object-oriented design (OOD), and implementation. The OOD was similar to the
implementation. In those days there was a lack of modeling tools. The message sequence
charts (MSC) were done with the help of text editor.

When it comes to base station development, the software has become larger and more
complicated with the new features needed for the mobile network along with the UML, the
modeling tools supporting UML, and the architectural views. Thus, software development
is more and more challenging although the methods and tools have become more helpful.
The methods and tools can also hinder when moving inside the software system from one
subsystem to another if the subsystems are developed using different methods and tools.

Related to DSP software, the tight timing requirements have been reached with optimized
C-code, and not by generating code from design models. Thus, the code generators are too

Architecting Embedded Software for Context-Aware Systems

133

ineffective for hard real time and embedded software. One of the challenges in DSP software
is the memory consumption because of the growing dynamicity in the amount of data that
flows through mobile networks. This is due to the evolution of mobile network features like
HSDPA and HSUPA that enable more features for mobile users. The increasing dynamicity
demands simplification in the architecture of the software system. One of these
simplifications is the movement from distributed baseband computing to centralized
computing.

Simplification has a key role in context-aware computing. Therefore, we recall that by
breaking the overall embedded software architecture into smaller pieces with specialized
functionality, the dynamicity and complexity can be dealt with more easily. The smaller
pieces will be dedicated micro-architectures, for example, run-time performance or security
management. We can see that in smart environments the existing wireless networks are
working more or less as they currently work. Thus, we are not assuming that they will
converge together or form only one network. By taking care of and concentrating the data
that those networks provide or transmit, we can enable the networks to work seamlessly
together. Thus, the networks and the data they carry will form the basis for interoperability
within smart environments. The data is the context for which it has been provided.
Therefore, the data is in a key position in context-aware computing.

The MSC is the most important design output because it visualizes the collaboration
between the context storage, context producers and context consumers. The OCTOPUS
method is not applicable but SPL is when revised with micro-architectures, as presented
earlier. The architecting context-aware systems need a new mindset to be able to i) handle
dynamically changing context by filtering to recognize the meaningful context, ii) be
designed bottom-up, while keeping in mind the whole system, and iii) reuse the legacy
systems with adapters when and where it is relevant and feasible.

3. Architecting real-time and embedded software in the smart environment
Context has always been an issue but had not been used as a term as widely with regard to
embedded and real-time systems as it has been used in pervasive and ubiquitous
computing. Context was part of the architectural design while we created architectures for
the subsystem of the base station software. It was related to the co-operation between the
subsystem under creation and the other subsystems. It was visualized with UML figures
showing the offered and used interfaces. The exact data was described in the separate
interface specifications. This can be known as external context. Internal context existed and
it was used inside the subsystems.

Context, both internal and external, has been distributed between subsystems but it has
been used inside the base station. It is important to note that external context can be context
that is dedicated either for the mobile phone user or for internal usage. The meaning of
context that is going to, or coming from, the mobile phone user is meaningless for the base
station but it needs memory to be processed. In pervasive computing, external context is
always meaningful and dynamic. The difference is in the nature of context and the
commonality is in the dynamicity of the context.

Recent research results into the pervasive computing state that:

Embedded Systems – Theory and Design Methodology

134

 due to the inherent complexity of context-aware applications, development should be
supported by adequate context-information modeling and reasoning techniques (Bettini
et al., 2010)

 distributed context management, context-aware service modeling and engineering,
context reasoning and quality of context, security and privacy, have not been well
addressed in the Context-Aware Web Service Systems (Truong & Dustdar, 2009)

 development of context-aware applications is complex as there are many software
engineering challenges stemming from the heterogeneity of context information
sources, the imperfection of context information, and the necessity for reasoning on
contextual situations that require application adaptations (Indulska & Nicklas, 2010)

 proper understanding of context and its relationship with adaptability is crucial in
order to construct a new understanding for context-aware software development for
pervasive computing environments (Soylu et al., 2009)

 ontology will play a crucial role in enabling the processing and sharing of information
and knowledge of middleware (Hong et al., 2009)

3.1 Definitions

Many definitions for context as well for context-awareness are given in written research. The
generic definition by Dey and Abowd for context and context-awareness are widely cited
(Dey & Abowd, 1999):

‘Context is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and the application themselves. ’

‘Context-awareness is a property of a system that uses context to provide relevant
information and/or services to the user, where relevancy depends on the user’s task. ’

Context-awareness is also defined to mean that one is able to use context-information (Hong
et al., 2009). Being context-aware will improve how software adapts to dynamic changes
influenced by various factors during the operation of the software. Context-aware
techniques have been widely applied in different types of applications, but still are limited
to small-scale or single-organizational environments due to the lack of well-agreed
interfaces, protocols, and models for exchanging context data (Truong & Dustdar, 2009).

In large embedded-software systems the user is not always the human being but can also be
the other subsystem. Hence, the user has a wider meaning than in pervasive computing
where the user, the human being, is in the center. We claim that pervasive computing will
come closer to the user definition of embedded-software systems in the near future.
Therefore, we propose that ‘A context defines the limit of information usage of a smart space
application’ (Toninelli et al., 2009). That is based on the assumption that any piece of data, at
a given time, can be context for a given smart space application.

3.2 Designing the context

Concentrating on the context and changing the design from top-down to bottom-up while
keeping the overall system in the mind is the solution to the challenges in the context-aware
computing. Many approaches have been introduced for context modeling but we introduce
one of the most cited classifications in (Strang & Linnhoff-Popien, 2004):

Architecting Embedded Software for Context-Aware Systems

135

1. Key-Value Models

The model of key-value pairs is the most simple data structure for modeling contextual
information. The key-value pairs are easy to manage, but lack capabilities for
sophisticated structuring for enabling efficient context retrieval algorithms.

2. Markup Scheme Models

Common to all markup scheme modeling approaches is a hierarchical data structure
consisting of markup tags with attributes and content. The content of the markup tags is
usually recursively defined by other markup tags. Typical representatives of this kind
of context modeling approach are profiles.

3. Graphical Model

A very well-known general purpose modeling instrument is the UML which has a
strong graphical component: UML diagrams. Due to its generic structure, UML is also
appropriate to model the context.

4. Object-Oriented Models

Common to object-oriented context modeling approaches is the intention to employ the
main benefits of any object-oriented approach – namely encapsulation and reusability –
to cover parts of the problems arising from the dynamics of the context in ubiquitous
environments. The details of context processing are encapsulated on an object level and
hence hidden to other components. Access to contextual information is provided
through specified interfaces only.

5. Logic-Based Models

A logic defines the conditions on which a concluding expression or fact may be derived
(a process known as reasoning or inferencing) from a set of other expressions or facts.
To describe these conditions in a set of rules a formal system is applied. In a logic-based
context model, the context is consequently defined as facts, expressions and rules.
Usually contextual information is added to, updated in and deleted from a logic based
system in terms of facts or inferred from the rules in the system respectively. Common
to all logic-based models is a high degree of formality.

6. Ontology-Based Models

Ontologies are particularly suitable to project parts of the information describing and
being used in our daily life onto a data structure utilizable by computers. Three
ontology-based models are presented in this survey: i) Context Ontology Language
(CoOL), (Strang et al., 2003); ii) the CONON context modeling approach (Wang et al.,
2004); and iii) the CoBrA system (Chen et al., 2003a).

The survey of context modeling for pervasive cooperative learning covers the above-
mentioned context modeling approaches and introduces a Machine Learning Modeling
(MLM) approach that uses machine learning (ML) techniques. It concludes that to achieve
the system design objectives, the use of ML approaches in combination with semantic
context reasoning ontologies offers promising research directions to enable the effective
implementation of context (Moore et al., 2007).

Embedded Systems – Theory and Design Methodology

136

The role of ontologies has been emphasized in multitude of the surveys, e.g., (Baldauf et al.,
2007), (Soylu et al., 2009), (Hong et al., 2009), (Truong & Dustdar, 2009). The survey related
to context modeling and reasoning techniques (Bettini et al., 2010) highlights that
ontological models of context provide clear advantages both in terms of heterogeneity and
interoperability. Web Ontology Language, OWL, (OWL, 2004) is a de facto standard for
describing context ontology. OWL is one of W3C recommendations (www.w3.org) for a
Semantic Web. Graphical tools, such as Protégé and NeOnToolkit, exist for describing
ontologies.

3.3 Context platform and storage

Eugster et al. present the middleware classification that they performed for 22 middleware
platforms from the viewpoint of a developer of context-aware applications (Eugster et al.,
2009). That is one of the many surveys done on the context-aware systems but it is
interesting because of the developer viewpoint. They classified the platforms according to i)
the type of context, ii) the given programming support, and iii) architectural dimensions
such as decentralization, portability, and interoperability. The most relevant classification
criteria of those are currently the high-level programming support and the three
architectural dimensions.

High-level programming support means that the middleware platform adds a context
storage and management. The three architectural dimensions are: (1) decentralization, (2)
portability, and (3) interoperability. Decentralization measures a platform’s dependence
on specific components. Portability classifies platforms into two groups: portable
platforms can run on many different operating systems, and operating system-dependent
platforms, which can only run on few operating systems (usually one). Interoperability
then measures the ease with which a platform can communicate with heterogeneous
software components.

Ideal interoperable platforms can communicate with many different applications,
regardless of the operating system on which they are built or of the programming
language in which they are written. This kind of InterOperabilility Platform (IOP) is
developed in the SOFIA-project (www.sofia-project.eu). The IOP’s context storage is a
Semantic Information Broker (SIB), which is a Resource Description Framework, RDF,
(RDF, 2004) database. Software agents which are called Knowledge Processors (KP) can
connect to the SIB and exchange information through an XML-based interaction protocol
called Smart Space Access Protocol (SSAP). KPs use a Knowledge Processor Interface
(KPI) to communicate with the SIB. KPs consume and produce RDF triples into the SIB
according to the used ontology.

The IOP is proposed to be extended, where and when needed, with context-aware
functionalities following ‘the separation of concern’ principle to keep application free of the
context (Toninelli et al., 2009).

Kuusijärvi and Stenius illustrate how reusable KPs can be designed and implemented, i.e.,
how to apply ‘for reuse’ and ‘with reuse’ practices in the development of smart
environments (Kuusijärvi & Stenius, 2011). Thus, they cover the need for programming level
reusability.

Architecting Embedded Software for Context-Aware Systems

137

3.4 Context-aware micro-architecture

When context information is described by OWL and ontologies, typically reasoning
techniques will be based on a semantic approach, such as SPARQL Query Language for
RDF (SPARQL), (Truong & Dustdar, 2009).

The context-awareness micro-architecture, CAMA, is the solution for managing adaptation
based on context in smart environments. Context-awareness micro-architecture consists of
three types of agents: context monitoring, context reasoning and context-based adaptation
agents (Pantsar-Syväniemi et al., 2011a). These agents share information via the semantic
database. Figure 4 illustrates the structural viewpoint of the logical context-awareness
micro-architecture.

Fig. 4. The logical structure of the CAMA.

The context-monitoring agent is configured via configuration parameters which are defined
by the architect of the intelligent application. The configuration parameters can be updated
at run-time because the parameters follow the used context. The configuration parameters
can be given by the ontology, i.e., a set of triples to match, or by a SPARQL query, if the
monitored data is more complicated. The idea is that the context monitoring recognizes the
current status of the context information and reports this to the semantic database. Later on,
the reported information can be used in decision making.

The rule-based reasoning agent is based on a set of rules and a set of activation conditions
for these rules. In practice, the rules are elaborated 'if-then-else' statements that drive
activation of behaviors, i.e., activation patterns. The architect describes behavior by MSC
diagrams with annotated behavior descriptions attached to the agents. Then, the behavior is
transformed into SPARQL rules by the developer who exploits the MSC diagrams and the
defined ontologies to create SPARQL queries. The developer also handles the dynamicity of
the space by providing the means to change the rules at run-time. The context reasoning is a
fully dynamic agent, whose actions are controlled by the dynamically changing rules (at
run-time).

If the amount of agents producing and consuming inferred information is small, the rules
can be checked by hand during the development phase of testing. If an unknown amount of
agents are executing an unknown amount of rules, it may lead to a situation where one rule
affects another rule in an unwanted way. A usual case is that two agents try to change the
state of an intelligent object at the same time resulting in an unwanted situation. Therefore,
there should be an automated way of checking all the rules and determining possible
problems prior to executing them. Some of these problems can be solved by bringing

Embedded Systems – Theory and Design Methodology

138

priorities into the rules, so that a single agent can determine what rules to execute at a given
time. This, of course, implies that only one agent has rules affecting certain intelligent
objects.

CAMA has been used:

 to activate required functionality according to the rules and existing situation(s)
(Pantsar-Syväniemi et al., 2011a)

 to map context and domain-specific ontologies in a smart maintenance scenario for a
context-aware supervision feature (Pantsar-Syväniemi et al., 2011b)

 in run-time security management for monitoring situations (Evesti & Pantsar-
Syväniemi, 2010)

The Context Ontology for Smart Spaces, (CO4SS), is meant to be used together with the
CAMA. It has been developed because the existing context ontologies were already few
years old and not generic enough (Pantsar-Syväniemi et al, 2012). The objective of the
CO4SS is to support the evolution management of the smart space: all smart spaces and
their applications ‘understand’ the common language defined by it. Thus, the context
ontology is used as a foundational ontology to which application-specific or run-time
quality management concepts are mapped.

4. Conclusion
The role of software in large embedded systems, like in base stations, has changed
remarkably in the last three decades; software has become more dominant compared to the
role of hardware. The progression of processors and compilers has prepared the way for
reuse and software product lines by means of C language, especially in the area of DSP
software. Context-aware systems have been researched for many years and the maturity of
the results has been growing. A similar evolution has happened with the object-oriented
engineering that comes to DSP software. Although the methods were mature, it took many
years to gain proper processors and compilers that support coding with C language. This
shows that without hardware support there is no room to start to use the new methods.

The current progress of hardware development regarding size, cost and energy
consumption is speeding up the appearance of context-aware systems. This necessitates that
the information be distributed to our daily environment along with smart but separated
things like sensors. The cooperation of the smart things by themselves and with human
beings demands new kinds of embedded software. The new software is to be designed by
the ontological approach and instead of the process being top-down, it should use the
bottom-up way. The bottom-up way means that the smart space applications are formed
from the small functionalities, micro-architecture, which can be configured at design time,
on instantiation time and during run-time.

The new solution to designing the context management of context-aware systems from the
bottom-up is context-aware micro-architecture, CAMA, which is meant to be used with
CO4SS ontology. The CO4SS provides generic concepts of the smart spaces and is a common
‘language’. The ontologies can be compared to the message-based interface specifications in
the base stations. This solution can be the grounds for new initiatives or a body to start
forming the ‘borders’, i.e., the system architecture, for the context-aware ecosystem.

Architecting Embedded Software for Context-Aware Systems

139

5. Acknowledgment
The author thanks Eila Ovaska from the VTT Technical Research Centre and Olli Silvén
from the University of Oulu for their valuable feedback.

6. References
Achillelos, A.; Yang, K. & Georgalas, N. (2009). Context modelling and a context-aware

framework for pervasive service creation: A model-driven approach, Pervasive and
Mobile Computing, Vol.6, No.2, (April, 2010), pp. 281-296, ISSN 1574-1192

Awad, M.; Kuusela, J. & Ziegler, J. (1996). Object-Oriented Technology for Real-Time Systems. A
Practical Approach Using OMT and Fusion, Prentice-Hall Inc., ISBN 0-13-227943-6,
Upper Saddle River, NJ, USA

Baldauf, M.; Dustdar, S. & Rosenberg, F. (2007). A survey on context-aware systems,
International Journal of Ad Hoc and Ubiquitous Computing, Vol.2, No.4., (June, 2007),
pp. 263-277, ISSN 1743-8225

Bass, L.; Clements, P. & Kazman, R. (1998). Software Architecture in Practice, first ed.,
Addison-Wesley, ISBN 0-201-19930-0, Boston, MA, USA

Bettini, C.; Brdiczka, O.; Henricksen, K.; Indulska, J.; Nicklas, D.; Ranganathan, A. & Riboni
D. (2010). A survey of context modelling and reasoning techniques. Pervasive and
Mobile Computing, Vol.6, No.2, (April, 2010), pp.161—180, ISSN 1574-1192

Bosch, J. (1999). Product-line architectures in industry: A case study, Proceedings of ICSE 1999
21st International Conference on Software Engineering, pp. 544-554, ISBN 1-58113-074-
0, Los Angeles, CA, USA, May 16-22, 1999

Bosch, J. (2000). Design and Use of Software Architectures. Adopting and evolving a product-line
approach, Addison-Wesley, ISBN 0-201-67484-7, Boston, MA, USA

Chen, H.; Finin, T. & Joshi, A. (2003a). Using OWL in a Pervasive Computing Broker,
Proceedings of AAMAS 2003 Workshop on Ontologies in Open Agent Systems, pp.9-16,
ISBN 1-58113-683-8, ACM, July, 2003

Clements, P.C.; Bachmann, F.; Bass L.; Garlan, D.; Ivers, J.; Little, R.; Nord, R. & Stafford, J.
(2003). Documenting Software Architectures, Views and Beyond, Addison-Wesley, ISBN
0-201-70372-6, Boston, MA, USA

Coleman, D.; Arnold, P.; Bodoff, S.; Dollin, C.; Gilchrist, H.; Hayes, F. & Jeremaes, P. (1993).
Object-Oriented Development – The Fusion Method, Prentice Hall, ISBN 0-13-338823-9,
Englewood Cliffs, NJ, USA

CPRI. (2003). Common Public Radio Interface, 9.10.2011, Available from
http://www.cpri.info/

Dey, A. K. & Abowd, G. D. (1999). Towards a Better Understanding of Context and Context-
Awareness. Technical Report GIT-GVU-99-22, Georgia Institute of Technology,
College of Computing, USA

Enders, A. & Rombach, D. (2003). A Handbook of Software and Systems Engineering, Empirical
Observations, Laws and Theories, Pearson Education, ISBN 0-32-115420-7, Harlow,
Essex, England, UK

Eugster, P. Th.; Garbinato, B. & Holzer, A. (2009) Middleware Support for Context-aware
Applications. In: Middleware for Network Eccentric and Mobile Applications Garbinato,
B.; Miranda, H. & Rodrigues, L. (eds.), pp. 305-322, Springer-Verlag, ISBN 978-3-
642-10053-6, Berlin Heidelberg, Germany

Embedded Systems – Theory and Design Methodology

140

Evesti, A. & Pantsar-Syväniemi, S. (2010). Towards micro architecture for security adaption,
Proceedings of ECSA 2010 4th European Conference on Software Architecture
Doctoral Symposium, Industrial Track and Workshops, pp. 181-188, Copenhagen,
Denmark, August 23-26, 2010

France, R. & Rumpe, B. (2007). Model-driven Development of Complex Software: A
Research Roadmap. Proceedings of FOSE’07 International Conference on Future of
Software Engineering, pp. 37-54, ISBN 0-7695-2829-5, IEEE Computer Society,
Washington DC, USA, March, 2007

Goossens, G.; Van Praet, J.; Lanneer, D.; Geurts, W.; Kifli, A.; Liem, C. & Paulin, P. (1997)
Embedded Software in Real-Time Signal Processing Systems: Design Technologies.
Proceedings of the IEEE, Vol. 85, No.3, (March, 1997), pp.436–454, ISSN 0018-9219

Hillebrand, F. (1999). The Status and Development of the GSM Specifications, In: GSM
Evolutions Towards 3rd Generation Systems, Zvonar, Z.; Jung, P. & Kammerlander, K.,
pp. 1-14, Kluwer Academic Publishers, ISBN 0-792-38351-6, Boston, USA

Hong, J.; Suh, E. & Kim, S. (2009). Context-aware systems: A literature review and
classification. Expert System with Applications, Vol.36, No.4, (May 2009), pp. 8509-
8522, ISSN 0957-4174

Indulska, J. & Nicklas, D. (2010). Introduction to the special issue on context modelling,
reasoning and management, Pervasive and Mobile Computing, Vol.6, No.2, (April
2010), pp. 159-160, ISSN 1574-1192

Jacobson, I., et al. (1992). Object-Oriented Software Engineering – A Use Case Driven Approach,
Addison-Wesley, ISBN 0-201-54435-0, Reading, MA, USA

Karlsson, E-A. (1995). Software Reuse. A Holistic Approach, Wiley, ISBN 0-471-95819-0,
Chichester, UK

Kapitsaki, G. M.; Prezerakos, G. N.; Tselikas, N. D. & Venieris, I. S. (2009). Context-aware
service engineering: A survey, The Journal of Systems and Software, Vol.82, No.8,
(August, 2009), pp.1285-1297, ISSN 0164-1212

Kronlöf, K. (1993). Method Integration: Concepts and Case Studies, John Wiley & Sons, ISBN 0-
471-93555-7, New York, USA

Krüchten, P. (1995). Architectural Blueprints—The “4+1” View Model of Software
Architecture, IEEE Software, Vol.12, No.6, (November, 1995), pp.42-50, ISSN 0740-
7459

Kuusijärvi, J. & Stenudd, S. (2011). Developing Reusable Knowledge Processors for Smart
Environments, Proceedings of SISS 2011 The Second International Workshop on
“Semantic Interoperability for Smart Spaces” on 11th IEEE/IPSJ International Symposium
on Applications and the Internet (SAINT 2011), pp. 286-291, Munich, Germany, July
20, 2011

Miller J. & Mukerji, J. (2003). MDA Guide Version 1.0.1.
 http://www.omg.org/docs/omg/03-06-01.pdf
Moore, P.; Hu, B.; Zhu, X.; Campbell, W. & Ratcliffe, M. (2007). A Survey of Context

Modeling for Pervasive Cooperative Learning, Proceedings of the ISITAE’07 1st IEEE
International Symposium on Information Technologies and Applications in Education,
pp.K51-K56, ISBN 978-1-4244-1385-0, Nov 23-25, 2007

Nokia Siemens Networks. (2011). Liquid Radio - Let traffic waves flow most efficiently.
White paper. 17.11.2011, Available from

 http://www.nokiasiemensnetworks.com/portfolio/liquidnet

Architecting Embedded Software for Context-Aware Systems

141

OBSAI. (2002). Open Base Station Architecture Initiative, 10.10.2011, Available from
http://www.obsai.org/

OWL. (2004). Web Ontology Language Overview, W3C Recommendation, 29.11.2011,
Available from http://www.w3.org/TR/owl-features/

Palmberg, C. & Martikainen, O. (2003) Overcoming a Technological Discontinuity - The case of
the Finnish telecom industry and the GSM, Discussion Papers No.855, The Research
Institute of the Finnish Economy, ETLA, Helsinki, Finland, ISSN 0781-6847

Pantsar-Syväniemi, S.; Taramaa, J. & Niemelä, E. (2006). Organizational evolution of digital
signal processing software development, Journal of Software Maintenance and
Evolution: Research and Practice, Vol.18, No.4, (July/August, 2006), pp. 293-305, ISSN
1532-0618

Pantsar-Syväniemi, S. & Ovaska, E. (2010). Model based architecting with MARTE and
SysML profiles. Proceedings of SE 2010 IASTED International Conference on Software
Engineering, 677-013, Innsbruck, Austria, Feb 16-18, 2010

Pantsar-Syväniemi, S.; Kuusijärvi, J. & Ovaska, E. (2011a) Context-Awareness Micro-
Architecture for Smart Spaces, Proceedings of GPC 2011 6th International Conference
on Grid and Pervasive Computing, pp. 148–157, ISBN 978-3-642-20753-2, LNCS 6646,
Oulu, Finland, May 11-13, 2011

Pantsar-Syväniemi, S.; Ovaska, E.; Ferrari, S.; Salmon Cinotti, T.; Zamagni, G.; Roffia, L.;
Mattarozzi, S. & Nannini, V. (2011b) Case study: Context-aware supervision of a
smart maintenance process, Proceedings of SISS 2011 The Second International
Workshop on “Semantic Interoperability for Smart Spaces”, on 11th IEEE/IPSJ
International Symposium on Applications and the Internet (SAINT 2011), pp.309-314,
Munich, Germany, July 20, 2011

Pantsar-Syväniemi, S.; Kuusijärvi, J. & Ovaska, E. (2012) Supporting Situation-Awareness in
Smart Spaces, Proceedings of GPC 2011 6th International Conference on Grid and
Pervasive Computing Workshops, pp. 14–23, ISBN 978-3-642-27915-7, LNCS 7096,
Oulu, Finland, May 11, 2011

Paulin, P.G.; Liem, C.; Cornero, M.; Nacabal, F. & Goossens, G. (1997). Embedded Software
in Real-Time Signal Processing Systems: Application and Architecture Trends,
Proceedings of the IEEE, Vol.85, No.3, (March, 2007), pp.419-435, ISSN 0018-9219

Pohl, K.; Böckle, G. & van der Linden, F. (2005). Software Product Line Engineering, Springer-
Verlag, ISBN 3-540-24372-0, Berlin Heidelberg

Purhonen, A. (2002). Quality Driven Multimode DSP Software Architecture Development, VTT
Electronics, ISBN 951-38-6005-1, Espoo, Finland

RDF. Resource Description Framework, 29.11.2011, Available from
 http://www.w3.org/RDF/
Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F. & Lorensen, W. (1991) Object-Oriented

Modeling and Design, Prentice-Hall Inc., ISBN 0-13-629841-9, Upper Saddle River,
NJ, USA

Shaw, M. (1990). Toward High-Level Abstraction for Software Systems, Data and Knowledge
Engineering, Vol. 5, No.2, (July 1990), pp. 119-128, ISSN 0169-023X

Shlaer, S. & Mellor, S.J. (1992) Object Lifecycles: Modeling the World in States, Prentice-Hall,
ISBN 0-13-629940-7, Upper Saddle River, NJ, USA

Soylu, A.; De Causmaecker1, P. & Desmet, P. (2009). Context and Adaptivity in Pervasive
Computing Environments: Links with Software Engineering and Ontological

Embedded Systems – Theory and Design Methodology

142

Engineering, Journal of Software, Vol.4, No.9, (November, 2009), pp.992-1013, ISSN
1796-217X

SPARQL. SPARQL Query Language for RDF, W3C Recommendation, 29.11.2011, Available
from http://www.w3.org/TR/rdf-sparql-query/

Strang, T.; Linnhoff-Popien, C. & Frank, K. (2003). CoOL: A Context Ontology Language to
enable Contextual Interoperability, Proceedings of DAIS2003 4th IFIP WG 6.1
International Conference on Distributed Applications and Interoperable Systems, pp.236-
247, LNCS 2893, Springer-Verlag, ISBN 978-3-540-20529-6, Paris, France, November
18-21, 2003

Strang, T. & Linnhoff-Popien, C. (2004). A context modelling survey, Proceedings of UbiComp
2004 1st International Workshop on Advanced Context Modelling, Reasoning and
Management, pp.31-41, Nottingham, England, September, 2004

Toninelli, A.; Pantsar-Syväniemi, S.; Bellavista, P. & Ovaska, E. (2009) Supporting Context
Awareness in Smart Environments: a Scalable Approach to Information
Interoperability, Proceedings of M-PAC'09 International Workshop on Middleware for
Pervasive Mobile and Embedded Computing, session: short papers, Article No: 5, ISBN
978-1-60558-849-0, Urbana Champaign, Illinois, USA, November 30, 2009

Truong, H. & Dustdar, S. (2009). A Survey on Context-aware Web Service Systems.
International Journal of Web Information Systems, Vol.5, No.1, pp. 5-31, ISSN 1744-
0084

Wang, X. H.; Zhang, D. Q.; Gu, T. & Pung, H. K. (2004). Ontology Based Context Modeling
and Reasoning using OWL, Proceedings of PerComW ‘04 2nd IEEE Annual Conference
on Pervasive Computing and Communications Workshops, pp. 18–22, ISBN 0-7695-2106-
1, Orlando, Florida, USA, March 14-17, 2004

1. Introduction

Current VLSI technology allows the design of sophisticated digital systems with escalated
demands in performance and power/energy consumption. The annual increase of chip
complexity is 58%, while human designers productivity increase is limited to 21% per annum
(ITRS, 2011). The growing technology-productivity gap is probably the most important
problem in the industrial development of innovative products. A dramatic increase in
designer productivity is only possible through the adoption of methodologies/tools that
raise the design abstraction level, ingeniously hiding low-level, time-consuming, error-prone
details. New EDA methodologies aim to generate digital designs from high-level descriptions,
a process called High-Level Synthesis (HLS) (Coussy & Morawiec, 2008) or else hardware
compilation (Wirth, 1998). The input to this process is an algorithmic description (for example
in C/C++/SystemC) generating synthesizable and verifiable Verilog/VHDL designs (IEEE,
2006; 2009).

Our aim is to highlight aspects regarding the organization and design of the targeted hardware
of such process. In this chapter, it is argued that a proper Model of Computation (MoC) for
the targeted hardware is an adapted and extended form of the FSMD (Finite-State Machine
with Datapath) model which is universal, well-defined and suitable for either data- or
control-dominated applications. Several design examples will be presented throughout the
chapter that illustrate our approach.

2. Higher-level representations of FSMDs

This section discusses issues related to higher-level representations of FSMDs (Gajski &
Ramachandran, 1994) focusing on textual intermediate representations (IRs). It first provides
a short overview of existing approaches focusing on the well-known GCC GIMPLE and
LLVM IRs. Then the BASIL (Bit-Accurate Symbolic Intermediate Language) is introduced
as a more appropriate lightweight IR for self-contained representation of FSMD-based
hardware architectures. Lower-level graph-based forms are presented focusing on the CDFG
(Control-Data Flow Graph) procedure-level representation using Graphviz (Graphviz, 2011)
files. This section also illustrates a linear CDFG construction algorithm from BASIL. In
addition, an end-to-end example is given illustrating algorithmic specifications in ANSI

FSMD-Based Hardware Accelerators for FPGAs
Nikolaos Kavvadias, Vasiliki Giannakopoulou and Kostas Masselos

Department of Computer Science and Technology,
University of Peloponnese, Tripoli

Greece

7

2 Will-be-set-by-IN-TECH

C, BASIL, Graphviz CDFGs and their visualizations utilizing a 2D Euclidean distance
approximation function.

2.1 Overview of compiler intermediate representations

Recent compilation frameworks provide linear IRs for applying analyses, optimizations and
as input for backend code generation. GCC (GCC, 2011) supports the GIMPLE IR. Many
GCC optimizations have been rewritten for GIMPLE, but it is still undergoing grammar and
interface changes. The current GCC distribution incorporates backends for contemporary
processors such as the Cell SPU and the baseline Xtensa application processor (Gonzalez,
2000) but it is not suitable for rapid retargeting to non-trivial and/or custom architectures.
LLVM (LLVM, 2011) is a compiler framework that draws growing interest within the
compilation community. The LLVM compiler uses the homonymous LLVM bitcode, a
register-based IR, targeted by a C/C++ companion frontend named clang (clang homepage,
2011). It is written in a more pleasant coding style than GCC, but similarly the IR infrastructure
and semantics are excessive.

Other academic infrastructures include COINS (COINS, 2011), LANCE (LANCE, 2011) and
Machine-SUIF (Machine-SUIF, 2002). COINS is written entirely in Java, and supports two
IRs: the HIR (high level) and the LIR (low-level) which is based on S-expressions. COINS
features a powerful SSA-based optimizer, however its LISP-like IR is unsuitable for directly
expressing control and data dependencies and to fully automate the construction of a
machine backend. LANCE (Leupers et al., 2003) introduces an executable IR form (IR-C),
which combines the simplicity of three-address code with the executability of ANSI C code.
LANCE compilation passes accept and emit IR-C, which eases the integration of LANCE
into third-party environments. However, ANSI C semantics are neither general nor neutral
enough in order to express vastly different IR forms. Machine-SUIF is a research compiler
infrastructure built around the SUIFvm IR which has both a CFG (control-flow graph) and
SSA form. Past experience with this compiler has proved that it is overly difficult both to alter
or extend its semantics. It appears that the Phoenix (Microsoft, 2008) compiler is a rewrite and
extension of Machine-SUIF in C#. As an IR, the CIL (Common Intermediate Language) is used
which is entirely stack-based, a feature that hinders the application of modern optimization
techniques. Finally, CoSy (CoSy, 2011) is the prevalent commercial retargetable compiler
infrastructure. It uses the CCMIR intermediate language whose specification is confidential.
Most of these frameworks fall short in providing a minimal, multi-purpose compilation
infrastructure that is easy to maintain and extend.

The careful design of the compiler intermediate language is a necessity, due to its dual purpose
as both the program representation and an abstract target machine. Its design affects the
complexity, efficiency and ease of maintenance of all compilation phases; frontend, optimizer
and effortlessly retargetable backend.

The following subsection introduces the BASIL intermediate representation. BASIL supports
semantic-free n-input/m-output mappings, user-defined data types, and specifies a virtual
machine architecture. BASIL’s strength is its simplicity: it is inherently easy to develop a
CDFG (control/data flow graph) extraction API, apply graph-based IR transformations for

144 Embedded Systems – Theory and Design Methodology

FSMD-Based Hardware Accelerators for FPGAs 3

Data type Regular expression Example
UNSIGNED_INT [Uu][1-9][0-9]* u32
SIGNED_INT [Ss][1-9][0-9]* s11
UNSIGNED/
SIGNED_FXP

[Qq][0-9]+.[0-9]+[S|U] q4.4u, q2.14s

FLP [Ff][0|1].[0-9]+.[0-9]+ F1.8.23
fields: sign, exponent,
mantissa

Table 1. Data type specifications in BASIL.

domain specialization, investigate SSA (Static Single Assignment) construction algorithms
and perform other compilation tasks.

2.2 Representing programs in BASIL

BASIL provides arbitrary n-to-m mappings allowing the elimination of implicit side-effects,
a single construct for all operations, and bit-accurate data types. It supports scalar,
single-dimensional array and streamed I/O procedure arguments. BASIL statements are
labels, n-address instructions or procedure calls.

BASIL is similar in concept to the GIMPLE and LLVM intermediate languages but with
certain unique features. For example, while BASIL supports SSA form, it provides very light
operation semantics. A single construct is required for supporting any given operation as an
m-to-n mapping between source and destination sites. An n-address operation is actually the
specification of a mapping from a set of n ordered inputs to a set of m ordered outputs. An
n-address instruction (or else termed as an n, m-operation) is formatted as follows:

outp1, ..., outpm <= operation inp1, ..., inpn; where:

• operation is a mnemonic referring to an IR-level instruction

• outp1, ..., outpm are the m outputs of the operation

• inp1, ..., inpn are the n inputs of the operation

In BASIL all declared objects (global variables, local variables, input and output procedure
arguments) have an explicit static type specification. BASIL uses the notions of “globalvar”
(a global scalar or single-dimensional array variable), “localvar” (a local scalar or
single-dimensional array variable), “in” (an input argument to the given procedure), and
“out” (an output argument to the given procedure).

BASIL supports bit-accurate data types for integer, fixed-point and floating-point arithmetic.
Data type specifications are essentially strings that can be easily decoded by a regular
expression scanner; examples are given in Table 1.

The EBNF grammar for BASIL is shown in Fig. 1 where it can be seen that rules “nac” and
“pcall” provide the means for the n-to-m generic mapping for operations and procedure calls,
respectively. It is important to note that BASIL has no predefined operator set; operators are
defined through a textual mnemonic.

For instance, an addition of two scalar operands is written: a <= add b, c;.
Control-transfer operations include conditional and unconditional jumps explicitly visible in

145FSMD-Based Hardware Accelerators for FPGAs

4 Will-be-set-by-IN-TECH

� �

basil_top = {gvar_def} {proc_def}.
gvar_def = "globalvar" anum decl_item_list ";".
proc_def = "procedure" [anum] "(" [arg_list] ")"

"{" [{lvar_decl}] [{stmt}] "}".
stmt = nac | pcall | id ":".
nac = [id_list "<="] anum [id_list] ";".
pcall = ["(" id_list ")" "<="] anum ["(" id_list ")"] ";".
id_list = id {"," id}.
decl_item_list = decl_item {"," decl_item}.
decl_item = (anum | uninitarr | initarr).
arg_list = arg_decl {"," arg_decl}.
arg_decl = ("in" | "out") anum (anum | uninitarr).
lvar_decl = "localvar" anum decl_item_list ";".
initarr = anum "[" id "]" "=" "{" numer {"," numer} "}".
uninitarr = anum "[" [id] "]".
anum = (letter | "_") {letter | digit}.
id = anum | (["-"] (integer | fxpnum)).
� �

Fig. 1. EBNF grammar for BASIL.

the IR. An example of an unconditional jump would be: BB5 <= jmpun; while conditional
jumps always declare both targets: BB1, BB2 <= jmpeq i, 10;. This statement enables
a control transfer to the entry of basic block BB1 when i equals to 10, otherwise to BB2.
Multi-way branches corresponding to compound decoding clauses can be easily added.

An interesting aspect of BASIL is the support of procedures as non-atomic operations by
using a similar form to operations. In (y) <= sqrt(x); the square root of an operand
x is computed; procedure argument lists are indicated as enclosed in parentheses.

2.3 BASIL program structure and encoding

A specification written in BASIL incorporates the complete information of a translation unit
of the original program comprising of a list of “globalvar” definitions and a list of procedures
(equivalently: control-flow graphs). A single BASIL procedure is captured by the following
information:

• procedure name

• ordered input (output) arguments

• “localvar” definitions

• BASIL statements.

• basic block labels.

Label items point to basic block (BB) entry points and are defined as name, bb, addr
3-tuples, where name is the corresponding identifier, bb the basic block enumeration, and addr
the absolute address of the statement succeeding the label.

Statements are organized in the form of a C struct or equivalently a record (in other
programming languages) as shown in Fig. 2.

The Statement ADT therefore can be used to model an (n, m)-operation. The input and output
operand lists collect operand items, as defined in the OperandItem data structure definition
shown in Fig. 3.

146 Embedded Systems – Theory and Design Methodology

FSMD-Based Hardware Accelerators for FPGAs 5

� �

typedef struct {
char *mnemonic; /* Designates the statement type. */
NodeType ntype; /* OPERATION or PROCEDURE_CALL. */
List opnds_in; /* Collects all input operands. */
List opnds_out; /* Collects all output operands. */
int bb; /* Basic block number. */
int addr; /* Absolute statement address. */

} _Statement;
typedef _Statement *Statement;
� �

Fig. 2. C-style record for encoding a BASIL statement.

� �

typedef struct {
char *name; /* Identifier name. */
char *dataspec; /* Data type string spec. */
OperandType otype; /* Operand type representation. */
int ix; /* Absolute operand item index. */

} _OperandItem;
typedef _OperandItem *OperandItem;
� �

Fig. 3. C-style record for encoding an OperandItem.

The OperandItem data structure is used for representing input arguments (INVAR), output
arguments (OUTVAR), local (LOCALVAR) and global (GLOBALVAR) variables and constants
(CONSTANT). If using a graph-based intermediate representation, arguments and constants
could use node and incoming or outgoing edge representations, while it is meaningful to
represent variables as edges as long as their storage sites are not considered.

The typical BASIL program is structured as follows:

� �

<Global variable declarations>

procedure name_1 (
<comma-separated input arguments>,
<comma-separated output arguments>

) {
<Local variable declarations>
<BASIL labels, instructions, procedure calls>

}
...
procedure name_n (
<comma-separated input arguments>,
<comma-separated output arguments>

) {
<Local variable declarations>
<BASIL labels, instructions, procedure calls>

}
� �

Fig. 4. Translation unit structure for BASIL.

147FSMD-Based Hardware Accelerators for FPGAs

6 Will-be-set-by-IN-TECH

Mnemonic Description (Ni, No)
ldc Load constant (1,1)
neg, mov Unary arithmetic op. (1,1)
add, sub, abs, min, max, Binary arithmetic op. (2,1)
mul, div, mod, shl, shr
not, and, ior, xor Logical (2,1)
szz Comparison for zz: (2,1)

(eq,ne,lt,le,gt,ge)
muxzz Conditional selection (3,1)
load, store Load/Store register

from/to memory
(2,1)

sxt, zxt, trunc Type conversion (1,1)
jmpun Unconditional jump (0,1)
jmpzz Conditional jump (2,2)
print Diagnostic output (1,0)

Table 2. A set of basic operations for a BASIL-based IR.

2.4 A basic BASIL implementation

A basic operation set for RISC-like compilation is summarized in Table 2. Ni (No) denotes the
number of input (output) operands for each operation.

The memory access model defines dedicated address spaces per array, so that both loads
and stores require the array identifier as an explicit operand. For an indexed load in C (b
= a[i];), a frontend would generate the following BASIL: b <= load a, i;, while for an
indexed store (a[i] = b;) it is a <= store b, i;.

Pointer accesses can be handled in a similar way, although dependence extraction requires
careful data flow analysis for non-trivial cases. Multi-dimensional arrays are handled through
matrix flattening transformations.

2.5 CDFG construction

A novel, fast CDFG construction algorithm has been devised for both SSA and non-SSA
BASIL forms producing flat CDFGs as Graphviz files (Fig. 5). A CDFG symbol table
item is a node (operation, procedure call, globalvar, or constant) or edge (localvar) with
user-defined attributes: the unique name, label and data type specification; node and edge
type enumeration; respective order of incoming or outgoing edges; input/output argument
order of a node and basic block index. Further attributes can be defined, e.g. for scheduling
bookkeeping.

This approach is unique since it focuses on building the CDFG symbol table (st) from which
the associated graph (cdfg) is constructed as one possible of many facets. It naturally supports
loop-carried dependencies and array accesses.

2.6 Fixed-point arithmetic

The use of fixed-point arithmetic (Yates, 2009) provides an inexpensive means for improved
numerical dynamic range, when artifacts due to quantization and overflow effects can be
tolerated. Rounding operators are used for controlling the numerical precision involved in a
series of computations; they are defined for inexact arithmetic representations such as fixed-

148 Embedded Systems – Theory and Design Methodology

FSMD-Based Hardware Accelerators for FPGAs 7

� �

BASILtoCDFG()
input List BASILs, List variables, List labels, Graph cfg;
output SymbolTable st, Graph cdfg;

begin
Insert constant, input/output arguments and global
variable operand nodes to st;
Insert operation nodes;
Insert incoming {global/constant/input, operation} and
outgoing {operation, global/output} edges;
Add control-dependence edges among operation nodes;
Add data-dependence edges among operation nodes,
extract loop-carried dependencies via cfg-reachability;
Generate cdfg from st;

end
� �

Fig. 5. CDFG construction algorithm accepting BASIL input.

and floating-point. Proposed and in-use specifications for fixed-point arithmetic of related
practice include:

• the C99 standard (ISO/IEC JTC1/SC22, 2007)

• lightweight custom implementations such as (Edwards, 2006)

• explicit data types with open source implementations (Mentor Graphics, 2011; SystemC,
2006)

Fixed-point arithmetic is a variant of the typical integral representation (2’s-complement
signed or unsigned) where a binary point is defined, purely as a notational artifact to signify
integer powers of 2 with a negative exponent. Assuming an integer part of width IW > 0
and a fractional part with −FW < 0, the VHDL-2008 sfixed data type has a range of
2IW−1 − 2|FW | to −2IW−1 with a representable quantum of 2|FW | (Bishop, 2010a;b). The
corresponding ufixed type has the following range: 2IW − 2|FW | to 0. Both are defined
properly given a IW-1:-FW vector range.

BASIL currently supports a proposed list of extension operators for handling fixed-point
arithmetic:

• conversion from integer to fixed-point format: i2ufx, i2sfx

• conversion from fixed-point to integer format: ufx2i, sfx2i

• operand resizing: resize, using three input operands; source operand src1 and src2,
src3 as numerical values that denote the new size (high-to-low range) of the resulting
fixed-point operand

• rounding primitives: ceil, fix, floor, round, nearest, convergent for rounding
towards plus infinity, zero, minus infinity, and nearest (ties to greatest absolute value, plus
infinity and closest even, respectively).

2.7 Scan-based SSA construction algorithms for BASIL

In our experiments with BASIL we have investigated minimal SSA construction schemes – the
Appel (Appel, 1998) and Aycock-Horspool (Aycock & Horspool, 2000) algorithms – that don’t
require the computation of the iterated dominance frontier (Cytron et al., 1991).

149FSMD-Based Hardware Accelerators for FPGAs

8 Will-be-set-by-IN-TECH

App. LOC LOC P/V/E #φs #Instr.
(BASIL) (dot)

atsort 155 484 2/136/336 10 6907
coins 105 509 2/121/376 10 405726
cordic 56 178 1/57/115 7 256335
easter 47 111 1/46/59 2 3082
fixsqrt 32 87 1/29/52 6 833900
perfect 31 65 1/23/36 4 6590739
sieve 82 199 2/64/123 12 515687
xorshift 26 80 1/29/45 0 2000

Table 3. Application profiling with a BASIL framework.

In traditional compilation infrastructures (GCC, LLVM) (GCC, 2011; LLVM, 2011), Cytron’s
approach (Cytron et al., 1991) is preferred since it enables bit-vector dataflow frameworks
and optimizations that require elaborate data structures and manipulations. It can be argued
that rapid prototyping compilers, integral parts of heterogeneous design flows, would benefit
from straightforward SSA construction schemes which don’t require the use of sophisticated
concepts and data structures (Appel, 1998; Aycock & Horspool, 2000).

The general scheme for these methods consists of series of passes for variable numbering,
φ-insertion, φ-minimization, and dead code elimination. The lists of BASIL statements,
localvars and labels are all affected by the transformations.

The first algorithm presents a “really-crude” approach for variable renaming and φ-function
insertion in two separate phases (Appel, 1998). In the first phase, every variable is split at BB
boundaries, while in the second phase φ-functions are placed for each variable in each BB.
Variable versions are actually preassigned in constant time and reflect a specific BB ordering
(e.g. DFS). Thus, variable versioning starts from a positive integer n, equal to the number of
BBs in the given CFG.

The second algorithm does not predetermine variable versions at control-flow joins but
accounts φs the same way as actual computations visible in the original CFG. Due to this
fact, φ-insertion also presents dissimilarities. Both methods share common φ-minimization
and dead code elimination phases.

2.8 Application profiling with BASILVM

BASIL programs can be translated to low-level C for the easy evaluation of nominal
performance on an abstract machine, called BASILVM. To show the applicability of BASILVM
profiling, a set of small realistic integer/fixed-point kernels has been selected: atsort (an all
topological sorts algorithm (Knuth, 2011)), coins (compute change with minimum amount
of coins), easter (Easter date calculations), fixsqrt (fixed-point square root (Turkowski, 1995)),
perfect (perfect number detection), sieve (prime sieve of Eratosthenes) and xorshift (100 calls
to George Marsaglia’s PRNG (Marsaglia, 2003) with a 2128 − 1 period, which passes Diehard
tests).

Static and dynamic metrics have been collected in Table 3. For each application (App.),
the lines of BASIL and resulting CDFGs are given in columns 2-3, number of CDFGs (P:

150 Embedded Systems – Theory and Design Methodology

FSMD-Based Hardware Accelerators for FPGAs 9

� �

void eda(int in1, int in2,
int *out1)

{
int t1, t2, t3,

t4, t5, t6, t7;
int x, y;

t1 = ABS(in1);
t2 = ABS(in2);
x = MAX(t1, t2);
y = MIN(t1, t2);
t3 = x >> 3;
t4 = y >> 1;
t5 = x - t3;
t6 = t4 + t5;
t7 = MAX(t6, x);

*out1 = t7;
}
� �

(a) ANSI C code.

� �

procedure eda (in s16 in1, in s16 in2,
out u16 out1)

{
localvar u16 x, y,

t1, t2, t3,
t4, t5, t6, t7;

S_1:
t1 <= abs in1;
t2 <= abs in2;
x <= max t1, t2;
y <= min t1, t2;
t3 <= shr x, 3;
t4 <= shr y, 1;
t5 <= sub x, t3;
t6 <= add t4, t5;
t7 <= max t6, x;
out1 <= mov t7;

}
� �

(b) BASIL code.

abs

max

t1

min

t1

abs

t2 t2

add

max

t6

1

shr

1

3

shr

3

in1 in2

x

x

sub

x

mov

t7

y

out1

t3

t4

t5

(c) CDFG code.

Fig. 6. Different facets of an euclidean distance approximation computation.

procedures), vertices and edges (for each procedure) in columns 4-5, amount of φ statements
(column 6) and the number of dynamic instructions for the non-SSA case. The latter is
measured using gcc-3.4.4 on Cygwin/XP by means of the executed code lines with the gcov
code coverage tool.

2.9 Representative example: 2D Euclidean distance approximation

A fast linear algorithm for approximating the euclidean distance of a point (x, y) from the
origin is given in (Gajski et al., 2009) by the equation: eda = MAX((0.875 ∗ x + 0.5 ∗ y), x)
where x = MAX(|a|, |b|) and y = MIN(|a|, |b|). The average error of this approximation
against the integer-rounded exact value (dist =

√
a2 + b2) is 4.7% when compared to the

rounded-down �dist� and 3.85% to the rounded-up �dist� value.

Fig. 6 shows the three relevant facets of eda: ANSI C code (Fig. 6(a)), a manually derived BASIL
implementation (Fig. 6(b)) and the corresponding CDFG (Fig. 6(c)). Constant multiplications
have been reduced to adds, subtracts and shifts. The latter subfigure naturally also shows the
ASAP schedule of the data flow graph, which is evidently of length 7.

3. Architecture and organization of extended FSMDs

This section deals with aspects of specification and design of FSMDs, especially their
interface, architecture and organization, as well as communication and integration issues. The
section is wrapped-up with realistic examples of CDFG mappings to FSMDs, alongside their
performance investigation with the help of HDL simulations.

151FSMD-Based Hardware Accelerators for FPGAs

10 Will-be-set-by-IN-TECH

3.1 FSMD overview

A Finite State Machine with Data (FSMD) specification (Gajski & Ramachandran, 1994) is
an upgraded version of the well-known Finite State Machine representation providing the
same information as the equivalent CDFG (Gajski et al., 2009). The main difference is
the introduction of embedded actions within the next state generation logic. An FSMD
specification is timing-aware since it must be decided that each state is executed within a
certain amount of machine cycles. Also the precise RTL semantics of operations taking place
within these cycles must be determined. In this way, an FSMD can provide an accurate
model of an RTL design’s performance as well as serve as a synthesizable manifestation of
the designer’s intent. Depending on the RT-level specification (usually VHDL or Verilog) it
can convey sufficient details for hardware synthesis to a specific target platform, e.g. Xilinx
FPGA devices (Xilinx, 2011b).

3.2 Extended FSMDs

The FSMDs of our approach follow the established scheme of a Mealy FSM with
computational actions embedded within state logic (Chu, 2006). In this work, the extended
FSMD MoC describing the hardware architectures supports the following features, the most
relevant of which will be sufficiently described and supported by short examples:

• Support of scalar and array input and output ports.

• Support of streaming inputs and outputs and allowing mixed types of input and output
ports in the same design block.

• Communication with embedded block and distributed LUT memories.

• Design of a latency-insensitive local interface of the FSMD units to master FSMDs,
assuming the FSMD is a locally-interfaced slave.

• Design of memory interconnects for the FSMD units.

Advanced issues in the design of FSMDs that are not covered include the following:

• Mapping of SSA-form (Cytron et al., 1991) low-level IR (BASIL) directly to hardware, by
the hardware implementation of variable-argument φ functions.

• External interrupts.

• Communication to global aggregate type storage (global arrays) from within the context of
both root and non-root procedures using a multiplexer-based bus controlled by a scalable
arbiter.

3.2.1 Interface

The FSMDs of our approach use fully-synchronous conventions and register all their outputs
(Chu, 2006; Keating & Bricaud, 2002). The control interface is rather simple, yet can service all
possible designs:

• clk: signal from external clocking source

• reset (rst or arst): synchronous or asynchronous reset, depending on target specification

152 Embedded Systems – Theory and Design Methodology

FSMD-Based Hardware Accelerators for FPGAs 11

Fig. 7. FSMD I/O interface.

• ready: the block is ready to accept new input

• valid: asserted when a certain data output port is streamed-out from the block (generally
it is a vector)

• done: end of computation for the block

ready signifies only the ability to accept new input (non-streamed) and does not address the
status of an output (streaming or not).

Multi-dimensional data ports are feasible based on their equivalent single-dimensional
flattened array type definition. Then, port selection is a matter of bitfield extraction. For
instance, data input din is defined as din: in std_logic_vector(M*N-1 downto
0);, where M, N are generics. The flattened vector defines M input ports of width N. A
selection of the form din((i+1)*N-1 downto i*N) is typical for a for-generate loop
in order to synthesize iterative structures.

The following example (Fig. 8) illustrates an element-wise copy of array b to c without the use
of a local array resource. Each interface array consists of 10 elements. It should be assumed
that the physical content of both arrays lies in distributed LUT RAM, from which custom
connections can be implemented.

Fig. 8(a) illustrates the corresponding function func1. The VHDL interface of func1 is
shown in Fig. 8(b), where the derived array types b_type and c_type are used for b, c,
respectively. The definitions of these types can be easily devised as aliases to a basic type
denoted as: type cdt_type is array (9 downto 0) of std_logic_vector(31
downto 0);. Then, the alias for b is: alias b_type is cdt_type;

3.2.2 Architecture and organization

The FSMDs are organized as computations allocated into n + 2 states, where n is the number
of required control steps as derived by an operation scheduler. The two overhead states are
the entry (S_ENTRY) and the exit (S_EXIT) states which correspond to the source and sink
nodes of the control-data flow graph of the given procedure, respectively.

Fig. 9 shows the absolute minimal example of a compliant FSMD written in VHDL. The FSMD
is described in a two-process style using one process for the current state logic and another
process for a combined description of the next state and output logic. This code will serve as
a running example for better explaining the basic concepts of the FSMD paradigm.

153FSMD-Based Hardware Accelerators for FPGAs

12 Will-be-set-by-IN-TECH

� �

procedure func1 (in s32 b[10],
out s32 c[10]) {

localvar s32 i, t;
S_1:

i <= ldc 0;
S_2 <= jmpun;

S_2:
S_3, S_EXIT <= jmplt i, 10;

S_3:
t <= load b, i;
c <= store t, i;
i <= add i, 1;
S_2 <= jmpun;

S_EXIT:
nop;

}
� �

(a) BASIL code.

� �

entity func1 is
port (
clk : in std_logic;
reset : in std_logic;
start : in std_logic;
b : in b_type;
c : out c_type;
done : out std_logic;
ready : out std_logic

);
end func1;
� �

(b) VHDL interface.

Fig. 8. Array-to-array copy without intermediate storage.

The example of Fig. 9(a), 9(b) implements the computation of assigning a constant value to
the output port of the FSMD: outp <= ldc 42;. Thus, lines 5–14 declare the interface
(entity) for the hardware block, assuming that outp is a 16-bit quantity. The FSMD requires
three states. In line 17, a state type enumeration is defined consisting of types S_ENTRY,
S_EXIT and S_1. Line 18 defines the signal 2-tuple for maintaining the state register, while
in lines 19–20 the output register is defined. The current state logic (lines 25–34) performs
asynchonous reset to all storage resources and assigns new contents to both the state and
output registers. Next state and output logic (lines 37–57) decode current_state in order
to determine the necessary actions for the computational states of the FSMD. State S_ENTRY
is the idle state of the FSMD. When the FSMD is driven to this state, it is assumed ready to
accept new input, thus the corresponding status output is raised. When a start prompt is
given externally, the FSMD is activated and in the next cycle, state S_1 is reached. In S_1 the
action of assigning CNST_42 to outp is performed. Finally, when state S_EXIT is reached,
the FSMD declares the end of all computations via done and returns to its idle state.

It should be noted that this design approach is a rather conservative one. One possible
optimization that can occur in certain cases is the merging of computational states that
immediately prediate the sink state (S_EXIT) with it.

Fig. 9(c) shows the timing diagram for the “minimal” design. As expected, the overall latency
for computing a sample is three machine cycles.

In certain cases, input registering might be desired. This intent can be made explicit by
copying input port data to an internal register. For the case of the eda algorithm, a new
localvar, a would be introduced to perform the copy as a <= mov in1;. The VHDL
counterpart is given as a_1_next <= in1;, making this data available through register
a_1_reg in the following cycle. For register r, signal r_next represents the value that is
available at the register input, and r_reg the stored data in the register.

154 Embedded Systems – Theory and Design Methodology

FSMD-Based Hardware Accelerators for FPGAs 13

� �

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.numeric_std.all;
4
5 entity minimal is
6 port (
7 clk : in std_logic;
8 reset : in std_logic;
9 start : in std_logic;

10 outp : out std_logic_vector(15 downto 0);
11 done : out std_logic;
12 ready : out std_logic
13);
14 end minimal;
15
16 architecture fsmd of minimal is
17 type state_type is (S_ENTRY, S_EXIT, S_1);
18 signal current_state, next_state: state_type;
19 signal outp_next: std_logic_vector(15 downto 0);
20 signal outp_reg: std_logic_vector(15 downto 0);
21 constant CNST_42: std_logic_vector(15 downto 0)
22 := "0000000000101010";
23 begin
24 -- current state logic
25 process (clk, reset)
26 begin
27 if (reset = ’1’) then
28 current_state <= S_ENTRY;
29 outp_reg <= (others => ’0’);
30 elsif (clk = ’1’ and clk’EVENT) then

� �

(a) VHDL code.

� �

31 current_state <= next_state;
32 outp_reg <= outp_next;
33 end if;
34 end process;
35
36 -- next state and output logic
37 process (current_state, start, outp_reg)
38 begin
39 done <= ’0’;
40 ready <= ’0’;
41 outp_next <= outp_reg;
42 case current_state is
43 when S_ENTRY =>
44 ready <= ’1’;
45 if (start = ’1’) then
46 next_state <= S_1;
47 else
48 next_state <= S_ENTRY;
49 end if;
50 when S_1 =>
51 outp_next <= CNST_42;
52 next_state <= S_EXIT;
53 when S_EXIT =>
54 done <= ’1’;
55 next_state <= S_ENTRY;
56 end case;
57 end process;
58 outp <= outp_reg;
59 end fsmd;

� �

(b) VHDL code (cont.)

(c) Timing diagram.

Fig. 9. Minimal FSMD implementation in VHDL.

3.2.3 Communication with embedded memories

Array objects can be synthesized to block RAMs in contemporary FPGAs. These embedded
memories support fully synchronous read and write operations (Xilinx, 2005). A requirement
for asynchronous read mandates the use of memory residing in distributed LUT storage.

In BASIL, the load and store primitives are used for describing read and write memory
access. We will assume a RAM memory model with write enable, and separate data input
(din) and output (dout) sharing a common address port (rwaddr). To control access to
such block, a set of four non-trivial signals is needed: mem_we, a write enable signal, and
the corresponding signals for addressing, data input and output.

store is the simpler operation of the two. It requires raising mem_we in a given single-cycle
state so that data are stored in memory and made available in the subsequent state/machine
cycle.

155FSMD-Based Hardware Accelerators for FPGAs

14 Will-be-set-by-IN-TECH

� �

when STATE_1 =>
mem_addr <= index;
waitstate_next <= not (waitstate_reg);
if (waitstate_reg = ’1’) then

mysignal_next <= mem_dout;
next_state <= STATE_2;

else
next_state <= STATE_1;

end if;
when STATE_2 =>
...

� �

Fig. 10. Wait-state-based communication for loading data from a block RAM.

Synchronous load requires the introduction of a waitstate register. This register assists in
devising a dual-cycle state for performing the load. Fig. 10 illustrates the implementation of
a load operation. During the first cycle of STATE_1 the memory block is addressed. In the
second cycle, the requested data are made available through mem_dout and are assigned to
register mysignal. This data can be read from mysignal_reg during STATE_2.

3.2.4 Hierarchical FSMDs

Our extended FSMD concept allows for hierarchical FSMDs defining entire systems with
calling and callee CDFGs. A two-state protocol can be used to describe a proper
communication between such FSMDs. The first state is considered as the “preparation” state
for the communication, while the latter state actually comprises an “evaluation” superstate
where the entire computation applied by the callee FSMD is effectively hidden.

The calling FSMD performs computations where new values are assigned to �_next signals
and registered values are read from �_reg signals. To avoid the problem of multiple signal
drivers, callee procedure instances produce �_eval data outputs that can then be connected
to register inputs by hardwiring to the �_next signal.

Fig. 11 illustrates a procedure call to an integer square root evaluation procedure. This
procedure uses one input and one output std_logic_vector operands, both considered
to represent integer values. Thus, a procedure call of the form (m) <= isqrt(x); is
implemented by the given code segment in Fig. 11.

STATE_1 sets up the callee instance. The following state is a superstate where control is
transferred to the component instance of the callee. When the callee instance terminates its
computation, the ready signal is raised. Since the start signal of the callee is kept low, the
generated output data can be transferred to the m register via its m_next input port. Control
then is handed over to state STATE_3.

The callee instance follows the established FSMD interface, reading x_reg data and
producing an exact integer square root in m_eval. Multiple copies of a given callee are
supported by versioning of the component instances.

156 Embedded Systems – Theory and Design Methodology

FSMD-Based Hardware Accelerators for FPGAs 15

� �

when STATE_1 =>
isqrt_start <= ’1’;
next_state <= SUPERSTATE_2;

when SUPERSTATE_2 =>
if ((isqrt_ready = ’1’) and (isqrt_start = ’0’)) then

m_next <= m_eval;
next_state <= STATE_3;

else
next_state <= SUPERSTATE_2;

end if;
when STATE_3 =>
...
isqrt_0 : entity WORK.isqrt(fsmd)
port map (

clk, reset,
isqrt_start, x_reg, m_eval,
isqrt_done, isqrt_ready

);
� �

Fig. 11. State-superstate-based communication of a caller and callee procedure instance in
VHDL.
� �

(B) <= func1 (A);
(C) <= func2 (B);
(D) <= func3 (C);
...

� �

Fig. 12. Example of a functional pipeline in BASIL.

3.2.5 Steaming ports

ANSI C is the archetypical example of a general-purpose imperative language that does
not support streaming primitives, i.e. it is not possible for someone to express and
process streams solely based on the semantics of such language. Streaming (e.g. through
queues) suits applications with near-complete absence of control flow. Such example would
be the functional pipeline of the form of Fig. 12 with A, B, C, D either compound types
(arrays/vectors). Control flow in general applications is complex and it is not easy to intermix
streamed and non-streamed inputs/outputs for each FSMD, either calling or callee.

3.2.6 Other issues

3.2.6.1 VHDL packages for implicit fixed-point arithmetic support

The latest approved IEEE 1076 standard (termed VHDL-2008) (IEEE, 2009) adds signed
and unsigned (sfixed, ufixed) fixed-point data types and a set of primitives for their
manipulation. The VHDL fixed-point package provides synthesizable implementations of
fixed-point primitives for arithmetic, scaling and operand resizing (Ashenden & Lewis, 2008).

3.2.6.2 Design organization of an FSMD hardware IP

A proper FSMD hardware IP should seamlessly integrate to a hypothetical system. FSMD IPs
would be viewed as black boxes adhering to certain principles such as registered outputs.

157FSMD-Based Hardware Accelerators for FPGAs

16 Will-be-set-by-IN-TECH

� �

globalvar B [...]=...;
...
() <= func1 (A);
() <= func2 ();
() <= func3 ();

� �

Fig. 13. The functional pipeline of Fig. 12 after argument globalization.

Unconstrained vectors help in maintaining generic blocks without the need of explicit
generics, and it is an interesting idea, however not easily applicable when derived types are
involved.

The outer product of two vectors A and B could be a theoretical case for a hardware block. The
outer (or “cross”) product is given by C = A × B or C = cross(A, B) for reading two matrices
A, B to calculate C. Matrices A, B, C will have appropriate derived types that are declared in
the cross_pkg.vhd package; a prerequisite for using the cross.vhd design file.

Regarding the block internals, the cross product of A, B is calculated and stored in a localvar
array called Clocal. Clocal is then copied (possibly in parallel) to the C interface array with
the help of a for-generate construct.

3.2.6.3 High-level optimizations relevant to hardware block development

Very important optimizations for increasing the efficiency of system-level communication are
matrix flattening and argument globalization. The latter optimization is related to choices at
the hardware interconnect level.

Matrix flattening deals with reducing the dimensions of an array from N to one. This
optimization creates multiple benefits:

• addressing simplification

• direct mapping to physical memory (where addressing is naturally single-dimensional)

• interface and communication simplifications

Argument globalization is useful for replacing multiple copies of a given array by a
single-access “globalvar” array. One important benefit is the prevention of exhausting
interconnect resources. This optimization is feasible for single-threaded applications. For
the example in Fig. 12 we assume that all changes can be applied sequentially on the B array,
and that all original data are stored in A.

The aforementioned optimization would rapidly increase the number of “globalvar” arrays.
A “safe” but conservative approach would apply a restriction on “globalvar” access, allowing
access to globals only by the root procedure of the call graph. This can be overcome by
the development of a bus-based hardware interface for “globalvar” arrays making globals
accessible by any procedure.

3.2.6.4 Low-level optimizations relevant to hardware block development

A significant low-level optimization that can boost performance while operating locally
at the basic block level is operation chaining. A scheduler supporting this optimization

158 Embedded Systems – Theory and Design Methodology

FSMD-Based Hardware Accelerators for FPGAs 17

would assign to a single control step, multiple operations that are associated through
data dependencies. Operation chaining is popular for deriving custom instructions or
superinstructions that can be added to processor cores as instruction-set extensions (Pozzi
et al., 2006). Most techniques require a form of graph partitioning based on certain criteria
such as the maximum acceptable path delay.

A hardware developer could resort in a simpler means for selective operation chaining by
merging ASAP states to compound states. This optimization is only possible when a single
definition site is used per variable (thus SSA form is mandatory). Then, an intermediate
register is eliminated by assigning to a �_next signal and reusing this value in the subsequent
chained computation, instead of reading from the stored �_reg value.

3.3 Hardware design of the 2D Euclidean distance approximation

The eda algorithm shows good potential for speedup via operation chaining. Without this
optimization, 7 cycles are required for computing the approximation, while chaining allows
to squeeze all computational states into one; thus three cycles are needed to complete the
operation. Fig. 14 depicts VHDL code segments for an ASAP schedule with chaining disabled
(Fig. 14(a)) and enabled (Fig. 14(b)). Figures 14(c) and 14(d) show cycle timings for the relevant
I/O signals for both cases.

4. Non-trivial examples

4.1 Integer factorization

The prime factorization algorithm (p f actor) is a paramount example of the use of streaming
outputs. Output outp is streaming and the data stemming from this port should be accessed
based on the valid status. The reader can observe that outp is accessed periodically in
context of basic block BB3 as shown in Fig. 15(b).

Fig. 15 shows the four relevant facets of p f actor: ANSI C code (Fig. 15(a)), a manually
derived BASIL implementation (Fig. 15(b)) and the corresponding CFG (Fig. 15(c)) and CDFG
(Fig. 15(d)) views.

Fig. 16 shows the interface signals for factoring values 6 (a composite), 7 (a prime), and 8 (a
composite which is also a power-of-2).

4.2 Multi-function CORDIC

This example illustrates a universal CORDIC IP core supporting all directions (ROTATION,
VECTORING) and modes (CIRCULAR, LINEAR, HYPERBOLIC) (Andraka, 1998; Volder,
1959). The input/ouput interface is similar to e.g. the CORDIC IP generated by Xilinx
Core Generator (Xilinx, 2011a). It provides three data inputs (xin, yin, zin) and three data
outputs (xout, yout, zout) as well as the direction and mode control inputs. The testbench will
test the core for computing cos (xin), sin (yin), arctan(yin/xin), yin/xin ,

√
w, 1/

√
w, with

xin = w + 1/4, yin = w − 1/4, but it can be used for anything computable by CORDIC
iterations. The computation of 1/

√
w is performed in two stages: a) y = 1/w, b) z =

√
y. The

159FSMD-Based Hardware Accelerators for FPGAs

18 Will-be-set-by-IN-TECH

� �

type state_type is (S_ENTRY, S_EXIT, S_1_1, S_1_2,
S_1_3, S_1_4, S_1_5, S_1_6, S_1_7);

signal current_state, next_state: state_type;
...

case current_state is
when S_ENTRY =>

ready <= ’1’;
if (start = ’1’) then

next_state <= S_1_1;
else

next_state <= S_ENTRY;
end if;

...
when S_1_3 =>

t3_next <= "000" & x_reg(15 downto 3);
t4_next <= "0" & y_reg(15 downto 1);
next_state <= S_1_4;

when S_1_4 =>
t5_next <= std_logic_vector(unsigned(x_reg)

- unsigned(t3_reg));
next_state <= S_1_5;

when S_1_5 =>
t6_next <= std_logic_vector(unsigned(t4_reg)

+ unsigned(t5_reg));
next_state <= S_1_6;

...
when S_1_7 =>

out1_next <= t7_reg;
next_state <= S_EXIT;

when S_EXIT =>
done <= ’1’;
next_state <= S_ENTRY;

� �

(a) VHDL code without chaining.

� �

type state_type is (S_ENTRY, S_EXIT, S_1_1);
signal current_state, next_state: state_type;
...
case current_state is
...

when S_ENTRY =>
ready <= ’1’;
if (start = ’1’) then
next_state <= S_1_1;

else
next_state <= S_ENTRY;

end if;
when S_1_1 =>

...
t3_next <= "000" & x_next(15 downto 3);
t4_next <= "0" & y_next(15 downto 1);
t5_next <= std_logic_vector(unsigned(x_next)

- unsigned(t3_next));
t6_next <= std_logic_vector(unsigned(t4_next)

+ unsigned(t5_next));
...
out1_next <= t7_next;
...

� �

(b) VHDL code with chaining.

(c) Timing diagram without chaining.

(d) Timing diagram with chaining.

Fig. 14. FSMD implementation in VHDL and timing for the eda algorithm.

160 Embedded Systems – Theory and Design Methodology

FSMD-Based Hardware Accelerators for FPGAs 19

� �

void pfactor(unsigned int x,
unsigned int *outp)

{
unsigned int i, n;
i = 2;
n = x;
while (i <= n)
{

while ((n % i) == 0)
{

n = n / i;

*outp = i;
// emitting to file stream
PRINT(i);

}
i = i + 1;

}
}
� �

(a) ANSI C code.

� �

procedure pfactor (in u16 x, out u16 outp)
{

localvar u16 i, n, t0;
BB1:

n <= mov x;
i <= ldc 2;
BB2 <= jmpun;

BB2:
BB3, BB_EXIT <= jmple i, n;

BB3:
t0 <= rem n, i;
BB4, BB5 <= jmpeq t0, 0;

BB4:
n <= div n, i;
outp <= mov i;
BB3 <= jmpun;

BB5:
i <= add i, 1;
BB2 <= jmpun;

BB_EXIT:
nop;

}
� �

(b) BASIL code.

BB1

BB

U

BB3

T

BB6

F

BB4

T

BB5

FU

U

(c) CFG.

add

mov

i_6

0

jmpeq

0

1

1

2

ldc

2

div

mov

n_5

F

T

jmple

nop

F

rem

T

jmpun

U

jmpun

mov

U

jmpun

U

mov

i_1

mov

mov

n_1

mov

outp

outp

n_3

mov

n_3

n_3

i_2

i_2

i_2

i_2i_2

i_2

i_2

i_2

i_2i_2

n_2n_2

n_3

n_3

n_3

n_2n_2

t0_4

x

x

(d) CDFG.

Fig. 15. Different facets of a prime factorization algorithm.

161FSMD-Based Hardware Accelerators for FPGAs

20 Will-be-set-by-IN-TECH

Fig. 16. Non-trivial interface signals for the p f actor FSMD design.

Design Description Max.
frequency

Area
(LUTs)

cordic1cyc 1-cycle/iteration; uses asynchronous
read LUT RAM

204.5 741

cordic5cyc 5-cycles/iteration; uses synchronous
read (Block) RAM

271.5 571, 1 BRAM

Table 4. Logic synthesis results for multi-function CORDIC.

design is a monolithic FSMD that does not include post-processing needed such as the scaling
operation for the square root.

The FSMD for the CORDIC uses Q2.14 fixed-point arithmetic. While the required lines
of ANSI C code are 29, the hand-coded BASIL representation uses 56 lines; the CDFG
representation and the VHDL design, 178 and 436, respectively, showing a clear tendency
among the different abstraction levels used for design representation.

The core achieves 18 (CIRCULAR, LINEAR) and 19 cycles (HYPERBOLIC) per sample or
n + 4 and n + 5 cycles, respectively, where n is the fractional bitwidth. When the operation
chaining optimization is not applied, 5 cycles per iteration are required instead of a single
cycle where all operations all collapsed. A single-cycle per iteration constraint imposes the
use of distributed LUT RAM, otherwise 3 cycles are required per sample.

Fig.17(a) shows a C-like implementation of the multi-function CORDIC inspired by recent
work (Arndt, 2010; Williamson, 2011). CNTAB is equivalent to fractional width n, HYPER,
LIN and CIRC are shortened names for CORDIC modes and ROTN for the rotation direction,
cordic_tab is the array of CORDIC coefficients and cordic_hyp_steps an auxiliary
table handling repeated iterations for hyperbolic functions. cordic_tab is used to access
coefficients for all modes with different offsets (0, 14 or 28 for our case).

Table 4 illustrates synthesis statistics for two CORDIC designs. The logic synthesis results with
Xilinx ISE 12.3i reveal a 217MHz (estimated) design when branching is entirely eliminated in
the CORDIC loop, otherwise a faster design can be achieved (271.5 MHz). Both cycles and
MHz could be improved by source optimization, loop unrolling for pipelining, and the use of
embedded multipliers (pseudo-CORDIC) that would eliminate some of the branching needed
in the CORDIC loop.

162 Embedded Systems – Theory and Design Methodology

FSMD-Based Hardware Accelerators for FPGAs 21

� �

void cordic(dir, mode, xin, yin, zin, *xout, *yout, *zout) {
...
x = xin; y = yin; z = zin;
offset = ((mode == HYPER) ? 0 : ((mode == LIN) ? 14 : 28));
kfinal = ((mode != HYPER) ? CNTAB : CNTAB+1);
for (k = 0; k < kfinal; k++) {

d = ((dir == ROTN) ? ((z>=0) ? 0 : 1) : ((y<0) ? 0 : 1));
kk = ((mode != HYPER) ? k :

cordic_hyp_steps[k]);
xbyk = (x>>kk);
ybyk = ((mode == HYPER) ? -(y>>kk) : ((mode == LIN) ? 0 :

(y>>kk)));
tabval = cordic_tab[kk+offset];
x1 = x - ybyk; x2 = x + ybyk;
y1 = y + xbyk; y2 = y - xbyk;
z1 = z - tabval; z2 = z + tabval;
x = ((d == 0) ? x1 : x2);
y = ((d == 0) ? y1 : y2);
z = ((d == 0) ? z1 : z2);}

*xout = x; *yout = y; *zout = z;
}
� �

(a) C-like code.
� �

process (*)
begin
...

case current_state is ...
when S_3 =>

t1_next <= cordic_hyp_steps(
to_integer(unsigned(k_reg(3 downto 0))));

if (mode /= CNST_2) then
kk_next <= k_reg;

else
kk_next <= t1_next;

end if;
t2_next <= shr(y_reg, kk_next, ’1’);
...
x1_next <= x_reg - ybyk_next;
y1_next <= y_reg + xbyk_next;
z1_next <= z_reg - tabval_next;

...
when S_4 =>

xout_next <= x_5_reg;
yout_next <= y_5_reg;
zout_next <= z_5_reg;
next_state <= S_EXIT;

...
end process;
zout <= zout_reg;
yout <= yout_reg;
xout <= xout_reg;

� �

(b) Partial VHDL code.

Fig. 17. Multi-function CORDIC listings.

163FSMD-Based Hardware Accelerators for FPGAs

22 Will-be-set-by-IN-TECH

5. Conclusion

In this chapter, a straightforward FSMD-style model of computation was introduced that
augments existing approaches. Our FSMD concept supports inter-FSMD communication,
embedded memories, streaming outputs, and seamless integration of user IPs/black boxes.
To raise the level of design abstraction, the BASIL typed assembly language is introduced
which can be used for capturing the user’s intend. We show that it is possible to convert this
intermediate representation to self-contained CDFGs and finally to provide an easier path for
designing a synthesizable VHDL implementation.

Along the course of this chapter, representative examples were used to illustrate the key
concepts of our approach such as a prime factorization algorithm and an improved FSMD
design of a multi-function CORDIC.

6. References

Andraka, R. (1998). A survey of CORDIC algorithms for FPGA based computers, 1998
ACM/SIGDA sixth international symposium on Field programmable gate arrays, Monterey,
CA, USA, pp. 191–200.

Appel, A. W. (1998). SSA is functional programming, ACM SIGPLAN Notices 33(4): 17–20.
URL: http://doi.acm.org/10.1145/278283.278285

Arndt, J. (2010). Matters Computational: Ideas, Algorithms, Source Code, Springer.
URL: http://www.jjj.de/fxt/

Ashenden, P. J. & Lewis, J. (2008). VHDL-2008: Just the New Stuff, Elsevier/Morgan Kaufmann
Publishers.

Aycock, J. & Horspool, N. (2000). Simple generation of static single assignment form,
Proceedings of the 9th International Conference in Compiler Construction, Vol. 1781 of
Lecture Notes in Computer Science, Springer, pp. 110–125.
URL: http://citeseer.ist.psu.edu/aycock00simple.html

Bishop, D. (2010a). Fixed point package user’s guide.
URL: http://www.eda.org/fphdl/fixed_ug.pdf

Bishop, D. (2010b). VHDL-2008 support library.
URL: http://www.eda.org/fphdl/

Chu, P. P. (2006). RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and
Scalability, Wiley-IEEE Press.

clang homepage (2011).
URL: http://clang.llvm.org

COINS (2011).
URL: http://www.coins-project.org

CoSy, A. (2011). ACE homepage.
URL: http://www.ace.nl

Coussy, P. & Morawiec, A. (eds) (2008). High-Level Synthesis: From Algorithm to Digital Circuits,
Springer.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N. & Zadeck, F. K. (1991). Efficiently
computing static single assignment form and the control dependence graph, ACM
Transactions on Programming Languages and Systems 13(4): 451–490.
URL: http://doi.acm.org/10.1145/115372.115320

164 Embedded Systems – Theory and Design Methodology

FSMD-Based Hardware Accelerators for FPGAs 23

Edwards, S. A. (2006). Using program specialization to speed SystemC fixed-point simulation,
Proceedings of the Workshop on Partial Evaluation and Progra Manipulation (PEPM),
Charleston, South Carolina, USA, pp. 21–28.

Gajski, D. D., Abdi, S., Gerstlauer, A. & Schirner, G. (2009). Embedded System Design: Modeling,
Synthesis and Verification, Springer.

Gajski, D. D. & Ramachandran, L. (1994). Introduction to high-level synthesis, IEEE Design &
Test of Computers 11(1): 44–54.

GCC (2011). The GNU compiler collection homepage.
URL: http://gcc.gnu.org

Gonzalez, R. (2000). Xtensa: A configurable and extensible processor, IEEE Micro 20(2): 60–70.
Graphviz (2011).

URL: http://www.graphviz.org
IEEE (2006). IEEE 1364-2005, IEEE Standard for Verilog Hardware Description Language.
IEEE (2009). IEEE 1076-2008 Standard VHDL Language Reference Manual.
ISO/IEC JTC1/SC22 (2007). ISO/IEC 9899:TC3 International Standard (Programming Language:

C), Committee Draft.
URL: http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

ITRS (2011). International technology roadmap for semiconductors.
URL: http://www.itrs.net/reports.html

Keating, M. & Bricaud, P. (2002). Reuse Methodology Manual for System-on-a-Chip Designs, third
edition edn, Springer-Verlag. 2nd printing.

Knuth, D. E. (2011). Art of Computer Programming: Combinatorial Algorithms, number pt. 1 in
Addison-Wesley Series in Computer Science, Addison Wesley Professional.

LANCE (2011). LANCE retargetable C compiler.
URL: http://www.lancecompiler.com

Leupers, R., Wahlen, O., Hohenauer, M., Kogel, T. & Marwedel, P. (2003). An Executable
Intermediate Representation for Retargetable Compilation and High-Level Code
Optimization, Int. Conf. on Inf. Comm. Tech. in Education.

LLVM (2011).
URL: http://llvm.org

Machine-SUIF (2002).
URL: http://www.eecs.harvard.edu/hube/software/

Marsaglia, G. (2003). Xorshift RNGs, Journal of Statistical Software 8(14).
Mentor Graphics (2011). Algorithmic C data types.

URL: http://www.mentor.com/esl/catapult/algorithmic
Microsoft (2008). Phoenix compiler framework.

URL: http://connect.microsoft.com/Phoenix
Pozzi, L., Atasu, K. & Ienne, P. (2006). Exact and approximate algorithms for the extension of

embedded processor instruction sets, IEEE Transactions on CAD of Integrated Circuits
and Systems 25(7): 1209–1229.

SystemC (2006). IEEE 1666™-2005: Open SystemC Language Reference Manual.
Turkowski, K. (1995). Graphics gems v, Academic Press Professional, Inc., San Diego, CA,

USA, chapter Fixed-point square root, pp. 22–24.
Volder, J. E. (1959). The CORDIC Trigonometric Computing Technique, IRE Transactions on

Electronic Computers EC-8: 330–334.

165FSMD-Based Hardware Accelerators for FPGAs

24 Will-be-set-by-IN-TECH

Williamson, J. (2011). Simple C code for fixed-point CORDIC.
URL: http://www.dcs.gla.ac.uk/ jhw/cordic/

Wirth, N. (1998). Hardware compilation: Translating programs into circuits, IEEE Computer
31(6): 25–31.

Xilinx (2005). Spartan-3 FPGA Family Using Block Spartan-3 Generation FPGAs (v2.0).
Xilinx (2011a). CORDIC v4.0 - Product Specifications, XILINX LogiCORE, DS249 (vl.5).
Xilinx (2011b). Xilinx.

URL: http://www.xilinx.com
Yates, R. (2009). Fixed-point arithmetic: An introduction, Technical reference, Digital Signal

Labs.

166 Embedded Systems – Theory and Design Methodology

0

Context Aware Model-Checking
for Embedded Software

Philippe Dhaussy1, Jean-Charles Roger1

and Frédéric Boniol2
1Ensta-Bretagne

2ONERA
France

1. Introduction

Reactive systems are becoming extremely complex with the huge increase in high
technologies. Despite technical improvements, the increasing size of the systems makes
the introduction of a wide range of potential errors easier. Among reactive systems,
the asynchronous systems communicating by exchanging messages via buffer queues are
often characterized by a vast number of possible behaviors. To cope with this difficulty,
manufacturers of industrial systems make significant efforts in testing and simulation to
successfully pass the certification process. Nevertheless revealing errors and bugs in this huge
number of behaviors remains a very difficult activity. An alternative method is to adopt formal
methods, and to use exhaustive and automatic verification tools such as model-checkers.

Model-checking algorithms can be used to verify requirements of a model formally and
automatically. Several model checkers as (Berthomieu et al., 2004; Holzmann, 1997; Larsen
et al., 1997), have been developed to help the verification of concurrent asynchronous systems.
It is well known that an important issue that limits the application of model checking
techniques in industrial software projects is the combinatorial explosion problem (Clarke
et al., 1986; Holzmann & Peled, 1994; Park & Kwon, 2006). Because of the internal complexity
of developed software, model checking of requirements over the system behavioral models
could lead to an unmanageable state space.

The approach described in this chapter presents an exploratory work to provide solutions
to the problems mentioned above. It is based on two joint ideas: first, to reduce behaviors
system to be validated during model-checking and secondly, help the user to specify the
formal properties to check. For this, we propose to specify the behavior of the entities that
compose the system environment. These entities interact with the system. Their behaviors are
described by use cases (scenarios) called here contexts. They describe how the environment
interacts with the system. Each context corresponds to an operational phase identified as
system initialization, reconfiguration, graceful degradation, etc.. In addition, each context is
associated with a set of properties to check. The aim is to guide the model-checker to focus on
a restriction of the system behavior for verification of specific properties instead on exploring
the global system automaton.

8

2 Will-be-set-by-IN-TECH

In this chapter, we describe the formalism called CDL (Context Description Language), such
as DSL1. This language serves to support our approach to reduce the state space. We report a
feedback on several case studies industrial field of aeronautics, which was conducted in close
collaboration with engineers in the field.

This chapter is organized as follows: Section 2 presents related work on the techniques to
improve model checking by state reduction and property specification. Section 3 presents the
principles of our approach for context aware formal verification. Section 4 describes the CDL
language for context specification. Our toolset used for the experiments is presented section
5. In Section 6, we give results of industrial case studies. Section 7 discusses our approach and
presents future work.

2. Related works

Several model checkers such as SPIN (Holzmann, 1997), Uppaal (Larsen et al., 1997),
TINA-SELT (Berthomieu et al., 2004), have been developed to assist in the verification of
concurrent asynchronous systems. For example, the SPIN model-checker based on the
formal language Promela allows the verification of LTL (Pnueli, 1977) properties encoded
in "never claim" formalism and further converted into Buchi automata. Several techniques
have been investigated in order to improve the performance of SPIN. For instance the
state compression method or partial-order reduction contributed to the further alleviation of
combinatorial explosion (Godefroid, 1995). In (Bosnacki & Holzmann, 2005) the partial-order
algorithm based on a depth-first search (DFS) has been adapted to the breadth first search
(BFS) algorithm in the SPIN model-checker to exploit interesting properties inherent to the
BFS. Partial-order methods (Godefroid, 1995; Peled, 1994; Valmari, 1991) aim at eliminating
equivalent sequences of transitions in the global state space without modifying the falsity of
the property under verification. These methods, exploiting the symmetries of the systems,
seemed to be interesting and were integrated into many verification tools (for instance SPIN).

Compositional (modular) specification and analysis techniques have been researched for a
long time and resulted in, e.g., assume/guarantee reasoning or design-by-contract techniques.
A lot of work exists in applying these techniques to model checking including, e.g. (Alfaro
& Henzinger, 2001; Clarke et al., 1999; Flanagan & Qadeer, 2003; Tkachuk & Dwyer, 2003)
These works deal with model checking/analyzing individual components (rather than whole
systems) by specifying, considering or even automatically determining the interactions that
a component has or could have with its environment so that the analysis can be restricted
to these interactions. Design by contract proposes to verify a system by verifying all its
components one by one. Using a specific composition operator preserving properties, it allows
assuming that the system is verified.

Our approach is different from compositional or modular analysis. We propose to
formally specify the context behavior of components in a way that allows a fully automatic
divide-and-conquer algorithm. We choose to explicit contexts separately from the model to be
validated. However, our approach can be used in conjunction with design by contract process.
It is about using the knowledge of the environment of a whole system (or model) to conduct
a verification to the end.

Another difficulty is about requirement specification. Embedded software systems
integrate more and more advanced features, such as complex data structures, recursion,

1 Domain Specific Language

168 Embedded Systems – Theory and Design Methodology

Context Aware Model-Checking for Embedded Software 3

multithreading. Despite the increased level of automation, users of finite-state verification
tools are still constrained to specify the system requirements in their specification language
which is often informal. While temporal logic based languages (example LTL or CTL (Clarke
et al., 1986)) allow a great expressivity for the properties, these languages are not adapted
to practically describe most of the requirements expressed in industrial analysis documents.
Modal and temporal logics are rather rudimentary formalisms for expressing requirements,
i.e., they are designed having in mind the straightforwardness of its processing by a tool such
as a model-checker rather than the user-friendliness. Their concrete syntax is often simplistic,
tailored for easing its processing by particular tools such as model checkers. Their efficient
use in practice is hampered by the difficulty to write logic formula correctly without extensive
expertise in the idioms of the specification languages.

It is thus necessary to facilitate the requirement expression with adequate languages by
abstracting some details in the property description, at a price of reducing the expressivity.
This conclusion was drawn a long time ago and several researchers (Dwyer et al., 1999;
Konrad & Cheng, 2005; Smith et al., 2002) proposed to formulate the properties using
definition patterns in order to assist engineers in expressing system requirements. Patterns
are textual templates that capture common logical and temporal properties and that can be
instantiated in a specific context. They represent commonly occurring types of real-time
properties found in several requirement documents for embedded systems.

3. Context aware verification

To illustrate the explosion problem, let us consider the example in Figure 1. We are trying
to verify some requirements by model checking using the TINA-SELT model checker. We
present the results for a part of the S_CP model. Then, we introduce our approach based on
context specifications.

3.1 An illustration

We present one part of an industrial case study: the software part of an anti-aircraft system
(S_CP). This controller controls the internal modes, the system physical devices (sensors,
actuators) and their actions in response to incoming signals from the environment. The S_CP
system interacts with devices (Dev) that are considered to be actors included in the S_CP
environment called here context.

The sequence diagrams of Figure 2 illustrate interactions between context actors and the S_CP
system during an initialization phase. This context describes the environment we want to
consider for the verification of the S_CP controller. This context is composed of several actors
Dev running in parallel or in sequence. All these actors interleave their behavior. After the
initializing phase, all actors Devi (i ∈ [1 . . . n]) wait for orders goInitDev from the system.
Then, actors Devi send logini and receive either ackLog(id) (Figure 2.a and 2.c) or nackLog(err)
(Figure 2.b) as responses from the system. The logged devices can send operate(op) (Figure
2.a and 2.c) and receive either ackOper(role) (Figure 2.a) or nackOper(err) (Figure 2.c). The
messages goInitDev can be received in parallel in any order. However, the delay between
messages logini and ackLog(id) (Figure 1) is constrained by maxD_log. The delay between
messages operate(op) and ackOper(role) (Figure 1) is constrained by maxD_oper. And finally
all Devi send logouti to end the interaction with the S_CP controller.

169Context Aware Model-Checking for Embedded Software

4 Will-be-set-by-IN-TECH

Fig. 1. S_CP system: partial description during the initialization phase.

Fig. 2. An example of S_CP context scenario with 3 devices.

3.2 Model-checking results

To verify requirements on the system model2, we used the TINA-SELT model checker. To do
so, the system model is translated into FIACRE format (Farail et al., 2008) to explore all the
S_CP model behaviors by simulation, S_CP interacting with its environment (devices). Model
exploration generates a labeled transition system (LTS) which represents all the behaviors of
the controller in its environment. Table 1 shows3 the exploration time and the amount of
configurations and transitions in the LTS for different complexities (n indicates the number of
considered actors). Over four devices, we see a state explosion because of the limited memory
of our computer.

3.3 Combinatorial explosion reduction

When checking the properties of a model, a model-checker explores all the model behaviors
and checks whether the properties are true or not. Most of the time, as shown by previous

2 Here by system or system model, we refer to the model to be validated.
3 Tests were executed on Linux 32 bits - 3 Go RAM computer, with TINA vers.2.9.8 and Frac parser

vers.1.4.2.

170 Embedded Systems – Theory and Design Methodology

Context Aware Model-Checking for Embedded Software 5

N.of Exploration time N.of LTS N.of LTS
devices (sec) configurations transitions

1 10 16 766 82 541
2 25 66 137 320 388
3 91 269 977 1 297 987
4 118 939 689 4 506 637
5 Explosion – –

Table 1. Table highlighting the verification complexity for an industrial case study (S_CP).

results, the number of reachable configurations is too large to be contained in memory (Figure
3.a). We propose to restrict model behavior by composing it with an environment that
interacts with the model. The environment enables a subset of the behavior of the model. This
technique can reduce the complexity of the exploration by limiting the scope of the verification
to precise system behaviors related to some specific environmental conditions.

This reduction is computed in two stages: Contexts are first identified by the user (contexti, i ∈
[1..n] in Figure 3.b). They correspond to patterns of use of the component being modeled. The
aim is to circumvent the combinatorial explosion by restricting the behavior system with an
environment describing different configurations in which one wishes to check requirements.
Then each context is automatically partitioned into a set of sub-contexts. Here we precisely
define these two aspects implemented in our approach.

The context identification focuses on a subset of behavior and a subset of properties. In the
context of reactive embedded systems, the environment of each component of a system is
often well known. It is therefore more effective to identify this environment than trying reduce
the configuration space of the model system to explore.

Fig. 3. Traditional model checking (a) vs. context-aware model checking (b).

In this approach, we suppose that the designer is able to identify all possible interactions
between the system and its environment. We also consider that each context expressed
initially is finite, (i.e., there is a non infinite loop in the context). We justify this strong
hypothesis, particularly in the field of embedded systems, by the fact that the designer of

171Context Aware Model-Checking for Embedded Software

6 Will-be-set-by-IN-TECH

a software component needs to know precisely and completely the perimeter (constraints,
conditions) of its system for properly developing it. It would be necessary to study formally
the validity of this working hypothesis based on the targeted applications. In this chapter, we
do not address this aspect that gives rise to a methodological work to be undertaken.

Moreover, properties are often related to specific use cases (such as initialization,
reconfiguration, degraded modes). Therefore, it is not necessary for a given property to take
into account all possible behaviors of the environment, but only the subpart concerned by the
verification. The context description thus allows a first limitation of the explored space search,
and hence a first reduction in the combinatorial explosion.

The second idea is to automatically split each identified context into a set of smaller
sub-contexts (Figure 4). The following verification process is then equivalent: (i) compose
the context and the system, and then verify the resulting global system, (ii) partition the
environment into k sub-contexts (scenarios), and successively deal each scenario with the
model and check the properties on the outcome of each composition. Actually, we transform
the global verification problem into k smaller verification sub problems. In our approach, the
complete context model can be split into pieces that have to be composed separately with the
system model. To reach that goal, we implemented a recursive splitting algorithm in our OBP
tool. Figure 4 illustrates the function explore_mc() for exploration of a model, with a context
and model-checking of a set of properties pty. The context is represented by acyclic graph.
This graph is composed with the model for exploration. In case of explosion, this context is
automatically split into several parts (taking into account a parameter d for the depth in the
graph for splitting) until the exploration succeeds.

Fig. 4. Context splitting and verification for each partition (sub-context).

In summary, the context aware method provides three reduction axes: the context behavior is
constrained, the properties are focused and the state space is split into pieces. The reduction
in the model behavior is particularly interesting while dealing with complex embedded
systems, such as in avionic systems, since it is relevant to check properties over specific
system modes (or use cases) which is less complex because we are dealing with a subset
of the system automata. Unfortunately, only few existing approaches propose operational
ways to precisely capture these contexts in order to reduce formal verification complexity
and thus improve the scalability of existing model checking approaches. The necessity of
a clear methodology has also to be identified, since the context partitioning is not trivial,
i.e., it requires the formalization of the context of the subset of functions under study. An

172 Embedded Systems – Theory and Design Methodology

Context Aware Model-Checking for Embedded Software 7

associated methodology must be defined to help users for modeling contexts (out of scope of
this chapter).

4. CDL language for context and property specification

We propose a formal tool-supported framework that combines context description and model
transformations to assist in the definition of requirements and of the environmental conditions
in which they should be satisfied. Thus, we proposed (Dhaussy et al., 2009) a context-aware
verification process that makes use of the CDL language. CDL was proposed to fill the gap
between user models and formal models required to perform formal verifications. CDL is
a Domain Specific Language presented either in the form of UML like graphical diagrams
(a subset of activity and sequence diagrams) or in a textual form to capture environment
interactions.

4.1 Context hierarchical description

CDL is based on Use Case Charts of (Whittle, 2006) using activity and sequence diagrams. We
extended this language to allow several entities (actors) to be described in a context (Figure
5). These entities run in parallel. A CDL4 model describes, on the one hand, the context
using activity and sequence diagrams and, on the other hand, the properties to be checked
using property patterns. Figure 5 illustrates a CDL model for the partial use cases of Figures
1 and 2. Initial use cases and sequence diagrams are transformed and completed to create the
context model. All context scenarios are represented, combined with parallel and alternative
operators, in terms of CDL.

A diagrammatical and textual concrete syntax is created for the context description and
a textual syntax for the property expression. CDL is hierarchically constructed in three
levels: Level-1 is a set of use case diagrams which describes hierarchical activity diagrams.
Either alternative between several executions (alternative/merge) or a parallelization of
several executions (fork/join) is available. Level-2 is a set of scenario diagrams organized
in alternatives. Each scenario is fully described at Level-3 by sequence diagrams. These
diagrams are composed of lifelines, some for the context actors and others for processes
composing the system model. Counters limit the iterations of diagram executions. This
ensures the generation of finite context automata.

From a semantic point of view, we can consider that the model is structured in a set of
sequence diagrams (MSCs) connected together with three operators: sequence (seq), parallel
(par) and alternative (alt). The interleaving of context actors described by a set of MSCs
generates a graph representing all executions of the actors of the environment. This graph
is then partitioned in such a way as to generate a set of subgraphs corresponding to the
sub-contexts as mentioned in 3.3.

The originality of CDL is its ability to link each expressed property to a context diagram,
i.e. a limited scope of the system behavior. The properties can be specified with property
pattern definitions that we do not describe here but can be found in (Dhaussy & Roger, 2011).
Properties can be linked to the context description at Level 1 or Level 2 (such as P1 and P3
in Figure 5) by the stereotyped links property/scope. A property can have several scopes
and several properties can refer to a single diagram. CDL is designed so that formal artifacts

4 For the detailed syntax, see (Dhaussy & Roger, 2011) available (currently in french) on
http://www.obpcdl.org.

173Context Aware Model-Checking for Embedded Software

8 Will-be-set-by-IN-TECH

Fig. 5. S_CP case study: partial representation of the context.

required by existing model checkers could be automatically generated from it. This generation
is currently implemented in our prototype tool called OBP (Observer Based Prover) described
briefly in Section 5. We will now present the CDL formal syntax and semantics.

4.2 Formal syntax

A CDL model (also called “context”) is a finite generalized MSC C, following the formal
grammar:

C ::= M | C1; C2 | C1 + C2 | C1‖C2
M ::= 0 | a!; M | a?; M

In other words, a context is either (1) a single MSC M composed as a sequence of event
emissions a! and event receptions a? terminated by the empty MSC (0) which does nothing, or
(2) a sequential composition (seq denoted ;) of two contexts (C1; C2), or (3) a non deterministic
choice (alt denoted +) between two contexts (C1 + C2), or (4) a parallel composition (par
denoted ‖) between two contexts (C1‖C2).

For instance, let us consider the context Figure 5 graphically described. This context describes
the environment we want to consider for the validation of the system model. We consider that
the environment is composed of 3 actors Dev1, Dev2 and Dev3. All these actors run in parallel
and interleave their behavior. The model can be formalized, with the above textual grammar
as follows5.

C = Dev1 ‖ Dev2 ‖ Dev2
Devi = Logi; (Oper + (nackLog (err)?;0))
Logi = (goInitDev ? ; logini !)
Oper = (ackLog (id) ? ; operate (op) ! (Acki + (nackOper (err) ? ; . . . ; 0)))
Acki = (ackOper (role) ? ; logouti ! ; . . . ; 0)
Dev1, Dev2, Dev3 = Devi with i = 1, 2, 3

5 In this chapter, as an illustration, we consider that the behavior of actors extends, noted by the ". . .".

174 Embedded Systems – Theory and Design Methodology

Context Aware Model-Checking for Embedded Software 9

4.3 Semantics

The semantics is based on the semantics of the scenarios and expressed by construction rules
of sets of traces built using seq, alt and par operators. A scenario trace is an ordered events
sequence which describes a history of the interactions between the context and the model.

To describe the formal semantics, let us define a function wait(C) associating the context C
with the set of events awaited in its initial state:

Wait (0) def
= ∅ Wait (a!; M)

def
= ∅ Wait (a?; M)

def
= {a}

Wait (C1 + C2)
def
= Wait (C1) ∪ Wait (C2) Wait (C1; C2)

def
= Wait (C1) i f C1 �= 0

Wait (0; C2)
def
= Wait (C2) Wait (C1‖C2)

def
= Wait (C1) ∪ Wait (C2)

We consider that a context is a process communicating in an asynchronous way with the
system, memorizing its input events (from the system) in a buffer. The semantics of CDL

is defined by the relation (C, B) a−→ (C′, B′) to express that the context C with the buffer B

“produces” a (which can be a sending or a receiving signal, or the nullσ signal if C does not
evolve) and then becomes the new context C′ with the new buffer B′. This relation is defined
by the 8 rules in Figure 6 (In these rules, a represents an event which is different from nullσ).

The pref1 rule (without any preconditions) specifies that an MSC beginning with a sending
event a! emits this event and continues with the remaining MSC. The pref2 rule expresses that
if an MSC begins by a reception a? and faces an input buffer containing this event at the
head of the buffer, the MSC consumes this event and continues with the remaining MSC. The
seq1 rule establishes that a sequence of contexts C1; C2 behaves as C1 until it has terminated.
The seq2 rule says that if the first context C1 terminates (i.e., becomes 0), then the sequence
becomes C2. The par1 and par2 rules say that the semantics of the parallel operation is based
on an asynchronous interleaving semantics. The alt rule expresses that the alternative context
C1 + C2 behaves either as C1 or as C2. Finally, the discard rule says that if an event a at the
head of the input buffer is not expected, then this event is lost (removed from the head of the
buffer).

4.4 Context and system composition

We can now formally define the “closure” composition < (C, B1) | (s,S , B2) > of a system S
in a state s ∈ Σ (Σ is the set of system states), with its input buffer B2, with its context C, with
its input buffer B1 (note that each component, system and context, has its own buffer). The
evolution of S closed by C is given by two relations: the relation (1):

< (C, B1)|(s,S , B2) >
a−→σ < (C′, B′

1)|(s′,S , B′
2) > (1)

to express that S in the state s evolves to state s′ receiving event a, potentially empty (nulle),
(sent by the context) and producing the sequence of events σ, potentially empty (nullσ) (to the
context). and the relation (2):

< (C, B1)|(s,S , B2) >
t−→σ < (C, B1)|(s′,S , B′

2) > (2)

to express that S in state s evolves to the state s′ by progressing time t, and producing the
sequence of events σ potentially empty (nullσ) (to the context). Note that in the case of timed

175Context Aware Model-Checking for Embedded Software

10 Will-be-set-by-IN-TECH

[pref1]

(a!; M, B) a!−→ (M, B)

[pref2]

(a?; M, a.B) a?−→ (M, B)

C′
1 �= 0

(C1, B) a−→ (C′
1, B′)

[seq1]

(C1.C2, B) a−→ (C′
1.C2, B′)

(C1, B) a−→ (0, B′)
[seq2]

(C1.C2, B) a−→ (C2, B′)

C′
1 �= 0

(C1, B) a−→ (C′
1, B′)

[par1]

(C1‖C2, B) a−→ (C′
1‖C2, B′)

(C2‖C1, B) a−→ (C2‖C′
1, B′)

(C1, B) a−→ (0, B′)
[par2]

(C1‖C2, B) a−→ (C2, B′)

(C2‖C1, B) a−→ (C2, B′)

(C1, B) a−→ (C′
1, B′)

[alt]

(C1 + C2, B) a−→ (C′
1, B′)

(C2 + C1, B) a−→ (C′
1, B′)

a �∈ wait(C) [discardC]

(C, a.B) nullσ−−−→ (C, B)

Fig. 6. Context semantics.

evolution, only the system evolves, the context is not timed. The semantics of this composition
is defined by the four following rules (Figure 7).

Rule cp1: If S can produce σ, then S evolves and σ is put at the end of the buffer of C. Rule
cp2: If C can emit a, C evolves and a is queued in the buffer of S . Rule cp3: If C can consume
a, then it evolves whereas S remains the same. Rule cp4: If the time can progress in S , then
the time progress in the composition S and C.

Note that the “closure” composition between a system and its context can be compared with
an asynchronous parallel composition: the behavior of C and of S are interleaved, and they

communicate through asynchronous buffers. We will denote < (C, B)|(s,S , B′) > � −→ to

express that the system and its context cannot evolve (the system is blocked or the context
terminated). We then define the set of traces (called runs) of the system closed by its context
from a state s, by:

�C | (s,S)� def
= {a1 · σ1 · . . . an · σn · endC |

< (C, nullσ) | (s, nullσ) > a1−→σ1
< (C1, B1) | (s1,S , B′

1) >

a2−→σ2
. . . an−→σn

< (Cn, Bn) | (sn,S , B′
n) > �−→ }

�C|(s,S)� is the set runs of S closed by C from the state s. Note that a context is built as
sequential or parallel compositions of finite loop-free MSCs. Consequently the runs of a
system model closed by a CDL context are necessarily finite. We then extend each run of
�C|(s,S)� by a specific terminal event endC allowing the observer to catch the ending of a
scenario and accessibility properties to be checked.

176 Embedded Systems – Theory and Design Methodology

Context Aware Model-Checking for Embedded Software 11

(s,S , B2)−→σ (s′,S , B′
2) [cp1]

< (C, B1)|(s,S , B2) >
nulle−−→σ < (C, B1.σ)|(s′,S , B′

2) >

(C, B1)
a!−→ (C′, B′

1) [cp2]

< (C, B1)|(s,S , B2) >
a−−→nullσ < (C′, B′

1)|(s,S , B2.a) >

(C, B1)
a?−→ (C′, B′

1) [cp3]

< (C, B1)|(s,S , B2) >
nulle−−→nullσ < (C′, B′

1)|(s,S , B2) >

(s,S , B2)
t−→σ (s′,S , B′

2) [cp4]

< (C, B1)|(s,S , B2) >
t−→σ < (C, B1)|(s′,S , B′

2) >

Fig. 7. CDL context and system composition semantics.

4.5 Property specification patterns

Property specifying needs to use powerful yet easy mechanisms for expressing temporal
requirements of software source code. As example, let’s see a requirement of the S_CP
system described in section 3.1. This requirement was found in a document of our partner
and is shown in Listing 1. It refers to many events related to the execution of the model or
environment. It also depends on an execution history that has to be taken into account as a
constraint or pre-condition.

Requirement R: During initialization procedure, S_CP shall associate an identifier to each device
(Dev), after login request and before maxD_log time units.

Listing 1. Initialization requirement for the S_CP system described in section 3.

If we want to express this requirement with a temporal logic based language as LTL or CTL,
the logical formulas are of great complexity and become difficult to read and to handle by
engineers. So, for the property specification, we propose to reuse the categories of Dwyer
patterns (Dwyer et al., 1999) and extend them to deal with more specific temporal properties
which appear when high-level specifications are refined. Additionally, a textual syntax is
proposed to formalize properties to be checked using property description patterns (Konrad
& Cheng, 2005). To improve the expressiveness of these patterns, we enriched them with
options (Pre-arity, Post-arity, Immediacy, Precedence, Nullity, Repeatability) using annotations
as (Smith et al., 2002). Choosing among these options should help the user to consider the
relevant alternatives and subtleties associated with the intended behavior. These annotations
allow these details to be explicitly captured. During a future work, we will adapt these
patterns taking into account the taxonomy of relevant properties, if this appears necessary.

We integrate property patterns description in the CDL language. Patterns are classified in
families, which take into account the timed aspects of the properties to be specified. The
identified patterns support properties of answer (Response), the necessity one (Precedence), of
absence (Absence), of existence (Existence) to be expressed. The properties refer to detectable

177Context Aware Model-Checking for Embedded Software

12 Will-be-set-by-IN-TECH

events like transmissions or receptions of signals, actions, and model state changes. The
property must be taken into account either during the entire model execution, before, after or
between occurrences of events. Another extension of the patterns is the possibility of handling
sets of events, ordered or not ordered similar to the proposal of (Janssen et al., 1999). The
operators AN and ALL respectively specify if an event or all the events, ordered (Ordered) or
not (Combined), of an event set are concerned with the property.

We illustrate these patterns with our case study. The given requirement R (Listing 1) must
be interpreted and can be written with CDL in a property P1 as follow (cf. Listing 2). P1 is
linked to the communication sequence between the S_CP and device (Dev1). According to the
sequence diagram of figure 5, the association to other devices has no effect on P1.

Property P1;
ALL Ordered

exactly one occurence o f S_CP_hasReachState_Init
exactly one occurence o f login1

end
eventually leads − to [0..maxD_log]
AN

one or more occurence o f ackLog(id)
end
S_CP_hasReachState_Init may never occurs
login1 may never occurs
one o f ackLog(id) cannot occur be f ore login1
repeatibility : true

Listing 2. S_CP case study: A response pattern from R requirement.

P1 specifies an observation of event occurrences in accordance with figure 5. login1 refers
to login1 reception event in the model, ackLog refers to ackLog reception event by Dev1.
S_CP_hasReachState_Init refers a state change in the model under study.

For the sake of simplicity, we consider in this chapter that properties are modeled as observers.
Our OBP toolset transforms each property into an observer automaton including a reject node.
An observer is an automaton which observes the set of events exchanged by the system S
and its context C (and thus events occurring in the runs of �C|(init,S)�) and which produces
an event reject whenever the property becomes false. With observers, the properties we
can handle are of safety and bounded liveness type. The accessibility analysis consists of
checking if there is a reject state reached by a property observer. In our example, this reject
node is reached after detecting the event sequence of S_CP_hasReachState_Init and login1,
in that order, if the sequence of one or more of ackLog is not produced before maxD_log
time units. Conversely, the reject node is not reached either if S_CP_hasReachState_Init or
login1 are never received, or if ackLog event above is correctly produced with the right delay.
Consequently, such a property can be verified by using reachability analysis implemented in
our OBP Explorer. For that purpose, OBP translates the property into an observer automaton,
depicted in figure 8.

4.6 Formalization of observers

The third part of the formalization relies on the expression of the properties to be fulfilled. We
consider in the following that an observer is an automaton O = 〈Σo, inito, To, Sig, {reject}, Svo〉

178 Embedded Systems – Theory and Design Methodology

Context Aware Model-Checking for Embedded Software 13

Fig. 8. Observer automaton for the property P1 of Listing 2.

(a) emitting a single output event: reject, (b) where Sig is the set of matched events by the
observer; events produced and received by the system and its context and (c) such that all
transitions labelled reject arrive in a specific state called “unhappy”.

Semantics. We say that S in the state s ∈ Σ. S closed by C satisfies O, denoted C|(s,S) |= O,
if and only if no execution of O faced to the runs r of �C|(s,S)� produces a reject event. This
means:

C | (s,S) |= O ⇐⇒ ∀r ∈ �C | (s,S)�,

(inito,O, r)−−→nullσ (s1,O, r1)−−→nullσ . . . −−→nullσ (sn,O, rn) �−→

Remark: executing O on a run r of �C|(s,S)� is equivalent to put r in the input buffer of O
and to execute O with this buffer. This property is satisfied if and only if only the empty event
(nullσ) is produced (i.e., the reject event is never emitted).

5. OBP toolset

To carry out our experiments, we used our OBP6 tool (Figure 9). OBP is an implementation
of a CDL language translation in terms of formal languages, i.e. currently FIACRE (Farail
et al., 2008). As depicted in Figure 9, OBP leverages existing academic model checkers such as
TINA or simulators such as our explorer called OBP Explorer. From CDL context diagrams,
the OBP tool generates a set of context graphs which represent the sets of the environment
runs. Currently, each generated graph is transformed into a FIACRE automaton. Each graph
represents a set of possible interactions between model and context. To validate the model
under study, it is necessary to compose each graph with the model. Each property on each
graph must be verified. To do so, OBP generates either an observer automaton (Halbwachs
et al., 1993) from each property for OBP Explorer, or SELT logic formula (Berthomieu et al.,
2004) for the TINA model checker. With OBP Explorer, the accessibility analysis is carried out
on the result of the composition between a graph, a set of observers and the system model
as described in (Dhaussy et al., 2009). If, for a given context, we face state explosion, the
accessibility analysis or model-checking is not possible. In this case, the context is split into a
subset of contexts and the composition is executed again as mentioned in 3.3.

To import models with standard format such as UML, SysML, AADL, SDL, we necessarily
need to implement adequate translators such as those studied in TopCased7 or Omega8

projects to generate FIACRE programs.

6 OBPt (OBP for TINA) is available on http://www.obpcdl.org.
7 http://www.topcased.org
8 http://www-Omega.imag.fr

179Context Aware Model-Checking for Embedded Software

14 Will-be-set-by-IN-TECH

Fig. 9. CDL model transformation with OBP.

6. Experiments and results

Our approach was applied to several embedded systems applications in the avionic or
electronic industrial domain. These experiments were carried out with our French industrial
partners. We reported here the results of these experiments.

6.1 Requirement specification

This section reports on six case studies (CS1 to CS6). Four of the software components
come from an industrial A and two from a B9. For each industrial component, the industrial
partner provided requirement documents (use cases, requirements in natural language) and
the component executable model. Component executable models are described with UML,
completed by ADA or JAVA programs, or with SDL language. The number of requirements
in Table 2 evaluates the complexity of the component. To validate these models, we specify
properties and contexts.

CS1 CS2 CS3 CS4 CS5 CS6
Modeling SDL SDL SDL SDL UML2 UML2
language
Number of 4 000 15 000 30 000 15 000 38 000 25 000
code lines
Number of 49 94 136 85 188 151
requirements

Table 2. Industrial case study classification.

6.1.1 Property specification

Requirements are inputs of our approach. Here, the work consists in transforming
natural language requirements into temporal properties. To create the CDL models with
patterns-based properties, we analyzed the software engineering documents of the proposed
case studies. We transformed textual requirements. We focused on requirements which

9 CS5 corresponds to the case study partially described in section 3.1.

180 Embedded Systems – Theory and Design Methodology

Context Aware Model-Checking for Embedded Software 15

can be translated into observer automata. Firstly, we note that most of requirements had
to be rewritten into a set of several properties. Secondly, model requirements of different
abstraction levels are mixed. We extracted requirement sets corresponding to the model
abstraction level. Finally, we observe that most of the textual requirements are ambiguous. We
had to rewrite them consequently to discussion with industrial partners. Table 3 shows the
number of properties which are translated from requirements. We consider three categories
of requirements. Provable requirements correspond to requirements which can be captured
with our approach and can be translated into observers. The proof technique can be
applied on a given context without combinatorial explosion. Non-Computable requirements are
requirements which can be interpreted by a pattern but cannot be translated into an observer.
For example, liveness properties cannot be translated because they are unbounded. Observers
capture only bounded liveness properties. From the interpretation, we could generate
another temporal logic formula, which could feed a model checker as TINA. Non-Provable
requirements are requirements which cannot be interpreted at all with our patterns. It is the
case when a property refers to undetectable events for the observer, such as the absence of a
signal.

CS1 CS2 CS3 CS4 CS5 CS6 Average
Provable 38/49 73/94 72/136 49/85 155/188 41/151 428/703
properties (78%) (78%) (53%) (58%) (82%) 27%) (61%)
Non-computable 0/49 2/94 24/136 2/85 18/188 48/151 94/703
properties (0%) (2%) (18%) (2%) (10%) (32%) (13%)
Non-Provable 11/49 19/94 40/136 34/85 15/188 62/151 181/703
properties (22%) (20%) (29%) (40%) (8%) (41%) (26%)

Table 3. Table highlighting the number of expressible properties in 6 industrial case studies.

For the CS5 , we note that the percentage (82%) of provable properties is very high. One reason
is that the most of 188 requirements was written with a good property pattern matching. For
the CS6, we note that the percentage (27%) is very low. It was very difficult to re-write the
requirements from specification documentation. We should have spent much time to interpret
requirements with our industrial partner to formalize them with our patterns.

6.2 Context specification

For the S_CP case study, we constructed several CDL models with different complexities
depending on the number of devices. The tests are performed on each CDL model composed
with S_CP system.

N.of Exploration N.of N.of LTS N.of LTS
devices time (sec) sub-contexts config. trans.

1 11 3 16 884 82 855
2 26 3 66 255 320 802
3 92 3 270 095 1 298 401
4 121 3 939 807 4 507 051
5 240 3 2 616 502 12 698 620
6 2161 40 32 064 058 157 361 783
7 4 518 55 64 746 500 322 838 592

Table 4. Exploration with TINA explorer with context splitting using OBPt (S_CP case study).

181Context Aware Model-Checking for Embedded Software

16 Will-be-set-by-IN-TECH

Table 4 shows the amount of TINA exploration10 for CDL examples with the use of context
splitting. The first column depicts the number n of Dev asking for login to the S_CP. The
other columns depict the exploration time and the cumulative amount of configurations and
transitions of all LTS generated during exploration by TINA with context splitting. Table 4
also shows the number of contexts split by OBP. For example, with 7 devices, we needed to
split the CDL context in 55 parts for successful exploration. Without splitting, the exploration
is limited to 4 devices by state explosion as shown Table 1. It is clear that device number limit
depends on the memory size of used computer.

7. Discussion and future work

CDL is a prototype language to formalize contexts and properties. However, CDL concepts
can be implemented in another language. For example, context diagrams are easily described
using full UML2. CDL permits us to study our methodology. In future work, CDL can
be viewed as an intermediate language. Today, the results obtained using the currently
implemented CDL language and OBP are very encouraging. For each case study, it was
possible to build CDL models and to generate sets of context graphs with OBP.

CDL contributes to overcoming the combinatorial explosion by allowing partial verification
on restricted scenarios specified by the context automata. CDL permits contexts and non
ambiguous properties to be formalized. Property can be linked to whole or specific contexts.
During experiments, we noted that some contexts and requirements were often described in
the available documentation in an incomplete way. With the collaboration between engineers
responsible for developing this documentation and ourselves, these engineers were motivated
to consider a more formal approach to express their requirements, which is certainly a positive
improvement.

In some case study, 70% textual requirements can be rewritten more easily with pattern
property. So, CDL permits a better formal verification appropriation by industrial partners.
Contexts and properties are verification data useful to perform proof activities and to validate
models. These data have to be capitalized if the implementation evolves over the development
life cycle.

In case studies, context diagrams were built, on the one hand, from scenarios described in
the design documents and, on the other hand, from the sentences of requirement documents.
Two major difficulties have arisen. The first is the lack of complete and coherent description
of the environment behavior. Use cases describing interactions between the system (S_CP for
instance) and its environment are often incomplete. For instance, data concerning interaction
modes may be implicit. CDL diagram development thus requires discussions with experts
who have designed the models under study in order to make explicit all context assumptions.
The problem comes from the difficulty in formalizing system requirements into formal
properties. These requirements are expressed in several documents of different (possibly
low) levels. Furthermore, they are written in a textual form and many of them can have
several interpretations. Others implicitly refer to an applicable configuration, operational
phase or history without defining it. Such information, necessary for verification, can only
be deduced by manually analyzing design and requirement documents and by interviewing
expert engineers.

10 Tests with same computer as for Table 1.

182 Embedded Systems – Theory and Design Methodology

Context Aware Model-Checking for Embedded Software 17

The use of CDL as a framework for formal and explicit context and requirement definition
can overcome these two difficulties: it uses a specification style very close to UML and
thus readable by engineers. In all case studies, the feedback from industrial collaborators
indicates that CDL models enhance communication between developers with different levels
of experience and backgrounds. Additionally, CDL models enable developers, guided by
behavior CDL diagrams, to structure and formalize the environment description of their
systems and their requirements. Furthermore, constraints from CDL can guide developers
to construct formal properties to check against their models. Using CDL, they have a means
of rigorously checking whether requirements are captured appropriately in the models using
simulation and model checking techniques.

One element highlighted when working on embedded software case studies with industrial
partners, is the need for formal verification expertise capitalization. Given our experience in
formal checking for validation activities, it seems important to structure the approach and the
data handled during the verifications. That can lead to a better methodological framework,
and afterwards a better integration of validation techniques in model development processes.
Consequently, the development process must include a step of environment specification
making it possible to identify sets of bounded behaviors in a complete way.

Although the CDL approach has been shown scalable in several industrial case studies,
the approach suffers from a lack of methodology. The handling of contexts, and then the
formalization of CDL diagrams, must be done carefully in order to avoid combinatorial
explosion when generating context graphs to be composed with the model to be validated.
The definition of such a methodology will be addressed by the next step of this work.

8. References

Alfaro, L. D. & Henzinger, T. A. (2001). Interface automata, Proceedings of the Ninth Annual
Symposium on Foundations of Software Engineering (FSE), ACM, Press, pp. 109–120.

Berthomieu, B., Ribet, P.-O. & Verdanat, F. (2004). The tool TINA - Construction of Abstract
State Spaces for Petri Nets and Time Petri Nets, International Journal of Production
Research 42.

Bosnacki, D. & Holzmann, G. J. (2005). Improving spin’s partial-order reduction for
breadth-first search, SPIN, pp. 91–105.

Clarke, E., Emerson, E. & Sistla, A. (1986). Automatic verification of finite-state concurrent
systems using temporal logic specifications, ACM Trans. Program. Lang. Syst.
8(2): 244–263.

Clarke, E. M., Long, D. E. & Mcmillan, K. L. (1999). Compositional model checking, MIT Press.
Dhaussy, P., Pillain, P.-Y., Creff, S., Raji, A., Traon, Y. L. & Baudry, B. (2009). Evaluating

context descriptions and property definition patterns for software formal validation,
in B. S. Andy Schuerr (ed.), 12th IEEE/ACM conf. Model Driven Engineering Languages
and Systems (Models’09), Vol. LNCS 5795, Springer-Verlag, pp. 438–452.

Dhaussy, P. & Roger, J.-C. (2011). Cdl (context description language) : Syntax and semantics,
Technical report, ENSTA-Bretagne.

Dwyer, M. B., Avrunin, G. S. & Corbett, J. C. (1999). Patterns in property specifications for
finite-state verification, 21st Int. Conf. on Software Engineering, IEEE Computer Society
Press, pp. 411–420.

Farail, P., Gaufillet, P., Peres, F., Bodeveix, J.-P., Filali, M., Berthomieu, B., Rodrigo, S.,
Vernadat, F., Garavel, H. & Lang, F. (2008). FIACRE: an intermediate language for

183Context Aware Model-Checking for Embedded Software

18 Will-be-set-by-IN-TECH

model verification in the TOPCASED environment, European Congress on Embedded
Real-Time Software (ERTS), Toulouse, 29/01/2008-01/02/2008, SEE.

Flanagan, C. & Qadeer, S. (2003). Thread-modular model checking, SPIN’03.
Godefroid, P. (1995). The Ulg partial-order package for SPIN, SPIN Workshop .
Halbwachs, N., Lagnier, F. & Raymond, P. (1993). Synchronous observers and the verification

of reactive systems, in M. Nivat, C. Rattray, T. Rus & G. Scollo (eds), Third Int. Conf. on
Algebraic Methodology and Software Technology, AMAST’93, Workshops in Computing,
Springer Verlag, Twente.

Holzmann, G. (1997). The model checker SPIN, Software Engineering 23(5): 279–295.
Holzmann, G. & Peled, D. (1994). An improvement in formal verification, Proc. Formal

Description Techniques, FORTE94, Chapman & Hall, Berne, Switzerland, pp. 197–211.
Janssen, W., Mateescu, R., Mauw, S., Fennema, P. & Stappen, P. V. D. (1999). Model checking

for managers, SPIN, pp. 92–107.
Konrad, S. & Cheng, B. (2005). Real-time specification patterns, 27th Int. Conf. on Software

Engineering (ICSE05), St Louis, MO, USA.
Larsen, K. G., Pettersson, P. & Yi, W. (1997). UPPAAL in a nutshell, International Journal on

Software Tools for Technology Transfer 1(1-2): 134–152.
URL: citeseer.nj.nec.com/larsen97uppaal.html

Park, S. & Kwon, G. (2006). Avoidance of state explosion using dependency analysis in model
checking control flow model, ICCSA (5), pp. 905–911.

Peled, D. (1994). Combining Partial-Order Reductions with On-the-fly Model-Checking,
CAV ’94: Proceedings of the 6th International Conference on Computer Aided Verification,
Springer-Verlag, London, UK, pp. 377–390.

Pnueli, A. (1977). The temporal logic of programs, SFCS ’77: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, IEEE Computer Society, Washington,
DC, USA, pp. 46–57.

Smith, R., Avrunin, G., Clarke, L. & Osterweil, L. (2002). Propel: An approach supporting
property elucidation, 24st Int. Conf. on Software Engineering(ICSE02), St Louis, MO,
USA, ACM Press, pp. 11–21.

Tkachuk, O. & Dwyer, M. B. (2003). Automated environment generation for software model
checking, In Proceedings of the 18th International Conference on Automated Software
Engineering, pp. 116–129.

Valmari, A. (1991). Stubborn sets for reduced state space generation, Proceedings of the
10th International Conference on Applications and Theory of Petri Nets, Springer-Verlag,
London, UK, pp. 491–515.

Whittle, J. (2006). Specifying precise use cases with use case charts, MoDELS’06, Satellite
Events, pp. 290–301.

184 Embedded Systems – Theory and Design Methodology

0

A Visual Software Development Environment that
Considers Tests of Physical Units *

Takaaki Goto1, Yasunori Shiono2, Tomoo Sumida2, Tetsuro Nishino1,
Takeo Yaku3 and Kensei Tsuchida2

1The University of Electro-Communications
2Toyo University

3Nihon University
Japan

1. Introduction

Embedded systems are extensively used in various small devices, such as mobile phones,
in transportation systems, such as those in cars or aircraft, and in large-scale distributed
systems, such as cloud computing environments. We need a technology that can be used
to develop low-cost, high-performance embedded systems. This technology would be useful
for designing, testing, implementing, and evaluating embedded prototype systems by using
a software simulator.

So far, embedded systems are typically used only in machine controls, but it seems that they
will soon also have an information processing function. Recent embedded systems target
not only industrial products but also consumer products, and this appears to be spreading
across various fields. In the United States and Europe, there are large national projects related
to the development of embedded systems. Embedded systems are increasing in size and
becoming more complicated, so the development of methodologies and efficient testing for
them is highly desirable.

The authors have been engaged in the development of a software development environment
based on graph theory, which includes graph drawing theory and graph grammars [2–4]. In
our research, we use Hichart, which is a program diagram methodology originally introduced
by Yaku and Futatsugi [5].

There has been a substantial amount of research devoted to Hichart. A prototype formulation
of attribute graph grammar for Hichart was reported in [6]. This grammar consists of Hichart
syntax rules, which use a context-free graph grammar [7], and semantic rules for layout.
The authors have been developing a software development environment based on graph
theory that includes graph drawing theory and various graph grammars [2, 8]. So far, we
have developed bidirectional translators that can translate a Pascal, C, or DXL source into
Hichart and can alternatively translate Hichart into Pascal, C, or DXL [2, 8]. For example,
HiChart Graph Grammar (HCGG) [9] is an attribute graph grammar with an underlying

*Part of the results have previously been reported by [1]

9

2 Embedded System

graph grammar based on edNCE graph grammar [10] and intended for use with DXL. It
is problematic, however, in that it cannot parse very efficiently. Hichart Precedence Graph
Grammar (HCPGG) was introduced in [11].

In recent years, model checking methodologies have been applied to embedded systems. In
our current work, we constructed a visual software development environment to support
a developed embedded system. The target of this research is NQC, which is the program
language for LEGO MINDSTORM. Our visual software development system for embedded
systems can

1. generate Promela codes for given Hichart diagrams, and
2. detect problems by using visual feedback features.

Our previously developed environment was not sufficiently functional, so we created an
effective testing environment for the visual environment.

In this chapter, we describe our visual software development environment that supports the
development of embedded systems.

2. Preliminaries

2.1 Embedded systems

An embedded system is a system that controls various components and specific functions of
the industrial equipment or consumer electronic device it is built into [12, 13]. Product life
cycles are currently being shortened, and the period from development to verification has
now been trimmed down to about three months. Four requirements are needed to implement
modern embedded systems.

• Concurrency
Multi-core and/or multi processors are becoming dominant in the architecture of
processors as a solution to the limits in circuit line width (manufacturing process),
increased generation of heat, and clock speed limits. Therefore, it is necessary to
implement applications by using methods with parallelism descriptions.

• Hierarchy
System modules are arranged in a hierarchal fashion in main systems, subsystems,
and sub-subsystems. Diversity and recycling must be improved, and the number of
development processes should be reduced as much as possible.

• Resource Constraints
It is necessary to comply with the constraints of built-in factors like memory and power
consumption.

• Safety and Reliability
System failure is a serious problem that can cause severe damage and potentially fatal
accidents. It is extremely important to guarantee the safety of a system.

LEGO MINDSTORMS [14] is a robotics environment that was jointly developed by the REGO
and MIT. MINDSTORMS consists of a block with an RCX or NXT micro processor. Robots that
are constructed with RCX or NXT and sensors can work autonomously, so a block with RCX
or NXT can control a robot’s behavior. RCX or NXT detects environment information through

186 Embedded Systems – Theory and Design Methodology

A Visual Software Development Environment that Considers Tests of Physical Units 1 3

attached sensors and then activates motors in accordance with the programs. RCX and NXT
are micro processors with a touch sensor, humidity sensor, photodetector, motor, and lamp.

ROBOLAB is a programming environment developed by National Instruments, the REGO,
and Tufts University. It is based on LABVIEW (developed by National Instruments) and
provides a graphical programming environment that uses icons.

It is easy for users to develop programs in a short amount of time because ROBOLAB uses
templates. These templates include various icons that correspond to different functions which
then appear in the developed program in pilot level. ROBOLAB has fewer options than
LABVIEW, but it does have some additional commands that have been customized for RCX.

Two programming levels, pilot level and inventor level, can be used in ROBOLAB. The steps
then taken to construct a program are as follows.

1. Choose icons from palette.
2. Put icons in a program window.
3. Set orders of icons and then connect them.
4. Transfer obtained program to the RCX.

Not Quite C (NQC) [15] is a language that can be used in LEGO MINDSTORM RCX. Its
specification is similar to that of C language, but differs in that it does not provide a pointer
but instead has functions specialized for LEGO MINDSTORMS, including "turn on motors,"
"check touch sensors value," and so on.

A typical NQC program starts from a “main“ task and can handle a maximum of ten tasks.
When we write NQC source codes, the below description is required.

Listing 1. Example1

task main ()
{
}

Here, we investigate functions and constants. The below program shows MINDSTORMS
going forward for four seconds, then backward for four seconds, and then stopping.

Listing 2. Example2

task main ()
{

OnFwd(OUT_A+OUT_C) ;
Wait (4 0 0) ;
OnRev(OUT_A+OUT_C) ;
Wait (4 0 0) ;
Off (OUT_A+OUT_C) ;

}

Here, the functions “OnFwd,“ “OnRev,“ etc. control RCX. Table 1 shows an example of
functions customized for NQC.

187A Visual Software Development Environment that Considers Tests of Physical Units

4 Embedded System

Functions Explanation Example of description

SetSensor(<sensor
name>,
<configuration>)

set type and mode of
sensors

SetSensor(SENSOR_1,
SENSOR_TOUCH)

SetSensorMode(<sensor
name>, <mode>)

set a sensor’s mode SetSensorMode(SENSOR_2,
SENSOR_MODE_PERCENT)

OnFwd(<outputs>) set direction and turn
on

OnFwd(OUT_A)

Table 1. Functions of RCX

As for the constants, they are constants with names and work to improve programmers’
understanding of NQC programs.

Table 2 shows an example of constants.

Constants category Constants

Setting for SetSensor() SENSOR_MODE_RAW, SENSOR_MODE_BOOL,
SENSOR_MODE_EDGE, SENSOR_MODE_PULSE,
SENSOR_MODE_PERCENT,
SENSOR_MODE_CELCIUS,
SENSOR_MODE_FAHRENHEIT,
SENSOR_MODE_ROTATION

Mode for
SetSensorMode

SENSOR_MODE_RAW, SENSOR_MODE_BOOL,
SENSOR_MODE_EDGE, SENSOR_MODE_PULSE,
SENSOR_MODE_PERCENT,
SENSOR_MODE_CELCIUS,
SENSOR_MODE_FAHRENHEIT,
SENSOR_MODE_ROTATION

Table 2. Constants of RCX

We adopt REGO MINDSTORMS as an example of embedded systems with sensors.

2.2 Program diagrams

In software design and development, program diagrams are often used for software
visualization. Many kinds of program diagrams, such as the previously mentioned
hierarchical flowchart language (Hichart), problem analysis diagram (PAD), hierarchical and
compact description chart (HCP), and structured programming diagram (SPD), have been
used in software development [2, 16]. Moreover, software development using these program
diagrams is steadily on the increase.

In our research, we used the Hichart program diagram [17], which was first introduced by
Yaku and Futatsugi [5]. Figure 1 shows a program called “Tower of Hanoi“ that was written
in Hichart.

Hichart has three key features:

1. A tree-flowchart diagram that has the flow control lines of a Neumann program flowchart,

188 Embedded Systems – Theory and Design Methodology

A Visual Software Development Environment that Considers Tests of Physical Units 2 5

Fig. 1. Example of Hichart: “Tower of Hanoi“.

a) process

c) continuous iteration

b) exclusive selection

d) caption

Fig. 2. Example of Hichart symbols.

2. Nodes of the different functions in a diagram that are represented by differently shaped
cells, and

3. A data structure hierarchy (represented by a diagram) and a control flow that are
simultaneously displayed on a plane, which distinguishes it from other program diagram
methodologies.

Hichart is described by cell and line. There are various type of cells, such as "process,"
"exclusive selection," "continuous iteration," "caption," and so on. Figure 2 shows an example
of some of the Hichart symbols.

3. Program diagrams for embedded systems

In this section, we describe program diagrams for embedded systems, specifically, a detailed
procedure for constructing program diagrams for an embedded system using Hichart for
NQC.

189A Visual Software Development Environment that Considers Tests of Physical Units

6 Embedded System

Hichart
internal data

Translate
from H to C

Translate
from C to H

C source code

Compile, execute

User

C source code

Hichart editor

Fig. 3. Overview of our previous study.

Figure 3 shows an overview of our previous study on a Hichart-C translation system.

In our previous system, it is possible to obtain internal Hichart data from C source code via a
C-to-H translator implemented using JavaCC. Users can edit a Hichart diagram on a Hichart
editor that visualizes the internal Hichart data as a Hichart diagram. The H-to-C translator
can generate C source codes from the internal Hichart data, and then we can obtain the C
source code corresponding to the Hichart diagrams. Our system can illustrate programs as
diagrams, which leads to an improved understanding of programs.

We expanded the above framework to treat embedded system programming. Specifically we
extended H-to-C and C-to-H specialized for NQC. Some of the alterations we made are as
follows.

1. task
The “task“ is a unique keyword of NQC, and we therefore added it to the C-to-H function.

2. start, stop
We added “start“ and “stop“ statements in Hichart (as shown in List 3) to control tasks.

Listing 3. Example3

task main ()
{

SetSensor (SENSOR_1 ,SENSOR_TOUCH) ;
s t a r t check_sensors ;
s t a r t move_square ;

}
task move_square ()
{

while (t r ue)
{

OnFwd(OUT_A+OUT_C) ; Wait (1 0 0) ;

190 Embedded Systems – Theory and Design Methodology

A Visual Software Development Environment that Considers Tests of Physical Units 3 7

Fig. 4. Screenshot of Hichart for NQC that correspond to List 3.

OnRev(OUT_C) ; Wait (6 8) ;
}

}

task check_sensors ()
{

while (t r ue)
{

i f (SENSOR_1 == 1)
{

s top move_square ;
OnRev (OUT_A+OUT_C) ; Wait (5 0) ;
OnFwd(OUT_A) ; Wait (8 5) ;
s t a r t move_square ;

}
}

}

There are some differences between C syntax and NQC syntax; therefore, we modified
JavaCC, which defines syntax, to cover them. Thus, we obtained program diagrams for
embedded systems.

Figure 4 shows a screenshot of Hichart for NQC that correspond to List 3.

191A Visual Software Development Environment that Considers Tests of Physical Units

8 Embedded System

4. A visual software development environment

We propose a visual software development environment based on Hichart for NQC. We
visualize NQC code by the abovementioned Hichart diagrams through a Hichart visual
software development environment called Hichart editor. Hichart diagrams or NQC source
codes are inputted into the editor, and the editor outputs NQC source codes after editing code
such as parameter values in diagrams.

In the Hichart editor, the program code is shown as a diagram. List 4 shows a sample program
of NQC, and Figure 5 shows the Hichart diagram corresponding to List 4.

Fig. 5. Screen of Hichart editor.

Listing 4. anti-drop program

task main ()
{

SetSensor (SENSOR_2 , SENSOR_LIGHT) ;
OnFwd(OUT_A+OUT_C) ;
while (t r ue)
{

i f (SENSOR_2 < 40)
{

OnRev (OUT_A+OUT_C) ;
Wait (5 0) ;
OnFwd(OUT_A) ;
Wait (6 8) ;
u n t i l (SENSOR_2 >= 4 0) ;
OnFwd(OUT_A+OUT_C) ;

192 Embedded Systems – Theory and Design Methodology

A Visual Software Development Environment that Considers Tests of Physical Units 4 9

}
}

}

This Hichart editor for NQC has the following characteristics.

1. Generation of Hichart diagram corresponding to NQC
2. Editing of Hichart diagrams
3. Generation of NQC source codes from Hichart diagrams
4. Layout modification of Hichart diagrams

Users can edit each diagram directly on the editor. For example, cells can be added by
double-clicking on the editor screen, after which cell information, such as type and label, is
embedded into the new cell.

Figure 6 shows the Hichart screen after diagram editing. In this case, some of the parameter’s
values have been changed.

Fig. 6. Hichart editor screen after editing.

The Hichart editor can read NQC source codes and convert them into Hichart codes using
the N-to-H function, and it can generate NQC source codes from Hichart codes by using the
H-to-N function. The Hichart codes consist of tree data structure. Each node of the structure
has four pointers (to parent node, to child cell, to previous cell, and to next cell) and node
information such as node type, node label, node label, and so on. To generate NQC codes by
the H-to-N function, tree structures can be traversed in preorder.

The obtained NQC source code can be transferred to the LEGO MINDSTORM RCX via
BricxCC. Figure 7 shows a screenshot of NQC source code generated by the Hichart editor.

193A Visual Software Development Environment that Considers Tests of Physical Units

10 Embedded System

Fig. 7. Screenshot of NQC source code generated by Hichart editor.

Sensitivity s 0-32 33-49 50-100

Recognize a table edge × © ©
Turn in its tracks © © ×

Table 3. Behavioral specifications table.

5. Testing environment based on behavioral specification and logical checking

To test embedded system behaviors, especially for those that have physical devices such as
sensors, two areas must be checked: the value of the sensors and the logical correctness of the
embedded system. Embedded systems with sensors are affected by the environment around
the machine, so it is important that developers are able to set the appropriate sensor value.
Of course, even if the physical parameters are appropriate, if there are logical errors in a
machine’s program, the embedded systems will not always work as we expect.

In this section, we propose two testing methods to check the behaviors of embedded systems.

5.1 Behavioral specifications table

A behavioral specifications table is used when users set the physical parameters of RCX.
An example of such a table is shown in Table 3. The leftmost column lists the behavioral
specifications and the three columns on the right show the parameter values. A circle indicates
an expected performance; a cross indicates an unexpected one. The numerical values indicate
the range of sensitivity parameters s.

For example, when the sensitivity parameter s was between 0 and 32, the moving object did
not recognize a table edge (the specifications for “recognizes a table edge“ were not met) and
did not spin around on that spot. When the sensitivity parameter s was between 33 and 49,
the specifications for “recognizes a table edge“ and “does not spin around on that spot“ were
both met.

194 Embedded Systems – Theory and Design Methodology

A Visual Software Development Environment that Considers Tests of Physical Units 5 11

Fig. 8. Screenshot of Hichart editor and behavioral specifications table.

The results in the table show that the RCX with a sensor value from 0 to 32 cannot distinguish
the edge of the table and so falls off. Therefore, users need to change the sensor value to the
optimum value by referencing the table and choosing the appropriate value. In this case, if
users only choose the column with the values from 33 to 49, the chosen value is reflected in
the Hichart diagram. This modified Hichart diagram can then generate an NQC source code.
This is an example of how developers can easily set appropriate physical parameters by using
behavioral specifications tables.

The behavioral specifications function has the following characteristics.

1. The editor changes the colors of Hichart cells that are associated with the parameters in the
behavioral specifications table.

2. The editor sets the parameter value of Hichart cells that are associated with the parameters
in the behavioral specifications table.

Here, we show an example in which an RCX runs without falling off a desk. In this example,
when a photodetector on the RCX recognizes the edge of the desk, the RCX reverses and turns.
Figure 8 shows a screenshot of the Hichart editor and the related behavioral specifications
table.

In the Hichart editor, the input-output cells related to a behavioral specifications table are
redrawn in green when the user chooses a menu that displays the behavioral specifications
table.

Figure 9 shows the behavior of an RCX after setting the appropriate physical parameters. The
RCX can distinguish the table edge and turn after reversing.

We also constructed a function that enables a behavioral specification table to be stored in a
database that was made using MySQL. After we test a given device, we can input the results
via the database function in the Hichart editor. Using stored information, we can construct a
behavioral specification table with an optimized parameter’s value.

195A Visual Software Development Environment that Considers Tests of Physical Units

12 Embedded System

Fig. 9. Screenshot of RCX that recognizes table edge.

5.2 Model checking

We propose a method for checking behavior in the Hichart development environment by
using the model checking tool SPIN [18, 19] to logically check whether a given behavior
specification is fulfilled before applying the program to a real machine. As described
previously, the behavioral specifications table can check the physical parameters of a real
machine. However, it cannot check logical behavior. We therefore built a model checking
function into our editor that can translate internal Hichart data into Promela code.

The major characteristics of the behavior specification verification function are listed below.

• Generation of Promela codes
Generating Promela codes from Hichart diagrams displayed on the Hichart editor.

• Execution of SPIN
Generating pan.c or LTL-formulas.

• Compilation
Compiling obtained pan.c to generate .exe file for model checking.

• Analyzing

• Analysis
We found that programs do not bear the behavior specification by model checking and so
generated trail files. The function then analyzes the trail files and feeds them back to the
Hichart diagrams.

The Promela code is used to check whether a given behavior specification is fulfilled.
Feedback from the checks is then sent to a Hichart graphical editor. If a given behavioral
specification is not fulfilled, the result of the checking is reflected in the implicated location of
the Hichart.

To give an actual example, we consider the specifications that make the RCX repeat forward
movements and turn left. If it is touch sensitive, the RCX changes course. This specification
means that RCX definitely swerves when touched. In this study, we checked whether the
created program met the behavior specification by using SPIN before applying the program
to real machines.

196 Embedded Systems – Theory and Design Methodology

A Visual Software Development Environment that Considers Tests of Physical Units 6 13

Listing 5. Source code of NQC

task move_square () {
while (t r ue) {

OnFwd(OUT_A + OUT_C) ;
Wait (1 0 0 0) ;
OnRev(OUT_C) ;
Wait (8 5) ;

}
}

Listing 6. Promela code

proctype move_square () {
do
: :

s t a t e = OnFwd ;
s t a t e = Wait ;
s t a t e = OnRev ;
s t a t e = Wait ;

od
}

Lists 5 and 6 show part of the NQC source code corresponding to the above specification and
the automatically generated Promela source code.

We explain the feedback procedure, which is shown in Fig. 10.

An assertion statement of “state == OnFwd“ is an example. If a moving object (RCX) is
moving forward at the point where the assertion is set, the statement is true. Otherwise, it
is false. For example, we can verify by steps (3)-(7) in Fig. 10 whether the moving object is
always moving forward or not.

Here, we show an example of manipulating our Hichart editor. We can embed an assertion
description through the Hichart editor, as shown in Fig. 11, and then obtain a Promela code
from the Hichart code. When we obtain this code, we have to specify the behaviors that we
want to check. Figure 12 shows a result obtained through this process.

Next, we execute SPIN. If we embed assertions in the Hichart code, we execute SPIN as it
currently stands, while if we use LTL-formulas, we execute SPIN with an “-f“ option and then
obtain pan.c. The model is checked by compiling the obtained pan.c. Figure 13 is a screenshot
of the model checking result using the Hichart editor.

If there are any factors that do not meet the behavioral specifications, trail files are generated.
Figure 14 shows some of the result of analyzing the trail file.

The trail files contain information on how frequently the processing calls and execution paths
were made. We use this information to narrow the search area of the entire program by using
the visual feedback. Users can detect a problematic area interactively by using the Hichart
editor with the help of this visual feedback.

197A Visual Software Development Environment that Considers Tests of Physical Units

14 Embedded System

1. Read NQC source codes

on Hichart editor.

2. Embed verification property (assertion)

to Hichart node.

3. Translate from Hichart internal data into

Promela codes to verify the property.

4. Generate a pan.c from Promela codes

and compile and execute the pan.c.

5. If there are errors, generate a trail file

or else end the feedback procedure.

6. Analyze the trail file.

7. Reflect analyzed result to Hichart editor.

Fig. 10. Feedback procedure.

Fig. 11. Embed an assertion on Hichart editor.

198 Embedded Systems – Theory and Design Methodology

A Visual Software Development Environment that Considers Tests of Physical Units 7 15

Fig. 12. Result of generating a Promela code.

Fig. 13. Result of model checking.

199A Visual Software Development Environment that Considers Tests of Physical Units

16 Embedded System

Fig. 14. Result of analyzing trail file.

Fig. 15. Part of Hichart editor feedback screen.

After analyzing the trail files, we can obtain feedback from the Hichart editor. Figure 15 shows
part of a Hichart editor feedback screen.

If the result is that programs did not meet the behavior specification by using SPIN, the
tasks indicated as the causes are highlighted. The locations that do not meet the behavior
specifications can be seen by using the Hichart feedback feature. This is an example of efficient
assistance for embedded software.

6. Conclusion

We described our application of a behavioral specification table and model-checking
methodologies to a visual software development environment we developed for embedded
software.

200 Embedded Systems – Theory and Design Methodology

A Visual Software Development Environment that Considers Tests of Physical Units 8 17

A key element of our study was the separation of logical and physical behavioral
specifications. It is difficult to verify behaviors such as those of robot sensors without access
to the behaviors of real machines, and it is also difficult to simulate behaviors accurately.
Therefore, we developed behavioral specification tables, a model-checking function, and a
method of giving visual feedback.

It is rather difficult to set exact values for physical parameters under development
circumstances using a tool such as MATLAB/simulink because the physical parameters vary
depending on external conditions (e.g., weather), and therefore, there were certain limitations
to the simulations. We obtained a couple of examples demonstrating the validity of our
approach in both the behavioral specification table and the logical specification check by using
SPIN.

In our previous work, some visual software development environments were developed
based on graph grammar; however, the environment for embedded systems described in this
article is not yet based on graph grammars. A graph grammar for Hichart that supports NQC
is currently under development.

In our future work, we will construct a Hichart development environment with additional
functions that further support the development of embedded systems.

7. References

[1] T. Goto, Y. Shiono, T. Nishino, T. Yaku, and K. Tsuchida. Behavioral verification in hichart
development environment for embedded software. In Computer and Information Science
(ICIS), 2010 IEEE/ACIS 9th International Conference on, pages 337 –340, aug. 2010.

[2] K. Sugita, A. Adachi, Y. Miyadera, K. Tsuchida, and T. Yaku. A visual programming
environment based on graph grammars and tidy graph drawing. In Proceedings of The
20th International Conference on Software Engineering (ICSE ’98), volume 2, pages 74–79,
1998.

[3] T. Goto, T. Kirishima, N. Motousu, K. Tsuchida, and T. Yaku. A visual software
development environment based on graph grammars. In Proc. IASTED Software
Engineering 2004, pages 620–625, 2004.

[4] Takaaki Goto, Kenji Ruise, Takeo Yaku, and Kensei Tsuchida. Visual software
development environment based on graph grammars. IEICE transactions on information
and systems, 92(3):401–412, 2009.

[5] Takeo Yaku and Kokichi Futatsugi. Tree structured flow-chart. In Memoir of IEICE, pages
AL–78, 1978.

[6] T. Nishino. Attribute graph grammars with applications to hichart program chart editors.
In Advances in Software Science and Technology, volume 1, pages 89–104, 1989.

[7] C. Ghezzi P. D. Vigna. Context-free graph grammars. In Information Control, volume 37,
pages 207–233, 1978.

[8] Y. Adachi, K. Anzai, K. Tsuchida, and T. Yaku. Hierarchical program diagram editor
based on attribute graph grammar. In Proc. COMPSAC, volume 20, pages 205–213, 1996.

[9] Masahiro Miyazaki, Kenji Ruise, Kensei Tsuchida, and Takeo Yaku. An NCE Attribute
Graph Grammar for Program Diagrams with Respect to Drawing Problems. IEICE
Technical Report, 100(52):1–8, 2000.

201A Visual Software Development Environment that Considers Tests of Physical Units

18 Embedded System

[10] Grzegorz Rozenberg. Handbook of Graph Grammar and Computing by Graph Transformation
Volume 1. World Scientific Publishing, 1997.

[11] K. Ruise, K. Tsuchida, and T. Yaku. Parsing of program diagrams with attribute
precedence graph grammar. In Technical Report of IPSJ, number 27, pages 17–20, 2001.

[12] R. Zurawski. Embedded systems design and verification. CRC Press, 2009.
[13] S. Narayan. Requirements for specification of embedded systems. In ASIC Conference and

Exhibit, 1996. Proceedings., Ninth Annual IEEE International, pages 133 –137, sep 1996.
[14] LEGO. LEGO mindstorms. http://mindstorms.lego.com/en-us/Default.aspx.
[15] Not Quite C. http://bricxcc.sourceforge.net/nqc/.
[16] Kenichi Harada. Structure Editor. Kyoritsu Shuppan, 1987. (in Japanese).
[17] T. Yaku, K. Futatsugi, A. Adachi, and E. Moriya. HICHART -A hierarchical flowchart

description language-. In Proc. IEEE COMPSAC, volume 11, pages 157–163, 1987.
[18] G.J. Holzmann. The model checker spin. Software Engineering, IEEE Transactions on,

23(5):279 –295, may 1997.
[19] M. Ben-Ari. Principles of the SPIN Model Checker. Springer, 2008.

202 Embedded Systems – Theory and Design Methodology

0

A Methodology for Scheduling Analysis Based on
UML Development Models

Matthias Hagner and Ursula Goltz
Institute for Programming and Reactive Systems

TU Braunschweig
Germany

1. Introduction

The complexity of embedded systems and their safety requirements have risen significantly
in the last years. The model based development approach helps to handle the complexity.
However, the support for analysis of non-functional properties based on development models,
and consequently the integration of these analyses in a development process exist only
sporadically, in particular concerning scheduling analysis. There is no methodology that
covers all aspects of doing a scheduling analysis, including process steps concerning the
questions, how to add necessary parameters to the UML model, how to separate between
experimental decisions and design decisions, or how to handle different variants of a system.
In this chapter, we describe a methodology that covers these aspects for an integration of
scheduling analyses into a UML based development process. The methodology describes
process steps that define how to create a UML model containing the timing aspects, how to
parameterise it (e.g., by using external specialised tools), how to do an analysis, how to handle
different variants of a model, and how to carry design decision based on analysis results over
to the design model. The methodology specifies guidelines on how to integrate a scheduling
analysis for systems using static priority scheduling policies in a development process. We
present this methodology on a case study on a robotic control system.

To handle the complexity and fulfil the sometimes safety critical requirements, the model
based development approach has been widely appreciated. The UML (Object Management
Group (2003)) has been established as one of the most popular modelling languages. Using
extension, e.g., SysML (Object Management Group (2007)), or UML profiles, e.g., MARTE
(Modelling and Analysis of Real-Time and Embedded Systems) (Object Management Group
(2009)), UML can be better adapted to the needs of embedded systems, e.g., the non functional
requirement scheduling. Especially MARTE contains a large number of possibilities to add
timing and scheduling aspects to a UML model. However, because of the size and complexity
of the profile it is hard for common developers to handle it. Hence, it requires guidance in
terms of a methodology for a successful application of the MARTE profile.

Besides specification and tracing of timing requirements through different design stages,
the major goal of enriching models with timing information is to enable early validation
and verification of design decisions. As designs for an embedded or safety critical systems
may have to be discarded if deadlines are missed or resources are overloaded, early timing
analysis has become an issue and is supported by a number of specialised analysis tools,
e.g., SymTA/S (Henia et al. (2005)), MAST (Harbour et al. (2001)), and TIMES (Fersman & Yi

10

2 Will-be-set-by-IN-TECH

(2004)). However, the meta models used by these tools differ from each other and in particular
from UML models used for design. Thus, to make an analysis possible and to integrate it into a
development process, the developer has to remodel the system in the analysis tool. This leads
to more work and possibly errors made by the remodelling. Additionally, the developer has
to learn how to use the chosen analysis tool. To avoid this major effort, an automatic model
transformation is needed to build an interface that enables automated analysis of a MARTE
extended UML model using existing real-time analysis technology.

There has been some work done developing support for the application of the MARTE profile
or to enable scheduling analysis based on UML models. The Scheduling Analysis View
(SAV) (Hagner & Huhn (2007), Hagner & Huhn (2008)) is one example for guidelines to
handle the complexity of the UML and the MARTE profile. A transformation from the SAV
to an analysis tool SymTA/S is already realised (Hagner & Goltz (2010)). Additional tool
support was created (Hagner & Huhn (2008)) to help the developer to adapt to guidelines
of the SAV. Espinoza et al. (2008) described how to use design decisions based on analysis
results and showed the limitations of the UML concerning these aspects. There are also
methodical steps identified, how the developer can make such a design decision. However,
there are still important steps missing to integrate the scheduling analysis into a UML based
development process. In Hagner et al. (2008), we observed the possibilities MARTE offers
for the development in the rail automation domain. However, no concrete methodology is
described. In this chapter, we want to address open questions like: Where do the scheduling
parameters come from (e.g., priorities, execution patterns, execution times), considering the
development stages (early development stage: estimated values or measured values from
components-off-the-shelf, later development stages: parameters from specialised tools, e.g.,
aiT (Ferdinand et al. (2001))? How to bring back design decision based on scheduling analysis
results into a design model? How to handle different criticality levels or different variants of
the same system (e.g., by using different task distributions on the hardware resources)? In this
chapter, we want to present a methodology to integrate the scheduling analysis into a UML
based development process for embedded real-time systems by covering these aspects. All
implementations presented in this chapter are realised for the case tool Papyrus for UML1.

This chapter is structured as follows: Section 2 describes our methodology, Section 3 gives
a case study of a robotic control system on which we applied our methodology, Section 4
shows how this approach could be adopted to other non-functional properties, and Section 5
concludes the chapter.

2. A methodology for the integration of scheduling analysis into a UML based
development process

The integration of scheduling analysis demands specified methodologies, because the UML
based development models cannot be used as an input for analysis tools. One reason is
that these tools use their own input format/meta model, which is not compatible with UML.
Another reason is that there is important scheduling information missing in the development
model. UML profiles and model transformation help to bridge the gap between development
models and analysis tools. However, these tools have to be adapted well to the needs of the
development. Moreover, the developer needs guidelines to do an analysis as this cannot be
fully automated.

1 http://www.papyrusuml.org

204 Embedded Systems – Theory and Design Methodology

A Methodology for Scheduling Analysis Based on UML Development Models 3

Figure 1 depicts our methodology for integrating the scheduling analysis into a UML
based development process. On the left side, the Design Model is the starting point of
our methodology. It contains the common system description by using UML and SysML
diagrams. We assume that it is already part of the development process before we add our
methodology. Everything else depicted in Figure 1 describes the methodology.

A

B C

D

E

F

Parameterisation

Fig. 1. Methodology for the integration of scheduling analysis in a UML based development
process

The centre of the methodology is the Scheduling Analysis View (SAV). It is a special view on
the system under a scheduling analysis perspective. It leaves out not relevant information
for a scheduling analysis, but offers possibilities to add important scheduling information
that are usually difficult to specify in a common UML model and are often left out of the
normal Design Model. The SAV consists of UML diagrams and MARTE elements. It is an
intermediate step between the Design Model and the scheduling analysis tools. The rest of
the methodology is based on the SAV. It connects the different views and the external analysis
tools. It consists of:

• an abstraction, to create a SAV based on the Design Model using as much information from
the Design Model as possible,

• a parameterisation, to add the missing information relevant for the analysis (e.g., priorities,
execution times),

• a completeness check, to make sure the SAV is properly defined,

• the analysis, to perform the scheduling analysis,

• variant management, to handle different variants of the same system (e.g., using different
distribution, other priorities), and

• a synchronisation, to keep the consistency between the Design Model and the SAV.

205A Methodology for Scheduling Analysis Based on UML Development Models

4 Will-be-set-by-IN-TECH

The developer does not need to see or learn how to use the analysis tools, as a scheduling
analysis can be performed automatically from the SAV as an input.

The following subsections describe these steps in more detail. Figure 1 gives an order in which
the steps should be executed (using the letters A, B, . . .). A (the abstraction) is performed only
once and F (the synchronisation) only if required. Concerning the other steps, B, C, D, E can
be executed repeatedly until the developer is satisfied. Then, F can be performed.

2.1 The scheduling analysis view

Independent, non-functional properties should be handled separately to allow the developer
to concentrate on the particular aspect he/she is working on and masking those parts of a
model that do not contribute to it. This is drawn upon the cognitive load theory (Sweller
(2003)), which states that human cognitive productivity dramatically decreases when more
different dimensions have to be considered at the same time. As a consequence in software
engineering a number of clearly differentiated views for architecture and design have been
proposed (Kruchten (1995)).

As a centre of this methodology, we use the Scheduling Analysis View (SAV) (Hagner & Huhn
(2008)) as a special view on the system. The SAV is based on UML diagrams and the MARTE
profile (stereotypes and tagged values). MARTE is proposed by the “ProMarte” consortium
with the goal of extending UML modelling facilities with concepts needed for real-time
embedded systems design like timing, resource allocation, and other non-functional runtime
properties. The MARTE profile is a successor of the profile for Schedulability, Performance,
and Time (SPT profile) (Object Management Group (2002)) and the profile for Modelling
Quality of Service and Fault Tolerance Characteristics and Mechanisms (QoS profile) (Object
Management Group (2004)).

The profile consists of three main packages. The MARTE Foundations package defines the
basic concepts to design and analyse an embedded, real-time system. The MARTE Design
Model offers elements for requirements capturing, the specification, the design, and the
implementation phase. Therefore, it provides a concept for high-level modelling and a
concept for detailed hard- and software description. The MARTE Analysis Model defines
specific model abstractions and annotations that could be used by external tools to analyse
the described system. Thus, the analysis package is divided into three parts, according to the
kind of analysis. The first part defines a general concept for quantitative analysis techniques;
the second and third parts are focused on schedulability and performance analysis.

Because runtime properties and in particular timing are important in each development phase,
the MARTE profile is applicable during the development process, e.g., to define and refine
requirements, to model the partitioning of software and hardware in detail, or to prepare and
complete UML models for transformation to automated scheduling or performance analysis.
One application of the MARTE profile is shown in Figure 2. MARTE is widespread in the field
of developing of embedded systems (e.g., Argyris et al. (2010); Arpinen et al. (2011); Faugere
et al. (2007)).

We only use a small amount of the stereotypes and tagged values for the SAV, as the MARTE
profile offers much more applications. One goal of the SAV is to keep it as simple as possible.
Therefore, only elements are used that are necessary to describe all the information that is
needed for an analysis. In Table 1 all used stereotypes and tagged values are presented.
Additionally, we offer guidelines and rules, how to define certain aspects of the systems in the
SAV. The SAV was designed regarding the information required by a number of scheduling

206 Embedded Systems – Theory and Design Methodology

A Methodology for Scheduling Analysis Based on UML Development Models 5

<<saExecStep>> store()

<<schedulableResource>>
DataControl

deadline=(5,ms)
priority=5
respT=[$r1,ms]
execTime=[1,ms]
sharedRes=SharedMemory

Fig. 2. Example of a UML profile

analysis tools. It concentrates on and highlights timing and scheduling aspects. It is based on
the Design Model, but abstracts/leaves out all information that is not needed for a scheduling
analysis (e.g., data structure). On the other side, it includes elements that are usually not
part of the Design Model, but necessary for scheduling analysis (e.g., priorities, deadlines,
scheduling algorithms, execution times of tasks).

Stereotype used on Tagged Values
«saExecHost» Classes, Utilization, mainScheduler, isSched

Objects
«saCommHost» Classes, Utilization, mainScheduler, isSched

Objects
«scheduler» Classes, schedPolicy, otherSchedPolicy

Objects
«schedulableResource» Classes,

Objects
«saSharedResources» Classes,

Objects
«saExecStep» Methods deadline, priority, execTime,

usedResource, respT
«saCommStep» Methods deadline, priority, execTime,

msgSize, respT
«saEndToEndFlow» Activities end2endT, end2endD, isSched
«gaWorkloadEvent» Initial-Node pattern

«allocated» Associations

Table 1. The MARTE stereotypes and tagged values used for the SAV

Another advantage of the SAV is the fact, that it is separate from the normal Design Model.
Besides the possibility to focus just on scheduling, it also gives the developer the possibility to
test variants/design decisions in the SAV without changing anything in the Design Model. As
there is no automatic and instant synchronisation (see Section 2.6), it does not automatically
change the Design Model if the developer wants to experiment or e.g., has to add provisional
priorities to the system to analyse it, although at an early stage these priorities are not a design
decision.

Moreover, an advantage of using the SAV is that the tagged values help the developer to keep
track of timing requirements during the development, as these parameters are part of the
development model. This especially helps to keep considering them during refinement.

207A Methodology for Scheduling Analysis Based on UML Development Models

6 Will-be-set-by-IN-TECH

Class diagrams are used to describe the architectural view/the structure of the modelled
system. The diagrams show resources, tasks, and associations between these elements.
Furthermore, schedulers and other resources, like shared memory, can be defined. Figure
3 shows a class diagram of the SAV that describes the architecture of a sample system.
The functionalities/the tasks and communication tasks are represented by methods. The
tasks are described using the «saExecStep» stereotype. The methods that represent the
communication tasks (transmitting of data over a bus) are extended with the «saCommStep»
stereotype. The tasks or communication tasks, represented as methods, are part of schedulable
resource classes (marked with the «schedulabeResource» stereotype), which combine tasks
or communications that belong together, e.g., since they are part of the same use case or
all of them are service routines. Processor resources are represented as classes with the
«saExecHost» stereotype and bus resources are classes with the «saCommHost» stereotype.
The tasks and communications are mapped on processors or busses by using associations
between the schedulable resources and the corresponding bus or processor resource. The
associations are extended with the «allocated» stereotype. Scheduling relevant parameters
(deadlines, execution times, priorities, etc.) are added to the model using tagged values (see
an example in Figure 2).

<<saExecStep>> run()

<<schedulableResource>>
GUI

<<saCommStep>> send()

<<schedulableResource>>
Communiction

<<saExecStep>> save()

<<schedulableResource>>
DataControl

<<saExecHost>>
CPU

<<saCommHost>>
Bus

<<saExecHost>>
CPU2

<<allocated>> <<allocated>> <<allocated>>

deadline=(5,ms)
priority=5
respT=[$r1,ms]
execTime=[1,ms]

Fig. 3. Architectural Part of the SAV

The object diagram or runtime view is based on the class diagram/architectural view of the
SAV. It defines how many instances are parts of the runtime system respectively and what
parts are considered for the scheduling analysis. It is possible that only some elements defined
in the class diagram are instantiated. Furthermore, some elements can be instantiated twice
or more (e.g., if elements are redundant). Only instantiated objects will later be taken into
account for the scheduling analysis.

Activity diagrams are used to describe the behaviour of the system. Therefore, workload
situations are defined that outline the flow of tasks that are executed during a certain mode
of the system. The dependencies of tasks and the execution order are illustrated. The
«gaWorkloadEvent» and the «saEnd2EndFlow» stereotypes and their corresponding tagged
values are used to describe the workload behaviour parameters like the arrival pattern of
the event that triggers the flow or the deadline of the outlined task chain. For example,
in Figure 4 it is well defined that at first cpu.run() has to be completely executed, before
communication.send() is scheduled etc.. As activity diagrams are more complex concerning
their behaviour than most analysis tools, there are restrictions for the modelling of runtime
situations, e.g., no hierarchy is allowed.

The SAV can be easily extended, if necessary. If a scheduling analysis tool offers more
possibilities to describe or to analyse a system (e.g., a different scheduling algorithm) and
needs more system parameters for it, these parameters have to be part of the SAV. Therefore,
the view can be extended with new tagged values that offer the possibility to add the
necessary parameters to the system description (added to Table 1).

208 Embedded Systems – Theory and Design Methodology

A Methodology for Scheduling Analysis Based on UML Development Models 7

cpu.run()

communication.send()

datacontrol.save()

<<saEnd2EndFlow>>

Fig. 4. Workload situation in a SAV

2.2 Abstraction of the design model

The first step of the methodology is the abstraction of the Design Model to the SAV. The Design
Model is used as a basis for the scheduling analysis. The basic idea is to find the relevant
parts from the Design Model and abstract them in the format of the SAV. Hence, all relevant
information for the analysis is identified and transformed into the format of the SAV.

The UML offers many possibilities to describe things. Consequently, most UML Design
Models do look different. Even similar things can be described using different expressions
(e.g., behaviour could be described using activity diagrams, sequence diagrams, or state
charts; deployment can be described using deployment diagrams, but it is also possible to
describe it using class diagrams). As a result, an automatic abstraction of the parts necessary
for a scheduling analysis is not possible.

As the integration of the scheduling analysis in a UML based development process should
be an adaption to the already defined and established development process and not the
other way around, our approach offers a flexibility to abstract different Design Models. Our
approach uses a rule-based abstraction. The developer creates rules, e.g., “all elements of type
device represent a CPU”. Based on these rules, the automatic abstraction creates a SAV with
the elements of the Design Model. This automatic transformation is implemented for Papyrus
for UML2.

There are two types of rules for the abstraction. The first type describes the element in the
Design Model and its representation in the SAV:

ID (element_type , diagram_name , l i m i t 1 , . . .) − > sav_element_type

The rule begins with a unique ID, afterwards the element type is specified (element_type).
The following element types can be abstracted: method, class, device, artifact. Then, the
diagram can be named on which the abstraction should be done (diagram_name). Finally, it
is possible to define limitations, all separated by commas. Limitations can be string filtering
or stereotypes. After the arrow, the corresponding element in the SAV can be named. All
elements that have a stereotype in the SAV are possible (see Table 1).

2 http://www.papyrusuml.org

209A Methodology for Scheduling Analysis Based on UML Development Models

8 Will-be-set-by-IN-TECH

The second type of rules abstracts references:

(element_type , diagram_name , ID_ref1 , ID_ref2)−> A l l o c a t i o n

The rule specifies mappings in the SAV. It begins with the element type. Here, only deploys
or associations are allowed. After the name of the diagram, the developer has to give two IDs
of the basic rules. The abstraction searches for all elements that are affected by the first given
rule (ID_ref1) and the second given rule (ID_ref2) and checks, if there is a connection between
them, specified through the given element_type. If this is the case, an allocation between the
abstracted elements in the SAV is created.

Additionally, it is possible to use the ID_ref as a starting point to use different model elements
that are connected to the affected element (e.g., ID_ref1 affects methods, then ID_ref1.class
affects the corresponding classes that contain the methods).

Figure 5 gives a simple example of an abstraction. On the left side the Design Model is
represented and on the right side, the abstracted SAV. At the beginning, only the left side
exists. In this example, one modelling convention for the Design Model was to add the string
“_task” to all method names that represent tasks. Another convention was to add “_res” to all
class names that represent a CPU.

 A_task()
A

<<saExecStep>> A_task()

<<schedulableResource>>
A

C_res <<saExecHost>>
C_res

<<allocated>>

 B_task()
B

D_res

<<saExecStep>> B_task()

<<schedulableResource>>
B

<<saExecHost>>
D_res

<<allocated>>

F_res <<saExecHost>>
F_res

Design View Scheduling Analysis View

Fig. 5. Simple example of an abstraction from the Design Model to the SAV

The following rules define the abstraction of tasks and CPUs:

A1(Class , ‘ ‘ * ’ ’ , ‘ ‘ * _res ’ ’)−>CPU
A2(Method , ‘ ‘ * ’ ’ , ‘ ‘ * _task ’ ’)−> Task

The mapping is described using the following rule:

(Associat ion , ‘ ‘ * ’ ’ , A2 . c l a s s , A1)−> A l l o c a t i o n

This rule is used on associations in all diagrams (Association, ‘‘*’’). All methods that are
part of classes (A2.class), which are affected by rule A2, that do have an association with a
class that is affected by rule A1, are abstracted to allocations.

It is also possible to define, that model elements in one diagram are directly connected to a
model element in another diagram using “<=>” (e.g., a package in one diagram represents a

210 Embedded Systems – Theory and Design Methodology

A Methodology for Scheduling Analysis Based on UML Development Models 9

device in another diagram by using the construct “package<=>device”, for more information
see our case study in Section 3 and Bruechert (2011).

The automatic abstraction of the behaviour using activity diagrams for scheduling analysis is
as follows: Using the defined rules, it will be determined which methods are to be considered
in the SAV. The corresponding activity diagrams are analysed (all actions that represent a
task). All other actions will be deleted and skipped. All activities that do not contain a method
representing a task will be removed. In a similar way this is done with sequence diagrams and
state machines.

Besides the creating of the SAV during the process of abstraction, there is also a
synchronisation table created that documents the abstraction. The table describes the elements
in the Design Model and their representation in the SAV. This table is later used for the
synchronisation (see Section 2.6). More details about the abstraction and the synchronisation
(including a formal description) can be found in Bruechert (2011).

As it is possible that there is still architectural or behaviour information missing after the
abstraction, we created additional tool support for the UML case tool Papyrus to help the
developer add elements to the SAV (Hagner & Huhn (2008)). We implemented a palette for
simpler adding of SAV elements to the system model. Using this extension, the developer
does not need to know the relevant stereotypes of how to apply them.

2.3 Parameterisation

After the abstraction, there is still important information missing, e.g., priorities, execution
times. The MARTE profile elements are already attached to the corresponding UML element
but the values to the parameters are missing. Depending on the stage of the development,
these parameters must be added by experts or specialised tools. In early development phases,
an expert might be able to give information or, if COTS3 are used, measured values from
earlier developments can be used. In later phases, tools, like aiT (Ferdinand et al. (2001)), T14,
or Traceanalyzer5 can be used for automatic parameterisation of the SAV. These tools use static
analysis or simple measurement for finding the execution times or the execution patterns of
tasks. aiT observes the binary and finds the worst-case execution cycles. As the tool also
knows the processor the binary will be executed on, it can calculate the worst-case execution
times of the tasks. T1 orchestrates the binary and logs parameters while the tasks are executed
on the real platform. Traceanalyzer uses measured values and visualises them (e.g., examines
patterns, execution times).

In other development approaches, the parameters are classified with an additional parameter
depending on its examination. For example, AUTOSAR6 separates between worst-case
execution time, measured execution time, simulated execution time, and rough estimation
of execution time. There are possibilities to add these parameters to the SAV, too. This helps
the developer understanding the meaningfulness of the analysis results (e.g., results based
on worst-case execution times are more meaningful than results based on rough estimated
values).

3 Components-off-the-shelf
4 http://www.gliwa.com/e/products-T1.html
5 http://www.symtavision.com/traceanalyzer.html
6 The AUTOSAR Development Partnership. Automotive Open System Architecture.

http://www.autosar.org

211A Methodology for Scheduling Analysis Based on UML Development Models

10 Will-be-set-by-IN-TECH

Additionally, depending on the chosen scheduling algorithm, one important aspect in this
step is the definition of the task priorities. Especially in early phases of a development this
can be difficult. There are approaches to find automatically parameters like priorities based
on scheduling analysis results. In our method, we suggest to define the priorities manually,
do the analysis, and create new variants of the system (see Section 2.5). If, at an early stage,
priorities are not known and (more or less) unimportant, the priorities can be set arbitrary, as
analysis tools demand these parameters to be set.

2.4 Completeness check and analysis

After the parameterisation is finished and the system is completely described, with respect to
the scheduling parameters, an analysis is possible. Before the analysis is done, the system is
checked if all parameters are set correctly (e.g., every tasks has to have an execution time; if
round robin is set as a scheduling algorithm, tasks need to have a parameter that defines the
slot size).

For the analysis, specialised tools are necessary. There are e.g., SymTA/S (Henia et al. (2005)),
MAST (Harbour et al. (2001)), and TIMES (Fersman & Yi (2004)). All of these tools are using
different meta models. Additionally, these tools have different advantages and abilities.

We created an automatic transformation of the SAV to the scheduling analysis tool SymTA/S
(Hagner & Goltz (2010)) and to TIMES (Werner (2006)) by using transformation languages
(e.g., ATLAS Group (INRIA & LINA) (2003)). As all information necessary for an analysis is
already included in the SAV, a transformation puts all information of the SAV into the format
of the analysis tool, triggers the analysis, and brings back the analysis results into the SAV.
The developer does not need to see SymTA/S or TIMES, remodel the system in the format of
the analysis tool, and does not need to know how the analysis tool works.

SymTA/S links established analysis algorithms with event streams and realises a global
analysis of distributed systems. At first, the analysis considers each resource on its own and
identifies the response time of the mapped tasks. From these response times and the given
input event model it calculates the output event model and propagates it by the event stream.
If there are cyclic dependencies, the system is analysed from a starting point iteratively until
reaching convergence.

SymTA/S is able to analyse distributed systems using different bus architectures and different
scheduling strategies for processors. However, SymTA/S is limited concerning behavioural
description, as it is not possible to describe different workload situations. The user has to
define the worst-case workload situation or has to analyse different situation independently.
Anyhow, as every analysis tool has its advantages it is useful not to use only one analysis tool.

Fig. 6. Representation in SymTA/S

The example depicted in Figure 6 is the SymTA/S representation of the system described
in Section 2.1 and illustrated in Figure 3 and Figure 4. There is one source (trigger), two

212 Embedded Systems – Theory and Design Methodology

A Methodology for Scheduling Analysis Based on UML Development Models 11

CPUs (CPU and CPU2), which execute two tasks (run and save), and a bus (Bus) with one
communication task (send). All tasks are connected using event streams, representing task
chains.

As already mentioned, it is also possible to use other tools for scheduling analysis, e.g., TIMES
(Fersman & Yi (2004)). TIMES is based on UPPAAL (Behrmann et al. (2004)) and uses timed
automata (Alur & Dill (1994)) for an analysis. Consequently, the results are more precise
compared to the over approximated results from SymTA/S. Besides this feature, it also offers
code generator for automatic synthesis of C-code on LegoOS platform from the model and
a simulator, in which the user can validate the dynamic behaviour of the system and see
how the tasks execute according to the task parameters and a given scheduling policy. The
simulator shows a graphical representation of the generated trace showing the time points
when the tasks are released, invoked, suspended, resumed, and completed. On the other side,
as UPPAAL is a model checker, the analysis time could be very long for complex systems due
to state space explosion. TIMES is only able to analyse one processor systems. Consequently,
for an analysis of distributed systems other tools are necessary.

Figure 7 gives a TIMES representation of the system we described in Section 2.1, with
the limitation that all tasks are executed on the same processor. The graph describes the
dependencies of the tasks.

Fig. 7. Representation in TIMES

In TIMES it is also possible to specify a more complex task behaviour/dependency description
by using timed automata. Figure 8 gives the example from Section 2.1 using timed automata
to describe the system. Timed automata contain locations (in Figure 8 Location_1, Location_2,
and Location_3) and switches, which connect the locations. Additionally, the system can
contain clocks and other variables. A state of a system is described using the location, the
value of the clocks, and the value of other variables. The locations describe the task triggering.
By entering a location, the task connected to the location is triggered. Additionally, invariants
in locations or guards on the switches are allowed. The guards and the invariants can refer on
clocks or other variables.

After the analysis is finished, the analysis results are published in the SAV. In the SAV, the
developer can see if there are tasks or task chains that miss their deadlines or if there are
resources with a utilisation higher than 100%. The SAV provides tagged values that are used
to give the developer a feedback about the analysis results. One example is given in Figure 2,
where the respT tagged value is set with a variable ($r1), which means that the response time
of the corresponding task is entered at this point after the analysis (this is done automatically
by our implemented transformations). There are also other parameters, which give a feedback
to the developer (see also Table 1, all are set automatically by the transformations):

• The respT tagged values gives a feedback about the worst-case response time of the
(communication) tasks and is offered by the «saExecStep» and the «saCommHost»
stereotype.

• As the respT, the end2endT tagged values offers the worst case response time, in this case
for task paths/task chains and is offered by the «saEnd2EndFlow» stereotype. It is not

213A Methodology for Scheduling Analysis Based on UML Development Models

12 Will-be-set-by-IN-TECH

Fig. 8. More advanced representation in TIMES

a summation of all worst-case response times of the tasks that are part of the path, but a
worst-case calculated response time of the whole path examined by the scheduling analysis
tool (for more details see Henia et al. (2005)).

• The «saExecHost» and the «saCommHost» stereotypes offer a Utilization tagged value
that gives a feedback about the load of CPUs or busses. If the value is higher than 100% this
resource is not schedulable (and the isShed tagged value is false, too). If this value is under
100%, the system might be schedulable (depending on the other analysis results). A high
value for this variable always indicates a warning that the resource could be overloaded.

• The tagged value isShed gives a feedback if the tasks mapped on this resource are
schedulable or not and is offered by the «saExecHost» and the «saCommHost»
stereotypes. The tagged values are connected to the Utilization tagged value (e.g., if
the utilisation is higher than 100%, the isShed tagged value is false). The isShed is also
offered by the «saEnd2EndFlow» stereotype. As the «saEnd2EndFlow» stereotype defines
parameters for task paths/task chains, the isShed tagged value gives a feedback whether
the deadline for the path is missed or not.

Using these tagged values, the developer can find out if the system is schedulable by checking
the isShed tagged value of the «seEnd2EndFlow» stereotype. If the value is false, the
developer has to find the reason why the scheduling failed using the other tagged values. The
end2EndT tagged value shows to what extent the deadline is missed, as it gives the response
time of the task paths/task chains. The response times of the tasks and the utilisation of the
resources give also a feedback where the bottleneck might be (e.g., a resource with a high
utilisation and tasks scheduled on it with long response times are more likely a bottleneck
compared to resources with low utilisation).

If this information is not sufficient, the developer has to use the scheduling analysis tools for
more detailed information. TIMES offers a trace to show the developer where deadlines are
missed. SymTA/S offers Gantt charts for more detailed information.

214 Embedded Systems – Theory and Design Methodology

A Methodology for Scheduling Analysis Based on UML Development Models 13

2.5 Variant management

Variant management helps the developer to handle different versions of a SAV. In case of
an unsuccessful analysis result (e.g., system is not schedulable) the developer might want to
change parameters or distributions directly in the SAV without having to synchronise with
the Design Model first, but wants to keep the old version as a backup. Even when the system
is schedulable, the developer might want to change parameters to see if it is possible to save
resources by using lower CPU frequencies, slower CPUs, or slower bus systems.

It is also possible to add external tools that find good distributions of tasks on resources.
Steiner et al. (2008) explored the problem to determine an optimised mapping of tasks to
processors, one that minimises bus communication and still, to a certain degree, balances the
algorithmic load. The number of possibilities for the distribution of N tasks to M resources
is MN . A search that evaluates all possible patterns for their suitability can be extremely
costly and will be limited to small systems. However, not all patterns represent a legal
distribution. Data dependencies between tasks may cause additional bus communication
if they are assigned to different resources and communication over a bus is much slower
than a direct communication via shared memory or message passing on a single processor.
Thus, minimising bus communication is an important aspect when a distribution pattern is
generated. To use additionally provided CPU resources and create potential for optimisations
also the balance of the algorithmic load has to be considered.

In Steiner et al. (2008) the distribution pattern generation is transformed into a graph
partitioning problem. The system is represented as an undirected graph, its node weights
represent the worst-case execution time of a task and an edge weight corresponds to the
amount of data that is transferred between two connected tasks. The algorithm presented
searches for a small cut that splits the graph into a number of similar sized partitions. The
result is a good candidate for a distribution pattern, where bus communication is minimised
and the utilisation of CPU resources is balanced.

Another need for variant management is different criticality levels, necessary e.g., in the
ISO 26262 (Road Vehicles Functional Safety (2008)). Many safety-critical embedded systems
are subject to certification requirements; some systems are required to meet multiple sets of
certification requirements from different certification authorities. For every Safety Integrity
Level (SIL) a different variant of the system can be used. In every different variant, the
mapping of the tasks and the priorities will be the same. However, the values for the
scheduling parameters can be different, e.g., the execution times, as they have to be examined
using different methods for each different SIL and consequently for each variant representing
a different SIL (see Section 2.3 for different possibilities to parameterise the SAV).

2.6 Synchronisation

If the developer changes something in the SAV (due to analysis results) later and wants to
synchronise it with the Design Model, it is possible to use the rule-based approach. During
the abstraction (Section 2.2), a matching table/synchronisation table is created and can be used
for synchronisation. This approach also works the other way around (changes in the Design
Model are transferred to the SAV). During a synchronisation, our implementation is updating
the synchronisation table automatically.

One entry in the synchronisation table has two columns. The first specifies the item in
the Design Model and the second the corresponding element in the SAV. According to the
two rule types (basic rule or reference rule), two types of entries are distinguished in the

215A Methodology for Scheduling Analysis Based on UML Development Models

14 Will-be-set-by-IN-TECH

 A_task()
A

<<saExecStep>> A_task()

<<schedulableResource>>
A

C_res <<saExecHost>>
C_res

<<allocated>>

 B_task()
B

D_res

<<saExecStep>> B_task()

<<schedulableResource>>
B

<<saExecHost>>
D_res

<<allocated>>

 A_task()
A

<<saExecStep>> A_task()

<<schedulableResource>>
A

C_res <<saExecHost>>
C_res

<<allocated>>

 B_task()
B

D_res

<<saExecStep>> B_task()

<<schedulableResource>>
B

<<saExecHost>>
D_res

<<allocated>>

Design View Scheduling Analysis View

Step 1:

Step 2:

Fig. 9. Synchronisation of the Design Model and the SAV

synchronisation table. The basic entry corresponds to the abstraction of an item that is
described by a basic rule. The single entry is described in a Design Model column and a
SAV column. The Design Model column contains the element type in the Design Model, the
XMI7 ID in the Design Model, and the name in the Design Model. The SAV column contains
the element type, the XMI ID, and the name in the SAV. Regarding a reference entry, based
on the reference rules, the Design Model column contains the element type, the XMI ID, the
XMI IDs of the two elements with the connection from the Design Model. The SAV column
contains the element type, the XMI ID, and, again the XMI IDs from the elements that are
connected.

Design Model SAV
Class, ID_C_res, C_res CPU, ID_C_res, C_res
Class, ID_D_res, D_res CPU, ID_D_res, D_res

Method, ID_A_task, A_task Task, ID_A_task, A_task
Method, ID_B_task, B_task Task, ID_B_task, B_task

Association, ID, ID_A_task, ID_C_res Allocation, ID, ID_A_task, ID_C_res
Association, ID, ID_B_task, ID_D_res Allocation, ID, ID_B_task, ID_D_res

Table 2. The synchronisation table before the synchronisation

Figure 9 gives a simple example, where synchronisation is done. It is based on the
example given in Section 2.2 and illustrated in Figure 5. Table 2 gives the corresponding
synchronisation table before the synchronisation (for simplification we use a variable name
for the XMI IDs).

Because of analysis results, the mapping has been changed and B_task() will now be
executed on CPU C_res. Consequently, the mapping has changed in the SAV column in the
synchronisation table (see last row in Table 3). Additionally, this is happening in the Design

7 XML Interchange Language (Object Management Group (1998))

216 Embedded Systems – Theory and Design Methodology

A Methodology for Scheduling Analysis Based on UML Development Models 15

Design Model SAV
Class, ID_C_res, C_res CPU, ID_C_res, C_res
Class, ID_D_res, D_res CPU, ID_D_res, D_res

Method, ID_A_task, A_task Task, ID_A_task, A_task
Method, ID_B_task, B_task Task, ID_B_task, B_task

Association, ID, ID_A_task, ID_C_res Allocation, ID, ID_A_task, ID_C_res
Association, ID, ID_B_task, ID_C_res Allocation, ID, ID_B_task, ID_C_res

Table 3. The synchronisation table after the synchronisation

Model column and finally in the Design Model, too (see Figure 9). More details can be found
in Bruechert (2011)

3. Case study

In this Section we want to apply the above introduced methodology to the development of
a robotic control system of a parallel robot developed in the Collaborative Research Centre
562 (CRC 562)8. The aim of the Collaborative Research Centre 562 is the development
of methodological and component-related fundamentals for the construction of robotic
systems based on closed kinematic chains (parallel kinematic chains - PKMs), to improve
the promising potential of these robots, particularly with regard to high operating speeds,
accelerations, and accuracy (Merlet (2000)). This kind of robots features closed kinematic
chains and has a high stiffness and accuracy. Due to low moved masses, PKMs have a
high weight-to-load-ratio compared to serial robots. The demonstrators which have been
developed in the research centre 562 move very fast (up to 10 m/s) and achieve high
accelerations (up to 100 m/s2). The high velocities induced several hard real-time constraints
on the software architecture PROSA-X (Steiner et al. (2009)) that controls the robots. PROSA-X
(Parallel Robots Software Architecture - eXtended) can use multiple control PCs to distribute
its algorithmic load. A middleware (MiRPA-X) and a bus protocol that operates on top of a
FireWire bus (IEEE 1394, Anderson (1999)) (IAP) realise communication satisfying the hard
real-time constraints (Kohn et al. (2004)). The architecture is based on a layered design with
multiple real-time layers within QNX9 to realise e.g., a deterministic execution order for
critical tasks (Maass et al. (2006)). The robots are controlled using cyclic frequencies between
1 and 8 kHz. If these hard deadlines are missed, this could cause damage to the robot and
its environment. To avoid such problems, a scheduling analysis based on models ensures the
fulfilment of real-time requirements.

Figure 10 and Figure 11 present the Design Model of the robotic control architecture. Figure
10 shows a component diagram of the robotic control architecture containing the hardware
resources. In this variant, there is a “Control_PC1” that performs various computations.
The “Control_PC1” is connected via a FireWire data bus with a number of digital signal
processors (“DSP_1-7”), which are supervising and controlling the machine. Additionally,
there are artefacts («artifact») that are deployed (using the associations marked with the
«deploy» stereotype) to the resources. These artefacts represent software that is executed on
the corresponding resources.

The software is depicted in Figure 10. This diagram contains packages where every package
represents an artefact depicted in Figure 11 (the packages IAP_Nodes_2-7 have been omitted

8 http://www.tu-braunschweig.de/sfb562
9 QNX Neutrino is a micro kernel real-time operating system.

217A Methodology for Scheduling Analysis Based on UML Development Models

16 Will-be-set-by-IN-TECH

<<device>>
Control_PC1

<<device>>
DSP_1

<<device>>
DSP_2

<<device>>
DSP_3

<<device>>
DSP_4

<<device>>
DSP_5

<<device>>
DSP_6

<<device>>
DSP_7

<<IEEE1394>>

<<artifact>>
Control

<<artifact>>
DSP_Com

<<artifact>>
MS_Values

<<deploy>>

<<deploy>>

<<deploy>>

<<artifact>>
IAP_Nodes_1

<<deploy>>

<<artifact>>
IAP_Nodes_2

<<deploy>>

<<artifact>>
IAP_Nodes_3

<<deploy>>

<<artifact>>
IAP_Nodes_4

<<deploy>>

<<artifact>>
IAP_Nodes_5

<<deploy>>

<<artifact>>
IAP_Nodes_6

<<deploy>>

<<artifact>>
IAP_Nodes_7

<<deploy>>

Fig. 10. Component diagram of the robotic control architecture

Control

IAP_D_Task()
prepMSG()

IAP_Control
HWM_Task()
HardwareMonitore

DC_Task()
com()
halt()
SMC_Task()

DriveControl

DSP_Com

IAP_M_Task()
prepMSG()
send()

IAP_Control

MS_Values

SAP_Task()
CON_Task()
FOR_Task()
CFF_Task()
POS_Task()
VEL_Task()

MotionModules
SEN_Task()
SensorModules IAP_Nodes_1

IAP_N1_Task()
rec()

Node

Fig. 11. Package diagram of the robotic control architecture

due to space and are only represented by IAP_Nodes_1). The packages are containing
the software that is executed on the corresponding resource. The packages are containing
classes and the classes are containing methods. Some methods represent tasks. These
methods are marked using the addition of “_Task” to their name (e.g., the package “Control”
contains the class “DriveControl” and this class contains three methods, where method
DC_Task() represents a task). The tasks that are represented using methods have the following
functionality:

• IAP_D: This instance of the IAP bus protocol receives the DDTs (Device Data Telegram) that
contain the instantaneous values of the DSP nodes over the FireWire bus.

218 Embedded Systems – Theory and Design Methodology

A Methodology for Scheduling Analysis Based on UML Development Models 17

• HWM: The Hardware Monitoring takes the instantaneous values received by the IAP_D and
prepares them for the control.

• DC: The Drive Controller operates the actuators of the parallel kinematic machine.

• SMC: The Smart Material Controller operates the active vibration suppression of the
machine.

• IAP_M: This instance of the bus protocol IAP sends the setpoint values, calculated by DC
and SMC, to the DSP node.

• CC: The Central Control activates the currently required sensor and motion modules (see
below) and collects their results.

• CON: Contact Planner. Combination of power and speed control. For the end effector of
the robot to make contact with a surface.

• FOR: Force Control, sets the force for the end effector of the robot.

• CFF: Another Contact Planner, similar to CON.

• VEL: Velocity Control, sets the speed for the end effector of the robot.

• POS: The Position Controller sets the position of the end effector.

• SAP: The Singularity Avoidance Planner plans paths through the work area to avoid
singularities.

• SEN: An exemplary Sensor Module.

There are three task paths/task chains with real-time requirements. The first task chain
receives the instantaneous values and calculates the new setpoint values (using the tasks
IAP_D, HWM, DC, SMC). The deadline for this is 250 microseconds. The second task chain
contains the sending of the setpoint values to the DSPs and their processing (using tasks
IAP_M, MDT, IAP_N1, . . . , IAP_N7, DDT1, . . . , DDT7). This must be finished within 750
microseconds. The third chain comprises the control of the sensor and motion modules
(using tasks CC, CON, FOR, CFF, POS, VEL, SEN, SAP) and has to be completed within 1945
microseconds. The tasks chains including their dependencies were described using activity
diagrams.

To verify these real-time requirements we adapted out methodology to the Design Model of
the robotic control architecture. The first step was the abstraction of the scheduling relevant
information and the creation of the corresponding SAV. As described in Section 2.2, we had to
define rules for the abstraction. The following rules were used:

A1(Device , ‘ ‘ ComponentDiagram ’ ’ , ‘ ‘ * ’ ’) − >CPU
A2(Method , ‘ ‘ PackageDiagram ’ ’ , ‘ ‘ * _Task ’ ’)−> Task

Rule A1 creates all CPUs in the SAV (classes containing the «saExecHost» stereotype).
Rule A2 creates schedulable resources containing the tasks (methods with the «saExecStep»
stereotype). Here, we were using the option to sum all tasks that are scheduled on one
resource into one schedulable resource representing class (see Figure 12). The corresponding
rule to abstract the mapping is:

(Deploy , ‘ ‘ * ’ ’ , A2 . c l a s s . package<=> A r t i f a c t , A1)−> A l l o c a t i o n

219A Methodology for Scheduling Analysis Based on UML Development Models

18 Will-be-set-by-IN-TECH

<<saExecStep>> IAP_N1()

<<schedulableResource>>
IAP_Nodes_1 <<saExecHost>>

DSP_1

<<allocated>>

<<saExecStep>> IAP_N2()

<<schedulableResource>>
IAP_Nodes_2 <<saExecHost>>

DSP_2

<<allocated>>

<<saExecStep>> IAP_N3()

<<schedulableResource>>
IAP_Nodes_3 <<saExecHost>>

DSP_3

<<allocated>>

<<saExecStep>> IAP_N4()

<<schedulableResource>>
IAP_Nodes_4 <<saExecHost>>

DSP_4

<<allocated>>

<<saExecStep>> IAP_N5()

<<schedulableResource>>
IAP_Nodes_5 <<saExecHost>>

DSP_5

<<allocated>>

<<saExecStep>> IAP_N6()

<<schedulableResource>>
IAP_Nodes_6 <<saExecHost>>

DSP_6

<<allocated>>

<<saExecStep>> IAP_N7()

<<schedulableResource>>
IAP_Nodes_7 <<saExecHost>>

DSP_7

<<allocated>>

<<saCommStep>> MDT()

<<schedulableResource>>
fwCom1

<<saCommStep>> DDT1()
<<saCommStep>> DDT2()
<<saCommStep>> DDT3()
<<saCommStep>> DDT4()
<<saCommStep>> DDT5()
<<saCommStep>> DDT6()
<<saCommStep>> DDT7()

<<schedulableResource>>
fwCom2

<<saCommHost>>
FireWire

<<allocated>>
<<allocated>>

<<saExecHost>>
Control_PC1

<<saExecStep>> IAP_D()
<<saExecStep>> HWM()
<<saExecStep>> DC()
<<saExecStep>> CC()
<<saExecStep>> CFF()
<<saExecStep>> FOR()
<<saExecStep>> MPI()
<<saExecStep>> POS()
<<saExecStep>> SMC()
<<saExecStep>> CON()
<<saExecStep>> VEl()
<<saExecStep>> SEN()
<<saExecStep>> SAP()
<<saExecStep>> IAP_M()

<<schedulableResource>>
CP1_Tasks

<<allocated>>

Fig. 12. The architectural view of the PROSA-X system

The packages that contain classes that contain methods that are effected by rule A2, under the
assumption that there is an artefact that represents the package in another diagram, are taken
into account. It is observed if there is a deploy element between the corresponding artefact and
a device element that is effected by rule A1. If this is the case, there is an allocation between
these elements. As not all necessary elements are described in the Design Model, e.g., the
FireWire bus was not abstracted; it has to be modelled manually in the SAV, as it is important
for the scheduling analysis. The result (the architectural view of the SAV) is presented in
Figure 3

cp1_tasks.IAP_M()

fwcom1.MDT()

<<saEnd2EndFlow>>
iap_nodes.IAP_N1()

iap_nodes_2.IAP_N2()

iap_nodes_5.IAP_N5()

iap_nodes_6.IAP_N6()

iap_nodes_3.IAP_N3()

iap_nodes_4.IAP_N4()

iap_nodes_7.IAP_N7()

fwcom2.DDT1()

fwcom2.DDT2()

fwcom2.DDT5()

fwcom2.DDT6()

fwcom2.DDT3()

fwcom2.DDT4()

fwcom2.DDT7()

Fig. 13. Sending of the setpoint values to the DSPs

Additionally, a runtime view is created and the behaviour (the workload situations) are
created. Figure 13 represents the task chain that sends the setpoint values to the DSPs and
describes their processing (IAP_M, MDT, IAP_N1, . . . , IAP_N7, DDT1, . . . , DDT7). The
deadline is 750 microseconds.

Besides the SAV, a synchronisation table is created. Exemplarily, it is presented in Table 4.

After the SAV is created, it can be parameterised. We have done this by expert knowledge,
measuring, and monitoring prototypes. Using these methods, we were able to set the
necessary parameters (e.g., execution times, activation pattern, priorities).

220 Embedded Systems – Theory and Design Methodology

A Methodology for Scheduling Analysis Based on UML Development Models 19

Fig. 14. The SymTA/S description of the PROSA-X system

221A Methodology for Scheduling Analysis Based on UML Development Models

20 Will-be-set-by-IN-TECH

Design View SAV
Method, ID, IAP_D_Task Task, ID, IAP_D_Task
Device, ID, Control_PC1 CPU, ID, Control_PC1

Deploy, ID, Association, ID, IAP_D_Task,
IAP_D_Task.IAP_Control.Control Control_PC1

<=>Control, Control_PC1
.

Table 4. The synchronisation table of the robotic control system

As we have created automatic transformation to the scheduling analysis tool SymTA/S, the
transformation creates a corresponding SymTA/S model and makes it possible to analyse the
system. The completeness check is included in the transformation. Afterwards, the output
model was analysed by SymTA/S and the expectations were confirmed: The analysis was
successful, all paths keep their real-time requirements, and the resources are not overloaded.
The SymTA/S model is depicted in Figure 14.

<<saExecStep>> IAP_N1()

<<schedulableResource>>
IAP_Nodes_1 <<saExecHost>>

DSP_1

<<allocated>>

<<saExecStep>> IAP_N2()

<<schedulableResource>>
IAP_Nodes_2 <<saExecHost>>

DSP_2

<<allocated>>

<<saExecStep>> IAP_N3()

<<schedulableResource>>
IAP_Nodes_3 <<saExecHost>>

DSP_3

<<allocated>>

<<saExecStep>> IAP_N4()

<<schedulableResource>>
IAP_Nodes_4 <<saExecHost>>

DSP_4

<<allocated>>

<<saExecStep>> IAP_N5()

<<schedulableResource>>
IAP_Nodes_5 <<saExecHost>>

DSP_5

<<allocated>>

<<saExecStep>> IAP_N6()

<<schedulableResource>>
IAP_Nodes_6 <<saExecHost>>

DSP_6

<<allocated>>

<<saExecStep>> IAP_N7()

<<schedulableResource>>
IAP_Nodes_7 <<saExecHost>>

DSP_7

<<allocated>>

<<saCommStep>> MDT()

<<schedulableResource>>
fwCom1

<<saCommStep>> DDT1()
<<saCommStep>> DDT2()
<<saCommStep>> DDT3()
<<saCommStep>> DDT4()
<<saCommStep>> DDT5()
<<saCommStep>> DDT6()
<<saCommStep>> DDT7()
<<saCommStep>> sendVal()

<<schedulableResource>>
fwCom2

<<saCommHost>>
FireWire

<<allocated>>
<<allocated>>

<<saExecHost>>
Control_PC1

<<saExecStep>> IAP_D()
<<saExecStep>> HWM()
<<saExecStep>> DC()
<<saExecStep>> CC()
<<saExecStep>> SMC()

<<schedulableResource>>
CP1_Tasks

<<allocated>>

<<saExecHost>>
Control_PC2

<<saExecStep>> CFF()
<<saExecStep>> FOR()
<<saExecStep>> MPI()
<<saExecStep>> POS()
<<saExecStep>> CON()
<<saExecStep>> VEl()
<<saExecStep>> SEN()
<<saExecStep>> SAP()
<<saExecStep>> IAP_M()

<<schedulableResource>>
CP2_Tasks

<<allocated>>

Fig. 15. The new architectural view of the PROSA-X system containing a second control pc

After the successful analysis, the results are automatically published back into the SAV
(see Section 2.4). However, we created a new variant of the same system to observe if a
faster distribution is possible by adding a new control pc (“Control_PC2”). Consequently,
we changed the distribution and added tasks to the second control pc that were originally
executed on “Control_PC1”) (see Figure 15). As the tasks are more distributed now, we had to
add an additional communication task (sendVal()) to transfer the results of the calculations. We
went through the parameterisation and the analysis again and found out, that this distribution
is also valid in terms of scheduling.

As a next step, we can synchronise our results with the Design Model. During the
synchronisation, the relevant entries in the synchronisation table were examined. New entries
(e.g., for the new control pc) are created and, consequently, the mapping of the artefact
“Control” is created corresponding to the SAV. The result is depicted in Figure 16.

222 Embedded Systems – Theory and Design Methodology

A Methodology for Scheduling Analysis Based on UML Development Models 21

<<device>>
Control_PC2

<<device>>
DSP_1

<<device>>
DSP_2

<<device>>
DSP_3

<<device>>
DSP_4

<<device>>
DSP_5

<<device>>
DSP_6

<<device>>
DSP_7

<<IEEE1394>>

<<artifact>>
MS_Values

<<artifact>>
DSP_Com

<<artifact>>
Control

<<deploy>>

<<deploy>>

<<deploy>>

<<artifact>>
IAP_Nodes_1

<<deploy>>

<<artifact>>
IAP_Nodes_2

<<deploy>>

<<artifact>>
IAP_Nodes_3

<<deploy>>

<<artifact>>
IAP_Nodes_4

<<deploy>>

<<artifact>>
IAP_Nodes_5

<<deploy>>

<<artifact>>
IAP_Nodes_6

<<deploy>>

<<artifact>>
IAP_Nodes_7

<<deploy>>

<<device>>
Control_PC1

Fig. 16. Component diagram after the synchronisation containing the new device

4. Adapting the approach to other non-functional properties

The presented approach can be adapted to other non-functional requirements (e.g., power
consumption or reliability). For every non-functional requirement, there can be an individual
view to help the developer concentrate on the aspect he/she is working on. This is
drawn upon the cognitive load theory (Sweller (2003)). Consequently, besides the view, a
methodology (like the one in this paper) is necessary. Depending on which requirements
are considered, the methodologies differ from each other; other steps are necessary and the
analysis is different. Additionally, there can be dependencies between the different views (e.g.,
between the SAV and a view for power consumption as we will explain later).

Power is one of the important metrics for optimisation in the design and operation of
embedded systems. One way to reduce power consumption in embedded computing systems
is processor slowdown using frequency or voltage. Scaling the frequency and voltage of a
processor leads to an increase in the execution time of a task. In real-time systems, we want
to minimise energy while adhering to the deadlines of the tasks. Dynamic voltage scaling
(DVS) techniques exploit the idle time of the processor to reduce the energy consumption of a
system (Aydin et al. (2004); Ishihara & Yasuura (1998); Shin & Kim (2005); Walsh et al. (2003);
Yao et al. (1995)).

We defined a Power Consumption Analysis View (PCAV), according to the SAV (Hagner et al.
(2011)), to give the developer the possibility to add energy and power consumption relevant
parameters to the UML model. Therefore, we created the PCAV profile as an extension of
the MARTE profile and an automatic analysis algorithm. The PCAV supports DVS systems.
In Figure 17 an example for a PCAV is given. It uses different stereotypes than the SAV as
there are different parameters to describe. However, the implementation is similar to the SAV.
Additionally, we developed and implemented an algorithm to find a most power aware, but
still real-time schedulable system configuration for a DVS system.

223A Methodology for Scheduling Analysis Based on UML Development Models

22 Will-be-set-by-IN-TECH

<<pcaExecStep>> task1()
<<pcaExecStep>> task2()
<<pcaExecStep>> task3()

<<schedulableResource>>
SchedResource

<<pcaExecHost>>
CPU

<<allocated>>

period=[13,ms]
wcet=[$r4,ms]
wcec=[976*10^2,cycles]
energyPerExec=[$r11,nJ]

switchCap=[0.28,nF]
configuration="Conf"
powerConsumption=[$r2,W]
leakagePowerConsumption=[1.2,W]

<<pcaExecHostConfig>>
Conf

frequencyVoltageTuple="FVTuple"
energyLevel=[10.08,nJ]

<<pcaPowerSupply>>
Battery

<<allocated>>

capacity=[8,Ah]
voltage=[5,V]
duration=[$r5,h]

<<pcaPowerConsumer>>
Display

powerConsumption=[1,W]

<<allocated>>

<<pcaFreqVoltageFunction>>
FVTuple

frequency=[60,MHz]
voltage=[6,V]

<<pcaExecStep>> task4()
<<pcaExecStep>> task5()
<<pcaExecStep>> task6()

<<schedulableResource>>
SchedResource2

<<pcaExecHost>>
CPU2

<<allocated>>

<<allocated>>

Fig. 17. Power Consumption Analysis View (PCAV)

The power consumption and the scheduling depend on each other (Tavares et al. (2008)). If
slower hardware is used to decrease the power consumption, the scheduling analysis could
fail due to deadlines that are missed because tasks are executed slower. If faster hardware is
used, the power consumption increases. The solution is to find a system configuration that
is most power aware but still real-time with respect to their deadline. For our algorithm, we
were using both, the SAV and the PCAV. Based on the Design Model we created both views,
used the PCAV to do the power consumption analysis and to calculate the execution times
and then used the SAV to check the real-time capabilities (Aniculaesei (2011)).

5. Conclusion

In this chapter we have presented a methodology to integrate the scheduling analysis in a
UML based development. The methodology is based on the Scheduling Analysis View and
contains steps, how to create this view, independently how the UML Design Model looks
like, how to process with this view, analyse it, handle variants, and synchronise it with the
Design Model. We have presented this methodology in a case study of a robotic control
system. Additionally, we have given an outlook on the possibility to create new views for
other non-functional requirements.

Future work can be to add additional support concerning the variant management to comply
with standards (e.g., Road Vehicles Functional Safety (2008)). Other work can be done by
creating different views for other requirements and observe the dependencies between the
views.

6. Acknowledgment

The authors would like to thank Symtavision for the grant of free licenses.

7. References

Alur, R. & Dill, D. L. (1994). A theory of timed automata, Theoretical Computer Science
126(2): 183 – 235.
URL: http://www.sciencedirect.com/science/article/pii/0304397594900108

Anderson, D. (1999). FireWire system architecture (2nd ed.): IEEE 1394a, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Aniculaesei, A. (2011). Uml based analysis of power consumption in real-time embedded systems,
Master’s thesis, TU Braunschweig.

224 Embedded Systems – Theory and Design Methodology

A Methodology for Scheduling Analysis Based on UML Development Models 23

Argyris, I., Mura, M. & Prevostini, M. (2010). Using marte for designing power supply section
of wsns, M-BED 2010: Proc. of the 1st Workshop on Model Based Engineering for Embedded
Systems Design (a DATE 2010 Workshop), Germany.

Arpinen, T., Salminen, E., Hännikäinen, T. D. & Hännikäinen, M. (2011). Marte profile
extension for modeling dynamic power management of embedded systems, Journal
of Systems Architecture, In Press, Corrected Proof .

ATLAS Group (INRIA & LINA) (2003). Atlas transformation language,
http://www.eclipse.org/m2m/atl/.

Aydin, H., Melhem, R., Mossé, D. & Mejía-Alvarez, P. (2004). Power-aware scheduling for
periodic real-time tasks, IEEE Trans. Comput. pp. 584–600.

Behrmann, G., David, R. & Larsen, K. G. (2004). A tutorial on uppaal, A tutorial on UPPAAL,
Springer, pp. 200–236.

Bruechert, A. (2011). Abstraktion und synchronisation von uml-modellen fÃijr die
scheduling-analyse, Master’s thesis, TU Braunschweig.

Espinoza, H., Servat, D. & Gérard, S. (2008). Leveraging analysis-aided design decision
knowledge in uml-based development of embedded systems, Proceedings of the 3rd
international workshop on Sharing and reusing architectural knowledge, SHARK ’08, ACM,
New York, NY, USA, pp. 55–62.
URL: http://doi.acm.org/10.1145/1370062.1370078

Faugere, M., Bourbeau, T., Simone, R. & Gerard, S. (2007). MARTE: Also an UML profile for
modeling AADL applications, Engineering Complex Computer Systems, 2007. 12th IEEE
International Conference on, pp. 359–364.

Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling, H., Thesing,
S. & Wilhelm, R. (2001). Reliable and precise wcet determination for a real-life
processor, EMSOFT ’01: Proc. of the First International Workshop on Embedded Software,
Springer-Verlag, London, UK, pp. 469–485.

Fersman, E. & Yi, W. (2004). A generic approach to schedulability analysis of real-time tasks,
Nordic J. of Computing 11(2): 129–147.

Hagner, M., Aniculaesei, A. & Goltz, U. (2011). Uml-based analysis of power consumption for
real-time embedded systems, 8th IEEE International Conference on Embedded Software
and Systems (IEEE ICESS-11), Changsha, China, Changsha, China.

Hagner, M. & Goltz, U. (2010). Integration of scheduling analysis into uml based development
processes through model transformation, 5th International Workshop on Real Time
Software (RTS’10) at IMCSIT’10.

Hagner, M. & Huhn, M. (2007). Modellierung und analyse von zeitanforderungen basierend
auf der uml, in H. Koschke (ed.), Workshop, Vol. 110 of LNI, pp. 531–535.

Hagner, M. & Huhn, M. (2008). Tool support for a scheduling analysis view, Design,
Automation and Test in Europe (DATE 08).

Hagner, M., Huhn, M. & Zechner, A. (2008). Timing analysis using the MARTE profile in
the design of rail automation systems, 4th European Congress on Embedded Realtime
Software (ERTS 08).

Harbour, M. G., García, J. J. G., Gutiérrez, J. C. P. & Moyano, J. M. D. (2001). Mast: Modeling
and analysis suite for real time applications, ECRTS ’01: Proc. of the 13th Euromicro
Conference on Real-Time Systems, IEEE Computer Society, Washington, DC, USA,
p. 125.

Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K. & Ernst, R. (2005). System level
performance analysis - the SymTA/S approach, IEEE Proc. Computers and Digital
Techniques 152(2): 148–166.

225A Methodology for Scheduling Analysis Based on UML Development Models

24 Will-be-set-by-IN-TECH

Ishihara, T. & Yasuura, H. (1998). Voltage scheduling problem for dynamically variable
voltage processors, Proc. of the 1998 International Symposium on Low Power Electronics
and Design (ISLPED ’98) pp. 197–202.

Kohn, N., Varchmin, J.-U., Steiner, J. & Goltz, U. (2004). Universal communication architecture
for high-dynamic robot systems using QNX, Proc. of International Conference on
Control, Automation, Robotics and Vision (ICARCV 8th), Vol. 1, IEEE Computer Society,
Kunming, China, pp. 205–210. ISBN: 0-7803-8653-1.

Kruchten, P. (1995). The 4+1 view model of architecture, IEEE Softw. 12(6): 42–50.
Maass, J., Kohn, N. & Hesselbach, J. (2006). Open modular robot control architecture for

assembly using the task frame formalism, International Journal of Advanced Robotic
Systems 3(1): 1–10. ISSN: 1729-8806.

Merlet, J.-P. (2000). Parallel Robots, Kluwer Academic Publishers.
Object Management Group (1998). XML model interchange(XMI).
Object Management Group (2002). UML profile for schedulability, performance and time.
Object Management Group (2003). Unified modeling language specification.
Object Management Group (2004). UML profile for modeling quality of service and fault

tolerance characteristics and mechanisms.
Object Management Group (2007). Systems Modeling Language (SysML).
Object Management Group (2009). UML profile for modeling and analysis of real-time and

embedded systems (MARTE).
Road Vehicles Functional Safety, i. O. f. S. (2008). Iso 26262.
Shin, D. & Kim, J. (2005). Intra-task voltage scheduling on dvs-enabled hard real-time systems,

IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems .
Steiner, J., Amado, A., Goltz, U., Hagner, M. & Huhn, M. (2008). Engineering self-management

into a robot control system, Proceedings of 3rd International Colloquium of the
Collaborative Research Center 562, pp. 285–297.

Steiner, J., Goltz, U. & Maass, J. (2009). Dynamische verteilung von steuerungskomponenten
unter erhalt von echtzeiteigenschaften, 6. Paderborner Workshop Entwurf
mechatronischer Systeme.

Sweller, J. (2003). Evolution of human cognitive architecture, The Psychology of Learning and
Motivation, Vol. 43, pp. 215–266.

Tavares, E., Maciel, P., Silva, B. & Oliveira, M. (2008). Hard real-time tasks’ scheduling
considering voltage scaling, precedence and . . . , Information Processing Letters .
URL: http://linkinghub.elsevier.com/retrieve/pii/S0020019008000951

Walsh, B., Van Engelen, R., Gallivan, K., Birch, J. & Shou, Y. (2003). Parametric intra-task
dynamic voltage scheduling, Proc. of COLP 2003 .

Werner, T. (2006). Automatische transformation von uml-modellen fuer die schedulability analyse,
Master’s thesis, Technische UniversitâĂřt Braunschweig.

Yao, F., Demers, A. & Shenker, S. (1995). A scheduling model for reduced cpu energy, Proc. of
the 36th Annual Symposium on Foundations of Computer Science .

226 Embedded Systems – Theory and Design Methodology

11

Formal Foundations for the Generation of
Heterogeneous Executable Specifications in

SystemC from UML/MARTE Models
Pablo Peñil, Fernando Herrera and Eugenio Villar

Microelectronics Engineering Group of the University of Cantabria
Spain

1. Introduction
Technological evolution is provoking an increase in the complexity of embedded systems
derived from the capacity to implement a growing number of elements in a single, multi-
processing, system-on-chip (MPSoC).

Embedded system heterogeneity leads to the need to understand the system as an
aggregation of components in which different behavioural semantics should cohabit.
Heterogeneity has two dimensions. On the one hand, during the design process, different
execution semantics, specifically in terms of time (untimed, synchronous, timed) can be
required in order to provide specific behaviour characteristics for the concurrent system
elements. On the other hand, different system components may require different models of
computation (MoCs) in order to better capture their functionality, such as Kahn Process
Networks (KPN), Synchronous Reactive (SR), Communicating Sequential Processes (CSP),
TLM, Discrete Event (DE), etc.

Another aspect affecting the complexity of current embedded systems derives from their
structural concurrency. The system should be conceived as an understandable architecture
of cooperating, concurrent processes. The cooperation among these concurrent processes is
implemented through information exchange and synchronization mechanisms. Therefore, it
is essential to deal with the massive concurrency and parallelism found in current
embedded systems and provide adequate mechanisms to specify and verify the system
functionality, taking into account the effects of the different architectural mappings to the
platform resources.

In this context, the challenge of designing embedded systems is being dealt with by
application of methodologies based on Model Driven Architecture (MDA) (MDA guide,
2003). MDA is a developing framework that enables the description of systems by means of
models at different abstraction levels. MDA separates the specification of the system’s
generic characteristics from the details of the platform where the system will be
implemented. Specifically, in Platform Independent Models (PIMs), designers capture the
relevant properties that characterize the system; the internal structure, the communication
mechanisms, the behavior of the different components, etc. Therefore, PIMs provide a
general, synthetic representation that is independent and, thus, decoupled from the final

Embedded Systems – Theory and Design Methodology

228

system implementation. High-level PIM models are the starting point of ESL methodologies,
and they are crucial for fast validation and Design Space Exploration (DSE). PIMs can be
implemented on different platforms leading to different Platform Specific Models (PSMs).
PSMs enable the analysis of performance characteristics of the system implementation.

The most widely accepted and used language for MDA is the Unified Modelling Language
(UML) (UML, 2010). UML is a standard graphical language to visualize, specify and
document the system. From the first application as object-oriented software system
modelling, the application domain of UML has been extended. Nowadays, UML is used to
deal with electronic system design (Lavagno et al. 2003). Nevertheless, UML lacks the
specific semantics required to support embedded system specification, modelling and
design. This lack of expressivity is dealt with by means of specific profiles that provide the
UML elements with the necessary, precise semantics to apply the UML modelling
capabilities to the corresponding domain.

Specifically in the embedded system domain, UML should be able to deal with design
aspects such as specification, analysis, architectural mapping and implementation of
complex, HW/SW embedded systems. The MARTE UML profile (UML Profile for MARTE,
2009), which was created recently, was developed in order to model and analyze real-time
embedded systems, providing the concepts needed to describe real-time features that
specify the semantics of this kind of systems at different abstraction levels. The MARTE
profile has the necessary concepts to create models of embedded systems and provide the
capabilities that enable the analysis of different aspects of the behaviour of such systems in
the same framework. By using this UML profile, designers will be able to specify the system
both as a generic entity, capturing the high-level system characteristics and, after a
refinement process, as a detailed architecture of heterogeneous components. In this way,
designers will be assisted by design flows with a generic system model as an initial stage.
Then, by means of a refinement process supported by modelling and analysis tools, they
will be able to decide on the most appropriate architectural mapping.

As with any UML profile, MARTE is not associated with any explicit execution semantics.
As a consequence, no executable model can be directly extracted for simulation, functional
verification and performance estimation purposes. In order to address this need, SystemC
(Open SystemC) has been proposed as the specification and simulation framework for
MARTE models. From the MARTE model, an executable model in SystemC can be inferred
establishing a MARTE/SystemC relationship.

The MARTE/SystemC relationship is established in a formal way. The corresponding
formalism should be as general as possible in order to enable the integration of
heterogeneous components interacting in a predictable and well-understood way
(horizontal heterogeneity) and to support the vertical heterogeneity, that is, refinement of
the model from one abstraction level to another. Finally, this formalism should remove the
ambiguity in the execution semantics of the models in order to provide a basis for
supporting methodologies that tackle embedded system design.

For this purpose, the ForSyDe (Formal System Design) meta-model (Jantsch, 2004) was
introduced. ForSyDe was developed to support the design of heterogeneous embedded
systems by means of a formal notation. ForSyDe enables the production of a formal
specification that captures the functionality of the system as a high abstraction-level model.

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

229

From these initial formal specifications, a set of transformations can be applied to refine the
model into the final system model. This refinement process generally involves MoC
transformation.

A system-level modelling and specification methodology based on UML/MARTE is
proposed. A subset of UML and MARTE elements is selected in order to provide a generic
model of the system. This subset of UML/MARTE elements is focused on capturing the
generic concurrency and the communication aspects among concurrent elements. Here,
system-level refers to a PIM able to capture the system structure and functionality
independently of its final implementation on the different platform resources. The internal
system structure is modelled by means of Composite Structure diagrams. MARTE
concurrency resources are used to model the concurrent processes composing the concurrent
structure of the system. The communication elements among the concurrent processes are
modelled using the CommunicationMedia stereotype. The concurrent processes and the
communication media compose the Concurrent&Communication (C&C) structure of the
system. The explicit identification of the concurrent elements facilitates the allocation of the
system application to platforms with multiple processing elements in later design phases.

In order to avoid any restrictions on the designer, the methodology does not impose any
specific functionality modelling of concurrent processes. Nevertheless, with no loss of
generality, UML activity diagrams are used as a meta-model of functionality. The activity
diagram will provide formal support to the C&C structure of the system, explaining when
each concurrent process takes input values, how it computes them and when the
corresponding outputs are delivered.

Fig. 1. ForSyDe formal link between MDA and ESL.

Based on the MARTE/SystemC formal link supported by ForSyDe, the methodology
enables untimed SystemC executable specifications to be obtained from UML/MARTE
models. The untimed SystemC executable specification allows the simulation, validation
and analysis of the corresponding UML/MARTE model based on a clear simulation
semantics provided by the underlying formal model. Although the formal model could be
kept transparent to the user, the model defines clear simulation semantics associated with
the MARTE model and its implementation in the SystemC model, which can be fully
understood by any designer. Therefore, the ForSyDe meta-model formally supports
interoperability between MARTE and SystemC.

In this way, the gap between MDA and ESL is formally bridged by means of a conceptual
mapping. The mapping established among UML/MARTE and SystemC will provide

ForSyDe UML/MARTE

 MDA ESL

equivalence Generic Resources
SystemC

Embedded Systems – Theory and Design Methodology

230

consistency in order to ensure that the SystemC executable specification obtained is
equivalent to the original UML/MARTE model. The formal link provided by ForSyDe
enables the abstract executive semantics of both the UML/MARTE model and its
corresponding SystemC executable specification to be reflected (Figure 4.). This
demonstrates the equivalence among the two design flow stages, provides the required
consistency to the mapping established between the two languages and ensures that the
transformation process is correct-by-construction.

2. Related work
Several works have shown the advantages of using the MARTE profile for embedded
system design. For instance, in (Taha et al, 2007) a methodology for modelling hardware by
using the MARTE profile is proposed. In (Vidal et al, 2009), a co-design methodology for
high-quality real-time embedded system design from MARTE is presented.

Several research lines have tackled the problem of providing an executive semantics for
UML. In this context, two main approaches for generating SystemC executable specifications
from UML can be distinguished. One research line is to create a SystemC profile in order to
capture the semantics of SystemC facilities in UML diagrams (Bocchio et al., 2008). In this
case, SystemC is used both as modelling and action language, while UML enables a
graphical capture. A second research line for relating UML and SystemC consists in
establishing mapping rules between the UML metamodel and the SystemC constructs. In
this case, pure UML is used for system modelling, while the SystemC model generated is
used as the action language. Mapping rules enable automatic generation of the executable
SystemC code (Andersson & Höst, 2008). In (Kreku et al., 2007) a mapping between UML
application models and the SystemC platform models is proposed in order to define
transformation rules to enable semi-automatic code generation.

A few works have focused on obtaining SystemC executable models from MARTE.
Gaspard2 (Piel et al. 2008) is a design environment for data-intensive applications which
enables MARTE description of both the application and the hardware platform, including
MPSoC and regular structures. Through model transformations, Gaspard2 is able to
generate an executable TLM SystemC platform at the timed programmers view (PVT) level.
Therefore, Gaspard2 enables flows starting from the MARTE post-partitioning models, and
the generation of their corresponding post-partitioning SystemC executables.

Several works have confronted the challenge of providing a formal basis for UML and
SystemC-based methodologies. Regarding UML formalization, most of the effort has been
focused on providing an understanding of the different UML diagrams under a particular
formalism. In (Störrle & Hausmann, 2005) activity diagrams are understood through the
Petri net formalism. In (Eshuis & Wieringa, 2001) formal execution semantics for the activity
diagrams is defined to support the execution workflow. In the context of MARTE, the Clock
Constraint Specification Language (CCSL) (Mallet, 2008) is a formalism developed for
capturing timing information from MARTE models. However, further formalization effort is
still required.

A significant formalization effort has also been made in the SystemC context. The need to
conceive the whole system in a model has brought about the formalization of abstract and
heterogeneous specifications in SystemC. In (Kroening & Sharygna, 2005) SystemC

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

231

specifications including software and hardware domains are formalized to support
verification. In (Maraninchi et al., 2005) TLM descriptions are related to synchronous systems
are formalized. In (Traulsem et al., 2007) TLM descriptions related to asynchronous systems
are formalized. Comprehensive untimed SystemC specification frameworks have been
proposed, such as SysteMoC (Falk et al., 2006) and HetSC (Herrera & Villar 2006). These
methodologies take advantage of the formal properties of the specific MoCs they support but
do not provide formal support for untimed SystemC specifications in general. Previous work
on the formalization of SystemC was focused on simulation semantics. These approaches were
inspired by previous formalization work carried out for hardware design languages such as
VHDL and Verilog. In (Mueller et al., 2001), SystemC processes were seen as distributed
abstract state machines which consume and produce data in each delta cycle. In this way the
corresponding model is strongly related to the simulation semantics. In (Salem, 2003),
denotation semantics was provided for the synchronous domain. Efforts towards more
abstract levels address the formalization of TLM specifications. In (Ecker et al., 2006), SystemC
specifications including software and hardware functions are formalized. In (Moy et al., 2008)
TLM descriptions are related to synchronous and asynchronous formalisms.

Nevertheless, a formal framework for UML/MARTE-SystemC mapping based on common
formal models of both languages is required. A good candidate to provide this formal
framework is the ForSyDe metamodel (Janstch, 2004). The Formal System Design (ForSyDe)
formalism is able to provide a synthetic notation and understanding of concurrent and
heterogeneous specifications. ForSyDe covers modelling of time at different abstraction
levels, such as untimed, synchronous and timed. Moreover, ForSyDe supports verification
and transformational design (Raudvere et al. 2008).

3. ForSyDe
ForSyDe provides the mechanism to enable a formal description of a system. ForSyDe is
mainly focused on understanding concurrency and time in a formal way representing a
system as a concurrent model, where processes communicate through signals. In this way,
ForSyDe provides the foundations for the formalization of the C&C structure of the system.
Furthermore, ForSyDe formally supports the functionality descriptions associated with each
concurrent process.

Processes and signals are metamodelling concepts with a precise and unambiguous
mathematical definition. A ForSyDe signal is a sequence of events where each event has a
tag and a value. The tag is often given implicitly as the position in the signal and it is used to
denote the partial order of events. In ForSyDe, processes have to be seen as mathematical
relations among signals. The processes are concurrent elements with an internal state
machine. The relation among processes and signals is shown in Figure 2.

Fig. 2. ForSyDe metamodel representation.

Embedded Systems – Theory and Design Methodology

232

From a general point of view; a ForSyDe process p is characterized by the expression:

 1 1(...) ' ... 'n mp s s s s (1)

The process p takes a set of signals (s1…sn) as inputs and produces a set of outputs (s’1…s’m),
where ∀ 1≤i≤n ⋀ 1≤j≤m with n, m ∈ ℕ; si, sj ∈ S where sk are individual signals and S is the
set of all ForSyDe signals.

ForSyDe distinguishes three kinds of signals namely untimed signals, synchronous signals
and timed signals. Each kind of MoC is determined by a set of characteristics which define
it. Based on these generic characteristics, it is possible to define a particular MoC’s specific
semantics.

Expressions (2) and (4) denote an important, relevant aspect that characterizes the ForSyDe
processes, the data consumed/produced.

11 1(,) ()

...

(,) ()
nn n

s a z

s a z

 (2)

 () () n q

with
z

 (3)

11 1ˆ(', ') ' ()

...
ˆ(', ') ' ()

mm m

s a z

s a z

 (4)

 '() (' ())
mm

with
z length a z

 (5)

A partition π(ν,s) of a signal s defines an ordered set of signals 〈an〉 that “almost” forms the
original signal s. The brackets 〈...〉 denote a set of ordered elements (events or signals). The
function ν(z) defines the length of the subsignal an(z); the semantics associated with the ν(z)
function is: νn(0) = length(an(0)); νn(1) = length(an(1)) ... where z denotes the number of the
data partition.

For the input signals, the length of these subsignals depends on which state the process is,
denoted by the expression (3), where γ is the function that determines the number of events
consumed in this state. The internal state of the process is denoted by ωq with q Є ℕ0. In
some cases, νn(z) does not depend on the process state and thus νn(z) is a constant, denoted
by the expression ν(z) = c with c Є ℕ.

For the output signals, the length is denoted by expression (5). The output subsignals
a’1…a’m are determined by the corresponding output function fα that depends on the input
subsignals a1…an and the internal state of the process ωq, expression (6).

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

233

1 1

((...),) (' ... ')
mn qf a a a a (6)

where ∀ 1≤α≤j ⋀ j ∈ ℕ

The next internal state of the process is calculated using the function g:

1 1((...),) n q qg a a (7)

where ∀ 1≤i≤n ⋀ n ∈ ℕ0, ai ∈ S, ∀ q ∈ ℕ0, ωq∈ E. E is the set of all events, that is, untimed
events, synchronous events and timed events respectively.

ForSyDe processes can be characterized by the four tuple TYPEs 〈TI, TO, NI, NO〉. TI and
TO are the sets of signal types for the input and output signals respectively. The signal type
is specified by the value type of its corresponding events that made up the signal. NI =
{ν1(i)…νn(i)} is the set of partitioning functions for the n input signals; NO={ν1’(i)…νn’(i)} is
the set of partitioning functions of the m output signals.

The advance of time in ForSyDe processes is understood as a totally ordered sequence of
evaluation cycles. In each evaluation cycle (ec) “a process consumes inputs, computes its
new internal state, and emits outputs” (Jantsch, 2004). After receiving the inputs, the process
reacts and then, it computes the outputs depending on its inputs and the process’s internal
state.

4. AVD system
In order to illustrate the formal foundations between UML/MARTE and SystemC a video
decoder is used, specifically an Adaptive Video decoder (AVD) system. Adaptive software
is a new paradigm in software programming which addresses the need to make the
software more effective and thus reusable for new purposes or situations it was not
originally designed for. Moreover, adaptive software has to deal with a changing
environment and changing goals without the chance of rewriting and recompiling the
program. Therefore, dynamic adaptation is required for these systems. Adaptive software
requires the representation of the set of alternative actions that can be taken, the goals that
the program is trying to achieve and the way in which the program automatically manages
change, including the way the information from the environment and from the system itself
is taken.

Fig. 3. Block diagram of the Adaptive Video decoder.

Specifically, the AVD specification is based on the RVC decoder architecture (Jang et al.,
2008). Figure 3 illustrates a simplified scheme of the AVD architecture. The RVC architecture

Embedded Systems – Theory and Design Methodology

234

divides the decoder functionality into a set of functional units (fu). Each of these functional
units is in charge of a specific video decoding functionality. The frame_decoder functional
unit is in charge of parsing and decoding the incoming MPEG frame. This functional unit is
enabled to parse and extract the forward coding information associated with every frame of
the input video stream. The coding information is provided to the functional units fuIS and
fuIQ. The macroblock generator (fuMGB) is in charge of structuring the frame information
into macroblocks (where a macroblock is a basic video information unit, composed of a
group of blocks). The inverse scan functional unit (fuIS) implements the Inverse zig-zag
scan. The normal process converts a matrix of any size into a one-dimensional array by
implementing the zig-zag scan procedure. The inverse function takes in a one-dimensional
array and by specifying the desired number of rows and columns, it returns a matrix having
the specified dimensions. The inverse scan constructs an array of 8x8 DCT coefficients from
a one-dimensional sequence. The fuIQ functional unit performs the Inverse Quantization.
This functional unit implements a parameter-based adaptive process. The fuIT functional
unit can perform the Inverse Transformation by applying an inverse DCT algorithm (IDCT),
or an inverse Haar algorithm (IHAAR). Finally, the fuVR functional unit is in charge of
video reconstruction.

The frame _source and the YUV_create blocks make up the environment of the AVD system.
The frame_source block provides the frames of a video file that the AVD system decodes
later. The YUV_create block rebuilds the video (in a .YUV video file) and checks the results
obtained.

4.1 UML/MARTE model from the AVD system

The system is designed as a concurrent entity; the functionality of each functional unit is
implemented by concurrent elements. Each one of these concurrent elements is allocated to
an UML component and identified by the MARTE stereotype <<ConcurrencyResource>>.
This MARTE generic resource models the elements that are capable of performing its
associated execution flow concurrently with others. Concurrency resources enable the
functional specification of the system as a set of concurrent processes. The information is
transmitted among the concurrent resources by means of communicating elements identified
by the MARTE stereotype <<CommunicationMedia>>. Both ConcurrencyResource and
CommunicationMedia are included in MARTE subprofile Generic Resource Modelling
(GRM). This gives the designer complete freedom in deciding on the most appropriate
mapping of the different functional components of the system specification to the available
executing resources. These MARTE elements are generic in the sense that they do not
assume a specific platform mapping to HW or to SW. Thus, they are suitable for system-
level pre-partition modelling.

Depending on the parameters defining the communication media, several types of channels
can be identified. Based on the type of channels used, several MoCs can be identified (Peñil
et al, 2009). When a specific MoC is found, the design methodologies associated with it can
be used taking advantage of the properties that that MoC provides. Additional kinds of
channels can be identified, the border channels. A border channel is a communication media
that enables the connections of different MoC domains, which have their own properties
and characteristics. The basic principle of the border channel semantics is that from each
MoC side, the border channel is seen as the channel associated with the MoC. In the case of

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

235

channel_4 of Figure 4, this communication media establishes the connection among the KPN
MoC domains (Kanh,1974) and the CSP MoC domains (Hoare, 1978). This border channel is
inferred from a communication media with a storage capacity provided by the stereotype
<<StorageResource>>. In order to capture the unlimited storage capacity that characterizes
the KPN channels, the tag resMult should not be defined. The communication is carried by
the calls to a set of methods that a communication media provides. These methods are MARTE
<<RtService>>. The RtService associated with the KPN side should be asynchronous and
writer. In the CSP side, the RtService should be delayedSynchronous. This attribute value
expresses synchronization with the invoked service when the invoked service returns a
value. In this RtService the value of concPolicy should be writer so that the data received from
the communication media in the synchronization is consumed and, thus, producing side
effects in the communication media. The RtServices are the methods that should be called by
the concurrency resources in order to obtain/transmit the information.

Another communication (and interaction) mechanisms used for communicating threads is
performed through protected shared objects. The most simple is the shared variable. A
shared variable is inferred from a communication media that requires storage capacity
provided by the MARTE stereotype <<StorageResource>>. Shared variables use the same
memory block to store the value of a variable. In order to model this memory block, the tag
resMult of the StorageResource stereotype should be one. The communication media accesses
that enable the writings are performed using Flowport typed as in. A RtService is provided by
this FlowPort and this RtService is specified as asynchronous and as writer in the tags
synchKind and concPolicy respectively. The tag value writer expresses that a call to this
method produces side effects in the communication media, that is, the stored data is modified
in each writing access. Regarding the reading accesses, they are performed through out flow
ports. The value of the synchKind should be synchronous to denote that the corresponding
concurrency resource waits until receiving the data that should be delivered by the
communication media. The value of concPolicy should be reader to denote that the stored data
is not modified and, thus, several readings of the same data are enabled.

Figure 4 shows a sketch of a complete UML/MARTE PIM that describes the AVD system.
Figure 4 is focused on the MGB component showing the components that are connected to
the MGB component and the channels used for the exchange of information between this
component and its specific environment. Based on this AVD component, a complete
example of the ForSyDe interrelation between UML/MARTE and SystemC will be
presented. However, before introducing this example, it is necessary to describe the
ForSyDe formalization of the subset of UML/MARTE elements selected. For that purpose,
the IS component is used.

4.2 Computation & communication structure

The formalization is done by providing a semantically equivalent ForSyDe model of the
UML/MARTE PIM. Such a model guarantees the determinism of the specification and
enables the application of the formal verification and refinement methodologies associated
with ForSyDe. As was mentioned before, the ForSyDe metamodel is focused on the formal
understanding of the communication and processing structure of a system and the timing
semantics associated with each processing element’s behaviour. Therefore, in order to obtain
a ForSyDe model, all the system information associated with an UML/MARTE model

Embedded Systems – Theory and Design Methodology

236

Fig. 4. Sketch of the UML/MARTE model that describes the AVD system.

related to the system structure has to be ignored. All the model elements that determine the
hierarchy system structure such as UML components, UML ports, etc. have to be removed.
In this way, the resulting abstraction is a model composed of the processing elements
(concurrency resources) and the communicating elements (communication media). This C&C
model determines the abstract semantics associated with the model and, by extension,
determines the system execution semantics. Figure 5 shows the C&C abstraction of Figure 4
where only the concurrency resources and the communication media are presented.

Fig. 5. C&C abstraction of the model in Figure 4.

4.3 ForSyDe representation of C&C structure

While the extraction of the C&C model is maintained in the UML/MARTE domain, the
second step of the formalization consists in the abstraction of this UML/MARTE C&C

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

237

model as the semantically equivalent ForSyDe model. More specifically, the ForSyDe
abstraction means the specification from the UML/MARTE C&C model of the
corresponding processes and signals; the timing abstraction (untimed, synchronous, etc); the
input and output partitions; and the specific type of process constructors, which establish
the relationships between the input partitions and the output partitions. The first step of the
ForSyDe abstraction is to obtain a ForSyDe model in which the different processes and
signals are identified. In order to obtain this abstract model, a direct mapping between
ConcurrencyResource-processes and CommunicationMedia-signals is established. Figure 6
shows the C&C abstract model of Figure 5 using ForSyDe processes and signals. Therefore,
with this first abstraction, the ForSyDe C&C system structure is obtained.

There is a particular case related to the ForSyDe abstraction of the CommunicationMedia-
signal. Assume that in channel_6 of the example in Figure 4 another MARTE stereotype has
been applied, specifically the <<ConcurrencyResource>> stereotype. In this way, the
communicating element has the characteristic of performing a specific functionality. This
combination of concurrency resource and communication media semantics can be used in order
to model system elements that transmit data and, moreover, perform a transformation of
this data. The ForSyDe representation of this kind of channels consists in a process that
represents the functionality associated with the channel and a signal that represents the
output data generated by the channel after the input data is computed.

Fig. 6. ForSyDe representation of the C&C model of the Figure 5.

4.4 Concurrency resource’s behaviour description

A concurrent element can be described by a finite state machine where in each state the
concurrent element receives inputs, computes these inputs and calculates their new state
and the corresponding outputs. The structure of the behaviour of each concurrency resource
is modelled by means of an Activity Diagram. The activity diagram can model the complete
resource behaviour. In this case, there is no clear identification of the class states; the states
executed by the class during its execution are implicit. Activity diagrams represent activity
executions that are composed of single steps to be performed in order to model the complete
behaviour of a particular class. These activities can be composed of single actions that
represent different behaviours, related to method calls or algorithm descriptions. In this
case, the complete behaviour captured in an activity diagram can be structured as a
sequence of states fulfilling the following definition: each state is identified as a stage where

Embedded Systems – Theory and Design Methodology

238

the concurrency resource receives the data from its environment; these data are computed
by an atomic function, producing the corresponding output data. Therefore, in the most
general approach, an implicit state in an activity diagram is determined between two
waiting stages, that is, between two stages that represent input data. In this kind of stages,
the concurrency resource has to wait until the required data are available in all the inputs
associated with the corresponding function. In the same way, if code were directly written,
an equivalent activity diagram could be derived. Additionally, the behavioural modelling of
the concurrent resources can be modelled by an explicit UML finite state machine. This
UML diagram is focused on which states the object covers throughout its execution and the
well-defined conditions that trigger the transitions among these states (the states are
explicitly identified). Each UML state can have an associated behaviour denoted by the label
do. This label identifies the specific behaviour that is performed as long as the concurrent
element is in the particular state. Therefore, in order to describe the functionality in each
state, UML activity diagrams is used.

Figure 7 shows the activity diagram that captures the functionality performed by the
concurrency resource of the IS component. According to the aforementioned internal state
definition, this diagram identifies two states; one state where the concurrency resource is only
initialized and another state where the tuple data-consumption/computation/data
generation is modelled. The data consumption is modelled by a set of AcceptEventAction. In
the general case, this UML action represents a service call owned by a communication media
from which the data are required. Then, these data are computed by the atomic function
Scan. The data generated from this computation (in this case, data3) are sent to another
system component; the sending of data is modelled by SendObjectAction that represents the
corresponding service call for the computing data transmissions.

Apart from the UML elements related to the data transmission and the data computation,
another set of UML elements are used in order completely specify the functionality to be
modelled. The fork node () establishes concurrent flows in order to enable the
modelling of data inputs required from different channels in the same state. The UML
pins (the white squares) associated to the AcceptEventAction, function Scan and
SendObjectAction represent the data received from the communication, the data
required/generated by the atomic function execution and the data sending, respectively.
An important characteristic needed to define the concurrency resource functionality
behaviour is the number of data required/generated by a specific atomic function. This
characteristic is denoted by the multiplicity value. Multiplicity expresses the minimum
and the maximum number of data that can be accepted by or generated from each
invocation of a specific atomic function. Additionally, the minimum multiplicity value
means that some atomic functions cannot be executed until the receipt of the minimum
number of data in all atomic function incoming edges. In Figure 7, the multiplicity values
are annotated in blue UML comments.

As was mentioned, concurrent resource behaviour is composed of pure functionality
represented by atomic functions and communication media accesses; the structure of the
behaviour of a concurrency resource specifies how pure functionality and communication
accesses are interlaced. This structure is as relevant as the C&C structure, since both are
involved in the executive semantics of the process network.

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

239

Fig. 7. Activity diagram that describes the functionality implemented by the IS component.

4.5 ForSyDe representation of concurrency resource functionality modelling

In the behavioural model in Figure 7 two implicit states (S0 and S1) can be indentified. The
activity diagram implicit states are represented as ωj in ForSyDe. A state ωj is understood to
be a state composed of two different states, Pj and Dj. In the general case, Pj denotes
segments of the behavioural description that are between two consecutive waiting stages. In
this case, such waiting stages are identified by two consecutive sets of AcceptEventActions.
Therefore, Pj corresponds to the basic structure described in the previous section. Dj
expresses all internal values that characterize the state. The change in the internal state of a
concurrency resource is denoted by the next state function g((a1…an), ωj) =ωj+1 where ωj

represents the current state and a1…an the input data consumed in this state. The function
g() calculates both Dj+1 and Pj+1.

The atomic function implemented in a state ωj (for instance, in the example in Figure 7 the
function Scan) is represented by the ForSyDe output function fi(). This function generates the
outputs (represented as the subsignals a’1…a’m) as a result of computing the data inputs.

The multiplicity values of the input and output data sequences are abstracted by a partition
function ν:

 Input partition functions
1() ()

...
() ()

i

n i

z p

z q

 (8)

 0, ,z i p q

S0

S1

ev0

ev1

Embedded Systems – Theory and Design Methodology

240

 Output partition functions
1 1

1

' () (')
((...),) ...

' () (')
i n i

M M

z length a a
length f a a

z length a b

 (9)

 0, ,z i a b

A partition function enables a signal partition π(ν,s), that is, the division of a signal s into a
sequence of sub-signals ai. The partition function denotes the amount of data
consumed/produced in each input/output in each ForSyDe process computation, referred
to as evaluation cycle.

The data received by the concurrency resource through the AcceptEventActions are
represented by the ForSyDe signal a1…an. Regarding the data transmitted through
SendObjectActions, they are represented by a’1…a’m.

In addition, the behavioural description has a ForSyDe time interpretation; Figure 7
corresponds to two evaluation cycles (ev0 and ev1) in ForSyDe. The corresponding time
interpretation can be different depending on the specific time domain. These evaluation
cycles will have different meanings depending on which MoC the designer desires to
capture in the models. In this case, the timing semantics of interest is the untimed
semantics.

5. UML/MARTE-SystemC mapping
The UML/MARTE-SystemC mapping enables the generation of SystemC executable code
from UML/MARTE models.

This mapping enables the association of a corresponding SystemC executable code which
reflects the same concurrency and communication structure through processes and
channels. Similarly, the SystemC code can reflect the same hierarchical structure as the
MARTE model by means of modules, ports, and the different types of SystemC binding
schemes (port-port, channel-port, etc). However, other mapping alternatives maintaining
the semantic correspondence, using port- export connections, are feasible thanks to the
ForSyDe formal link. Figure 8 shows the first approach to the UML/MARTE-SystemC
mapping regarding the C&C structure and the system hierarchy. The correspondence
among the system hierarchy elements, component-module and port-port, is straightforward.
In the same way, the correspondence concurrency resource-process is straightforward. A
different case is the communicating elements. As a general approach, a communication
media corresponds to a SystemC channel. However, the type of SystemC channel depends
on the communication semantics captured in the corresponding communication media. As can
be seen in (Peñil et al., 2009), depending on the characteristics allocated to the communication
media, different communication semantics can be identified in UML/MARTE models which
implies that the SystemC channel to be mapped should implement the same communication
semantics.

Regarding the functional description, the AcceptEventActions and SendObjectActions are
mapped to channel accesses. If channel instances are beyond the scope of the module, the
accesses to them become port accesses. The multiplicity value of each data transmission in

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

241

Fig. 8. SystemC representation of the UML/MARTE model in Figure 4.

the activity diagram corresponds to multiple channel accesses (of a single data value) in the
SystemC code. Execution of pure functionality captured as atomic functions represents the
individual functions that compose the complete concurrency resource functionality. The
functions can correspond to a representation of functions to be implemented in a later
design step according to a description attached to this function or pure C/C++ code
allocated to the model. Additionally, loops and conditional structures are considered in
order to complement the behaviour specification of the concurrency resource. Figure 9 shows
the SystemC code structure that corresponds to the functional description of Figure 7. Lines
(2-3-4) are the declarations of the variables typed as Ti used for communication and
computation. Then, an atomic function for initializing some internal aspects of the
concurrency resource is executed. Line 5 denotes the statement that defines the infinite loop.
Line 6 is the data access to the communication media channel_3. In this case, the channel access
is done through the port fromMGB. In the same way, line 7 is the statement for reading the
six data from channel_5 through the port fromDCR. The atomic functions Scan is represented
as a function call, specifying the function parameters (line 9). Finally, the output data
resulting from the Scan computation (data3) are sent through the port toIQ by using the
communication media channel_6.

Fig. 9. SystemC code corresponding to the model in Figure 7.

5.1 UML/MARTE-SystemC mapping: ForSyDe formal foundations

As was described, there are similarities which lead to the conclusion that the link of these
MARTE and SystemC methodologies is feasible. However, there are obvious differences in

(1) void IS::IS_proc(){
(2) T1 data1;
(3) T2 data2[];
(4) T3 data3[];
(5) Init();
(6) while (true) {
(7) data1 = fromMGB.read();
(8) for(int i=0;i<6;i++) data2[i]= fromDCR.read();
(9) Scan (dat1, data2, data3);
(10) for(int i=0;i<6;i++) toIQ.write(data3[i]);
(11) }}

Embedded Systems – Theory and Design Methodology

242

terms of UML and SystemC primitives. Moreover, there is no exact a one to one
correspondence, e.g., in the elements for hierarchical structure. Even when correspondence
seems to be straightforward (e.g. ConcurrencyResource = SystemC Process), doubts can arise
about whether every type of SystemC process can be considered in this relationship. A more
subtle, but important consideration in the relationship is that the SystemC code is executable
over a Discrete Event (DE) timed simulation kernel, which provides the code with low level
execution semantics. SystemC channel implementation internally relies on event
synchronizations, shared variables, etc, which map the abstract communication mechanism
of the channel onto the DE time axis. In contrast, the execution semantics of the MARTE
model relies on the attributes of the communication media (Peñil et al, 2009) and on CCSL
(Mallet, 2008). A common representation of the abstract semantics of the SystemC channel
and of the communication media is required. All these reasons make the proposed formal link
necessary.

The UML/MARTE-SystemC mapping enables the generation of SystemC executable code
from UML/MARTE models. The transformation process should maintain the C&C
structure, the behaviour semantics, and the timing information captured in the
UML/MARTE models in the corresponding SystemC executable model. This information
preservation is supported by ForSyDe, which provides the required semantic consistency.
This consistency is provided by a common formal annotation that captures the previous
relevant information that characterizes the behaviour of a concurrency resource and
additional relevant information such as the internal states of the process, the atomic
functionality performed in each state, the inputs and the number of inputs required for this
atomic functionality to be performed and the resulting data generated outputs from this
atomic function execution.

An important characteristic is the timing domain. This article is focused on high-level
(untimed) UML/MARTE PIMs. In the untimed models, the time modelling is abstracted as
a causality relation; the events communicated by the concurrent elements do not contain any
timing information. An order relation is denoted; the event sent first by a producer is
received first by a consumer, but there is no relation among events that form different
signals. Additionally, the computation and the communication take an arbitrary and
unknown amount of time.

Figure 10 shows the ForSyDe abstract, formal annotation of the IS concurrency resource
behaviour description and the functional specification of the SystemC process IS_proc. Line
1 specifies the type of processor constructor; in this case the processor constructor is a mealyU.
The U suffix denotes untimed execution semantics. The mealyU process constructor defines a
process with internal states that take the output function f(), the next state functions g(), the
function () for defining the signal partitions, and the initial state ω0 as arguments. In general
(), f() and g()are state-dependent functions. In this case, the abstraction splits f(), g() and ()
into state-independent functions. The function () is the function used to calculate the new
partition functions νsk of the inputs signals. Specifically, output function f() of the IS process
is divided into 2 functions corresponding to the two internal state that the concurrency
resource has. The first output function f0() models the Init() function; the output function f1()
models the function Scan(). In this function, the partition functions νsk of each input data
required for the computing of the Scan() (line [7]) are annotated. Line [9] represents the
partition function of the resulting output signal s’1. In the same way as in the case of the

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

243

function f(), next state of the function g() is divided into 2 functions, in order to specify the
state transitions (lines [5] and [10]) identified in the activity diagram. The data
communicated by the IS concurrent resource data1, data2, data3 are represented by the signals
S1 and S2 for the inputs (data1, data2) and S’1 for the output signal data3. The implicit states
identified in the activity diagram St0 and St1 are abstracted as the states ω0 and ω1,
respectively.

Fig. 10. ForSyDe annotation of the UML/MARTE model in Figure 7 and the SystemC code
in Figure 9.

According to the definition of evaluation cycle presented in section 3, both implicit states
that can be identified in the activity diagram shown in Figure 7 correspond to a specific
ForSyDe evaluation cycle (ev0 and ev1).

Therefore, the abstract, formal notation shown in Figure 10 captures the same, common
behaviour semantics modelled in Figure 7 and specified in Figure 9, and, thus, provides
consistency in the mapping between UML/MARTE and SystemC in order to enable the later
code generation (Figure 11).

Fig. 11. Representation of mapping between UML/MARTE and SystemC formally
supported by ForSyDe.

[1] IS = mealyU(,g, f0)
[2] IS (s1, s2) = <s’1>

[3] if (statei = 0) then
[4] f0)i = Init()
[5] statei+1 = g(

[6] elseif (statei = 1)

[7]s1(i) = 6 , (s1, s1) = <a1i>
 s2(i) = 1 , (s1, s1) = <a2i>

[8] a1’i = f1a1i, a2i) = Scan(a1i, a2i)
[9] νs’1(i) = 6. (s’1, s’1) = < a1’i>
[10] statei+1 = g(

Embedded Systems – Theory and Design Methodology

244

5.2 Formal support for untimed UML/MARTE-SystemC models

The main problem when trying to define a formal mapping between MARTE and SystemC
is to define the untimed semantics of a DE simulation language such as SystemC. Under this
untimed semantics, the strict ordering of events imposed by the DE simulation mechanism
of SystemC’s simulation kernel has to be relaxed. In principle, the consecutive events in a
particular SystemC object (a channel, accesses to a shared variable, etc.) should be
considered as totally ordered as they originate from the execution of a sequential algorithm.
Any change in this order in any implementation of the algorithm should be based on a
sound optimization methodology or should be clearly explained by the designer. Events in
objects corresponding to different concurrent processes related by causal dependencies are
also ordered and, again, any change should be fully justified. However, events in objects
corresponding to different concurrent processes without any causal dependency can be
implemented in any order. This is the flexibility required by the design process in order to
ensure optimal implementations under the imposed design constraints.

As was commented previously, SystemC processes and MARTE concurrency resources can be
directly abstracted as ForSyDe processes. Nevertheless, and in the most general case, the
abstraction of a SystemC communication mechanism and the communication media relating
two processes is more complex. The type of communication in this article is addressed
through channels and shared variables. When the communication mechanism fulfils the
required conditions, then, it can be straightforwardly abstracted as a ForSyDe signal.

The MGB component shown in figure 4 is connected to its particular environment through
four communication media. Assuming that in these communication media four different
communication semantics can be identified. The communication media channel_1 represents
an infinite FIFO that implements the semantics associated to the KPN MoC. The channel_3
establishes a rendezvous communication with data transmission. The way to identify the
properties that characterize these communication mechanisms in UML/MARTE models
was presented in (Peñil et al, 2009). The channel_2 represents a shared variable and the
channel_4 is a border channel between the domains KPN-CSP. Therefore, the MGB
concurrency resource is a border process. A border process is a sort of process which channel
accesses are connections to different communication media that captured different
communication semantics. In this way, the AVD system is a heterogeneous entity where
different behaviour semantics can exist.

The data transmission dealt with the MGB concurrency resource is carried out by means of
a different sort of communication media: unlimited FIFO, shared memory, rendezvous and
a KPN-CSP border channel. Those communication media accesses are denoted by the
corresponding AcceptEventActions and SendObjectActions identified by the port or channel
used by the data transmission and the service called for that data transmission (see Figure
1a)). All these communication semantics captured in the UML/MARTE communication
media have to be mapped to specific SystemC communication mechanism ensuring the
semantic preservation. The communication media channel_1, channel_2 and channel_4 can be
mapped to SystemC channels provided by the HetSC methodology (HetSC, 2007). HetSC
is a system methodology based on the ForSyDe foundations for the creation of formal
execution specifications for heterogeneous systems. Additionally, HetSC provides a set of
communications mechanisms required to implement the semantics of several MoCs.
Therefore, the mapping process from the previous communication media to the SystemC

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

245

channels ensures the semantic equivalence since HetSC provides the required SystemC
channels that implement the same communication semantics captured in the
corresponding communication media. Additionally, these communication media fulfil, by
construction, the condition that the data obtained by the consumer process are the same
and in the same order as the data generated by the producer process. In this way, they can
be abstracted as a ForSyDe signal which implies that the communication media-SystemC
channel mapping is correct-by-construction. As an example of SystemC channel accesses,
in Figure 12 b), line (5) denotes a channel access through a port and line (7) specifies a
direct channel access.

An additional application of the extracted ForSyDe model is the generation of some
properties that the SystemC specification should satisfy under any dynamic condition in
any feasible testbench. Note that the ForSyDe model is static in nature and does not
include the synchronization and firing mechanism used by the SystemC model. In the
example of MGB component, a mechanism for communication among processes can be
implemented through a shared variable, specifically the channel_2. Nevertheless, the
communication of concurrent processes through shared variables is a well-known
problem in system engineering. As the SystemC simulation semantics is non-preemptive,
protecting the access to the shared variables does not make any difference. However, this
is an implementation issue when mapping SystemC processes to SW or HW. A variable
shared between two SystemC processes correctly implements a ForSyDe signal when the
following conditions apply:

1. Every data token written by the producer process is read by the consumer process.
2. Every data token written by the producer process is read only once by the consumer

process.

In some cases, in order to simplify the design, the designer may decide to use the shared
variable as local memory. As commented above, this problem can be avoided by renaming.
A new condition can be applied:

1. If a consumer uses a shared variable as local memory, no new data can be written by
the producer until after the last access to local memory by the consumer, that is, during
the local memory lifetime of the shared variable.

Additionally, other conditions have to be considered in order to enable a ForSyDe
abstraction to be obtained which provides properties to be satisfied in the system design.
Another condition to be considered in the concurrent resource behaviour description is the
use of fork nodes and thus, the modelling of the internal concurrency in a concurrent
element. As a design condition, the specification of internal concurrency is not permitted in
the concurrency resource behaviour (except for the previously mentioned modelling of the
data requirements from different inputs). The behaviour description consists of a sequence
of internal states to create a complete activity diagram that models the concurrent resource
behaviour. As a general first approach, it is possible to use the fork node to describe internal
concurrent behaviour of a concurrent element if and only if the corresponding inputs and
outputs of each concurrent flow are univocal. Among several concurrent flows, it is essential
to know from which inputs the data are being taken and to which the outputs are being
sent; in a particular state, only one concurrent flow can access specific communication
media.

Embedded Systems – Theory and Design Methodology

246

Fig. 12. ForSyDe abstraction (c) of the MBG concurrency resource functionality model (a) and
its corresponding SystemC code (b).

S0

S1

S2 S3

S4

S5 S6

S7

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

247

Another modelling condition that can be considered in the concurrency resource behaviour
description is the specification of the multiplicity values of the data inputs and outputs. This
multiplicity specification has to be explicit and unequivocal, that is, expressions such as
[1…3] are not allowed. A previous multiplicity specification is not consistent with the
ForSyDe formalization since ForSyDe defines that in each process state, each input and
output partition is well defined. The multiplicity specification [a…b] presents indeterminacy
in order to define the process behaviour; it is not possible to know univocally the number of
data required/produced by a computation. This fact can yield an inconsistent functionality
and, thus, can present risks of incorrect performance.

As was mentioned before, not only the communication semantics defined in the
communication media is necessary to specify the behaviour semantics of the system, but
the way that each communication access is interlaced with pure functionality is also
required in order to specify the execution semantics of the processes network. The
communication media channel_3 implements a rendezvous communication among the MGB
concurrency resource and the IS concurrency resource which involves a synchronization and,
thus, a partial order in the execution of functions of the two processes. The atomic
function Scan shown in Figure 7 requires a datum provided by the communication media
channel_3. This data is provided when either the function Calculate_AC_coeff_esc has
finished or when the function Calculate_AC_coeff_no_esc has finished, depending on which
internal state the MGB concurrency resource is in. In the same way, the MGB concurrency
resource needs the IS concurrency resource to finish the atomic function Scan() in order to go
on with the block computation. In this way, the two processes synchronize their
independent execution flows, waiting for each other at this point for data exchange.
Therefore, besides the semantics captured in the communication media, the way the calls to
this communication media and the computation stages are established in order to model the
concurrency resource’s behaviour defines its execution semantics, affecting the behaviour of
others concurrency resources.

The ForSyDe model is a formal representation that enables the capture of the relevant
properties that characterize the behaviour of a system. Figure 12 c) shows the ForSyDe
formal annotation of the functional model of the MGB concurrency resource’s behaviour
shown in Figure 12 a) and the SystemC code in Figure 12 b), which is the execution
specification of the previous UML/MARTE model. This ForSyDe model specifies the
different internal states that can be identified in the activity diagram in Figure 12 a) (all of
them identified by a rectangle and the annotation Si). Additionally, ForSyDe formally
describes all data requirements for the computations, the functions executed in each state,
the data generated in each of these computations and the conditions for the state transitions.
This relevant information defines the concurrency resource’s behaviour. Therefore, the
ForSyDe model provides an abstract untimed semantics associated with the UML/MARTE
model which could be used as a reference model for any specification generated from it,
specifically, a SystemC specification, in order to guarantee the equivalence between the two
system representations.

6. Conclusions
This chapter proposes ForSyDe as a formal link between MARTE and SystemC. This link
is necessary to maintain the coherence between MARTE models and their corresponding

Embedded Systems – Theory and Design Methodology

248

SystemC executable specifications, in order to provide safe and productive methodologies
integrating MDA and ESL design methodologies. Moreover, the chapter provides the
formal foundations for enabling this ForSyDe-based link between PIM UML/MARTE
models and their corresponding SystemC executable code. The most immediate
application of the results of this work will be in the automation of the generation of
heterogeneous executable SystemC specifications from untimed UML/MARTE models
which specify the system concurrency and communication structure and the behaviour of
concurrency resources.

7. Acknowledgments
This work was financed by the ICT SATURN (FP7-216807) and COMPLEX (FP7-247999)
European projects and by the Spanish MICyT project TEC 2008-04107.

8. References
[1] Andersson, P. & M.Höst. (2008). "UML and SystemC a Comparison and Mapping Rules

for Automatic Code
[2] Generation", in E. Villar (ed.): "Embedded Systems Specification and Design Languages",

Springer, 2008.
[3] Bocchio, S.; Riccobene, E.; Rosti, A. & Scandurra, P. (2008). "An Enhanced SystemC UML

Profile for Modeling at
[4] Transaction-Level", in E. Villar (ed.): "Embedded Systems Specification and Design

Languages", Springer, 2008.
[5] Ecker, W.; Esen, V. &, Hull, M. (2006). Execution Semantics and Formalisms for Multi-

Abstraction TLM Assertions. In Proc. of MEMOCODES’06. Napa, California. July,
2006.

[6] Eshuis, R. & Wieringa, R. (2001). "A Formal Semantics for UML Activity Diagrams–
Formalizing Workflow Models",

[7] CTIT Technical Reports Series (01-04).
[8] Falk, J.; Haubelt, C. & Teich, J. (2006). "Efficient Representation and Simulation of Model-

Based Designs in SystemC", in proc. of FDL'2006, ECSI, 2006.
[9] Herrera, F & Villar, E. (2006). "A framework for Embedded System Specification under

Different Models of Computation in SystemC", in proc. of the Design Automation
Conference, DAC'2006, ACM, 2006.

[10] Hoare, C. A. R. (1978). Communicating sequential processes. Commun. ACM 21, 8.
1978.

[11] Jang, E. S.; Ohm, J. & Mattavelli, M. (January 2008). Whitepaper on Reconfigurable
Video Coding (RVC). ISO/IEC JTC1/SC29/WG11 N9586. Antalya, Turkey.
Available in http://www.chiariglione.org/mpeg/technologies/mpb-
rvc/index.htm.

[12] Jantsch, A. (2004). Modeling Embedded Systems and SoCs. Morgan Kaufmann Elsevier
Science. ISBN 1558609253.

Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models

249

[13] Kahn, G. (1974). The semantics of a simple language for parallel programming. In
Proceedings of the International Federation for Information Processing Working
Conference on Data Semantics.

[14] Kreku, J. ; Hoppari, M. & Kestilä, T. (2007). "SystemC workload model generation from
UML for performance simulation", in proc. of FDL’2007, ECSI, 2007.

[15] Kroening, D. & Sharygna, N. (2005). "Formal Verification of SystemC by Automatic
Hardware/Software Partitioning", in

[16] proc. of MEMOCODES’05.
[17] Lavagno, L.; Martin, G. & Selic, B. (2003). UML for real: design of embedded real-time

systems. ISBN 1-4020-7501-4.
[18] Mallet, F. (2008). "Clock constraint specification language: specifying clock constraints

with UML/MARTE", Innovations in Systems and Software Engineering, V.4, N.3,
October, 2008.

[19] Maraninchi, F.; Moy, M. & L. Maillet-Contoz. (2005). "Lussy: An Open Tool for the
Analysis of Systems-on-a-Chip at the Transaction Level", Design Automation of
Embedded Systems, V.10, N.2-3, 2005.

[20] Moy, M.; Maraninchin, F. & Maillet-Contoz, L. (2008). "SystemC/TLM Semantics for
Heterogeneous System-on-Chip Validation", in proc. of NEWCAS and TAISA
Conference, IEEE, 2008.

[21] Mueller, W.; Ruf, J.; Hoffmann, D.; Gerlach, J.; Kropf, T. & W. Rosenstiel. (2001). "The
Simulation Semantics of SystemC", in proc. of Design, Automation and Test in
Europe, DATE’2001, IEEE, 2001.

[22] Peñil, P; Medina, J. & Posadas, H. & Villar, E. (2009). "Generating Heterogeneous
Executable Specifications in SystemC from UML/MARTE Models", in proc. of the
11th Int. Conference on Formal Engineering Methods, IEEE, 2009.

[23] Piel, E.; Attitalah, R. B.; Marquet, P.; Meftali, S. ; Niar, S.; Etien, A.; Dekeyser, J.L. & P.
Boulet. (2008). "Gaspard2: from MARTE to SystemC Simulation", in proc. of
Design, Automation and Test in Europe, DATE'2008, IEEE, 2008.

[24] UML Specification v2.3. (2010).
[25] UML Profile for MARTE, v1.0. (2009).
[26] MDA guide, Version 1.1, June 2003.
[27] Open SystemC Initiative. www.systemc.org.
[28] Raudvere, T.; Sander, I. & Jantsch, A. (2008). "Application and Verification of Local

Non Semantic-Preserving Transformations in System Design", IEEE Trans. on CAD
of ICs and Systems, V.27, N.6, 2008.

[29] Salem, A. (2003). "Formal Semantics of Synchronous SystemC", in proc. of Design,
Automation and Test in Europe, DATE’2003, IEEE, 2003.

[30] Störrle, H. & Hausmann, J.H. (2005). "Towards a Formal Semantics of UML 2.0
Activities", Software Engineering Vol. 64.

[31] Taha, S.; Radermacher, A.; Gerard, S. & Dekeyser, J. L. (2007). "MARTE: UML-based
Hardware Design from Modeling to Simulation", in proc. of FDL’2007, ECSI 2007.

[32] Traulsem, C.; Cornet, J.; Moy, M. & Maraninchi, F. (2007). "A SystemC/TLM semantics
in PROMELA and its possible Applications", in proc. of the Workshop on Model
Checking Software, SPIN’2007, 2007.

Embedded Systems – Theory and Design Methodology

250

[33] Vidal, J.; de Lamotte, F.; Gogniat, G.; Soulard, P. & Diguet, J.P. (2009). "A Code-Design
Approach for Embedded System Modeling and Code Generation with UML and
MARTE", proc. of the Design, Automation & Test in Europe Conference, DATE’09,
IEEE 2009.

12

Concurrent Specification of Embedded
Systems: An Insight into the Flexibility vs

Correctness Trade-Off
F. Herrera and I. Ugarte

University of Cantabria
Spain

1. Introduction
In 2002, (Kish, 2002) warned about the danger of the abrupt break in Moore’s law.
Fortunately, nowadays integration capabilities are still growing and 20nm and 14nm
technologies are envisaged, (Chiang, 2011). However, the frequency of integrated circuits
cannot grow anymore. Therefore, in order to achieve a continuous improvement of
performance, computer architectures are evolving towards the integration of more and more
parallel computing resources. Examples of this include modern Graphical Processing Units
(GPUs), such as the new CUDA architecture, named Fermi, which will use 512 cores,
(Halfhill, 2012). Embedded system architectures show a similar trend with General Purpose
Processors (GPPs), and some mobile phones already included between 2 and 8 RISC
processors a few years ago, (Martin, 2006). Moreover, many embedded architectures are
heterogeneous, and enclose different types of truly parallel computing resources such as
(GPPs), Co-Processors, Digital Signal Processors, GPUs, custom-hardware accelerators, etc.

The evolution of HW architectures is driving the change in the programming paradigm.
Several languages, such as (OpenMP, 2008), and (MPI, 2009), are defining the de facto
programming paradigm for multi-core platforms. Embedded MPSoC platforms, with a
growing number of general purpose RISC processors, are necessitating the adoption of a
task-level centric approach in order to enable applications which efficiently use the
computational resources provided by the underlying hardware platform.

Parallelism can be exploited at different levels of granularity. GPU-related languages enable
the handling of a finer level of granularity, in order to exploit the inherent data parallelism
of graphical applications. These languages also enable some explicit handling of the
underlying architecture. MPSoC homogenous architectures require and enable a task-level
approach, which provides a larger granularity in the handling of concurrency, and a higher
level of abstraction to hide architectural details. A task-level approach enables the
acceleration problem to be seen as a partition of functionality into tasks or high-level
processes. A standard language which enables a task-level specification of concurrent
functionality, and its communication and synchronization is convenient. In this scenario,
SystemC (IEEE, 2005) standard has become the most widespread language for the
specification of embedded systems. The main reason is that SystemC extends C/C++ with a

Embedded Systems – Theory and Design Methodology

252

set of features for a rich, standard modelling of concurrency, time, data types and modular
hierarchical.

Summing up, concurrency is becoming a must in embedded system specification as it has
become necessary for exploiting the underlying concurrency of MPSoC platforms. However,
it brings a higher degree of complexity which introduces new challenges in embedded
system specification, (Lee, 2006). In this chapter, the challenges and solutions for producing
concurrent and correct specifications through simulation-based verification techniques are
reviewed, and an alternative based on correct-by-construction specification methodologies
is introduced. The chapter mainly addresses abstract concurrent specifications formed by
asynchronous processes (formally speaking, untimed models of computation, MoCs,
(Jansch, 2004). This type of modelling is required for speeding up the simulation of complex
systems in new design activities, such as Design Space Exploration (DSE). This chapter does
not assume a single definition of “correct” specification. For instance, functional
determinism can be required or not, depending on the application and on the intention of
the specification. However, to check whether such a property is fulfilled for every case
requires the provision of the means for considering the different execution paths enabled by
the control statements of an initially sequential algorithm, and, moreover, for considering
the additional paths raised by a concurrent partition of such an algorithm.

The chapter will review different approaches and techniques for ensuring the correctness of
concurrent specifications, to finally establish the trade-off between the flexibility in the
usage of a specification language and the correctness of the coded specification. The rest of
the chapter is structured as follows. Section 2 introduces an apparently simple specification
problem in order to show how a rich specification language such as SystemC enables many
different correct solutions, but also similar incorrect ones. Then, section 3 explores the
possibilities and limitations of checking a SystemC specification through the application of
simulation-based verification techniques. Finally, section 4 introduces an alternative, based
on methodologies for correct-by-construction specifications and/or specification for
verification. Section 5 gives conclusions about the trade-off between specification flexibility
and verification cost and feasibility.

2. A “simple” specification problem
Some users may identify the knowledge of a specification language with the specification
methodology itself. These users will take for granted that knowing the syntax, semantics
and grammatical rules of the language is enough to build a “correct”, or suitable,
specification for a given design flow. Later on, in section 3, the benefits of this will be
discussed. For now, let’s see how a specification problem can be tackled in different ways.

A rich language provides great flexibility to tackle a similar specification problem in
different ways, which in many cases is seen as a benefit by designers. In this sense, a simple
experiment enabled the authors to deduce that this richness is actually employed when
different users tackle the same specification problem. Let’s assume we want to build a
specification able to solve the functionality sketched in Fig.1.

This functionality is summarized by the following equations:

 y= fY(a,b)= f12 (f11(a), f21(b)) (1)

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

253

 z= fZ(a,b)= f22 (f11(a), f21(b)) (2)

Fig. 1. Specification Intent.

In principle, the specification problem posed in Fig.1 is sufficiently general and simple to
enable reasoning about it. The simple set of instances of fij functionalities, given by equation
(3) will be used later on for facilitating the explanation of examples. However, the same
reasoning and conclusions can be extrapolated to heavier and more complex functionalities.

 f11 (x)= x+1 f21 (x)= x+2 (3)

f12(x1, x2)= x1+ x2 f22(x1, x2) = (x1=25,713)? 2x1-x2+5 : x2- x1

Initially, this is a straightforward specification problem which can be solved with a
sequential specification, e.g., written in C/C++. The only condition to be fulfilled is to obey
the dependency graph among fij functionalities shown on the right hand side of Fig.1. Thus,
for instance, if the program executes the sequence {f11, f21, f12, f22}, it will be considered a
correct model, and the model will produce its corresponding output as expected. For
example, for (a,b)=(1,2), an output (y,z) = (6,2), where f11(1)=2, f21(2)=4, f12=2+4=6 and f22=4-
2=2 (since x1=2≠25,713). Here, a user will already find some flexibility, once the order of fij
executions can be permuted without impact on the intended functionality. Things start to
get more complex when concurrency enters the stage. Once a pair of functionalities fij and
fmn can run concurrently no assumption about their execution order can be made. Assuming
an atomic execution (non-preemptive) of fij functions, the basic principle for getting a
solution fulfilling the specification intent of Fig. 1 is to guarantee the fulfilment of the
following conditions:

 T (f12) > T (f11) (4)

 T (f12) > T (f21) (5)

 T (f22) > T (f21) (6)

 T (f22) > T (f11) (7)

Where T(fij) stands for the time tag associated with the computation of functionality fij.
Equations (4-7) are conditions which define a partial order (PO) in the execution of fij
functionalities. It is a partial order because it defines an execution order relationship only for
a subset of the whole set of pairs of fij functionalities. In other words, there are pairs of
functionalities, fij and fmn, with i≠m ˇ j≠n, which do not have any order relationship. This no
order relationship is denoted fij >< fmn. Some specification methodologies, such as HetSC,
help the designer capture untimed specifications, which implicitly capture a PO. Untimed

Embedded Systems – Theory and Design Methodology

254

specifications reflect conditions only in terms of execution order, without assuming specific
physical time conditions, thus they are the most abstract ones in terms of time handling. The
PO is sufficient for ensuring the same specific global system functionality, while it reflects
the available flexibility for further design steps. Indeed, no-order relationships spot
functionalities which can be run in natural parallelism (that is, they are functionalities which
do not require pipelining for running in actual parallelism) or which can be freely
scheduled.

SystemC has a discrete event (DE) semantics, which means that the time tag is twofold, that
is, T=(t,). Any computation or event happens in a specific delta cycle (i). Additionally,
each delta has an associated physical time stamp (ti), in such a way that a set of consecutive
deltas can share the same time stamp (this way, instantaneous reactions can be modelled as
reactions in terms of delta advance, but no physical time advance). Complementarily, it is
possible that two consecutive delta cycles present a jump in physical time ranging from the
minimum to the maximum physical time which can be represented.

Since SystemC provides different types of processes, communication and synchronization
mechanisms for ensuring the PO expressed by equations (4-7), it is easy to imagine that
there are different ways to solve the specification intent in Fig.1 as a SystemC concurrent
specification, even if only untimed specifications are considered. In order to check how
such a specification would be solved by users knowing SystemC, but without knowledge of
particular specification methodologies or experience in specification, six master students
were asked to provide a concurrent solution. No conditions on the use of SystemC were set.

Five students managed to provide a correct solution. By “correct” solution it is understood
that for any value of ‘a’ and ‘b’, and for any valid execution (that is, fulfilling SystemC
execution semantics) the output results were the expected ones, that is y=fY(a,b) and
z=fZ(a,b). In other words, we were looking for solutions with functional determinism,
(Jantsch, 2004). A first interesting observation was that, from the five correct solutions, four
different solutions were provided. These solutions were considered different in terms of the
concurrency structure (number of processes used, which functionality is associated to each
process), communication and synchronization structure (how many channels, events and
shared variables are used, and how they are used for process communication), and the order
of computation, communication and synchronization within a process.

Fig. 2, 3 and 4 sketch some possible solutions where functionality is divided into 2 or 4
processes. These solutions are based on the most primitive synchronization facilities
provided by SystemC (‘wait’ statements and SystemC events), using shared variables for
data transfer among functionalities. Therefore, the solutions in Fig. 2, 3 and 4 reflect only a
subset of the many coding possibilities. For instance, SystemC provides additional
specification facilities, e.g. standard channels, which can be used for providing alternative
solutions.

Fig.2, Fig.3a and Fig.3b show two-process-based solutions. In Fig. 2, the two processes P1
and P2 execute fi1 functionalities before issuing a wait(d) statement, with d of ‘sc_time’ type
and where ‘d’ can be either a single delta cycle delay (d=SC_ZERO_TIME) or a timed delay
(s>SC_ZERO_TIME), that is, an advance of one or more deltas () with an associated
physical time advance (t). Notice that this actually means two different solutions in SystemC,
under the SystemC semantics. In the former case, f11 and f21 are executed in 0,

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

255

Fig. 2. Solution based on two processes and on wait statements.

while f21 and f22 are executed in 1, without t advance, while in the latter case, f21 and f22 are
executed in a T with a different t coordinate. Anyhow, in both cases the same untimed and
abstract semantics is fulfilled, in the sense that both fulfil the same PO, that is, equations (4-
7) are fulfilled. Notice that there are more solutions derived from the sketch in Fig. 2. For
instance, several ‘wait(d)’ statements can be used on each side.

Fig. 3. Solutions based on two processes and on SystemC events.

Fig.3a and Fig.3b show two solutions based on SystemC events. In the Fig.3a solution, both
processes compute f11 and f21 in 0 and schedule a notification to a SystemC event which will
resume the other process in the next delta. Then, both processes get blocked. The crossed
notification sketch ensures the fulfilment of equations (5) and (7). Equations (4) and (6) are
fulfilled since f11 and f12 are sequentially executed within the same process (P1), and
similarly, f21 and f22 are sequentially executed by process P2. Notice that several variants
based on the Fig.3a sketch can be coded without impact on the fulfilment of equations (4-7).
For instance, it is possible to use notifications after a given amount of delta cycles, or after
physical time and still fulfil (4-7). It is also possible to swap the execution of f11 and e2
notification, and/or to swap the execution of f11 and e1 notification.

f11 f21

f12 f22

wait(d) wait(d)

y

z

a

b

P1 P2

a’ b’

P1

P2

f11 f21

f12

wait(e1)

e2.notify

e1 e2

wait(e2)

e1.notify

P2

a)

b’a’

f22

P1

f11 f21

f12

wait(e1)

e2.notify

e1 e2

wait(e2)

e1.notify

P2

b)

b’a’

f22

P1

Embedded Systems – Theory and Design Methodology

256

Fig.3b represents another variant of the Fig.3a solution where one of the processes
(specifically P1 in Fig.3b) makes the notification after the wait statement. It adds an order
condition, described by the equation T(f22) > T(f12), and which obliges the execution to
require one delta cycle more (f22 will be executed in a delta cycle after f12). Anyhow, this
additional constraint on the execution order still preserves the partial order described by
equations (4-7) and guarantees the functional determinism of the specification represented
by Fig. 3b.

Fig. 4. Solution based on four finite and non-blocking processes.

Finally, Fig.4 shows a solution with a higher degree of concurrency, since it is based on four
finite non-blocking processes. In this solution, each process computes fij functionality
without blocking. P3 and P4 processes compute f12 and f22 respectively only after two events,
e1 and e2, have been notified. These events denote that the inputs for f12 and for f22
functionalities, a’= f11(a) and b‘=f21(b), are ready. In general, P3 and P4 have to handle a local
status variable (not-represented in Fig.4) for registering the arrival of each event since e1 and
e2 notifications could arrive in different deltas. Such handling is an additional functionality
wrapping the original fi2 functionality, which results in a functionality fi2‘, as shown in Fig.4.

The sketch in Fig. 4 enables several equivalent codes based on the fact that processes P3 and
P4 can be written either as SC_METHOD processes with a static sensitivity list, or as
SC_THREAD processes with an initial and unique wait statement (coded as a SystemC
dynamic sensitivity list, but used as a static one), before the function computation.
Moreover, as with the Fig. 3 cases, both in P1 and in P2, the execution of fi1 functionalities
and event notifications can be swapped without repercussion on the fulfilment of equations
(4-7).

Summarizing, the solutions shown are samples of the wide range of coding solutions for a
simple specification problem. The richness of specification facilities and flexibility of
SystemC enable each student to find at least one solution, and furthermore, to provide some
different alternatives. However, such an open use of the language also leads to a variety of
possible incorrect solutions. Fig. 5 illustrates only two of them.

e1

P1 P2

P3 P4

e2
e2.notify e1.notify

f11 f21

f12‘ f22‘

wait(e1|e2) wait(e1|e2)

P1 P2

y

z

a

b
P3 P4

b’a’

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

257

Fig. 5. Solution based on four finite and non-blocking processes.

In the Fig.5a example, the order condition (7) might be broken, and thus the specification
intent in Fig.5a is not fulfilled. Under SystemC execution semantics, f22 may happen either
before or after f11. The former case can happen if P2 starts its execution first. SystemC is non-
pre-emptive, thus f22 will execute immediately after f21, and thus before the start of P1,
which violates condition (7). Moreover, the example in Fig. 5a does not provide functional
determinism because condition (7) might be fulfilled or not, which means that output z can
present different output values for the same inputs. Therefore, it is not possible to make a
deterministic prediction of what output z will be for the same set of inputs, since sometimes
it can be z=f22(a,f21(b)), while others it can be z=f22(f11(a),f21(b)). In many specification
contexts functional determinism is required or at least desirable.

The Fig. 5b example shows another typical issue related to concurrency: deadlock. In Fig. 5b,
a SystemC execution will always reach a point where both processes P1 and P2 get blocked
forever, since the condition for them to reach the resumption can never be fulfilled. This is
due to a circular dependency between their unblocking conditions. After reaching the wait
statement, unblocking P1 requires a notification on event e1. This notification will never
come since P2 is in turn waiting for a notification on event e2.

Even for the small parallel specification used in our experiment, al least one student was not
able to find a correct solution. However, even for experienced designers it is not easy to
validate and deal with concurrent specifications just by inspecting the code, relying and
reasoning based on the execution semantics, even if they are supported by a graphical
representation of the concurrency, synchronization and communication structure. Relatively
small concurrent examples can present many alternatives for analysis. Things get worse
with complex examples, where the user might need to compose blocks whose code is not
known or even visible. Moreover, even simple concurrent codes, can present subtle bug
conditions, which are hard to detect, but risky and likely to happen in the final
implementation.

For example, let’s consider a new solution of the ‘simple’ specification example based on the
Fig.3a structure. It was already explained that this structure works well when considering
either delta notification or timed notification. A user could be tempted to use immediate

f11 f21

f12 f22

wait(d)

P1 P2

a’ b’

f11 f21

f12

wait(e1)

e2.notify

e1
e2

P2

b’a’

f22

P1

a) b)

wait(e2)

e1.notify

Embedded Systems – Theory and Design Methodology

258

notification for speeding up the simulation with the Fig.3a structure. However, this
specification would be non-deterministic. In effect, at the beginning of the simulation, both
P1 and P2 are ready to execute in the first delta cycle. SystemC simulation semantics do not
state which process should start in a valid simulation. If P1 starts, it will mean that the e2
immediate notification will get lost. This is because SystemC does not register immediate
notification and requires the process receiving it (in this case P2) to be waiting for it already.
Thus, there will be a partial deadlock in the specification. P2 will get blocked in the
‘wait(e2)’ statement forever and the output of P2 will be the null sequence z={}, while
y={f21(f11(a),f21(b))}. Assuming the functions of equations (3), for (a,b)=({1},{2}), (y,z) = ({6},{}).
Symmetrically, if P2 starts the execution first, then P1 will get blocked forever at its wait
statement, and the output will be y={}, z={f22(f11(a),f21(b))}. Assuming the functions of
equations (3), for (a,b)=({1},{2}), (y,z) = ({},{2}). Thus, in this case, no outputs correspond to
the initial intention. There is functional non-determinism, and partial deadlock.

It is not recommended here that some properties should always be present (e.g., not every
application requires functional determinism). Nor is the prohibition of some mechanisms
for concurrent specification recommended. For instance, immediate notification was
introduced in SystemC for SW modelling and can speed up simulation. Indeed, the Fig.3a
example can deterministically use immediate notification with some modifications in the
code for explicit registering of immediate events. However, such modification shows that
the solution was not as straightforward as designers could initially think. Therefore, the
definition of when and how to use such a construct is convenient in order to save wastage
of time in debugging, or what it would be worse, a late detection of unexpected results.

Actually, what it is being stated is that concurrent specification becomes far from
straightforward when the user wants to ensure that the specification avoids the plethora of
issues which may easily appear in concurrent specifications (non-determinism, deadlock,
starvation, etc), especially when the number of processes and their interrelations grow.
Therefore, a first challenge which needs to be tackled is to provide methods or tools to
detect that a specification can present any of the aforementioned issues. The following
sections will introduce this problem in the context of SystemC simulation. The difficulty in
being exhaustive with simulation-based techniques will be shown. Then the possibility to
rely on correct by construction specification approaches will be discussed.

In order to simplify the discussion, the following sections will focus on functional
determinism. In general, other issues, e.g. deadlock, are orthogonal to functional
determinism. For instance, the Fig. 5b case presents deadlock while still being deterministic
(whatever the input, each output is always the same, a null sequence). However, non-
determinism is usually a source of other problems, since it usually leads to unexpected
process states, for which the code was not prepared to avoid deadlock or other problems.
Fig. 4a example with immediate notification was an example of this.

3. Simulation-based verification for flexible coding
Simulation-based verification requires the development of a verification environment. Fig. 6
represents a conventional SystemC verification environment. It includes a test bench, that is,
a SystemC model of the actual environment where the system will be encrusted. The test
bench is connected and compiled together with the SystemC description of the system as a

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

259

single executable specification. When the OSCI SystemC library is used, the simulation
kernel is also included in the executable specification. In order to simulate the model, the
executable specification is launched. Then, the test bench provides the input stimuli to the
system model, which produces the corresponding outputs. Those outputs are in turn
collected and validated by the test bench.

Fig. 6. Simulation-based verification environment with low coverage.

The Fig. 6 framework has a significant problem. A single execution of the executable
specification provides very low verification coverage. This is due to two main factors:

 The test bench only reflects a subset of the whole set of possible inputs which can be fed
by the actual environment (Input Set).

 Concurrency implies that, for each fixed input (triangle in Fig. 6), there are in general
more than one feasible execution order or scheduling, thus potentially, more than one
feasible output. However, a single simulation shows only one scheduling.

The first point will be addressed in section 3.1. The following sections will focus on dealing
with how to tackle verification when concurrency appears in the specification.

3.1 Stimuli generation

Assuming a fully sequential system specification, the first problem consists in finding a
sufficient number of stimuli for a ‘satisfactory’ verification of the specification code.
Satisfactory can mean 100% or a sufficiently high percentage of a specific coverage metric.

Therefore, an important question is which coverage metrics to use. A typical coverage
metric is branch coverage, but there are more code coverage metrics, such as lines, blocks,
branches, expressions, paths, and boundary-path. Other techniques (Fallah, 1998); (Gupta,
2002); (Ugarte, 2011) are based on functional coverage metrics. Functional coverage metrics
are defined by the engineer, and thus rely on engineer experience. They can provide better
performance in bug detection than code coverage metrics. However, code coverage metrics

Test Bench Test Bench

System

OSCI
Simulation

Kernel

Stimuli

Input
 Set

Output
Set

Output

SystemC
executable

Embedded Systems – Theory and Design Methodology

260

do not depend on the engineer, thus they can be more easily automated. They are also
simpler, and provide a first quality metric of the input set.

In complex cases, an exhaustive generation of input vectors is not feasible. Then, the
question is which vectors to generate and how to generate them. A basic solution is random
generation of input vectors, (Kuo, 2007). The advantages are simplicity, fast execution speed
and many uncovered bugs with the first stimulus. However, the main disadvantages are
twofold: first, many sets of input values might lead to the same observable behaviour and
are thus redundant, and second, the probability of selecting particular inputs corresponding
to corner cases causing buggy behaviour may be very small.

An alternative to random generation is, constrained random vector generation, (Yuan, 2004).
Environments enabling constrained random generation enable a random, but controlled
generation of input vectors by imposing some bounds (constraints) on the input data. This
enables a generation of input vectors that are more representative of the expected
environment. For instance, one can generate values for an address bus in a certain range of
the memory map. Constrained randomization also enables a more efficient generation of
input vectors, once they can be better directed to reach parts of code that a simple random
generation will either be unlikely to reach or will reach at the cost of a huge number of
input stimuli. In the SystemC context, the SystemC Verification library (SCV) (OSCI, 2003),
is an open source freely available library which provides facilities for constrained
randomization of input vectors. Moreover, the SCV library provides facilities for controlling
the statistical profile in the vector generation. That is, the user can apply typical distribution
functions, and even define customized distribution functions, for the stimuli generated.
There are also commercial versions such as Incisive Specman Cadence (Kuhn, 2001), VCS of
Synopsys, and Questa Advanced Simulator of Mentor Graphics. The inconvenience of
constrained random generation of input vectors is the effort required to generate the
constraints. It already requires extracting information from the specification, and relies on
the experience of the engineer. Moreover, there is a significant increase in the computational
effort required for the generation of vectors, which needs solvers.

More recently, techniques for automatic generation of input vectors have been proposed
(Godefroid, 2005); (Sen, 2005); (Cadar, 2008). These techniques use a coverage metric to
guide (or direct) the generation of vectors, and bound the amount of vectors generated as a
function of a certain target coverage. However, these techniques for automatic vector
generation require constrained usage of the specification language, which limits the
complexity of the description that they can handle.

In order to explain these strategies, we will use an example consisting in a sequential
specification which executes the fij functionalities in Fig. 1 in the following order {f11, f21, f12,
f22}. Therefore, this is an execution sequence fulfilling the specification intent, provided the
dependency graph in Fig. 1b. Let’s assume that the specific functions of this sequential
system are given by equations (3), and that the metric to guide the vector generation is
branch coverage. It will also be assumed that the inputs (‘a’ and ‘b’) are of integer type with
range [-2,147,483,648 to 2,147,483,647]. A first observation to make is that our example will
have two execution paths, defined by the control statements, specifically, the conditional
function f22. Entering one or another path depends on the value of the ‘x1’ input of f22, which
in turn depends on the input to f11, that is, on the input ‘a’.

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

261

By following the first strategy, namely, running the executable specification with random
vectors of ‘a’ and ‘b’, it will be unlikely to reach the true branch of the control sentence
within f22, since the probability of reaching it is less than 2.5E-10 for each input vector. Even
if we provide means to avoid repeating an input vector, we could need 2.5E10 simulations
to reach the true path.

Under the second strategy, the verification engineer has to define a constraint to increase the
probability of reaching the true branch. In this simple example, the constraint could be the
creation of a weighted distribution for the x input, so that some values are chosen more
often than others. For instance, the following sentence: dist {[min_value:25713]:= 33, 25714:=
34, [25715:max_value]:=33}, states that the value that reaches the true branch of f22, that is,
25,714, has a 33.3% probability to be produced by the random generator. The likelihood of
generation of values below 25.714 would be 33.3%, and similarly 33.3% for values over
25,714. Thus, the average number of vectors required for covering the two paths would be
3. Then, the user could prepare the environment for producing three input vectors (or a
slightly bigger number of them for safety). One possible vector set generated could be: (a,b)
= {(12390, -2344), (-3949, 1234), (25714, -34959)}. The efficiency of this method relies on the
user experience. Specifically, the user has to know or guess which values can lead to
different execution paths, and thus which groups of input values will likely involve
different behaviours.

The latter strategy would be directed vector generation. This strategy analyses the code in
order to generate the minimum set of vectors for covering all branches. Directing the
generation in order to cover all execution paths would be the ideal goal. However, this
makes the problem explode. In the simple case in Fig. 1, branch and path coverage is the
same since there is only one control statement. In this case, only one vector is required per
branch. For example, the first value generated could be random, e.g., (a = 39349, b= -1024).
As a result, the system executes the false path of the control statement. The constraint of the
executed path is detected and the constraint of the other branch generated. In this case, the
constraint is a=25714. The generator solves the constraint and produces the next vector (a, b)
= (25714, 203405). With this vector, the branch coverage reaches 100% of coverage and vector
generation finishes. Therefore, the stimulus set is (a,b) = { (39349, 1024), (25714, 203405)}.

3.2 Introducing concurrency: scheduling coverage

In the previous section, the generation of input vectors for reaching certain coverage
(usually of branches or of execution paths) has been discussed. For this, we assumed a
sequential specification, which means that for a fixed input vector, a fixed output vector is
expected. Thus, the work focuses on finding vectors for exercising the different paths which
can be executed by the real code, since these paths reflect the different behaviours that the
code can exhibit for each input. Each type of behaviour is a relationship between the input
and the output. Functional behaviour will imply a single output for given input.

As was mentioned at the beginning of section 3, the injection of concurrency in the
specification raises a second issue. Concurrency makes it necessary to consider the
possibility of several schedulings for the execution of the system functionality for a fixed
input vector. This can potentially lead to different behaviours for the same input. At
specification level, there are no design decisions imposing timing and thus no strict ordering

Embedded Systems – Theory and Design Methodology

262

Fig. 7. Higher coverage by checking several inputs and several schedulings per input.

to the computation of the concurrent functionality, thus all feasible order must be taken into
account. The only exception is the timing of the environment, which can be neglected for
generality. In other words, inputs can be considered as arriving in any order.

In order to tackle this issue, Fig. 7 shows the verification environment based on multiple
simulations proposed by (Herrera, 2006). Using multiple simulations, that is, multiple
executions (ME) in a SystemC-based framework, enables the possibility of feeding different
input combinations. SystemC LRM comprises the possibility of launching several
simulations from the same executable specification through several calls to the
sc_elab_and_sim function. (Herrera, 2006), and (Herrera, 2009), explain how this could be
done in SystemC. However, SystemC LRM also states that such support depends on the
implementation of the SystemC simulator. Currently, the OSCI simulator does not support
this feature. Thus, it can be assumed that running NE simulations currently means running
the SystemC executable specification NE times. In (Herrera, 2006), and (Herrera, 2009), the
launch of several simulations is automated through an independent launcher application.

The problem is how to simulate different scheduling, and thus potentially different
behaviour, for each single input. Initially, one can try to perform several simulations for a
fixed input test bench (one triangle in the Fig. 7 schema,). However, by using the OSCI
SystemC simulator, and most of the available SystemC simulators, only one scheduling is
simulated. In order to demonstrate the problem, we define a scheduling as a sequence of
segments (sij). A scheduling reflects a possible execution order of segments under SystemC
semantics. A segment is a piece of code executed without any pre-emption between calls to
the SystemC scheduler, which can then make a scheduling decision (SDi). A segment is
usually delimited by blocking statements. A scheduling can be characterized by a specific
sequence of scheduling decisions. In turn, the set of feasible schedulings of a specification
can be represented in a compact way through a scheduling decision tree (SDT). For instance,
Fig. 8 shows the SDT of the Fig. 2 (and Fig. 3) specification. This SDT shows that there are 4
possible schedulings (Si in Fig. 8). Each segment is represented as a line ended with a black

Test Bench Test Bench

System

Extended
Simulation

Kernel

Stimuli

SCV

Input
 Set

Output
Set

Output

SystemC
executable

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

263

Fig. 8. Scheduling Decision Tree for the examples in Fig. 2 and Fig. 3.

dot. Moreover, in the Fig. 8 example, each sij segment corresponds to a fij functionality,
computed in this execution segment. Each dot in Fig. 8 reflects a call to the SystemC
scheduler. Therefore, each simulation of the Fig. 2, and Fig. 3 examples, either with delta or
timed notification, always involves 4 calls to the SystemC scheduler after simulation starts.
However, only two of them require an actual selection among two or more processes ready
to execute, that is, a scheduling decision (SDi). As was mentioned, multiple executions of the
executable simulation compiled against the existing simulators would exhibit only a single
scheduling, for instance S0 in the Fig. 8 example. Therefore, the remaining schedulings, S1, S2
and S3 would never be checked, no matter how many times the simulation is launched.

As was explained in section 2, the Fig. 2 and Fig. 3 examples fulfil the partial order defined
by equations (4-7), so the unchecked schedulings will produce the same result. This is easy
to deduce by considering that each segment corresponds to a fij functionality of the example.

Fig. 9. Scheduling Decision Tree for the Fig.2 and Fig. 3 examples.

However, let’s consider the Scheduling Decision Tree (SDT) in the Fig. 5a example, shown in
Fig. 9. The lack of a wait statement between f21 and f22 in P2 in the Fig. 5a example implies
that P2 executes all its functionality (f21 and f22) in a single segment (s21). Notice that a
segment can comprise different functionalities, or, as in this case, one functionality as a

S0= {s11, s21, s12, s22} = {f11, f21, f12, f22}
S0 {SD0, SD1} = {0, 0}

S1= {s21, s11, s12, s22} = {f21, f11, f12, f22}

S2= {s21, s11, s22, s12} = {f11, f21, f22, f12}

S3= {s21, s11, s22, s12} = {f21, f11, f22, f12}
S3 {SD0, SD1} = {1, 1}

s11

s21

0 1

SD0

s21

s11

s12
S0= {s11, s21, s12} = {f11, f21 ◦ f22, f12}
S0 {SD0} = {0}

S1= {s21, s11, s12} = { f21 ◦ f22 , f11, f12}
S1 {SD0} = {1}

s11

s21

s21

s11

s12

s22

s22

s12

0 1

SD0 SD1

Embedded Systems – Theory and Design Methodology

264

result of composition of f21 and f22 (denoted f21 ◦ f22). Therefore, for the Fig. 5a example, the
SystemC kernel executes three segments, instead of four as in the case of Fig. 4 example.
Notice also that several scheduler calls can appear within the boundaries of a delta cycle.

The SDT of the Fig. 5 example has only a single scheduling decision. Therefore, two
schedulings are feasible, denoted S0 and S1. However, only one of them, S0, fulfils the partial
order defined by equations (4-7). As was mentioned, the OSCI simulator will execute only
one, either S0 or S1, even if we run the simulation several times. This is due to practical
reasons, since OSCI and other SystemC simulators implement a fast and straightforward
scheduling based on a first-in first-out (FIFO) policy. If we are lucky, S1 will be executed,
and we will establish that there is a bug in our concurrent specification. However, if we are
not lucky, and S0 is always executed, then the bug will never be apparent. Thus, we can get
the false impression of facing a deterministic concurrent specification.

Therefore, a simulation-based environment requires some capability for observing the
different schedulings, ideally 100% coverage of schedulings, which are feasible for a fixed
input. Current OSCI implementation of the SystemC simulation kernel fulfils the SystemC
semantics and enables fast scheduling decisions. However, it produces a deterministic
sequence of scheduling decisions, which is not changed from simulation to simulation for a
fixed input. This has leveraged several techniques for enabling an improvement of the
scheduling coverage. Before introducing them, a set of metrics for comparing different
techniques for improving scheduling coverage of simulation-based verification techniques,
proposed in (Herrera, 2006), will be introduced. They can be used for a more formal
comparison of the techniques discussed here. These metrics are dependent on each input
vector, calculated by means of any of the techniques explained in section 3.1.

Let’s denote the whole set of schedulings S, where S = {S0, S1, …, Ssize(s)}, and size(S) is the
total number of feasible schedulings for a fixed input. Then, the Scheduling Coverage, CS, is
the number of checked schedulings with regard to the total number of possible schedulings.

S

S
N

C
size S

 (8)

The Multiple Execution Efficiency ME is the actual number of (non-repeated) schedulings
NS covered after NE simulations (executions in SystemC).

 1
1

S S
ME

E S R E

N N
N N N R

 (9)

NR stands for the amount of repeated schedulings, which are not useful. As can be seen,
ME can be expressed in terms of RS. RS is a factor which accounts for the number of

repeated schedulings out of the total number of simulations NE.

The total number of simulations to be performed to reach a specific scheduling coverage,
NT(CS) can be expressed as a function of the desired coverage, the number of possible
schedulings, and the multiple execution efficiency.

 ()() S
T S

ME

C size S
N C

 (10)

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

265

Finally, the Time Cost for achieving a coverage CS is approximated by the following
equation:

 ()
E

ME

C TE size TE
T t

 (11)

Where t is the average simulation time of each scheduling. It is actually a rough
approximation, since each scheduling can derive in shorter or longer schedulings. It also
depends on the actual scheduling technique. However, equations (8-11) will be sufficiently
useful for comparing the techniques introduced in the following sections, and the yield of
conventional SystemC simulators, including the OSCI SystemC library in the simulation-
based verification environments shown in Fig. 7. Conventional SystemC simulators provide

a very limited scheduling coverage,

1
SC

size S
 , since NS=1. Moreover, the scheduling

coverage is fixed and cannot grow with further simulations. Since size(S) exponentially
grows when adding tasks and synchronization mechanisms, the scheduling coverage
quickly becomes low even with small examples. For instance, in (Herrera, 2006), a simple
extension of the Fig. 2 example to three processes, each of three segments, leads to
size(S)=216, thus CS=0.46%.

3.2.1 Random and pseudo-random scheduling

The user of an OSCI simulator can try a trick to check different schedulings in a SystemC
specification. It consists in changing the order of declaration of SystemC processes in the
module constructor. Thus, the result of the first dispatching of the OSCI simulator at the
beginning of the simulation can be changed. However, this trick gives no control over
further scheduling decisions. Moreover, checking a different scheduling requires the
modification of the specification code.

A simple alternative for getting multiple executions to exhibit different schedulings is
changing the simulation kernel to enable a random selection among the processes ready to

execute in each scheduling decision. Random scheduling enables

1 1SC
size S

 , and a

monotonic growth of Cs with the number of simulations NE. The dispatching is still fast,
since it only requires the random generation of an index suitable for the number of
processes ready to execute in each scheduling decision. The implementation can range from
more complex ones guaranteeing the equal likelihood in the selection of each process in the
ready-to-execute list, to simpler ones, such as the one proposed in (Herrera, 2006), which is
faster and has low impact in the equal likelihood of the selection.

There are still better alternatives to pure random scheduling. In (Herrera, 2006),
pseudorandom (PR) scheduling is proposed. Pseudorandom scheduling consists in enabling
a pseudo-random, but deterministic, sequence of scheduling decisions from an initial seed.
This provides the advantage of making each scheduling reproducible in a further execution.
This reproducibility is important since it enables to debug the system with the scheduling
which showed an issue (unexpected result, deadlock, etc) as many times as desired. Without
this reproducibility, the simulation-based verification framework would be able to detect

Embedded Systems – Theory and Design Methodology

266

there is an issue, but would not be practically applicable for debugging it. Therefore,

Pseudorandom scheduling presents the same coverage,

1 1SC
size S

 , and monotonic

growth as CS with the number of simulations of pure random scheduling. A freely available
extension of the OSCI kernel, which implements and makes available Pseudorandom
scheduling (for SC_THREAD processes) is provided in (UCSCKext, 2011).

Pseudorandom scheduling still presents issues. One issue is that, despite the monotonic
growth of CS with NE, this growth is approximately logarithmic, due to the probability of
finding a new scheduling with the number of simulations performed. Each new scheduling
found reduces the number of new schedulings to be found, and Pseudorandom schedulings
have no mechanisms to direct the search of new schedulings. Thus, in pseudorandom
scheduling, 1ME in general, and it quickly tends to 0 when NE grows. Another issue is
that it does not provide specification-independent criteria to know when a specific CS or a
size(S) has been reached. CS or size(S) can be guessed for some concurrency structures.

3.2.2 Exhaustive scheduling

In (Herrera, 2009), a technique for directing scheduling decisions for an efficient and
exhaustive coverage of schedulings, called DEC scheduling, was proposed. The basic idea,
was to direct scheduling decisions in such a way that the sequence of simulations perform a
depth-first search (DFS) of the SDT. For an efficient implementation, (Herrera, 2009),
proposes to use a scheduling decision register (SDR), which stores the sequence of decisions
taken in the last simulation.

For instance, for the Fig. 8 SDT, corresponding to examples in Fig.2 and 3, the first
simulation will produce the S0 scheduling. This means that the SDR will be SDR0={0,0},
matching the FIFO scheduling semantics of conventional SystemC simulators, where the
first process in the ready-to-execute queue is always selected. Then, a second simulation
under the DEC scheduling, will use the SDR to reproduce the scheduling sequence until the
penultimate decision (also included). Then, the last decision is changed. Remember that a
scheduling decision SDi is taken whenever a selection among at least two ready-to-execute
processes is required. Since in the previous simulation the last scheduling decision was to
select the 0-th process (denoted in the example as SD1=0), in the current simulation the next
process available in the ready-to-execute queue is selected (that is, SD1=1). Therefore, the
second execution in the example simulates the next scheduling of the SDT, S1={0,1}.

In a general case, the change in the selection of the last decision can mean an extension of
the SDT (which means that the simulation must go on, and so go deeper into the SDT).
Another possibility is what happens in the example shown, where the branch at the current
depth level has been fully explored and a back trace is required. In our example, the third
simulation will go back to SD0 decision and will look for a different scheduling decision
(SD0=1). What will occur in this case is that the simulation can go on and new scheduling
decisions, will be required, thus requiring the extension of the SDR again, and thus leading
to the S2={1,0} scheduling. Following the same reasoning, it is straightforward to deduce
that the next simulation will produce the scheduling S3={1,0}.

Therefore, the main advantage of DEC scheduling with regard to PR scheduling is that
1ME . That is, each new simulation guarantees the exploration of a new scheduling. This

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

267

provides a more efficient search since the scheduling coverage grows linearly with the
number of simulations. That is, for DEC scheduling:

1 1E
S

N
C

size S size S
 (12)

Another advantage of DEC scheduling is that it provides criteria for finishing the
exploration of schedulings which does not require an analysis of the specification. It is
possible thanks to the ordered exploration of the SDT, (Herrera, 2009). The condition for
finishing the exploration is fulfilled once a simulation (indeed the NE=size(S)-th simulation)
has selected the last available process for each scheduling decision of the SDR, and no SDT
extension (that is, no further events and longer simulation) is required. In the example in
Fig. 8, this corresponds to the scheduling S3={1,1}. When this condition is fulfilled, 100%
scheduling coverage (CS) has been reached. Notice that, in order to check the fulfilment of
the condition, no estimation of size(S) is necessary, thus no analysis of the concurrency and
synchronization structure of the specification is required. In the case that size(S) can be
calculated, e.g. because the concurrency and synchronization structure of the specification is
regular or sufficiently simple, then CS, can be calculated through equation (12). For instance,
in the Fig. 8 example size(S)=4, then, applying equation (8), CS=0.25NS.

The main limitation of DEC scheduling is that size(S) has an exponentially growth for a
linear growth of concurrency. Thus, although 1ME is fulfilled, the specification will
exhibit a state explosion problem. The state explosion problem is exemplified in (Godefroid,
1995), which shows how a simple philosopher’s example can pass from 10 states to almost
106 states when the number of philosophers grows from two up to twelve. Another related
downside is that a long SDR has to be stored in hard disk, thus the reproduction of
scheduling decisions will include the time penalties for accessing the file system. This means
a growth of t in equation (11) for the calculation of the simulation-based verification time,
which has to be taken into account when comparing DEC scheduling with Pseudo-random
or pure random techniques, where scheduling decisions are lighter.

3.3 Partial Order Reduction techniques

A set of simulation-based techniques, based on Partial Order Reduction (POR) has been
proposed for tackling the state explosion problem. POR is a partition-based testing
technique, based on the execution of a single representative scheduling for each class of
equivalent schedulings. This reduces the number of schedulings to be explored, from
size(S) feasible schedulings, to M, with M<size(S). M is the number of sets of non-
equivalent scheduling classes, each one enclosing a set of equivalent schedulings. The
equivalence is understood in functional terms. That is, the simulation of two schedulings
of an equivalent scheduling class will lead to the same state, and therefore to the same
effect on the system behaviour. When applying POR techniques, the objective is not to
achieve CS=100%, but CM=100%, where CM stands for the coverage of representative (non-
equivalent) schedulings. Expressed in other terms, a single simulation serves to check on
average a set of L equivalent simulations. Thus POR techniques enable a scheduling

Embedded Systems – Theory and Design Methodology

268

coverage of

EN L
size S

 and efficiencies greater than 1, that is, 1S
ME

E

N
N

 . Obviously, the

efficiency in the exploration of non-equivalent schedulings will always remain below or
equal to 1.

In order to deduce which schedulings are equivalent, POR methods require the extraction
and analysis of information from the specification, in order to study when the possible
interactions and dependencies between processes may lead or not to functionally equivalent
paths. For instance, the detection of shared variables, and the analysis of write-after-write,
read-after-write, and write-after-read situations in them, enable the extraction of non-
equivalent paths which can lead to race conditions. Similarly, event synchronization has to
be analyzed (notification after wait, wait after notification, etc) since non-persistence of
events can lead to misses and to unexpected deadlock situations, non-determinism or other
undesirable effects. (Helmstetter, 2006) and (Helmstetter, 2007) propose dynamic POR
(DPOR) of SystemC models, by adapting dynamic POR techniques initially developed for
software (Flanagan, 2005). Dynamic POR selects the paths to be checked during the
simulation, in each scheduling decision, performing the analysis among ready-to-execute
processes. Later works, such as the ‘Satya’ framework (Kundu, 2008), have proposed the
combination of static POR techniques with dynamic POR techniques. The basic idea is that
the runtime overhead is reduced by computing the dependency information statically; to
later use it during runtime.

As an example, let’s consider the first scheduling decision (SD0) in the SDT in Fig. 8 for any
of the specifications represented by Fig. 2 and 3. Depending on SD0, the scheduling executed
can start either by {s11, s21, …} or by {s21, s11, …}, each one representing two different classes
of schedulings, {S0, S1} and {S2, S3} respectively. A POR analysis focused on the impact on
functionality, will establish that those scheduling classes actually account for the following
two possible starting sequences in functional terms, either {f11, f21, …} or {f21, f11, …}. A POR
technique will establish that f11 and f21 have impact on some intermediate and shared
variables, ‘a’ and ‘b’, which reflect the state of the concurrent system and which imply
dependencies between P1 and P2, thus requiring a specific analysis. Specifically, the POR
technique will establish that those two possible initializations of the schedulings lead to the
same state (in the next delta, 1), described by a’=f11(a) and b’=f11(b). In other words, since
there are no dependencies, any starting sequence leads to the same intermediate state, and
schedulings starting with SD0=0, that is, starting by {s11, s21, …}, and schedulings starting
with SD0=1, that is, starting by {s21, s11, …} will be equivalent if they keep the same sequence
of decisions in the rest of the sequence of scheduling decisions (SD0). Therefore only one of
the alternatives in SD0 has to be explored. This idea can be iteratively applied generally
leading to a drastic reduction in the number of paths which have to be explored, thus
fulfilling M<<size(s). Such a drastic reduction can be observed in our simple example if we
continue with it. Let’s take, for instance, SD0=0 in the example, and let’s continue the
application of a dynamic POR. At this stage, in the worst case, we will need to execute S0
and S1, thus M=2 simulations for a complete coverage of functional equivalent schedulings.
Furthermore, DPOR is again applied for the second delta, 1. Considering y and z as state
variables directly forwarded to the outputs, there is no read after write, write after read or
write after write dependency among them. Therefore, it can be concluded that the decision
on SD1 will be irrelevant in reaching the same (y, z) state after the 1 delta. Therefore, M=1,

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

269

and 4ME in this case, since any of the four schedulings exposed by a single simulation
will be representative of a single class of schedulings, equivalent in functional terms.

The method described in (Helmstetter, 2006) is complete, but not minimal, since it is feasible
to think about specifications where M non-equivalent schedulings lead to different states,
but where those different states are not translated into different outputs. This means that M
would still admit a further reduction. This reduction would require an additional analysis of
the actual relationship between state variables and the outputs. As an example, let’s
consider that in our examples in Fig. 2, z was not considered as a system output, but as
informative or debugging data, resulting from post-processing, through f22, an internal state
variable), and that the only output is y. Thus, it would demonstrate the irrelevance of the
SD1 scheduling decision, which would save the last DPOR analysis in 1.

The approach of (Helmstetter, 2006) is also fork-based. Whenever a scheduling decision
finds non-equivalent or potentially non-equivalent paths, the simulation is spawned in
order to enable a concurrent check. Thus, several non-equivalent groups of schedulings can
be explored by launching a single simulation. This makes ME even bigger, and

1ME SN , up to the point where a single simulation could cover all the scheduling
classes. However, this optimization should be carefully considered. In order to give an
actual speed up to the verification, it is necessary that the simulation engine can take
advantage of a multi-core host machine. In (Helmstetter, 2006), the first advances for a
parallel SystemC simulator are given. If the simulation is sequential, then a fork-based
approach can easily be counter-productive in terms of time cost even if SystemC simulators
with actual parallel simulation capabilities are available.

In general, the main limitation of POR-based approaches is their need for extracting
information from the specification. The limitations of the front-end tools used for extracting
the information used for static dependency analysis, and the need to make the analysis
feasible limit the supported input code. Specifically, the approach of (Helmstetter, 2006) is
restricted to the SystemC subset admitted by the open-source and freely available Pinapa
front-end (Moy, 2005). Satya is based in the commercial EDG C++ front-end, which provides
wider support than Pinapa. However, it still presents limitations for supporting features
such as dynamic casting and process creation. The work of (Sen, 2008) claims its
independency from any external parser, while being able to detect potential errors in an
observed execution, even if the error does not take place in the actual simulation. However,
its goal is temporal assertion-based verification, rather than improving test coverage.

3.4 Merging scheduling techniques

In (Herrera, 09), the local application and cooperation of different scheduling techniques
(PR, DEC and POR) is proposed. Two types of localities are distinguished:

 Spatial Locality: in order to improve scheduling coverage for a specific group of
processes of the system specification.

 Temporal Locality: in order to improve scheduling coverage in a specific interval of the
simulation time.

For instance, in some parts of the specification where SystemC is used in a flexible manner,
e.g., a high-level concurrent model of an intellectual property (IP) block, DEC scheduling

Embedded Systems – Theory and Design Methodology

270

could be applied. Then POR could be applied to other parts, e.g., an in-house TLM platform,
where the IP block is connected, and whose code can be bound to the specification rules
stated by the POR technique. Table 1 summarizes the main characteristics of the different
scheduling techniques reviewed.

Scheduling
Technique CS ME Reproducibility

Linear
growth
of Cs
with NE

Specification
Independent
Detection of CS=1

Specification
Analysis Required

FIFO
(OSCI
simulator)

1
size S

 1

EN
 yes no no no

Random
1

size S

1

1

EN

1

no no no no

Pseudo
Random

1
size S

1

1

EN

1

yes no no no

DEC
EN

size S
 1 yes yes yes no

POR
EN L

size S

 1
L

yes yes yes yes

Table 1. Comparison of scheduling techniques for simulation-based verification.

4. Methodologies for early correct specification
As shown in the previous sections, the success of a simulation-based verification
methodology greatly depends on the ability to explore the effects of all the feasible
execution alternatives, or at least, the “equivalent ones”. The problem is already challenging
for sequential specifications, especially for control-oriented algorithms, and becomes
practically intractable when concurrency appears in the specification, since the number of
execution paths grows exponentially.

As has been shown, a way to tackle the explosion problem, for finding both a more reduced
and efficient set of input vector generation, and an efficient set of schedulings, is the usage
of information from the specification. Automated test generation techniques direct vector
generation by detecting control statements and looking for vectors which exercise their
different branches. Similarly, partial order reduction techniques need to analyze, either
statically or dynamically, which variables or events produce dependencies among processes
in order to extract the representative schedulings which need to be simulated.

This means that some conditions for making the specification wrong and hard to verify are
already known. Thus, a different perspective is possible. Why not build specification
methodologies which oblige, or at least help, the user to avoid such source problems,
instead of letting them appear in the specification, with the consequential requirement of a
costly verification.

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

271

An alternative consists in building specification methodologies which selectively adopt
certain specification rules. Such rules will enable enough expressivity to solve the
specification problem, but at the same time they rely on formal conditions for building
correct specifications. By assuming the fulfilment of such specification rules, the formal
support ensures the fulfilment of the properties pursued, or at least enables the application
of analysis techniques for assessing such fulfilment. This idea is generally applicable. For
instance, a methodology could forbid the usage of control statements. Then the specification
would have just one data path, and the generation of test input vectors would be drastically
simplified. However, this type of coding constraint would be very restrictive in many
application domains, where user needs control sentences. Each specification methodology
has its expressivity requirements, which puts bounds on the specification rules.

Embedded system specification requires expressing concurrency and abstraction. It might
easily lead to the SystemC user to run into the plethora of issues associated to concurrency
(non-determinism, deadlock, starvation, etc), as was illustrated in section 3. However, if
certain smart rules are imposed on how concurrency is expressed in SystemC, it can highly
facilitate to build early correct concurrent specifications. This principle has inspired several
works, such as SystemC-H (Patel, 2004), SysteMoC (Haubelt, 2007), HetSC (Herrera, 2007),
and HetMoC (Zhu, 2010), which have proposed SystemC specification methodologies to
ensure, or facilitate the verification, of certain properties. These methodologies state a set of
SystemC facilities (and provide additional ones when they are not provided by the standard
core of SystemC) and state a set of specification rules. Methodologies such as HetSC,
SystemC-H and SysteMoC rely on well-known formalisms, related to specific Models of
Computation (MoC), such as Khan Process Networks (KPN) (Kahn, 1974), Synchronous
Data Flows (SDF) (Lee, 1987), Concurrent Sequential Processes (CSP), Synchronous Reactive
(SR) systems, and Dynamic Data Flows (DDF). HetMoC, relies on the ForSyDe formalism
(Jantsch, 2004), which targets the unification of several MoCs. Finally, a standard extension
of the SystemC language, such as SystemC-AMS, adopts a variation of the SDF MoC, called
T-SDF, which annotates a time advance after each cluster execution.

Two important factors which characterize these types of specification methodologies are the
properties targeted and the way these are achieved, that is, which specification facilities,
specification rules, and assumptions configure the methodology. Two typical properties
pursued are functional determinism and deadlock protection. A relatively flexible way to
ensure functional determinisms is to build the specification methodology according to the
KPN formalism. The adoption of a more constrained specification style, through a
specification methodology which fulfils the SDF formalism, enables the application of an
analysis for ensuring deadlock protection, as well as functional determinism. This is
illustrated through the Fig. 10 example.

Fig. 10a shows the structure of a HetSC specification for solving the Fig.1 specification
problem. HetSC states the rules to be followed in the SystemC coding for building the
concurrent solution as a Khan Process Network. There are rules regarding the facilities to
use (SC_THREADS for P1 and P2, and blocking fifo channels with infinite buffering
capability, that is, channels of uc_inf_fifo type, provided by the HetSC library). There are
rules regarding how to write the processes, e.g., only one channel instance can be accessed
(either for reading or for writing) at a time. Finally, there are rules regarding communication
and computation, e.g., no more than one process can access a channel instance either as a

Embedded Systems – Theory and Design Methodology

272

reader or as a writer. More details on the rules can be found at the (HetSC website, 2012). All
these SystemC coding rules are designed to fulfil the rules and assumptions stated in Kahn,
1974. Provided they are fulfilled, as happens in the Fig. 10a case, it can be said that the
Fig.10a specification is functionally deterministic. Notice that read accesses to the uc_inf_fifo
instances are blocking, thus they ensure the partial order stated by equations (4-7).

Fig. 10. Specification of Fig.1 solved as a) a Kahn process network and b) as a static dataflow.

Fig.10b shows a second possibility, where the specification is built fulfilling the SDF MoC
rules, by using the HetSC methodology and facilities. To fulfil the SDF MoC, the
specification style has to be more restrictive than in KPN in several ways. First of all, the
KPN specification rules as in the Fig. 10a case, still apply. For instance, only one reader and
one writer process can access each channel instance. Furthermore, there are additional rules.
For example, each of the specification processes has to be coded without any blocking
statement in the middle. Due to this, a single process has been used for each fij function,
enabling a correspondence between a process firing and the execution of function fij.
Moreover, the specific amount of data consumed and produced for each fij firing has to be
known in advance. In HetSC, that information is associated to uc_arc channel instances. The
advantage provided by the Fig. 10b solution is that not only does it ensure functional
determinism by construction, but it also enables a static analysis based on the extraction of
the SDF graph. The Fig. 10b direct SDFG easily leads to the conclusion that the specification
is protected against deadlock, and moreover, that a static scheduling is also possible.

5. Conclusions
There is a trade off (shown in qualitative terms in Fig. 11) between the flexibility in the
usage of a language and the verification cost for ensuring certain degree of correctness in a
specification. In practice, simulation-based methodologies are in the best position for the
verification of complex specifications, since formal and semiformal verification techniques
easily explode. However, concurrency has become a necessary feature in specification
methodologies. Therefore, the capability of simulation based techniques for verification of

f11 f21

f12

b_ch.
read()

a_ch.
read()

b_ch.
write(b)

P2

a)

f22

P1

 a_ch

 b_ch

a_ch.
write(b)

uc_inf_fifo

uc_inf_fifo

 a_ch

 b_ch

f12

P4 P3

uc_arc (1,1)

uc_arc (1,1)

P1 P2

f11 f21

f22

b)

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

273

complex embedded systems has to be reconsidered. A reasonable alternative seems to be the
development of cooperative techniques which combine simulation-based methods and
specification methodologies which constrain the usage of the language under some formal
rules, oriented to fulfilling the desired properties. Specifically, while SystemC is a language
with a rich expressivity, it is still necessary to build abstract specification methodologies
using SystemC as host language, by constraining the specification facilities and the way they
can be used. This way, certain key properties can be guaranteed by construction, and the
fulfilment of others can be analyzed. The set of properties to be guaranteed depend on the
application domain. Moreover, a formally supported specification methodology can help to
validate additional properties through simulation-based verification techniques with a
drastic improvement in the detection capabilities and time spent on simulation.

Fig. 11. Trade off between flexibility and verification time after considering concurrency.

6. Acknowledgement
This work has been partially funded by the EU FP7-247999 COMPLEX project and by the
Spanish government through the MICINN TEC2008-04107 project.

7. References
Burton, M. et al. (2007). ESL Design and Verification, Morgan Kaufman, ISBN 0-12-373551-3
Bergeron, J. (2003) Writing Testbenches. Functional Verification of HDL Models. Springer, ISBN

1-40-207401-8.
Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., & Engler, D.R., (2008). EXE:

Automatically Generating Inputs of Death. ACM Transactions on Information and
System Security (TISSEC). V12, Issue 2, Article 10. December, 2008.

Chiang, S. Y. (2011). Keynote Speech. Proceedings of ARM Techcom Conference. October, 25th,
2011. Santa Clara, USA.

EDG website, (2012). EDG Website. http://www.edg.com/. Checked in November,
2011.

Specification
 Methodology

Very Constrained Very Flexible

Verification
cost

Correct-by-
Construction

Static
Analysis

POR
Techniques

White
Box

Black
Box

Cooperative
Techniques

DEC
Scheduling

Embedded Systems – Theory and Design Methodology

274

Fallah, F., Devadas, S. & Keutzer, K. (1998) Functional vector generation for HDL models
using linear programming and 3-satisfiability. Proceedings of the 35th annual Design
Automation Conference (DAC '98). ACM, New York, NY, USA, pp. 528-533.

Flanagan, C. & Godefroid, P. (2005) Dynamic Partial Order Reduction for Model Checking
Software. Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 2005.

Godefroid, P. (1995) Partial-Order Methods for the Verification of Concurrent Systems; An
approach to the State-Explosion Problem. PhD thesis. University of Liege. 1995.

Godefroid, P., Klarlund, N. & Sen, K. (2005) DART: Directed Automated Random Testing.
Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and
implementation (PLDI '05). ACM, New York, NY, USA, pp. 213-223.

Grant, M. (2006). Overview of the MPSoC Design Challenge. Proceedings of Design
Automation Conference 2006, DAC’06. , ISBN 1-59593-381-6 San Francisco, USA.

Gupta, A., Casavant, A.E., Ashar, P., Mukaiyama, A., Wakabayashi, K. & Liu, X. G. (2002).
Property-Specific Testbench Generation for Guided Simulation. Proceedings of the
2002 Asia and South Pacific Design Automation Conference (ASP-DAC '02). IEEE
Computer Society, Washington, DC, USA. 2002.

Halfhill, T. (2012). Looking beyond Graphics. 2012. Whipe paper, Available in
http://www.nvidia.com/object/fermi_architecture.html.

Haubelt, C., Falk , J., Keinert, J. , Schlichter, T., Streubühr, M. , Deyhle, A. , Hadert, A.,
Teich, J. (2007). A SystemC-Based Design Methodology for Digital Signal
Processing Systems. EURASIP Journal on Embedded Systems. V. 2007, Article ID
47580, 22 pages. January, 2007.

Helmstetter, C. & Maraninchi, F., Maillet-Contoz & Moy, M. (2006) Automatic Generation of
Schedulings for Improving the Test Coverage of Systems-on-a-Chip. Proceedings of
Formal Methods in Computer Aided Design, FMCAD‘06. November, 2006.

Helmstetter, C. (2007). Validation de Modèles de Systèmes sur Puce en présence
d’ordonnancements Indétermnistes et de Temps Imprecis. PhD thesis. March.
2007.

Herrera, F., & Villar, E. (2006). Extension of the SystemC kernel for Simulation
Coverage Improvement of System-Level Concurrent Specifications. Proceedings
of the Forum on Specification and Design Languages, FDL’06. Darmstad. Germany.
Sept., 2006.

Herrera, F. & Villar, E. (2007). A Framework for Heterogeneous Specification and Design of
Electronic Embedded Systems in SystemC. ACM Transactions on Design
Automation of Electronic Systems, Special Issue on Demonstrable Software
Systems and Hardware Platforms, V.12, Issue 3, N.22. August, 2007.

Herrera, F., & Villar, E. (2009). Local Application of Simulation Directed for Exhaustive
Coverage of Schedulings of SystemC Specifications. Proc. of the Forum on
Specification and Design Languages, FDL‘09. Sophia Antipolis. France. September,
2009. ISBN 1636-9874.

HetSC website, (2012). HetSC website. www.teisa.unican.es/HetSC. 2012.
IEEE, (2005). SystemC Language Reference Manual. Available in

http://standards.ieee.org/getieee/1666/download/1666-2005.pdf.

Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off

275

Incisive, (2009). Incisive Enterprise Simulator Datasheet. Available in
 http://www.cadence.com/rl/Resources/datasheets/incisive_enterprise_specman.

pdf. March, 2009
Jantsch, A. (2004). Modelling Embedded Systems and SoCs. Concurrency and Time in Models of

Computation. Elsevier Science (USA), 2004. ISBN 1-55860-925-3.
Kahn, G. 1974. The Semantics of a simple Language for Parallel Programming. Proceedings of

the IFIP Conference 1974, North-Holland, 1974.
Kish, L. B. (2002). End of Moore’s Law: thermal (noise) death of integration in micro and

nano electronics. Physics Letters A 305. pp. 144-149. Elselvier.
Kuhn,T., Oppold, T., Winterholer, M., Rosenstiel, W., Edwards, M. and Kashai, Y. (2001). A

Framework for Object Oriented Hardware Specification Verification, and Synthesis.
Proceedings of the Design Automation Conference, 2001.DAC’01. 2001.

Kundu, S., Ganai, M., Gupta, R. (2008) Partial Order Reduction for Scalable Testing of
SystemC TLM Designs. Proceedings of the Design Automation Conference,
DAC’08. Anaheim, CA, USA. June, 2008.

Kuo,Y.M., Lin, C.H., Wang, C.Y., Chang, S.H. & Ho, P.H. (2007). Intelligent Random Vector
Generator Based on Probability Analysis of Circuit Structure. Proceedings of the 8th
International Symposium on Quality Electronic Design (ISQED '07). IEEE Computer
Society, Washington, DC, USA, pp. 344-349.

Lee, E. A. & Messerschmitt, D.G. (1987). Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing. IEEE Transactions on Computers. V. C-36.
N.1. pp. 24-35, January, 1987.

Lee, E.A. (2006). What’s the Problem with Threads. IEEE Computer, Vol. 36, No. 5, pp. 33-42,
May, 2006.

Moy, M., Maraninchi, F., Maillet-Contoz, L. (2005) PINAPA: An Extraction Tool for SystemC
Descriptions of Systems on a Chip. Proceedings of EMSOFT, September, 2005.

MPI: A Message-Passing Interface Standard. Version 2.2. September, 2009. Available from
http://www.mcs.anl.gov/research/projects/mpi/

OSCI Verification WG (2003). SystemC Verification Standard. Version 1.0e. May 16, 2003.
Available at www.systemc.org.

OpenMP. (2008). Application Program Interface. 4 Version 3.0 May 2008. Available from
http://openmp.org/wp/.

Patel, H.D. & Shukla, S.K. (2004). SystemC kernel extensions for Heterogeneous System
Modelling: A Framework for Multi-MoC Modelling and Simulation. Kluwer. 2004.

Sen, K., Marinov, D. & Agha, G.. (2005). CUTE: a Concolic Unit Testing Engine for C.
Proceedings of the 10th European Software Engineering Conference (ESEC/FSE-13).
ACM, New York, NY, USA, 263-272.

Sen, A., Ogale, V., Abadir, M. S. (2008). Predictive Runtime Verification of multi-processor
SoCs in SystemC. Proceedings of Design Automation Conference, DAC’08.
Anaheim, CA, USA June, 2008.

UCSCKext, (2011). Website for SystemC kernel extensions provided by University of
Cantabria. http://www.teisa.unican.es/HetSC/kernel_ext.html. November, 2011.

Ugarte, I. & Sanchez, P. (2011) Automatic vector generation guided by a functional metric.
Proceedings of SPIE. 8067, 80670U (2011)

Embedded Systems – Theory and Design Methodology

276

Yuan, J., Aziz, A., Pixley, C., Albin, K. (2004). Simplifying Boolean constraint solving for
random simulation-vector generation. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems. V. 23, N. 3, pp. 412-20, March, 2004.

Zhu, J., Sander, I., & Jantsch, A. (2010). HetMoC: heterogeneous modelling in SystemC.
Proceedings of Forum for Design Languages (FDL '10). Southampton, UK, 2010.

13

SW Annotation Techniques and RTOS
Modelling for Native Simulation of

Heterogeneous Embedded Systems
Héctor Posadas, Álvaro Díaz and Eugenio Villar

Microelectronics Engineering Group of the University of Cantabria
Spain

1. Introduction
The growing complexity of electronic systems has resulted in the development of large
multiprocessor architectures. Many advanced consumer products such as mobile phones,
PDAs and media players are based on System on Chip (SoC) solutions. These solutions
consist of a highly integrated chip and associated software. SoCs combine hardware IP cores
(function specific cores and accelerators) with one or several programmable computing
cores (CPUs, DSPs, ASIPs). On top of those HW resources large functionalities are
supported.

These functionalities can present different characteristics that result in non homogeneous
solutions. For example, different infrastructure to support both hard and soft real time
application can be needed.. Additionally, large designs rely on SW reuse and thus on legacy
codes developed for different platforms and operating systems. As a consequence, design
flows require managing not only large functionalities but also heterogeneous architectures,
with different computing cores and different operating systems.

The increasing complexity, heterogeneity and flexibility of the SoCs result in large design
efforts, especially for multi-processor SoCs (MpSoC). The high interaction among all the SoC
components results in large number of cross-effects to be considered during the
development process. Additionally, the huge number of design possibilities of complex
SoCs makes very difficult to find optimal solutions. As a consequence, most design
decisions can no longer depend only on designers’ experience. New solutions for early
modeling and evaluating all the possible system configurations are required. These
solutions require very high simulation speeds, in order to allow analyzing the different
configurations in acceptable amounts of time. Nevertheless, sufficient accuracy must be
ensured, which requires considering the performance and interactions of all the design
components (e.g. processors, busses, memories, peripherals, etc.).

Static solutions have been proposed to estimate the performance of electronic designs.
However, these solutions usually result too pessimistically and are difficult to scale to very
complex designs. Instead, performance of complex designs can be more easily evaluated
with simulation based approaches. Thus, virtual platforms have been proposed as one of the
main ways to solve one of the resulting biggest challenges in these electronic designs:

Embedded Systems – Theory and Design Methodology

278

perform software development and system performance optimization before the hardware
board is available. As a result, engineers can start developing and testing the software from
the beginning of the design process, at the same time they obtain system performance
estimations of the resulting designs.

However, with the increase of system complexity, traditional virtual platform solutions
require extremely large times to model these multiprocessor systems and evaluate the
results. To overcome this limitation, new tools capable of modeling such complex systems in
more efficient ways are required. First, it is required to reduce simulation times. Second, it is
required to have tools capable of modeling and evaluating initial, partial designs with a low
effort. For example, it is not acceptable to require complete operating system ports to
initially evaluate different platform possibilities. Only when the platform is decided OS
ports must be done, due to the large design effort required.

Virtual platform technologies based on simulations at different abstraction levels have been
proposed, providing different tradeoffs between accuracy and speed. As early evaluation of
complex designs requires very high simulation speeds, only the use of faster simulation
techniques can be considered. Among them, simulations based on instruction set simulators
(ISSs) and binary translation are the most important ones. However, none of them really
provides the required trade-off for early evaluation.

ISSs are usually very accurate but too slow to execute the thousands of simulations required
to evaluate complete SoC design spaces. ISS-based simulations usually can take hours,
which means that the execution of thousand of simulation can require years, something not
acceptable in any design process.

Simulations based on binary translation are commonly faster than ISSs. However, these
solutions are more oriented to functional execution than to performance estimation. Effects
as cache modeling are usually not considered when applying binary translation.
Furthermore, this simulations also result too slow to explore large design spaces.

Additionally, in both cases, the simulation requires a completely developed SW and HW
platform. Completely operational peripheral models, operating systems, libraries, compilers
and device drivers are needed to enable system modeling. However, all these elements are
usually not available early in the design process. Then, these simulation techniques are not
only too slow but also difficult to perform. The dependence on such kind of platforms also
results in low flexibility. Evaluating different allocations in heterogeneous platforms,
different kind of processors and different operating systems is limited by the refining effort
required to simulate all the options. Similarly, the evaluation of the effect of reusing legacy
code in those infrastructures is not an easy task. As a consequence, faster and more flexible
simulation techniques, capable of modeling the effect of all the components that impact on
system performance, are required for initial system development and performance
evaluation.

The solution described in this chapter is to increase the abstraction level, moving the SW
simulation and evaluation from binary-based virtual platforms to native-based
infrastructures. Using cross-compiled codes to simulate a platform in a host computer
requires compulsory using some kind of processor models and a developed target SW
platform. Thus, the simulation overhead provided by the processor model, and the
development effort to develop the SW platform are items that cannot be avoided. On the

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

279

contrary, simulations based on native or host-compiled executions avoid requiring a
functional processor model, since no binary interpretation is done. Furthermore, a complete
SW platform is not required, since the native SW platform can be partially used.

Nevertheless, in order to accurately modeling the system behavior and its performance
modelling, a set of additional elements have been included in the native simulation
infrastructures. Capabilities for modeling the delay of the SW execution in the target
processor, the operation of the different level of caches, the target operating system and the
other components in the HW platform, have been added. In the literature, some partial
solutions have been proposed to support some of the elements of this list. However, some
other features have not been solved in previous approaches, such as the support of different
operating systems. Additionally as most of the proposed works are partial proofs of
concept, there is a lack of complete integrated solutions.

The modeling of the application SW and its execution time in the target platform is a key
element in native simulation, since it is the part of the infrastructure with more impact both
in the simulation speed and in the modelling accuracy. Thus, in order to enable the
designers to adjust the speed/accuracy ratio according to their needs, different solutions for
SW annotation are presented and analyzed in the chapter. All solutions enable very easily
exploring the effect of using different processors in the system. Only a generic compiler for
the target processor is used. No specific OS ports, linker scripts or libraries are required.

With respect to the operating system, a basic OS modeling infrastructure has been
developed, providing the user the possibility of simulating code based on Linux (POSIX),
uC/os-II and Windows. The model has been developed starting from an OS modelling
infrastructure providing a POSIX API. This infrastructure has been extended to support at
the same time the other two APIs. This is an important step ahead to the state of the art,
since very few proposed infrastructures support real operating systems, and to the best of
our knowledge none of them considers these different APIs.

The resulting virtual platforms are about two-three times slower that functional execution
when caches are not considered, and about one order of magnitude slower when using
cache models. Processor modeling accuracy in terms of execution times is lower than 5% of
error and the number of cache misses has an error of about 10%.

2. Related work

The modelling and performance evaluation of common MpSoC systems focuses in the
modelling of the SW components. Since most of the functionality is located in SW this part is
the one requiring more simulation times. Additionally the evaluation accuracy of the SW is
also critical in the entire infrastructure accuracy. SW components are usually simulated and
evaluated using two different approaches: approaches based on the execution of cross-
compiled binary code and solutions based on native simulation.

Simulations based on cross-compiled binary code are based on the execution of code
compiled for a target different from the host computer. As a consequence, it is required to
use an additional tool capable or reading and executing the code. Furthermore, this tool is in
charge of obtaining performance estimations. To do so, the tool requires information about
the cycles and other effects each instruction of the target machine will have in the system.
Three different types of cross-compiled binary code can be performed depending on the

Embedded Systems – Theory and Design Methodology

280

type of this tool: simulations with processor models, compiled simulation and binary
translation.

Instruction set simulators (ISSs) are commonly used as processor models capable of
executing the cross-compiled code. These simulators can model the processor internals in
detail (pipeline, register banks, etc.). As a consequence, they achieve very accurate results.
However, the resulting simulation speed is very slow. This kind of simulators has been the
most commonly used in industrial environments. CoWare Processor Designer (Cowar),
CoMET de VaST Systems Technology (CoMET), Synopsys Virtual Platforms (Synopsys),
MPARM (Benini et al, 2003) provide examples of these tools. However, due to the slow
simulation speeds obtained with those tools, new faster simulation techniques are obtaining
increasing interest.

Compiled simulation improves the performance of the ISSs while maintaining a very high
accuracy. This solution relies on the possibility of moving part of the computational cost of
the model from the simulation to the compilation time. Some of the operations of the
processor model are performed during the compilation. For example, decoding stage of the
pipeline can be performed in compilation time. Then, depending on the result of this stage,
the simulation compiler selects the native operations required to simulate the application
(Nohl et al, 2002). Compiled simulations based on architectural description languages have
been developed in different projects, such as Sim-nML (Hartoog et al, 1997), ISDL (XSSIM)
(Hadjiyiannis et al, 1997) y MIMOLA (Leupers et al, 2099). However, the resulting
simulation is still slow and complex and difficult to port.

The third approach is to simulate the cross-compiled code using binary translation (Gligor et
al, 2009). In this technique assembler instructions of the target processor are dynamically
translated into native assembler instructions. Then, it is not necessary to have a virtual
model describing the processor internals. As a result, the SW code is simulated much faster
than in the two previous techniques. However, as there is no model of the processor, it is a
bit more difficult to obtain accurate performance estimations, especially for specific elements
as caches. Some examples of binary translation simulators are IBM PowerVM (PowerVM),
QEMU (Qemu) or UQBT (UQBT).

Although these techniques result in quite fast simulators, the need of modelling very
complex system early in the design process requires searching for much faster solution. For
example, the exploration of wide design spaces can require thousands of simulations, so
simulation speed have to be as close to functional execution speed as possible. The previous
simulation techniques require a completely developed SW and HW platform, which are
usually not available early in the design process. Then, these simulation techniques are not
only too slow but also difficult to perform. Additionally, the simulation of heterogeneous
platforms, with different kind of processors and different operating systems is limited by
the refining effort required to evaluate all the options.

In order to overcome all these limitations, native simulation techniques have been proposed
(Gerslauer et al, 2010).

2.1 Native simulation

In native simulation, the SW code is directly executed in the host computer. Thus, it is not
required any kind of interpreter. As a consequence, very high simulation speeds can be

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

281

achieved. However, in order to model not only the functionality but also the performance
expected in the target platform additional information has to be added to the original code.

Furthermore, a model of the SW platform is also required. If the target operating system API
is different than the native one, an API model is required to enable the execution of the SW
code. A scheduler only controlling the tasks of the system model, not the entire host
computer processes, specific time controller, or different drivers and peripheral
communications are elements the SW infrastructure must provide.

Several solutions have been proposed for both issues in the last years.

2.2 SW performance estimation

Native simulation (Hwang et al, 2008; Schnerr et al, 2008; Bouchima et al, 2009) obtains
target performance information from an analysis of the source code of the application SW to
be executed. The common technique used to perform native simulations is to divide the
code in fragments, estimate the time for each one of the fragments before the compilation
process and annotate this information in the code. Usually basic blocks are used as code
fragments because the entire block is always completely executed in the same way. Thus,
basic blocks can be annotated as a single unit without introducing estimation errors. Such
annotated code is then compiled and executed in the host computer, together with an
infrastructure capable of capturing the timing estimations generated, and applying the
corresponding delays to the simulation. As a consequence a timed model of the SW is
obtained; a model which is ready to interact with other timed SW and HW components, to
model the entire system.

Several techniques have been proposed to obtain the time information for each code
fragment. These techniques can be divided in three main groups: pure source code
estimations, estimations of intermediate code and cross-compiled code analysis.

Performance estimations based on source code analysis consider directly the C/C++
instructions of the basic block. They associate a number of cycles per instruction to each C
operator. Using these values the total number of cycles required to execute each block is
estimated. The associated time per instruction is obtained depending on the compiler and
the target platform. Using simple mathematical operations, the number of cycles required to
execute large sections of code is obtained (Brandolese et al, 2001; Posadas et al, 2004).
Compared with the other two solution types described below, this solution is the most
platform-independent one. No operational SW infrastructure for the target platform is
required: no compiler, no operating system or libraries, etc. However, the other two
solutions are more accurate, especially because no compiler optimizations can be considered
in this one.

Estimations obtained from analysis of the intermediate code enable considering compiler
optimizations, at least the optimizations that do not depend on the target instruction set.
The basic idea is to identify the instructions of the basic blocks of the source code in the
intermediate code. Analyzing the blocks in the intermediate code it is possible to obtain
more accurate information than that obtained with the source level analysis. The main
benefit obtained from using intermediate code is that the task of extracting the relationships
among the basic blocks of the source code and the intermediate code is much simpler than
with final cross-compiled code (Kempf et al, 2006; Hwang et al, 2008; Bouchima et al, 2009).

Embedded Systems – Theory and Design Methodology

282

However, this technique presents several limitations. First, not all compiler optimizations
can be analyzed. Second, the intermediate code is completely dependent on the compiler, so
the portability of the solutions is limited. To solve those limitations, a few proposals for
analyzing the cross-compiled binary code have been also presented.

Estimations based on binary code are based in the relationships between the basic blocks of
the source code and the cross-compiled code (Schnerr et al, 2008). Since the code analyzed is
the real binary that is executed in the target platform, no estimation errors are added for
wrong consideration of the compiler effects. The problem with these estimations is how to
associate the basic blocks of the source code to the binary code (Castillo et al, 2010).
Compiler optimizations can provoke important changes in the code structure. As a
consequence, techniques capable of making correct associations in a portable way are
required.

Moreover, different efforts for modelling the effect of the processor caches in the SW
execution have been proposed. In (Schnerr et al, 2008) a first dynamic solution for
instruction cache modelling has been proposed. Another interesting proposal was presented
in (Castillo et al, 2010). Additionally, also solutions for data cache modelling have been
proposed (Gerslauer et al, 2010; Posadas et al, 2011).

This chapter proposes some solutions for making the basic block estimations, providing
different ratios between speed and accuracy, always maintaining complete portability for its
application to different platforms. Cache solutions provided in (Castillo et al, 2010) and
(Posadas et al, 2011) have been applied to optimize the final accuracy and speed.

2.3 Operating system modeling

The second element required to perform a correct native simulation is the modeling of the
SW platform. That is, it is required to model the operating system (Zabel et al, 2009; Becker
et al, 2010). Concurrency support, scheduling, management of priorities and policies and
services for communication and synchronization are critical issues in SW execution. Several
solutions have been proposed to simulate SW codes on specific OSs. Some operating system
providers include OS simulators in their SW development kits (ENEA; AXLOG). These
simulators enable the development and verification of SW functionality without requiring
the HW platform. However, these simulators only model the processor execution, without
considering other elements of the final system. This limitation has two different drawbacks.
First the simulators are not adequate for evaluating the system performance. Additionally,
the simulation of the SW with application-specific HW components is not possible. As a
result they are not adequate for its integration in co-design flows.

In order to obtain optimal HW/SW co-simulation environments with good relations
between accuracy and speed for the early stages of the design process, it is necessary to
develop models of RTOS based on high-level modeling languages. Several models based on
SpecC (Tomiyama et al, 2001; Gerstlauer et al, 2003) and SystemC (Hassan et al, 2005; He et
al, 2005; Schirner et al, 2007) have been proposed. However, most of these solutions have
limited functionality and proprietary interfaces, which greatly complicate the modeling of
real application SW codes (Gerstlauer et al, 2003; He et al, 2005; Yoo et al, 2002). Most of
these models are limited to providing scheduling capabilities. Later a few models of specific

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

283

operating systems have been proposed (Honda et al, 2004; Hassan et al, 2005). However,
these RTOS models were very light and with reduced functionality.

Given the need of providing more complete models for simulating MPSoC operating
systems, the infrastructure presented in this chapter starts from a very complete operating
system model based on the POSIX interface and the implementation of the Linux operating
system (Posadas et al, 2006). This chapter proposes an extension of this work to support
different operating Systems. The models of the common operating systems uC/OS and
Windows APIs are provided. As a result, the increasing complexity and heterogeneity of the
MpSoCs can be managed in a flexible way.

3. Previous technology
As stated above, one of the main elements in a system modelling environment based in
native simulation is the operating system model. It is in charge of controlling the execution
of the different tasks, providing services to the application SW and controlling the
interconnection of the SW and the HW. For that purpose, a model based on the POSIX API
is used. The model uses the facilities for thread control of the high-level language SystemC
to implement a complete OS model (Figure 1). Threads, mutexes, semaphores, message
queues, signals, timers, policies, priorities, I/O and other common POSIX services are
provided by the model. This work has been presented in (Posadas et al, 2006).

Fig. 1. Structure of the previous simulation infrastructure.

Embedded Systems – Theory and Design Methodology

284

Special interest in the operating system model has the modeling of separated memory
spaces in the simulation. As SystemC is a single host process, the integration of SW
components containing functions or global variables with the same names in a single
executable, or the execution of multiples copies of components that use global variables
result in name collisions. To solve that, an approach based on the use of protected dynamic
variables has been developed (Posadas et al, 2010).

However, the OS model is not only in charge of managing the application SW tasks. The
interconnection between the native SW execution and the HW platform model is also
performed by this component. For that goal, the model provides functions for handling
interrupts and including device drivers following the Linux kernel 2.6 interfaces.

Additionally, a solution capable of detecting and redirecting accesses to the peripherals
directly through the memory map addresses has been implemented. Most embedded
systems access the peripherals by accessing their registers directly through pointers.
However, in a native simulation, pointer accesses do not interact with the target HW
platform model, but with the host peripherals. In fact, accesses to peripherals result in
segmentation faults, since the user code has no permission to perform this kind of accesses.
To solve that, these accesses are automatically detected and redirected using memory
mappings (“mmap()”), interruption handlers, and code injection, in order to work properly
(Posadas et al, 2009).

Furthermore, a TCP/IP stack has been integrated in the model. For that purpose, the open-
source, stand-alone lwIP stack has been used. The stack has been adapted for its integration
into the proposed environment both for connecting different nodes in the simulation
through network models, and for connecting the simulation with the IP stack of the host
computer, in order to communicate the simulation with other applications.

As a consequence, the infrastructure has demonstrated to be powerful enough to support
the development of complete virtual platform models. However, improvements in the API
support and performance modelling of the application SW are required. This work proposes
solutions to improve them.

4. Virtual platform based on native simulation: goals and benefits
The goal of the native infrastructure is to provide a tool capable of assisting the designer
during the initial design steps. More specifically, the infrastructure has been developed to
provide the following services to the designers:

 Simulate the initial system models to check the complete functionality, before the
platform is available, including timing effects.

 Provide performance estimations of the system models to evaluate the design decisions
taken.

 Provide an infrastructure to start the refinement of the HW and SW components and
their interconnections from the initial functional specification

 Work as a simulation tool integrated in design space exploration flows together with
other tools required in the process

The first goal is to provide the designer with information about the system performance in
terms of execution time and power consumption to make possible the verification of the

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

285

fulfilment of the design constraints. This verification can be performed in two ways. First,
the infrastructure reports metrics of the whole system performance at the end of the
simulation, in order to enable the verification of global constraints. This solution allows
“black box” analysis, where designers can execute several system simulations running
different use cases, to easily verify the correct operation in all the working environments
expected for the system.

A second option enabled by the infrastructure is to perform the verification of the system
functionality and the checking of internal constraints. These internal constraints must be
inserted in the application code using assertions. For that purpose, the use of the standard
POSIX function “assert” is highly recommended. The infrastructure offers to the designer
functions that provide punctual information about execution time and power consumption
during simulation. Using that functions, internal assertions can check the accomplishment of
parameters as delays, latencies, throughputs, etc.

A second goal of the infrastructure is to provide useful information to guide the designers
during the development process. The co-design process of any system starts by making
decisions about system architecture, HW/SW partitioning and resource allocation. To take
the optimal decisions the infrastructure provides a fast solution to easily evaluate the
performance of the different solutions considered by the designer. Task execution times,
CPU utilization, cache miss rates, traffic in the communication channel, and power
consumption in some HW components are some of the metrics the designer can obtain to
analyze the effects of the different decisions in the system.

Another goal of the infrastructure is to provide the designers with a virtual platform where
the development of all the components of the system can start very early in the design
process. In traditional development flows, some components, such as SW components,
cannot start their development process until a prototype of the target platform is built.
However, it increases the overall design time since HW and SW components cannot be
developed in parallel.

To reduce the design time, it is provided a solution for HW/SW modeling where the design
of the SW components can be started. To enable that, the infrastructure provides a fast
simulation of the SW components considering the effects of the operating system, the
execution time of the SW in the target platform and enabling the interaction of the SW with
a complete HW platform model. Even, the use of interruptions and drivers can be modelled
in the simulation. The execution of the SW is then transformed in a timed simulation, where
the use of services such as alarms, timeouts or timers can be explored in order to ensure
certain real-time characteristics in the system.

Furthermore, the simulation of the SW using a native execution improves the debugging
possibilities. Designers can directly use the debuggers of the host system, which has a
double advantage: first, it is not necessary to learn how to use new debugging tools; second,
the correct operation of the debuggers are completely guaranteed, and does not depend on
possible errors in the porting of the tool-set to the target platform. Additionally, designers
can easily access to all the internal values of both the SW and HW components, since all are
modelled using a C++ simulation.

In order to achieve all these goals, the infrastructure implements a modeling infrastructure
capable of supporting complete native co-simulation. The infrastructure provides novel

Embedded Systems – Theory and Design Methodology

286

solutions to enable automatic annotation of the application SW, a complete RTOS model,
models of most common HW platform components and an infrastructure for native
execution of the SW and its interconnection with the HW platform. Additionally, it is
possible to describe configurable systems obtaining system metrics.

5. SW estimation and modeling
As a stated before, SW modeling solutions have become one of the most important areas of
native simulation technology. The fastest possible execution of the system functionality is
the direct compilation and execution of the code in the host computer. Thus, the goal is to
provide a modeling solution capable of evaluating system performance, but maintaining a
similar execution speed, as long as possible. Specially, the modeling solution has to
overcome the three main limitations of functional execution with a minimum simulation
overhead. First, functional executions do not consider any timing effect resulting of
executing the code in the target platform. As a consequence, no performance information
and no constraint checkings are available. Second, these executions cannot interact with the
functionality implemented as HW components in the target platform. Thus, the simulation
of the entire system functionality and the verification of the HW/SW integration are not
possible. Finally, there is a problem when trying to execute a SW code developed for other
OS APIs different from the native API.

To solve the first limitation, the solution proposed is to automatically modify the application
SW in order to model performance effects. These performance effects include the execution
of the code in the target processor core and the operation of the processor caches. The
general solution applied for that modeling is based on estimating the effects during SW
execution and apply them to the simulation, just before the points where the SW tasks start
communications with the rest of the system, usually system calls. Four main solutions have
been explored for obtaining the estimations: modified host times, the use of operator
overloading and static annotation of basic-blocks at source and binary level. As a
consequence, designers can modify the simulation speed and accuracy according to their
needs on each moment.

The general annotation infrastructure enables using any of the estimation techniques with a
virtual platform. Even, they can be combined in the same simulation. It depends on the
method selected how to apply the estimated times for each SW component to increase the
simulation time. The basic idea is to apply the estimated times when a system call is
performed. This is caused because system calls are the points where communications and
synchronizations are executed, that is, when SW tasks interacts with the rest of the system.

5.1 SW estimation based on modified host times

The first technique implemented is based on the use of the execution times of the host
computer. As the time required for a processor to execute a code depends on the size of the
functionality, there is a relationship between the time a SW execution takes in the host
computer and in the target platform. Thus the idea is to run the simulation on the native PC
getting the time required to execute each code segment. The estimated time costs of the
components in the target platform are estimated by multiplying the time required to execute

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

287

in the host computer by an adjustment factor. This factor is based on the characteristics of
the native PC and the target platform.

Unlike the other techniques presented below, this solution does not require the generation
of annotated SW code. The original code is executed as it is, without additional sentences.
Estimation and time modeling is done automatically when the system calls of the OS model
are executed. The execution time of each segment is obtained by calling the function
"clock_gettime ()" of the native operating system (Figure 2). To minimize the error produced
by the other PC tasks, the simulation must be launched with the highest possible priority.

Application

SW code

SystemC

Task
SW

Task
SW

Task
SW

Simulation

OS model
clock_gettime(time);
..
wait(time-init_time);

Fig. 2. Modeled by native time setting.

This solution has the advantage of being very fast, because no annotations increasing the
execution time are needed. Nevertheless, a number of disadvantages hinder their use in
most cases. First, we must be able to ensure that the simulation times obtained are really due
to the execution of system code, and no caused by other parasite processes that were
running on the computer. Second, the solution is not able to model cache behaviour
adequately. Moreover, as only the execution time information can be obtained from the
simulation, the transformations applied to obtain times of the target platform are reduced to
a linear transformation. However, there is no guarantee that the cost of the native PC and
the platform fits a linear relationship. On the contrary, the existence of different hardware
structures, such as different caches, memory architectures or mathematical co-processors
can produce significant errors in the estimation.

Summarizing, this solution is recommended only for very large simulations or codes where
the accuracy obtained in performance estimations is not critical. Additionally, it is a good
solution to estimate time of SW components that cannot be annotated. For example, some
libraries are provided only in binary format. Thus, annotations are not possible since source
code is not present. As a result, this solution is the only applicable of the four proposed.

5.2 SW estimation based on operator overloading

The estimation technique using operator overloading calculates the cost of SW as it
progresses. Each operation executed must be accompanied by a consideration of the time
cost it requires in the target platform. The temporal estimation of an entire SW code segment
is obtained accumulating the times required to perform all the operations of a segment. This
solution will avoid costly algorithms and static calculations, avoiding getting oversized

Embedded Systems – Theory and Design Methodology

288

times, as in the case of techniques for estimating worst case (WCET), or the consideration of
false paths. That way, the estimated time depends on exactly the code that is executed.

The solution relies on the capability of C++ to automatically overload the operators of the
user-defined classes. Using that ability, the real functional code can be extended with
performance information without requiring any code modification. New C++ classes
(generic_int, generic_char, generic_float, …) have been developed to replace the basic C data
types (int, char, float, …) . These classes replicate the behavior of the basic data type
operators, but adding to all the operator functions the expected cost of the operator in the
target platform, in terms of binary instructions, cycles and power consumption. The
replacement of the basic data types by the new classes is done by the compiler by including
an additional header with macros of the type:

“#define int generic_int”

A similar solution is applied to consider the cost of the control statements.

To apply that technique, a table with the cost of all the operators and control statements in
the target platform must be provided by the user.

The operating mechanism of this estimation technique can be seen in Figure 3. First, the
original code is modified by replacing the original data types of the SW by new classes
overloaded. This is done automatically using compiler preprocessor C. The new classes are
provided by the simulation infrastructure. There is a class for each basic data type, which
stores the value of the data type and the cost of each operation for this operator. The
resulting code is executed using the overloaded operators.

Annotated
SW code

Annotation

Overloaded Classes

SW
Task

SW
Task

SW
Task

Simulation

Application
SW code

GCC

Preprocessor Compiler

SystemC

OS model

int operador + (a,b){
 time+= t_add;
 return a + b;
}

void sem_open(){
 wait(time);
 os_sem_open();
} Overloaded

Classes
Fig. 3. Temporal model with operator overloading.

The original application code is compiled without any prior analysis or modification.
Therefore, the operator overloading modeling technique is completely dynamic. All
operations performed in the code are monitored by the annotation technique. This implies
that the technique has enormous potential as a technique for code analysis. Studies on the
number of operations, or monitoring data types of variables can be easily performed
minimally modifying the overloading of operators.

This solution has demonstrated to be easy to implement, and very flexible to support
additional evaluations, since all the information is managed dynamically, including the data
values. Nevertheless, this solution has several limitations if the solely objective of the
simulation is the estimation of execution times. Compiler optimizations are not accurately
considered. Only, a mean optimization factor can be applied. Furthermore, the use of

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

289

operator overloading for all the data types implies a certain overhead, which slows down
the simulation speed.

5.3 Annotation from source-code analysis

To obtain simulations with really low overhead, it is needed to move analysis effort from
simulation to compilation time. Solutions based on static annotation divides the
performance modeling in two steps. First, the source code is statically analyzed, obtaining
performance information for each basic block of the source code. After that, this information
is annotated in the code, and the cost of each basic block executed is accumulated during the
simulation and applied at system calls.

As in the technique of operator overloading, this estimation technique is based on assigning
a time cost to each C operator. The total cost of each segment of SW code is estimated by
adding the time of the operators executed in the segment. The cost of each operator is
calculated in the same manner as shown in the previous technique. As a consequence, the
effects of compiler optimizations are difficult to estimate from the analysis of source code.
For this reason, an adjustment factor can be provided to the simulation to consider
improvements introduced by compiler optimizations. This factor is obtained comparing the
sizes of SW code segments both optimized and not optimized.

For the static analysis, a parser based on an open-source C++ grammar has been
implemented. The parser analyzes the source code, obtaining the number and type of
operators used on each basic block, as long as the control statements at the beginning of
each block. Using that information and the table with the cost of each operator used for the
previous technique it is possible to obtain the cost for the entire basic block. Then, this cost is
applied in the source code in the following way:

“segment_cycles += 120; segment_instructions += 20;”

As a result, the variables segment_cycles and segment_instructions accumulate the total
cycles and instructions required to execute the entire code in the target platform. The
complete sequence of tasks necessary to perform the estimation based on source code
analysis is shown in the next figure.

Annotated
SW code

Platform
information

SW
Task

SW
Task

SW
Task

Simulation

Application
SW code

Preprocessor

SystemC

OS model

… // Code
if(flag){
 time+=t_block;
 … // Code

void sem_open(){
 wait(time);
 os_sem_open();
}

Annotation

Fig. 4. temporal modeling with source-code analysis.

This solution requires more development effort than the operator overloading technique,
especially for the implementation of the parser using the yacc/lex grammar. However, the
simulation speed is really improved, achieving simulation times very close to the functional
execution times (only two or three times slower). The main limitation of the technique is,

Embedded Systems – Theory and Design Methodology

290

again, the impossibility of accurately considering the compiler optimizations, since no
analysis of the compiler output is performed.

5.4 Source annotations based on binary analysis

The last solution proposed is capable of maintaining the qualities of the previous annotation
technique, but providing more accurate results, including compiler optimizations. In this
solution, the analysis of the source code is replaced by an analysis of the cross-compiled
binary code. The use of compiled code instead of source code enables accurately considering
all the effects of cross compiler optimizations. Once identified the assembler instructions
corresponding to each basic block of the SW code, the number of instructions of the blocks
and the cycles required to execute them are annotated in the source code.

Pre-
processed

code
Gramatical

analysis

Basic block
identification

Rebuilding and
annotation

Annotated
code

Marked
code

Cross-
compiler

Binary
code

Readelf
--symbols

Fig. 5. Estimations with analysis of binary code.

However, estimations based on binary code usually present two limitations: first, it is
difficult to identify the basic blocks of the source code in the binary code, and second, these
solutions are usually very dependent on the processor. In order to build a simulation
infrastructure fast and capable of modelling complex heterogeneous embedded systems,
both issues have to be solved.

The correlation between source code and compiled code is sometimes very complex
(Cifuentes) This is mainly due to results of the compiler optimizations as the reordering of
instructions and dead code elimination. Furthermore, the technique should be easily
portable to allow evaluation of different processors with minimal effort. To easily extract the
correlation between source code and binary code, the proposed solution is to mark the code
using labels. Both the annotation and identification of the positions of the labels can be done
in a manner completely independent of the instruction set of the target processor. The
annotation of labels in the code is a standard C feature, so it is extremely portable.
Additionally, there are several standard ways to know the address of the labels in the target
code, such as using the bin-utils or reading the resulting assembler code. Thus, the
technique is extremely portable, and well suited to handle heterogeneous systems.

However, including compiler optimizations implies another problem. Compilation without
optimizations enables easily identifying points in the binary code by inserting labels in the
source code. However, the optimizations have the ability to move or even remove those
labels. For example, if we insert a label in a loop, and apply an optimization of loop
unrolling, the label loses its meaning. In order to avoid the compiler to eliminate the labels,
they are added to the code of the form:

asm volatile(“etiqueta_xx:”);

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

291

The use of volatile labels forces the compiler to keep the labels in the right place. Thus,
inserting labels at the beginning and end of each basic block we can easily obtain the
number of assembly instructions of each basic block. The identification of basic blocks in the
source code is made by a grammatical analysis. This grammatical analysis is done by a pre-
compiler developed using “lex” and “yacc” tools, as in the estimation technique of source
code analysis. This will locate the positions where the labels first and add annotations later.

Getting the value of the labels can easily be done using the command:

readelf –s binary_code.o | grep label_

The estimated time required to execute each basic block in the target platform is obtained by
multiplying the number of instructions by the number of cycles per instruction (CPI)
provided by the manufacturer. Although this solution carries a small error, such as not
considering stops by data dependencies, it has the advantage of being fast and generic. To
evaluate the behavior of a program on one processor, only a cross compiler for that
processor is need. Libraries, operating systems or simulators as ISSs adapted specifically for
the target platform are not required, resulting in a very portable and flexible approach.

However, with the introduction of volatile labels the compiler behaviour is still partially
changed. Most of the optimizations, such as the elimination of memory accesses by reusing
registers are correctly applied. But a few optimizations, with minor effects cannot be
performed. Loop unrolling is not possible, although its use for processors with cache is
unusual because it increases cache misses. The reordering of instructions to avoid data
dependencies is also altered, but since the processor's internal effects are not modeled, this
optimization has small effect on the estimation technique.

5.5 Cache modelling and pre-emption modeling

Nevertheless, the performance of the SW in the target platform does not only depend on the
binary instructions executed. Processor caches also have an important impact on it.
Common cache models are based on memory access traces. However, in native co-
simulation no traces about the accesses in the target platform are obtained. As a
consequence, new solutions for modeling both instruction and data caches have been
explored and included in the infrastructure.

The modeling of instruction caches is based on the fact that instructions are placed
sequentially in memory, in a place known at compilation time. Knowing the amount of
assembler instruction for each basic block it is possible to obtain a relative address for the
instructions with respect to the beginning of the “text” section of the “elf” file. This
information is used as variables’ address to access the cache model, instead of the real access
trace. Additionally, the use of static structs has been applied in order to speed-up the
simulation speed, achieving a similar error and overhead for instruction cache modeling
than for the static time annotation (Castillo et al, 2010).

For data caches, the solution proposed uses corrected host addresses for each data variable
used in the code. Additionally, global arrays handling information about the status of all the
possible memory cache lines are used to improve the simulation speed maintaining the
balance of the two previous techniques. The technique is described more in detail in
(Posadas et al, 2011).

Embedded Systems – Theory and Design Methodology

292

A final issue related to modeling the performance of the application SW is how to consider
pre-emption. With the proposed modeling solutions, the segments of code between function
calls are executed in “0” time, and after that, the time estimated for the segment is applied
using “wait” statements. As a consequence, pre-emption events are always received in the
“wait” statements. Thus, the segment has been completely executed before the information
about the pre-emption arrives. As a consequence, the task execution order and the values of
global variables can be wrong. In order to solve these problems, several solutions have been
proposed in "Real-time Operating System modeling in SystemC for HW/SW co-simulation"
(Posadas et al, 2005). The final solution applied is to use interruptible “wait” statements.
This approach solves the problems in the task execution order. Additionally, it is considered
that possible modifications in the values of global variables are not a simulation error but an
effect of the indeterminism resulting of using unprotected global variables. In other words,
it is not really an error but only a possible solution.

6. Operating system modeling
6.1 Support of multiple APIs

On of the main advantages of the underlying infrastructure selected to create the virtual
platform infrastructure is the use of a real API. Since an implementation of a complete
POSIX infrastructure is provided, most of the platforms based on Linux-like operating
systems or other operating systems providing this API can be modelled. Then the
infrastructure is able to support real software for a certain amount of platforms. However,
other operating systems are used in embedded systems. As a really useful infrastructure has
the goal of providing wide support in order to decide at the beginning of the design process
the most adequate platforms for an application, support of other operating systems is
recommended. Thus, in this work the extension of the infrastructure in that way has been
evaluated. To do so, two different operating systems of wide use in embedded systems have
been considered: a simple operating system and a complex one. As simple OS, uC/os-II has
been selected. As complex OS, the integration of a win32 API has been performed.

6.1.1 Support of uC/os-II

μC/OS-II is a portable, small operating system developed by the Micrium company to be
integrated in small devices. It is configurable and scalable, requiring footprints between 5
Kbytes to 24 Kbytes. This operating system provides a preemptive, real-time deterministic
multitasking kernel for microprocessors, microcontrollers and DSPs. As a real-time kernel,
the execution time for most services provided by μC/OS-II is both constant and
deterministic; execution times do not depend on the number of tasks running in the
application.

In order to easily implement the μC/OS-II API support the adopted approach has been to
generate a layer on top of the existing POSIX API. Then, the implementation of the services
only requires in most of the cases to adapt the interface of the μC/OS-II API to call a similar
function in the POSIX infrastructure. Following that way, a list of 81 functions of the
μC/OS-II API has been implemented. The following services have been implemented:

 Functions for OS management, such as starting the kernel, controlling the scheduler, or
managing interrupts.

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

293

 Functions for task management, such as starting, stopping and resuming a task or
modifying the priority

 Services for task synchronization: mutexes, semaphores and event flag groups.
 Services for task communication: message queues and mailboxes
 Memory management
 Time management and timers

As the POSIX infrastructure is quite complete, the task of generating this layer has resulted
relatively easy. This demonstrates the validity of the infrastructure proposed to support
other small operating systems.

6.1.2 Support of Win32

Although in the embedded system market Microsoft does not have the dominant position
than in the PC (Laptop, Desktop and Server) market, the company through their Windows
CE and Windows Mobile, now Windows Phone, holds an important market share which
can even increase in the near future once Windows CE is offered under ‘shared source’
license and after the Nokia-Microsoft partnership. Thus, solutions to support of win32 API
in a virtual platform modeling infrastructure results of great interest.

The proposed approach is to integrate virtualization of Win32 on the POSIX API of the
performance analysis framework. As it is shown below, the overload of this approach is
small. The virtualization framework is provided by the open-source code WINE. WINE is a
free software application that aims to allow Unix-like computer operating systems to
execute programs written for Microsoft Windows. WINE implements a Windows
Application Programming Interface (Win32 API) library, acting as a bridge between the
Windows application and Linux.

One of the reasons to use WINE is that, in accordance with the “Wine Developer's Guide”,
its architecture and kernel are based on the architecture and kernel of Windows NT, so that
its behavior will be the same as most of the Windows operating systems, particularly those
mostly used in embedded applications like Windows CE and Windows Phone.

Figure 6 shows in grey color the Windows NT architecture allowing the execution of Win32
application by the NT kernel. The white part of the Figure 6 represents the modules added
for the construction of the Wine architecture.

Using the complete WINE architecture, the complete Windows NT architecture of Dynamic
Link Libraries (DLL) is encapsulated by the WINE server and the WINE executable. The
WINE executable virtualizes the underlying Unix kernel. For that purpose, additional DLLs
and Unix-shared libraries are used.

The “WINE Server” acts as a Windows kernel emulator, executing the Win32 calls for thread
creation, synchronization and destruction. It provides Inter-Process Communication (IPC).
When a thread needs to synchronize or communicate with any other thread or process, is
the Wine Server the handler of these actions making as an intermediary. The Wine server
itself is a single and separated Unix process and does not have its own threading. Instead, it
alerts whenever anything happens, such as a client having send a command, or a wait
condition having been satisfied.

Embedded Systems – Theory and Design Methodology

294

WIN32 Application

Windows DLL Windows DLL

GDI32 DLL USER32 DLL

Kernel32 Application

NTDLL

Subsystem
POSIX
OS/2

WINE Executable (WINE thread)

WINE specific DLLs & UNIX shared libraries

WINE
Server

(NT-like
kernel)

UNIX kernel

Fig. 6. Windows NT architecture + WINE Architecture.

The architecture of the integration of WINE on top of the POSIX model is shown in Figure 7.
The most significant change from the WINE architecture of Figure 6 is the substitution of the
POSIX subsystem, responsible for implementing the POSIX API functionality. In this way,
the Win32 application is executed and its performance estimated by the native simulation
infrastructure after the Win32 to POSIX translation.

WIN32 Application

Windows DLL

Plug-in Kernel32

Plug-in
 translation

Plug-in POSIX

Native simulation
Infrastructure

WINE
Server

(NT-like
kernel)

Kernel32
DLL

NTDLL

WINE
Executable

DLL & shared
libraries

Linux Kernel

W
IN

E native
D

LLs

Fig. 7. Architecture of the WINE/native integration.

The WINE use is justified for the integration of WIN32 API in the native simulation
framework. WINE allows us to abstract from the redeployment of Win32 functions for the
execution in a POSIX system. Ideally, through this we can handle Win32's functions
automatically by adding to our architecture the necessary libraries (DLLs).

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

295

However, when a simulation is being run, the user code can carry out calls to the API
WIN32 functions. However, depending on which functions are being called, they are treated
in two different ways. On the one hand, we have all those functions that are completely
managed by WINE and that just need to be taken into account by native co-simulation in
order to estimate the system performance in terms of execution times, bus loads and power
consumption. On the other hand, there are other functions that are internally managed by
the abstract POSIX native simulation kernel under the supervision of the WINE functions as
they directly affect its kernel. The plug-in translation is responsible for these functions of
thread creation, synchronization and destruction. When an API Win32 function is called, the
plug-in analyzes and manages the handlers that have been generated by WINE. By default,
the native WINE function is run, but in case the handle makes reference to a thread or object
based on the synchronization of threads, it runs the translation to an equivalent POSIX
function. In this way, the execution of these objects is completely transparent to the user.

As we said, part of the plug-in translation code is aimed at the internal management of the
object's handles that are created and destructed in Wine as the user code requires. In the
process of creating threads and synchronization objects, the code stores the resulting handle
and the information that may be necessary for that regard. Thus, when any operation is
performed on such handle, the plug-in can analyze and perform the necessary steps to carry
out such operation.

The kind of services affected by such analysis are:

 Concurrency services (e.g. threads)
 Synchronization services (as semaphores, mutexes, events)
 Timing services (e.g. waitable timers)

In case that the handle belongs to any of the previous objects, it would be necessary to run
the translation into an equivalent POSIX of the operation to be performed on this object so
that it be performed by SCoPE correctly. Nonetheless, there are also other objects that are
directly managed by the plug-in translation and do not require a previous analysis like
Critical sections or Asynchronous Procedure Calls.

As shown in Figure 7, it is the “WINE Server” which acts as Windows kernel emulation, so
that the thread creation, synchronization and destruction are performed through calls to this
kernel. That is the reason why there is no literal translation for the behavior of these
functions from the Win32 standard into the POSIX standard. An important contribution to
this work and, therefore, an innovative solution to this problem, is the creation of a new
code that is in charge of performing this task, maintaining the semantic and syntactic
behavior of the functions of the affected Win32 standard. This is important in order to
perform a translation by using only the calls to the POSIX standard functions, so that
through the supervision of “WINE Server” our application is able to run those functions by
respecting the Win32 standard at all times.

Finally, Graphics (GDI32) and User (USER32) libraries have been removed because they are
not necessary in the functions currently implemented. As commented above, graphic
interfaces are not supported yet as their modeling requires additional effort that is out of the
scope of the current chapter. The user interface is not necessary when modeling usual
embedded applications. Nevertheless, the proposed methodology for abstract modeling of
complex OSs opens the way to solve this particular problem.

Embedded Systems – Theory and Design Methodology

296

All the collection of functions of the API Win32 has been faithfully respected in accordance
with the on-line standard of MSDN. To check it, a battery of simple tests has been developed
to verify the correctness of some critical functions closely related with the integration of
WINE with the simulation infrastructure. The tests generated include management of
threads, synchronization means, file system functions and timers. The results have been
compared with the same tests compiled and executed on a Windows platform (XP SP2
winver 0x0502) and in an embedded Windows CE platform, obtaining the same results in all
the cases.

In the compilation process of a Win32 application in WINE, this one generated the scripts
that are necessary to create a dynamic library from the application's source code, which is
later loaded and run after the initialization process of WINE.

 a) b)

Fig. 8. WINE integration in the native simulation.

The process to generate a POSIX WINE executable from a Win32 application is shown in
Figure 8-a. After WINE initialization, the scripts that are necessary to create a dynamic
library from the application's source code are generated. Then, using these scripts, the
application is loaded and executed. This application initialization and loading process is not
compatible with the native co-simulation methodology.

The alternative process implemented is shown in Figure 8-b. The default initialization
process of WINE is performed after the native co-simulation initialization process. The
application is instrumented and loaded into the native simulation environment in this step.
In order to support the parsing and back-annotation required by native co-simulation, it is
necessary to integrate in the native co-simulation compiler the options required by WINE in
order to recognize the application.

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

297

7. Results
Several experiments have been set-up in order to assess the proposed methodology. Firstly,
simulation performance has been measured and compared with different execution
environments of Win32 applications through small examples. Furthermore, a complete co-
simulation case study has been developed showing the full potential of the proposed
technology on a realistic embedded system design. After that some experiments have been
performed to check the accuracy of the performance estimations.

7.1 Win32 simulation

In order to measure the simulation overhead of the proposed infrastructure, several tests
focused on the use of OS services have been developed and instrumented. The tests have
been carried out in four different scenarios, all on the same host computer:

 Proposed Win32 native simulation running on a native Linux platform (Fedora 11).
 WINE running on the same Linux platform.
 Windows XP SP2 running in a virtual machine (VirtualMachine 2.2.4) on the same

Linux platform.
 Windows XP SP2 installed directly in the host.

The resulting execution times of the tests on the different scenarios are shown in Figure 9.
As expected, the execution of Windows on a virtual machine is always slower than the OS
directly installed in the host. Nevertheless, this is not the case when virtualising Windows
with WINE. Results show that WINE can be faster than XP installed directly on the same
host. This is not a surprising result and it has been already reported.

m
th

re
ad

_0
1_

ge
n

m
th

re
ad

_0
2_

se
n

m
th

re
ad

_0
3_

m
ux

m
th

re
ad

_0
4_

cs

m
th

re
ad

_0
5_

ev
en

t

m
th

re
ad

_0
6_

us
er

ap
c

m
th

re
ad

_0
7_

w
t

0

100

200

300

400

500

600

Wine Simulation
Native Windows Virtual Machine

Fig. 9. Execution times.

As shown in Figure 9, native simulation is only 46% slower in average than WINE although
the simulation is modeling execution times, data and instructions cache, memory and
peripheral accesses, power consumption, etc. This result is coherent with the comparison
figures between native simulation including performance estimations and functional
execution. This explains why native simulation can be faster in some cases than functional
execution on a Windows platform. This result shows the advantage of using WINE; we can

Embedded Systems – Theory and Design Methodology

298

integrate native simulation on a virtualization of Windows, implementing most of its
functionality and taking advantage of its fast implementation.

In order to assess the Win32 simulation technology in its final application of performance
analysis of complex embedded systems including processing nodes using Windows, a
heterogeneous system has been modeled, simulated and the performance figures obtained.
The system is a low cost surveillance system taking low quality images from a camera at low
speed (1 image per second) and coding and sending them through a serial link.

Apart from those simple examples, a complex example, a H.264 coder has been used for
global correctness. This example makes an exhaustive use of calls to memory dynamic
management functions, and there is also a writing of all the logs resulting from the
codification when running. This part of the reference model has been modified so that the
calls to the equivalent functions of the API Win32 are carried out in order to verify the
correct operation of the plug-in this sort of operations. Dynamic memory management has
been carried out through calls to the Global, Local and Heap memory management
functions, and the file management through calls to the respective data input and output
functions (e.g. CreateFile and WriteFile).

The system architecture is shown in Figure 10. It is composed of a Windows ARM node
executing the H.264 coder, the camera taking the images, a memory where the input data are
stored and the serial link taking the images and sending them out. The architectural exploration
affects the selection of the most appropriate voltage-frequency and data and instruction cache
sizes ensuring a CPU usage lower than 90% and a power consumption less than 1W.

Fig. 10. Case study architecture.

Results of CPU usage and power consumption are shown in Figure 11. As can be seen, in
this example, the size of the data and instruction caches do not affect too much the power
consumption but the CPU usage.

Fig. 11. CPU usage and Power consumption.

166MHz/1.8V 233MHz/2.4V 333MHz/3.6V
0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

Processor Frecuency/Voltage

Po
w

er
 (W

)

166MHz/1.8V 233MHz/2.4V 333MHz/3.6V
80

82
84

86

88
90

92
94

96

98
100

32K Data cache 16K Data cache 8K Data cache

Processor Frecuency/Voltage

%
 U

se
 C

PU

AMBA Bus

ARM9

Windows
CE

H.264
coder

Memor
y

Serial
I/O

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

299

7.2 Win32 simulation performance

The proposed approach has been also applied to an ARM9 platform, in order to evaluate the
accuracy of each on the techniques presented above. The ARM9 platform has been used to
compare the estimation results of the different modeling solutions, in order to obtain the
error when applied to one of the most popular processors in the embedded world.

As a summary of the final results achieved, the following tables show the estimation
accuracy of the SW modelling, and the simulation times for a list of examples:

Modified Host

Time
Operator

Overloading
Source Code analysis Binary Code

analysis
 Error Time Error Time Error Time Error Time
Bubble 1000 24.4 0.012s 14.8 0.75s 14.5 0.032s 12.5 0.030s
Bubble 10000 13.5 1.281s 3.5 81.6s 3.2 3.501s 0.01 3.486s
Vocoder 54.2 0.003s 24.2 0.41s 26.4 0.015s 18.3 0.014s
Factorial 34.5 0.013s 4.5 0.85s 4.1 0.042s 0.01 0.043s
Hanoi 47.9 0.082s 17.9 0.82s 16.9 0.271s 14.9 0.262s

Table 1. Comparison of estimation error (%) and simulation time for an ARM9 platform

As can be seen, the most accurate annotation technique is the solution based on the analysis
of the binary cross-compiled code. After that, the technique based on source code analysis
and the operator overloading are similar, since both rely on the same information (cycles of
each C operator) and the same main source of error (optimizations). Finally, the modified
host time is the less accurate one.

However, the technique of modified host tome is about 3 times faster than the annotation
techniques based on code analysis, and more than 60 times than the operator overloading
solution.

Finally, the results for cache modelling are shown in the next tables:

Instruction Cache Misses
Without optimizations (-o0) With optimizations (-o2)

Skyeye Proposal Error (%) Skyeye Proposal Error (%)
Bubble 1000 15 16 6.66 6 5 16.67

Bubble 10000 25 27 8 7 7 0
Vocoder 8 7 12,5 5 4 20
Factorial 20 18 10 12 10 16.67

Hanoi 46074 46761 1.49 25842 28607 10.70

Table 2. Comparison of instruction cache misses ARM926t platform.

Embedded Systems – Theory and Design Methodology

300

Data Cache Misses
Without optimizations (-o0) With optimizations (-o2)

Skyeye Proposal Error (%) Skyeye Proposal Error (%)
Bubble 1000 126 127 0.80 126 126 0
Bubble 10000 5199772 5209087 0.18 5199310 5211595 0.24
Vocoder 375 500 33.33 375 500 33.33
Factorial 38 45 18.42 41 45 9.76
Hanoi 6018 5908 1.82 6026 5915 1.84

Table 3. Comparison of data cache misses ARM926t platform.

Summarizing, simulation speed-ups of two or more orders of magnitude can be achieved by
assuming an acceptable error, below 20%.

8. Conclusions
In this chapter, several solutions have been developed in order to cover all the features
required to create an infrastructure capable of obtaining sufficiently accurate performance
estimation with very fast simulation speeds. These solutions are based on the idea of native
co-simulation, which consists in the combination of native simulation of annotated SW
codes with time-approximate HW platform models. All these techniques have been
integrated in a simulation tool which can be used as an independent simulator or can be
used integrated in different design space exploration flows.

The modeling solutions can be divided in two main groups: solutions for modeling in the
native execution the operation of the application SW in the target platform, and a complete
operative system modelling infrastructure. These solutions have been implemented as
SystemC extensions, using the features of the language to provide multiple execution flows,
events and time management.

The modeling of the application SW considers the execution times and power consumption
of the code in the target platform, as long as the operation of the processor caches. Four
different solutions for modeling the processor performance have been explored in the
chapter (modified host times, operator overloading, annotation based on source code
analysis and annotation based on binary code analysis), in order to find an approach
capable of obtaining accurate solutions with minimal simulation overheads and as flexible
as possible, to minimize the effort required to evaluate different target processors and
platforms. As a result of the study, the annotation based on binary code analysis has
demonstrated to obtain the best results with minimal simulation overhead. Additionally, the
technique is very flexible, since only requires a cross-compiler for the target platform
capable of generating object files from the source code. No additional libraries, ported
operating systems, or linkage scripts are required. Additionally, it has been demonstrated
that cache analysis for both instruction and data caches can be performed obtaining accurate
results with adequate simulation times.

A POSIX-based operating system model has been also extended to support other APIs. Two
different operating system APIs of wide use in embedded systems have been considered: a
simple operating system and a complex one. Support for a simple OS, uC/os-II, has been
integrated. As complex OS, the integration of a win32 API has been performed.

SW Annotation Techniques and RTOS Modelling
for Native Simulation of Heterogeneous Embedded Systems

301

Summarizing, this chapter demonstrates that the SystemC language can be extended to
enable the early modeling and evaluation of electronic systems, and providing important
information to help the designers during the first steps of the design process. These
extensions allow using a SystemC-based infrastructure for functional simulation,
performance evaluation, constraint checking and HW/SW refinement.

9. Acknowledgments
This work has been supported by the FP7-ICT-2009- 4 (247999) Complex and Spanish
MICyT TEC2008-04107 projects.

10. References
AXLOG, http://www.axlog.fr.
M.Becker, T.Xie, W.Mueller, G. Di Guglielmo, G. Pravadelli and F.Fummi, “RTOS-Aware

Refinement for TLM2.0-Based HW/SW Designs”, in DATE, 2010.
Benini et al, “MPARM: Exploring the Multi-Processor SoC Design Space with SystemC”,

Journal of VLSI Signal Processing n 41, 2005.
A. Bouchima, P. Gerin & F. Pétrot: “Automatic Instrumentation of Embedded Software for

High-level HS/SW Co-simulation. ASP-DAC, 2009.
C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “Source-level execution time

estimation of c programs,” CODES 2001.
J. Castillo, H. Posadas, E. Villar, M. Martínez, “Fast Instruction Cache Modeling for

Approximate Timed HW/SW Co-Simulation”, 20th Great Lakes Symposium on
VLSI (GLSVLSI'10), Providence, USA. 2010

C. Cifuentes. “Reverse Compilation Techniques”. PhD thesis, Queensland University of
Technilogy, 1994.

VaST Systems Technology. CoMET R.
 http://www.vastsystems.com/docs/CoMET_mar2007.pdf
CoWare Processor Designer, http://www.coware.com/products/processordesigner.php
ENEA: “OSE Soft Kernel Environment”, in http://www.ose.com/products.
Gerstlauer, A. Yu, H. & Gajski, D.D.: “RTOS Modeling for System Level Design”, Proc. of

DATE, IEEE, 2003.
A. Gerslauer, "Host-Compiled Simulation of Multi-Core Platforms", Rapid System

Prototyping, 2010
M. Gligor, N. Fournel, and F. Petrot, “Using binary translation in event driven simulation

for fast and flexible MPSoC simulation”, in CODES+ISSS, France, Oct. 2009.
G. Hadjiyiannis, S. Hanono & S. Devadas. ISDL: An Instruction Set Description Language

for Retargetability. Design Automation Conference, 1997.
M. Hartoog J.A. Rowson, P.D. Reddy, S. Desai, D.D. Dunlop, E.A. Harcourt & N. Khullar.

“Generation of Software Tools from Processor Descriptions for
Hardware/Software Codesign”. Design Automation Conference, 1997.

M.A. Hassan, K. Sakanushi, Y. Takeuchi and M. Imai: “RTK-Spec TRON: A simulation
model of an ITRON based RTOS kernel in SystemC”, Proceedings of the Design,
Automation and Test Conference, IEEE, 2005.

Z. He, A. Mok and C. Peng: “Timed RTOS modeling for embedded System Design”,
Proceedings of the Real Time and Embedded Technology and Applications
Symposium, IEEE, 2005.

Embedded Systems – Theory and Design Methodology

302

S. Honda, T. Wakabayashi, H. Tomiyama and H. Takada: “RTOS-centric HW/SW co-
simulator for embedded system design”, Proceedings of CoDes-ISSS’04, ACM,
2004.

Y. Hwang, S. Abdi, D. Gajski. Cycle-approximate Retargetable Performance Estimation at
the Transaction Level. DATE, 2008

T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, H. Meyr. “A SW Performance
Estimation Framework for Early System-Level-Design Using Fine-Grained
Instrumentation”. DATE, 2006

R. Leupers, J. Elste, and B. Landwehr. “Generation of interpretive and compiled instruction
set simulators”. Asia and South Pacific Design Automation Conference, 1999.

A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr & Andreas Hoffmann, “A
Universal Technique for Fast and Flexible Instruction-Set Architecture Simulation”,
DAC, 2002

H. Posadas, F. Herrera, P. Sánchez, E. Villar, F. Blasco: "System-Level Performance Analysis
in SystemC", Proc. of DATE, IEEE CS Press. 2004

H. Posadas, E. Villar, F. Blasco: "Real-time Operating System modeling in SystemC for
HW/SW co-simulation", XX Conference on Design of Circuits and Integrated
Systems, DCIS. 2005

H. Posadas, J. Adámez, P. Sánchez, E. Villar, F. Blasco: "POSIX modeling in SystemC", 11th
Asia and South Pacific Design Automation Conference, ASP-DAC, 2006

H. Posadas, E. Villar: "Automatic HW/SW interface modeling for scratch-pad & memory
mapped HW components in native source-code co-simulation", A. Rettberg, M.
Zanella, M. Amann, M. Keckeiser & F. Rammig (Eds.): "Analysis, Architectures and
Modelling of Embedded Systems", Springer, 2009

H. Posadas, E. Villar, Dominique Ragot, M. Martínez: "Early Modeling of Linux-based RTOS
Platforms in a SystemC Time-Approximate Co-Simulation Environment", IEEE
International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2010

H. Posadas, L. Diaz, E. Villar: "Fast Data-Cache Modeling for Native Co-Simulation", Asia
and South-Pacific Design Automation Conference, ASP-DAC, 2011

IBM PowerVM, http://www-03.ibm.com/systems/power/software/virtualization/
Qemu, http://www.qemu.org/
G. Schirner, A. Gerstlauer, and R. Dömer. “Abstract, Multifaceted Modeling of Embedded

Processors for System Level Design”. Asia and South Pacific Design Automation
Conference (ASP-DAC), 2007.

J. Schnerr, O. Bringmann, A. Viehl, W. Rosenstiel. High-Performance Timing Simulation of
Embedded Software. DAC, 2008

SkyEye web page, http://www.skyeye.org/index.shtml
Synopsys, Platform Architect tool, http://www.synopsys.com/Systems/

ArchitectureDesign/pages/PlatformArchitect.aspx
H. Tomiyama, Y. Cao and K. Murakami: “Modeling fixed-priority preemptive multi-task

systems in SpecC”, Proceedings of the 10th Workshop on System And System
Integration of Mixed Technologies (SASIMI’01), IEEE, 2001.

UQBT, http://www.itee.uq.edu.au/~cristina/uqbt.html
S. Yoo, G. Nicolescu, L. Gauthier, A. Jerraya, “Automatic generation of fast timed simulation

models for operating systems in SoC design”, Proc. of DATE, IEEE, 2002.
H. Zabel, W. Müller, and A. Gerstlauer, “Accurate RTOS modeling and analysis with

SystemC”, in “Hardware-dependent Software: Principles and Practice”, W. Ecker,
W. Mü ller, and R. Dömer, Eds. Springer, 2009.

14

The Innovative Design of Low Cost Embedded
Controller for Complex Control Systems

Meng Shao1, Zhe Peng2 and Longhua Ma2
1Computer Centre, Hangzhou First People's Hospital, Hangzhou,

2School of Aeronautics and Astronautics, Zhejiang University, Hangzhou,
China

1. Introduction
With the availability of ever more powerful and cheaper products, the number of embedded
devices deployed in the real world has been far greater than that of the various general-
purpose computers such as desktop PCs. An embedded system is an application-specific
computer system that is physically encapsulated by the device it controls. It is generally a
part of a larger system and is hidden from end users. There are a few different architectures
for embedded processors, such as ARM, PowerPC, x86, MIPS, etc. Some embedded systems
have no operating system, while many more run real-time operating systems and complex
multithreaded programs. Nowadays embedded systems are used in numerous application
areas, for example, aerospace, instrument, industrial control, transportation, military,
consumer electronics, and sensor networks. In particular, embedded controllers that
implement control functions of various physical processes have become unprecedentedly
popular in computer-controlled systems (Wittenmark et al., 2002 ; Xia, F. & Sun, Y.X., 2008).
The use of embedded processors has the potential of reducing the size and cost, increasing
the reliability, and improving the performance of control systems.

The majority of embedded control systems in use today are implemented on
microcontrollers or programmable logic controllers (PLC). Although microcontrollers and
programmable logic controllers provide most of the essential features to implement basic
control systems, the programming languages for embedded control software have not
evolved as in other software technologies (Albertos, P. 2005). A large number of embedded
control systems are programmed using special programming languages such as sequential
function charts (SFC), function block languages, or ladder diagram languages, which
generally provide poor programming structures. On the other hand, the complexity of
control software is growing rapidly due to expanding requirements on the system
functionalities. As this trend continues, the old way of developing embedded control
software is becoming less and less efficient.

There are quite a lot of efforts in both industry and academia to address the above-
mentioned problem. One example is the ARTIST2 network of excellence on embedded
systems design (http://www.artist-embedded.org). Another example is the CEMACS
project (http://www.hamilton.ie/cemacs/) that aims to devise a systematic, modular,
model-based approach for designing complex automotive control systems. From a technical

Embedded Systems – Theory and Design Methodology

304

point of view, a classical solution for developing complex embedded control software is to
use the Matlab/Simulink platform that has been commercially available for many years. For
instance, Bucher and Balemi (Bucher, R.; Balemi, S., 2006) developed a rapid controller
prototyping system based on Matlab, Simulink and the Real-Time Workshop toolbox;
Chindris and Muresan (Chindris, G.; Muresan, M., 2006) presented a method for using
Simulink along with code generation software to build control applications on
programmable system-on-chip devices. However, these solutions are often complicated and
expensive. Automatic generation of executable codes directly from Matlab/Simulink models
may not always be supported. It is also possible that the generated codes do not perform
satisfactorily on embedded platforms, even if the corresponding Matlab/Simulink models
are able to achieve very good performance in simulations on PC. Consequently, the
developers often have to spend significant time dealing with such situations. As computer
hardware is becoming cheaper and cheaper, embedded software dominates the
development cost in most cases. In this context, more affordable solutions that use low-cost,
even free, software tools rather than expensive proprietary counterparts are preferable.

The main contributions of this book are multifold. First, a design methodology that features
the integration of controller design and its implementation is introduced for embedded
control systems. Secondly, a low-cost, reusable, reconfigurable platform is developed for
designing and implementing embedded control systems based on Scilab and Linux, which
are freely available along with source code. Finally, a case study is conducted to test the
performance of the developed platform, with preliminary results presented.

The platform is built on the Cirrus Logic EP9315 (ARM9) development board running a
Linux operating system. Since Scilab was originally designed for general-purpose
computers such as PCs, we port Scilab to the embedded ARM-Linux platform. To enable
data acquisition from sensors and control of physical processes, the drivers for interfacing
Scilab with several communication protocols including serial, Ethernet, and Modbus are
implemented, respectively. The developed platform has the following main features:

 It enables developers to perform all phases of the development cycle of control systems
within a unified environment, thus facilitating rapid development of embedded control
software. This has the potential of improving the performance of the resulting system.

 It makes possible to implement complex control strategies on embedded platforms, for
example, robust control, model predictive control, optimal control, and online system
optimization. With this capability, the embedded platform can be used to control
complex physical processes.

 It significantly reduces system development cost thanks to the use of free and open
source software packages. Both Scilab and Linux can be freely downloaded from the
Internet, thus minimizing the cost of software.

While Scilab has attracted significant attention around the world, limited work has been
conducted in applying it to the development/implementation of practically applicable
control applications. Bucher et al. presented a rapid control prototyping environment based
on Scilab/Scicos, where the executable code is automatically generated for Linux
RTAI(Bucher, R.; Balemi, S, 2005). The generated code runs as a hard real-time user space
application on a standard PC. The changes in the Scilab/Scicos environment needed to
interface the generated code to the RTAI Linux OS are described. Hladowski et al.
(Hladowski et al., 2006) developed a Scilab-compatible software package for the analysis

The Innovative Design of Low Cost Embedded Controller for Complex Control Systems

305

and control of repetitive processes. The main features of the implemented toolkit include
visualization of the process dynamics, system stability analysis, control law design, and a
user-friendly interface. Considering a control law designed with Scicos and implemented on
a distributed architecture with the SynDEx tool, Ben Gaid et al. proposed a design
methodology for improving the software development cycle of embedded control
systems(Ben Gaid et al., 2008). Mannori et al. presented a complete development chain, from
the design tools to the automatic code generation of standalone embedded control and user
interface program, for industrial control systems based on Scilab/Scicos (Mannori et al.,
2008).

2. Embedded control systems design
In this paper, we develop an embedded controller for complex control applications. The key
software used is the Scilab/Scicos package, a free and open source alternative to commercial
packages for dynamical system modeling and simulation such as Matlab/Simulink. Since
hardware devices are becoming cheaper by the day, software development cost has
dominated the cost of most embedded systems. As a consequence, the use of the free and
open source software minimizes the cost of the embedded controller. On the other hand,
Scilab is a software package providing a powerful open computing environment for
engineering and scientific applications. It features a variety of powerful primitives for
numerical computations. There exist a number of mature Scilab toolboxes, such as Scicos,
fuzzy logic control, genetic algorithm, artificial neural network, model predictive control,
etc. All these features of Scilab make it possible, and quite easy, to implement complex
control algorithms on the embedded platform we develop in this work.

To satisfy the ever-increasing requirement of complex control systems with respect to
computational capability, we use the Cirrus Logic EP9315 ARM chip in this project. The
platform runs on an ARM-Linux system. Since Scilab and Scicos were originally developed
for general-purpose computers such as desktop PCs, we port Scilab/Scicos to the ARM-
Linux platform (Longhua Ma, et al., 2008 ; Feng Xia, et al., 2008). Several interfaces and
toolboxes are implemented to facilitate embedded control.

Cirrus LogicEP9315 ARM9 Chip

Linux 2.6

GUI TinyX

(X11 supported)

TCP

LCD
Philips-LB064V02

SerialDA AD

Controller Designer

PC
Simulate

Scilab

Scicos

Routines

Design Download

Fig. 1. Design of an embedded controller.

Embedded Systems – Theory and Design Methodology

306

With the developed platform, the design and implementation of a complex control system
will become relatively simple, as shown in Figure 1. The main procedures involved in this
process are as follows: model, design, and simulate the control system with Scilab/Scicos on
a host PC, then download the well designed control algorithm(s) to the target embedded
system. The Scilab code on the embedded platform is completely compatible with that on
the PC. Consequently, the development time can be significantly reduced.

2.1 Architecture

As control systems increase in complexity and functionality, it becomes impossible in many
cases to use analog controllers. At present almost all controllers are digitally implemented
on computers. The introduction of computers in the control loop has many advantages. For
instance, it makes possible to execute advanced algorithms with complicated computations,
and to build user-friendly GUI. The general structure of an embedded control system with
one single control loop is shown in Figure 2. The main components consist of the physical
process being controlled, a sensor that contains an A/D (Analog-to-Digital) converter, an
embedded computer/controller, an actuator that contains a D/A (Digital-to-Analog)
converter, and, in some cases, a network.

Fig. 2. General structure of embedded control systems.

The most basic operations within the control loop are sensing, control, and actuation. The
controlled system is usually a continuous-time physical process, e.g. DC motor, inverted
pendulum, etc. The inputs and outputs of the process are continuous-time signals. The A/D
converter transforms the outputs of the process into digital signals at sampling instants. It
can be either a separated unit, or embedded into the sensor. The controller takes charge of
executing software programs that process the sequence of sampled data according to
specific control algorithms and then produce the sequence of control commands. To make
these digital signals applicable to the physical process, the D/A converter transforms them
into continuous-time signals with the help of a hold circuit that determines the input to the
process until a new control command is available from the controller. The most common
method is the zero-order-hold that holds the input constant over the sampling period. In a
networked environment, the sequences of sampled data and the control commands need to
be transmitted from the sensor to the controller and from the controller to the actuator,
respectively, over the communication network. The network could either be wire line (e.g.
field bus, Ethernet, and Internet) or be wireless (e.g. WLAN, ZigBee, and Bluetooth). In a

The Innovative Design of Low Cost Embedded Controller for Complex Control Systems

307

multitasking/multi-loop environment, as illustrated in Figure 3, different tasks will have to
compete for the use of the same embedded processor on which they run concurrently.

Fig. 3. A multitasking embedded control system.

2.2 Design methodology

There is no doubt that embedded control systems constitute an important subclass of real-
time systems in which the value of the task depends not only on the correctness of the
computation but also on the time at which the results are available. From a real-time
systems point of view, the temporal behavior of a system highly relies on the availability of
resources. Therefore, it is compulsory for the system to gain sufficient resources within a
certain time interval in order that the execution of individual tasks can be completed in time.
Unfortunately, most embedded platforms are suffering from resource limitations, which is
in contrast to general-purpose computer systems. There are many reasons behind. For
instance, embedded devices are often subject to various limitations on physical factors such
as size and weight due to the stringent application requirements. In this context, care must
be taken when developing embedded control systems such that the timing requirements of
the target application can be satisfied.

Traditionally, the development cycle of a control system consists of two main steps:
controller design and its implementation. These two steps are often separated, as shown in
Figure 4, where the so-called V-model is given. While the controller design is usually done
by control engineers, the implementation is the responsibility of system (software)
engineers. In the first step, the control engineers model the physical processes using
mathematical equations. According to the requirements specification, the control engineers
then design the control algorithms. The parameters of the control algorithms are often
determined through extensive simulations to achieve the best possible performance. A
widely used tool in this step is Matlab/Simulink that supports modeling, synthesis, and
simulation of control systems. In this environment the physical processes are usually
modeled in continuous time while the control algorithms are to facilitate digital
implementation. In the second step, the software engineers produce the programs executing
the control algorithms with the parameters designed in the first step. There are a number of
mature programming languages available for the implementation. The system will be
tested, possibly many times before the satisfactory performance is achieved.

Embedded Systems – Theory and Design Methodology

308

Fig. 4. Traditional development process of control software.

The traditional development process features separation of control and scheduling. The
control engineers pay no attention to how the designed control algorithms will be
implemented, while the software engineers have no idea about the requirements of the
control applications with respect to temporal attributes. In resource-constrained embedded
environments, the traditional design methodology cannot guarantee that the desired
temporal behavior is achieved, which may lead to much worse-than-possible control
performance. Furthermore, the development cycle of a system that can deliver good
performance may potentially take a long time, making it difficult to support rapid
development that is increasingly important for commercial embedded products.

Fig. 5. Integrated design and implementation on a unified platform.

In this paper we adopt a design methodology that bridges the gaps between the
traditionally separated two steps of the development process. As shown in Figure 5, we
develop an integrated platform that provides support for all phases of the whole
development cycle of embedded control systems. With this platform, the modeling,
synthesis, simulation, implementation, and test of control software can be performed in a
unified environment. Thanks to the seamless integration of the controller design and its
implementation, this design methodology enables rapid development of high quality
embedded controllers that can be used in real-world systems.

The Innovative Design of Low Cost Embedded Controller for Complex Control Systems

309

3. Hardware platform
3.1 SoC system

SoC is believed to be more cost effective than a system in package, particularly in large
volumes. One of the most typical application areas of SoC is embedded systems. In this
work, the processor of SoC is chosen to be the Cirrus Logic EP9315 ARM9 chip, which
contains a Maverick Crunch coprocessor. A snapshot of the hardware board is shown in
Figure 6.

Fig. 6. Hardware platform.

Using this SoC board, it is easy to communicate with other components of the system, for
example, to sample data from sensors and to send control commands to actuators, thanks to
its support for A/D, D/A, Serial and Ethernet interfaces, etc. To keep the system user-
friendly, the embedded controller also includes a LCD with touch screen.

3.2 Maverick crunch coprocessor

The Maverick Crunch coprocessor accelerates IEEE-754 floating point arithmetic and 32-bit
fixed point arithmetic operations such as addition, subtraction, multiplication, etc. It
provides an integer multiply-accumulate (MAC) that is considerably faster than the native
MAC implementation in the ARM920T. The single-cycle integer multiply-accumulate
instruction in the Maverick Crunch coprocessor allows the EP9315 to offer unique speed and
performance while dealing with math-intensive computing and data processing functions in
industrial electronics. The computational speed of the system becomes 10 to 100 times faster
when the Maverick Crunch coprocessor is used.

In Table 1 we list the time needed to execute every test function 360,000 times, both with the
Maverick Crunch coprocessor and without it. Compared with the case without the Maverick
Crunch coprocessor, the computational speed of the system becomes 10 to 100 times faster
when the Maverick Crunch coprocessor is used.

Embedded Systems – Theory and Design Methodology

310

Functions ADD SUB MUL SIN LOG EXP
HPF (ms)
With Maverick Crunch

1 1 25 950 950 902

SFP (ms)
Without Maverick Crunch

187 190 310 7155 7468 6879

Ratio 1:187 1:190 1:12.8 1:7.6 1:7.8 1:7.6

Table 1. Comparison of computational capability of PC and ARM.

The reason of this coprocessor selection is due to its high computation performance
compared to normal embedded coprocessor.

4. Software design
There are a number of considerations in implementing control algorithms on embedded
platforms including the ARM9 board we use. One of the most important is that embedded
platforms are usually limited in resource such as processor speed and memory. Therefore,
control software must be designed in a resource-efficient fashion, in a sense that the limited
resources are efficiently used.

The key software packages used in this paper includes Linux, TinyX, JWM, Scilab/Scicos,
the Scilab SCADA (Supervisory Control and Data Acquisition) toolbox we develop, and
other related Scilab toolboxes. The system software architecture is shown in Figure 7. In the
following, we detail the software design of the embedded controller.

Linux v2.6 OS

Scilab/Scicos v4.1.1

SCADA Toolbox
(Ethernet, Serial, D/A, A/D)

PID, MPC, GA, NN, Fuzzy Control

TinyX v4.5 - GUI
JWM v2.0.1 - WM

Hardware

Linux v2.6 OS

Scilab/Scicos v4.1.1

SCADA Toolbox
(Ethernet, Serial, D/A, A/D)

PID, MPC, GA, NN, Fuzzy Control

TinyX v4.5 - GUI
JWM v2.0.1 - WM

Hardware

Fig. 7. Software architecture.

4.1 The Scilab/Scicos environment

Scilab is a free and open source scientific software package for numerical computations, which
provides a powerful open computing environment for engineering and scientific applications.

The Innovative Design of Low Cost Embedded Controller for Complex Control Systems

311

It has been developed by researchers from INRIA and ENPC, France, since 1990 and
distributed freely and in open source via the Internet since 1994. It is currently the
responsibility of the Scilab Consortium, which was launched in 2003. Scilab is becoming
increasingly popular in both educational/academic and industrial environments worldwide.
Scilab provides hundreds of built-in powerful primitives in the form of mathematical
functions. It supports all basic operations on matrices such as addition, multiplication,
concatenation, extraction, and transpose, etc. It has an open programming environment in
which the user can define new data types and operations on these data types. In particular, it
supports a character string type that allows the online creation of functions. It is easy to
interface Scilab with FORTRAN, C, C++, Java, Tcl/Tk, LabView, and Maple, for example, to
add interactively FORTRAN or C programs. Scilab has sophisticated and transparent data
structures including matrices, lists, polynomials, rational functions, linear systems, among
others. It includes a high-level programming language, an interpreter, and a number of
toolboxes for linear algebra, signal processing, classic and robust control, optimization, graphs
and networks, etc. In addition, a large (and increasing) number of contributions can be
downloaded from the Scilab website. The latest stable release of Scilab (version 4.1.2) can work
on GNU/Linux, Windows 2000/XP/VISTA, HP-UX, and Mac OS.

Scilab includes a graphical system modeler and simulator toolbox called Scicos
(http://www.scicos.org), which corresponds to Simulink in Matlab. Scicos is particularly
useful in signal processing, systems control, and study of queuing, physical, and biological
systems. It enables the user to model and simulate the dynamics of hybrid dynamical
systems through creating block diagrams using a GUI-based editor and to compile models
into executable codes. There are a large number of standard blocks available in the palettes.
It is possible for the user to program new blocks in C, FORTRAN, or Scilab Language and
constructs a library of reusable blocks that can be used in different systems. Scicos allows
running simulations in real time and generating C code from Scicos model using a code
generator. Scilab/Scicos is the open source alternative to commercial software packages for
system modeling and simulation such as Matlab/Simulink. Figure 8 gives a screen shot of
the Scilab/Scicos package.

Fig. 8. Scilab environment.

Embedded Systems – Theory and Design Methodology

312

4.2 Software packages

Underneath is the list of the software packages.

 Linux. The developed embedded controller is built on the Linux kernel
(www.linux.org). The Linux kernel provides a level of flexibility and reliability simply
impossible to achieve with any other operating system such as Windows, UNIX and
Mac OS. Mainly for this reason, many embedded systems choose Linux OS.

 TinyX. TinyX is an X server written by Keith Packard. It was designed for low memory
environments. On Linux/x86, a TinyX server with RENDER support but without
support for scalable fonts compiles into less than 700 KB of text. TinyX tends to avoid
large memory allocations at runtime, and tries to perform operations on-the-fly
whenever possible. Unlike the usual XFree86 server, a TinyX server is completely self-
contained: it does not require any configuration files, and will function even if no on
disk fonts are available. All configurations are done at compile time and through
command-line flags. It is easy to build user-specified GUI applications with TinyX.
More information about TinyX can be found at http://www.xfree86.org.

 Scilab. Scilab/Scicos is utilized in this work to build the development environment for
control software executing control algorithms. Developed initially by researchers from
INRIA and ENPC, France, since 1990, Scilab is currently a free and open source
scientific software package for numerical computations. Scilab has many toolboxes for
modelling, designing, simulating, implementing, and evaluating hybrid control
systems. It is now used in academic, educational, and industrial environments around
the world. Scilab includes hundreds of mathematical functions with the possibility to
add interactively programs from various languages, e.g., FORTRAN, C, C++, and Java.
It has sophisticated data structures including, among others, lists, polynomials, rational
functions, and linear systems, an interpreter, and a high level programming language,
i.e., the Scilab language.

 Scicos. Although it is possible to model and design a hybrid dynamical system through
writing scripts using the primitives of the Scilab language, this is often time consuming
and the developers are prone to insert bugs during the manual coding. To simplify this
task, Scilab includes a graphical dynamical system modeller and simulator toolbox
called Scicos. Scicos can be used for applications in control, communication, signal
processing, queuing systems, and study of physical and biological systems, etc. Using
the Scicos graphical editor, it is possible to model and simulate hybrid dynamical
systems by simply placing, configuring, and connect blocks. To achieve complete
integration with Scilab, easy customization, and the maximum flexibility, most of the
Scicos GUIs are written in the Scilab language.

 Scilab SCADA toolbox. To facilitate data acquisition and control operations, we develop
the Scilab SCADA toolbox that interfaces Scilab with several kinds of I/O ports
including serial port, Ethernet, and Modbus on the embedded Linux system. These
communication interfaces make it possible to connect the embedded controller with
other entities in the system, e.g., sensors, actuators, and the controlled physical process,
using various communication mechanisms/networks. In a complex, possibly large-
scale, control system in industry, a huge amount of data, e.g. system output samples
and control commands, will be produced during run time. These data usually has to be
stored in order to provide support for, e.g., historical data query and higher-layer
system optimization. To meet this requirement, we develop the interface to MySQL

The Innovative Design of Low Cost Embedded Controller for Complex Control Systems

313

database in the Scilab SCADA toolbox. In addition, to provide a standard-compatible
solution for the industrial control field, the Scilab SCADA toolbox conforms to the OPC
(OLE for Process Control) standard. OPC is a widely accepted industrial
communication standard that enables the exchange of data between multi-vendor
devices and control applications. It helps provide solutions that are truly open, which in
turn gives users more choices in their control applications. The interoperability between
heterogeneous entities is assured through the support for non-proprietary
specifications. A GUI of the OPC toolbox we develop is shown in Figure 9. With this
OPC interface, it is possible to use Scilab as the core control software, and the
communications with other (third-party) hardware devices and software tools will be
effortless. These help to fully exploit the powerful functionalities of Scilab in complex
control applications.

Fig. 9. OPC interface.

4.3 Building cross-compilation tool chain

A cross compiler is a compiler that is able to create executable code for a platform other than
the one on which it is run. The basic role of a cross compiler is to separate the build
environment from the target environment. This will be particularly useful for the
development of the embedded controller based on Scilab/Scicos, which typically works in a
general purpose computing environment other than the embedded platform. To port related
software packages from PC to the ARM-Linux system, it is essential to build the cross
compilation tool chain environment first. There exist several approaches to setting up a
cross-compilation tool chain. In this work, we build the cross compiler for the ARM-Linux
system using the build root toolkits. Build root is a set of Makefiles and patches that allow to
easily generating both a cross-compilation tool chain and a root file for the target system.
The cross compilation tool chain makes use of uClibc, a tiny C standard library. Several
tools, such as bison, flex, and build-essential, are also exploited. It is worth mentioning that
the g77 compiler option should be enabled during this process. Since most of the Scilab code
is written in FORTRAN, the g77 compiler is necessary when compiling Scilab.

Embedded Systems – Theory and Design Methodology

314

4.4 Porting Scilab/Scicos to ARM-Linux

Scilab/Scicos was originally designed for PC-based systems but not embedded ARM-Linux
systems. Therefore, it is necessary to port Scilab/Scicos onto the embedded platform. Since
the majority of core codes of Scilab are written in FORTRAN, we first build a cross-compiler
for g77 in order to support cross-compilation of GUI, for example. The GUI system of
Scilab/Scicos is based on X11, and therefore the X11 server TinyX is included. To reduce
runtime overheads, we optimize/modify some programs in Scilab/Scicos. We have
successfully ported Scilab/Scicos to the ARM-Linux system (see Figure 14). To achieve this
goal, a number of files in Scilab and Linux have been modified. The main tasks involved in
this process are as follows:

- Port Linux to the ARM platform;
- Port TinyX to ARM-Linux;
- Port JWM to ARM-Linux;
- Port Scilab/Scicos to ARM-Linux;
- Configure and optimize the embedded Scilab/Scicos.

The more details of how to porting Scilab/Scicos can be found at Book The embedded
ARM-Linux computation develop based Scilab(Ma Longhua, Peng Zhe, 2008).

4.5 Software programming

Once all the necessary software packages are ported to ARM Linux, programming with
Scilab in the embedded ARM Linux environment will be the same as on a PC. In this section
we address some key issues closely related to embed software programming using Scilab in
the ARM Linux platform. Scilab supports numerous data types, such as list, matrix,
polynomial, scalar, string, and vector, among others. The syntax is designed to be natural
and easy to use. The basic data type is a matrix. All basic operations on matrices, e.g.,
addition, multiplication, concatenation, and extraction, are provided by means of built-in
functions. Scilab can also handle more complex objects such as polynomial matrices and
transfer matrices. The syntax for manipulating these matrices is identical with that for
constant matrices. This powerful capability of Scilab to handle matrices makes it particularly
useful for systems control and signal processing. For instance, it is easy to obtain a natural
symbolic representation of complicated mathematical objects such as transfer functions,
dynamic systems, and graphs.

In addition, the Scicos toolbox allows users to model and simulate the dynamics of complex
hybrid systems using a block-diagram graphical editor. Scilab is composed of three main
parts: an interpreter, libraries of functions and libraries of FORTRAN and C routines. It
provides an open programming environment in which users can easily create new functions
and libraries of functions. In Scilab, functions are treated as data objects. As a consequence,
they can be created and manipulated as other data objects. For instance, it is possible to
define and/or treat a Scilab function as an input or output argument of other functions. In
particular, Scilab supports a character string data type allowing for on-line creation of
functions. Scilab has a high level programming language, i.e., the Scilab language. It can be
easily interfaced with external FORTRAN or C programs by using dynamic links, or by
building an interface program. Dynamic links can be realized using the link primitive. The
linked routine can then be interactively called by the call primitive, which transmits Scilab

The Innovative Design of Low Cost Embedded Controller for Complex Control Systems

315

variables to the linked program and transforms back the output parameters into Scilab
variables. In the next section, we will use this technique in developing the interfaces to
hardware devices. The interface program can be produced by intersci, which is a built-in
Scilab program for building an interface file between Scilab and external functions. It
describes the routine called and the associated Scilab function. In addition, the interface
program can also be written by the user using mexfiles. With an appropriate interface, it is
possible to add a permanent new primitive to Scilab through making a new executable code
for Scilab. In addition to the Scilab language and the interface program, Scilab includes
hundreds of powerful primitives in the form of mathematical functions. A large number of
toolboxes for simulation, control, optimization, signal processing, graphics and networks,
etc., are also available. These built-in functions and toolboxes allow users to program
software with ease. Figure 10 gives an example of Scilab scripts in which a PID controller is
implemented. In this program, GetSample() and UpdateState() are user-defined functions,
which may be built by exploiting the I/O port drivers to be presented in the next section.
The former obtains the sampled data from sensors, while the latter sends the new control
command to actuators.

Digital PID Controller
//SP: Setpoint; y: System output; u: Control input
//Ts: Sampling period
//Kc, Td, Ti: Controller parameters
mode(-1)
Ts=2; Kc=1; Td=1; Ti=1; SP=1; u=0;
e(1)=0; e(2)=0; i=3;
Ki=Kc*Td/Ti;
Kd=Kc*Td/Ts;
realtimeinit(Ts);
realtime(0);
while 1
y=GetSample();
e(i)=SP-y;
du=Kc*(e(i)-e(i-1))+Ki*e(i)+Kd*(e(i)-2*e(i-1)+e(i-2));
u=du+u;
UpdateState(u);
e(i-2)=e(i-1);
e(i-1)=e(i);
i=i+1;
realtime(i-3);
end

Fig. 10. Example of Scilab scripts in which a PID controller.

5. Platform performance & interface
5.1 Rapid prototyping of control algorithms

The use of Scilab makes it easy to model, design, and implement complex control algorithms
in the embedded controller developed in this work. Scilab has a variety of powerful

Embedded Systems – Theory and Design Methodology

316

primitives for programming control applications. Additionally, there are several different
ways to realize a control algorithm in the Scilab/Scicos environment. For instance, it can be
programmed as a Scilab .sci file using the Scilab language, or visualized as a Scicos block
linked to a specific function written in FORTRAN or C. In addition, there are an increasing
number of contributions that provide support for implementing advanced control strategies
in Scilab using, e.g., fuzzy logic, genetic algorithm, neural networks, and online
optimization. As a simple example for system modeling and simulation in Scicos, Figure 11
shows a control system for a water tank. The models of the controller and the water tank are
highlighted by the dashed and solid rectangles, respectively. The step response of the
control system is depicted in Figure 12.

Fig. 11. An example control system in Scicos.

Fig. 12. Step response of the example control system.

5.2 Hardware drivers

Almost all embedded systems in practice need to interact with other related components
(i.e. hardware devices) via I/O ports. In order for the developers to build practically useful
embedded software with communication ability, it is necessary to provide hardware drivers
in the embedded Scilab environment. To address this issue, we have developed the drivers
for several types of communication interfaces including serial port, Ethernet, and Modbus.
Illustrated below is how to program these drivers using Scilab in ARM Linux, while taking
the serial port interface as an example. In the process of communication via a serial port,
there are several basic operations, including open connection, set communication
parameters, read data, write data, and close connection. Each basic operation is
implemented as a separate C function. To facilitate dynamic links with Scilab, all arguments
of the C functions are defined as pointers, as shown in the following example figure 13
where the function for reading and writing data from a serial port is implemented.

The Innovative Design of Low Cost Embedded Controller for Complex Control Systems

317

int serialread(int *handle, char *readbuff)
{
int nread;
readbuff[0]='\0';
while((nread=read(*handle,buff,512))>0)
{
printf(‘\nLen %d\n’,nread);
buff[nread]='\0';
strcat(readbuff, buff);
}
}

int serialwrite(int *handle, char *writebuff)
{
int nwrite;
nwrite = write(*handle, writebuff,
strlen(writebuff));
printf(‘serialwrite%d\n %d\n %d\n’, *handle,
nwrite, strlen(writebuff));
if (nwrite==strlen(writebuff))
printf(‘%d successfully written!\n’,
nwrite);
else printf(‘write error!\n’);
}

Fig. 13. Example of serial port reading and writing script.

As such, the hardware drivers are implemented as Scilab functions. These functions can be
used by Scilab software programs in the same way as using other built-in Scilab functions. The
developed hardware drivers, in the form of functions, serve as the gateway linking the
different entities. Figure 14 gives a snapshot of the Scilab-based embedded ARM Linux system
we develop using the programming techniques described in this Book(Peng, Z, 2008).

Fig. 14. The embedded control developed.

Embedded Systems – Theory and Design Methodology

318

5.3 Computational capability analysis

Computational capability is a critical attribute of the embedded controller since the
execution of the control program affects the temporal behavior of the control system,
especially when complex control algorithms are employed. Therefore, we assess the
computational capability of the developed embedded controller in comparison with that of
a PC (Intel Pentium M CPU @1.60 GHz, with 760 MB of RAM) running Linux. The time for
executing different algorithms is summarized in Table 2.

 Rand(800, 800) DeJoy Algorithm
PC (s) 0.029 3.486
ARM (s) 1.176 92.3
Ratio 1:40 1:30

Table 2. Comparison of computational capability of PC and ARM.

6. Experimental test
In this section, we will test the performance of the developed embedded controller via
experiments. For a research laboratory, however, it is very costly, if not impossible, to build
the real controlled physical processes for experiments on complex control applications. For
this reason, we construct a virtual control laboratory to facilitate the experiments on the
embedded controller.

6.1 Virtual control platform

The schematic diagram of the structure of the experimental system is shown in Figure 15.
The basic idea behind the virtual control laboratory is to use a PC running a dynamical
system modeling software to simulate the physical process to be controlled. The control
algorithms are implemented on the embedded controller, which exchanges data with the PC
via a certain communication protocol, e.g., serial, Ethernet, or Modbus.

Fig. 15. Experimental system.

The Innovative Design of Low Cost Embedded Controller for Complex Control Systems

319

Both of the PC and the embedded controller use Scilab/Scicos as core software. Using this
virtual control platform, experiments on various (virtual) physical processes are possible
given that they can be modeled using Scilab/Scicos.

6.2 Case study

In the following, the control of a water tank is taken as an example for the experimental
study. The water tank is modeled as shown in Figure 15 and implemented on the PC (Figure
16). The controller implemented on the embedded controller is shown in Figure 17. The
control objective is to keep the water level (denoted y) in the tank to 10. The PC and the
embedded controller are connected using Ethernet, and they communicate based on the
UDP protocol. The PID algorithm is used for control

Fig. 16. Controlled process.

Fig. 17. Controller.

Figure 18 depicts the water level in the tank when different sampling periods are used, i.e., h
= 0.1s, 0.2s and 0.5s, respectively. It can be seen that the control system achieve satisfactory
performance. The water level is successfully controlled at the desired value in all cases.

Embedded Systems – Theory and Design Methodology

320

(a) h = 0.1s

(b) h = 0.2s

(c) h = 0.5s

Fig. 18. Control performance.

7. Conclusion
We have developed an embedded platform that can be used to design and implement
embedded control systems in a rapid and cost-efficient fashion. This platform is built on free
and open source software such as Scilab and Linux. Therefore, the system development cost

The Innovative Design of Low Cost Embedded Controller for Complex Control Systems

321

can be minimized. Since the platform provides a unified environment in which the users are
able to perform all phases of the development cycle of control systems, the development
time can be reduced while the resulting performance may potentially be improved. In
addition to industrial control, the platform can also be applied to many other areas such as
optimization, image processing, instrument, and education. Our future work includes test
and application of the developed platform in real-world systems where real sensors and
actuators are deployed.

8. Acknowledgment
This work is supported in part by Natural Science Foundation of China under Grant No.
61070003, and Zhejiang Provincial Natural Science Foundation of China under Grant No.
R1090052 and Grant No. Y108685.

9. References
Albertos, P.; Crespo, A.; Vallés, M. & Ripoll, I. Embedded control systems: some issues and

solutions, Proc. of the 16th IFAC World Congress, pp. 257-262, Prague,
2005

Ben Gaid, M.; Kocik, R.; Sorel, Y.; Hamouche, R. A methodology for improving software
design lifecycle in embedded control systems, Proc. of Design, Automation and
Test in Europe (DATE), Munich, Germany, March 2008

Bucher, R.; Balemi, S. Rapid controller prototyping with Matlab/Simulink and Linux,
Control Eng. Pract. , pp. 185-192, 2006

Bucher, R.; Balemi, S. Scilab/Scicos and Linux RTAI - a unified approach, Proc. of the IEEE
Conf. on Control Applications, pp. 1121-1126, Toronto, Canada, August
2005

Chindris, G.; Muresan, M. Deploying Simulink Models into System-On-Chip Structures,
Proc. of 29th Int. Spring Seminar on Electronics Technology, 2006

Feng Xia, Longhua Ma, Zhe Peng, Programming Scilab in ARM Linux, ACM SIGSOFT
Software Engineering Notes, Volume 33 number 5, 2008

Hladowski, L.; Cichy, B.; Galkowski, K.; Sulikowski B.; Rogers, E. SCILAB compatible
software for analysis and control of repetitive processes, Proc. of the IEEE Conf. on
Computer Aided Control Systems Design, pp. 3024-3029, Munich, Germany,
October 2006

Longhua Ma, Feng Xia, and Zhe Peng, Integrated Design and Implementation of Embedded
Control Systems with Scilab, Sensors, vol.8, no.9, pp. 5501- 5515, 2008.

Mannori, S.; Nikoukhah, R.; Steer, S. Free and Open Source Software for Industrial Process
Control Systems, 2008, Available from

 http://www.scicos.org/ScicosHIL/angers2006eng.pdf
Ma Longhua, Peng Zhe, Embedded ARM-Linux computation develop based Scilab, China

Science publication, Beijing, China, 2008
Peng, Z. Research and Development of the Embedded Computing Platform Scilab-EMB

Based on ARM-Linux, Master Thesis, Zhejiang University, Hangzhou, 2008.

Embedded Systems – Theory and Design Methodology

322

Wittenmark, B.; Åström, K.J.; Årzén, K.-E. Computer control: An Overview, IFAC
Professional Brief, 2002

Xia, F. & Sun, Y.X. Control and Scheduling Codesign: Flexible Resource Management in
Real Time Control Systems, Springer, Heidelberg, Germany, 2008

15

Choosing Appropriate Programming Language
to Implement Software for Real-Time Resource-

Constrained Embedded Systems
Mouaaz Nahas1 and Adi Maaita2

1Department of Electrical Engineering, College of Engineering and Islamic Architecture,
Umm Al-Qura University, Makkah,

2Software Engineering Department, Faculty of Information Technology,
Isra University, Amman,

1Saudi Arabia
2Jordan

1. Introduction
In embedded systems development, engineers are concerned with both software and
hardware aspects of the system. Once the design specifications of a system are clearly
defined and converted into appropriate design elements, the system implementation
process can take place by translating those designs into software and hardware components.
People working on the development of embedded systems are often concerned with the
software implementation of the system in which the system specifications are converted into
an executable system (Sommerville, 2007; Koch, 1999). For example, Koch interpreted the
implementation of a system as the way in which the software program is arranged to meet
the system specifications.

Having decided on the software architecture of the embedded design, the first key decision
to be made in the implementation stage is the choice of programming language to
implement the embedded software (including the scheduler code, for example). The choice
of programming language is an important design consideration as it plays a significant role
in reducing the total development time (Grogono, 1999) (as well as the complexity and thus
maintainability and expandability of the software).

This chapter is intended to be a useful reference on "computer programming languages" in
general and on "embedded programming languages" in particular. The chapter provides a
review of (almost) all common programming languages used in computer science and real-
time embedded systems. The chapter then discusses the key challenges faced by an
embedded systems developer to select a suitable programming language for their design
and provides a detailed comparison between the available languages. A detailed literature
review of the work done in this area is also provided. The chapter also provides real data
which shows that – among the wide range of available choices – “C” remains the most
popular language for use in the programming of real-time, resource-constrained embedded
systems. The key features of “C” which made it so popular are provided in a great detail.

Embedded Systems – Theory and Design Methodology

324

The chapter is organized as follows. Section 2 provides various definitions of the term
“programming language” from a wide range of well-known references. Section 3 and
Section 4 provide classification and history of programming languages (respectively).
Section 5 provides a review of programming languages used in the fields of real-time
embedded systems. Section 6 discusses the choice of programming languages for embedded
designs. Section 7 and Section 8 provide the main advantages of “C” which made it the most
popular language to use in real-time, resource-constrained embedded systems and a
detailed comparison with alternative languages (respectively). Real data which shows the
prevalence of “C” against other available languages is also provided in Section 8. Section 9
presents a brief literature review of using “C” to implement software for real-time
embedded systems. The overall chapter conclusions are drawn in Section 10.

2. What is a programming language?
Simply, programming as a problem has only arisen since computer machines were first
created. The magnitude of the problem is however relative to the size (and complexity) of
the computer machine used (Cook, 1999). To program a computer system, a programming
language is required. The latter is seen as the major way of communication (interface)
between a person who has a problem and the computer system used to solve the problem.

Programming language has been defined in several ways. For example, American Standard
Vocabulary for Information Processing (ANSVIP, 1970) defined a programming language as
“A language used to prepare computer programs”. The IFIP-ICC Vocabulary of Information
Processing (IFIP-ICC, 1966) defined it as “A general term for a defined set of symbolic and
rules or conventions governing the manner and sequence in which the symbols may be
combined into a meaningful communication”. The IFIP-ICC glossary also noted that “An
unambiguous language, intended for expressing programs, is called a PROGRAMMING
LANGUAGE”. Other definitions for a programming language include:

 “A computer tool that allows a programmer to write commands in a format that is more
easily understood or remembered by a person, and in such a way that they can be
translated into codes that the computer can understand and execute.” (Budlong, 1999).

 “An artificial language for expressing programs.” (ISO, 2001).
 “A self-consistent notation for the precise description of computer programs” (Wizitt,

2001).
 “A standard which specifies how (sort of) human readable text is run on a computer.”

(Sanders, 2007).
 “A precise artificial language for writing programs which can be automatically

translated into machine language.” (Holyer, 2008).

However, it was noted elsewhere (e.g. Sammet, 1969) that standard definitions are usually
too general as they do not reflect the language usage. A more specific definition for a
programming language was given by Sammet as a set of characters and rules (used to
combine the characters) that have the following characteristics:

 A programming language requires no knowledge of the machine code by the
programmer, thus the programmer can write a program without much knowledge
about the physical characteristics of the machine on which the program is to be run.

Choosing Appropriate Programming Language
to Implement Software for Real-Time Resource-Constrained Embedded Systems

325

 A programming language should be machine independent.
 When a program written in a programming language is translated into the machine

code, each statement should explode to generate a large set of machine instructions.
 A programming language must have problem-oriented notations which are closer to

the specific problem intended to be solved.

It is worth mentioning that a vast number of different programming languages have already
been created, and new languages are still being created.

3. Classification of programming languages
This section provides a classification of programming languages. Sources for this section
include (Sammet, 1969; Booch, 1991; Grogono, 1999; Lambert & Osborne, 2000; Mitchell,
2003; Calgary, 2005; Davidgould, 2008; Network Dictionary, 2008).

In general, programming languages can be divided into programming paradigms and
classified by their intended domain of use. Paradigms include procedural programming,
object-oriented (O-O) programming, functional programming, and logic programming.
Note that some languages combine multiple paradigms. Each of these paradigms is briefly
introduced here.

Procedural programming (or imperative programming) is based on the concept of
decomposing the program into a set of procedures (i.e. series of computational steps).
Examples of procedural languages are: FORTRAN (FORmula TRANslator), Algol
(ALGOrithmic Language), COBOL (COmmon Business Oriented Language), PL/I
(Programming Language I), Pascal, BASIC (Beginner's All-purpose Symbolic Instruction
Code), Modula-2, “C” and Ada. Object-Oriented (O-O) programming is a method where the
program is organized as cooperative collections of “objects”. This style of programming was
not commonly used in software application development until the early 1990s, but
nowadays most of the modern programming languages support this type of programming
paradigm. Examples of object-oriented languages are: Simula, Smaltalk, C++, Eiffel and
Java. Functional programming treats computation as the evaluation of mathematical
functions. In functional programming, a high order function can take another function as a
parameter or returns a function. An example of functional languages is LISP (LISt
Processor). Finally, logic programming uses mathematical logic in which the program
enables the computer to reason logically. An example of logic languages is Prolog
(PROgramming in LOGic). It is often argued that languages with support for an O-O
programming style have advantages over those from earlier generations (Pont, 2003). For
example, Jalote (1997) noted that using O-O helps to represent the problem domain, which
makes it easier to produce and understand designs.

In addition to programming paradigm, the purpose of use is an important characteristic of a
language: it is unlikely to see one language fitting all needs for all purposes (Sammet, 1969).
Programming languages can be divided, according to their purpose, into general-purpose
languages, system programming languages, scripting languages, domain-specific
languages, and concurrent / distributed languages (or a combination of these). A general-
purpose language is a type of programming language that is capable of creating various
types of programs for various applications, e.g. “C” language. There has been an argument
that some of the general-purpose languages were designed mainly for educational purposes

Embedded Systems – Theory and Design Methodology

326

(Wirth, 1993). A system programming language is a language used to produce software
which services the computer hardware rather than the user, e.g. Assembly and Embedded
C. Scripting language is a language in which programs are a series of commands that are
interpreted and then executed sequentially at run-time without compilation, e.g. JavaScript
(used for web page design). Domain-specific programming languages are, in contrast to
general-purpose languages, designed for a specific kind of tasks, e.g. Csound (used to create
audio files), and GraphViz (used to create visual representations of directed graphs).
Concurrent languages are programming languages that have abstractions for writing
concurrent programs. A concurrent program is the program that can execute multiple tasks
simultaneously, where these tasks can be in the form of separate programs or a set of
processes or threads created by a single program. Concurrent programming can support
distributed computing, message passing or shared resources. Examples of concurrent
programming languages include Java, Eiffel and Ada.

In his famous book (i.e. “Programming Languages: History and Fundamentals”, 1969), Jean
E. Sammet used the following set of defining categories as a way of classifying
programming languages: 1) procedural and non-procedural languages; 2) problem-oriented,
application-oriented and special purpose languages; 3) problem-defining, problem
describing and problem solving languages; 4) hardware, publication and reference
languages. Sammet however underlined that any programming language can fall into more
than one of these categories simultaneously: for further details see Sammet (1969).

4. History of programming languages
It has been argued that studying the history of programming languages is essential as it
helps developers avoid previously-committed mistakes in the development of new
languages (Wilson & Clark, 2000). It was also pointed out that an unfortunate trend in
Computer Science is creating new language features without carefully studying previous
work in this field (Grogono, 1999). Most books and articles on the history of programming
languages tend to discuss languages in terms of generations where languages are classified
by age (Cook, 1999). Many articles and books have discussed the generations of
programming languages (e.g. Wexelblat, 1981; Martin & Leben, 1986; Watson, 1989; Zuse,
1995; Flynn, 2001). Pont (2003) provides a list of widely-used programming languages
classified according to their generations (see Table 1).

Language generation Example languages
-
First generation language (1GL)
Second generation languages (2GL)
Third generation languages (3GL) “process-oriented’
Fourth generation languages (4GL) ‘object-oriented’

Machine code
Assembly
COBOL, FORTRAN
C, Pascal, Ada 83
C++, Java, Ada 95

Table 1. Classification of programming languages by generations (Pont, 2003).

A brief history of the most popular programming languages (including the ones presented
in Table 1) is provided in this section. Sources for the following material mainly include
(Wexelblat, 1981; Martin & Leben, 1986; Watson, 1989; Halang & Stoyenko, 1990; Grogono,
1999; Flynn, 2001).

Choosing Appropriate Programming Language
to Implement Software for Real-Time Resource-Constrained Embedded Systems

327

In the 1940s, the first electrically powered digital computers were created. The computers of
the early 1950s used machine language which was quickly superseded by a second
generation of programming languages known as Assembly languages. The limitations in
resources (e.g. computer speed and memory space) enforced programmers to write their
hand-tuned assembly programs. However, it was shortly realized that programming in
assembly required a great deal of intellectual effort and was prone to error. It is important to
note that although many people consider Assembly as a standard programming language,
some others believe it is too low-level to bring satisfactory of communication for user, hence
was excluded from the programming languages list (Sammet, 1969).

1950s saw the development of a range of high-level programming languages (some of which
are still in widespread use), e.g. FORTRAN, LISP, and COBOL, and other languages such as
Algol 60 that had a substantial influence on most of the lately developed programming
languages. In 1960s, languages such as APL (A Programming Language), Simula, BASIC
and PL/I were developed. PL/I incorporated the best ideas from FORTRAN and COBOL.
Simula is considered to be the first language designed to support O-O programming.

The period between late 1960s and late 1970s brought a great prosperity to programming
languages most of which are used nowadays. In the mid-1970s, Smalltalk was introduced
with a complete design of an O-O language. The programming language “C” was
developed between 1969 and 1973 as a systems programming language, and remained
popular. In 1972, Prolog was designed as the first logic programming language. In 1978, ML
(Meta-Language) was developed to found statically-typed functional programming
languages in which type checking is performed during compile-time allowing more efficient
program execution. It is important to highlight that each of these languages originated an
entire family of descendants. Some other key languages which were developed in this
period include: Pascal, Forth and SQL (Structured Query Language).

In 1980s, C++ was developed as a combined O-O and systems programming language.
Around the same time, Ada was developed and standardized by the United States
government as a systems programming language intended for use in defense systems. One
noticeable tendency of language design during the 1980s was the increased focus on
programming large-scale systems through the use of modules, or large-scale organizational
units of code. Therefore, languages such as Modula-2, Ada, and ML were all extended to
support such modular programming in 1980s. Some other languages that were developed in
this period include: Eiffel, PEARL (Practical Extraction and Report Language) and FL
(Function Level).

In mid-1990s, the rapid growth of the Internet created opportunities for new languages to
emerge. For example, PEARL (which is originally a Unix scripting tool first released in 1987)
became widely adopted in dynamic web sites design. Another example is Java which was
commonly used in server-side programming. These language developments provided no
fundamental novelty: instead, they were modified versions of existing languages and
paradigms and largely based on the “C” family of programming languages.

It is difficult to determine which programming languages are most widely used, as there
have been various ways to measure language popularity (see O'Reilly, 2006; Bieman &
Murdock, 2001). Mostly, languages tend to be popular in particular types of applications.
For example, COBOL is a leading language in business applications (Carr & Kizior, 2000),

Embedded Systems – Theory and Design Methodology

328

FORTRAN is widely used in engineering and science applications (Chapman, 2004), and
“C” is a genuine language for programming embedded applications and operating systems
(Barr, 1999; Pont, 2002; Liberty & Jones, 2004).

5. Programming languages for real-time embedded systems
To develop a real-time embedded system, a number of tools and techniques would be
required: the key one is the programming language used to develop the application code
(Burns, 2006). Assembly was the first programming language used to implement the
software for embedded applications. However, it was argued that the development
environments that used the first generation languages such as Assembly lacked the basic
support for debugging and testing (Halang & Stoyenko, 1990). Therefore, in 1960s, the need
for high-level programming languages to program real-time systems, instead of continuing
to use Assembly language, was agreed among many real-time system designers; due to
advantages such as ease of learning, programming, understanding, debugging, maintaining
and documenting and also code portability (see Boulton & Reid, 1969; Sammet, 1969).

The work in this area began by identifying the essential requirements for a high-level
language to fulfill the objectives of real-time applications (Opler, 1966). Such requirements
were summarized by Boulton & Reid (1969) as methods of handling real-time signals and
interrupts, and methods of scheduling real-time tasks. Opler (1966) argued that to achieve
such requirements, one can make extensions / modifications to an existing programming
language, where an alternative solution is to develop new languages dedicated specifically
for real-time software. Some success, in extending existing languages to real-time
computing, was achieved using languages such as FORTRAN (e.g. Jarvis, 1968; Roberts,
1968; Hohmeyer, 1968; Mensh & Diehl, 1968; Kircher & Turner, 1968) and PL/I (e.g. Boulton
& Reid, 1969). Some other studies, however, attempted to develop new real-time languages
but with some similarity to existing languages, e.g. PROSPRO (Bates, 1968), SPL (Oerter,
1968) and RTL (Schoeffler & Temple, 1970).

In 1970s, a major concern of many researchers became the programming of real-time
applications which involve concurrent processing. Useful work in this area demonstrated
that, same as before, concurrent programming can be achieved by either extending available
general-purpose languages (e.g. Hansen, 1975; Wirth, 1977) or developing entirely new
concurrent-processing languages (e.g. Schutz, 1979). However, it was noticed that extended
general-purpose languages still lacked genuine concurrency and real-time concepts
(Steusloff, 1984). This led to the development of more efficient concurrent real-time
languages such as PEARL (DIN, 1979), ILIAD (Schutz, 1979) and Ada (Ada, 1980).

Ada is a well-designed and widely used language for implementing real-time systems
(Burns, 2006). Therefore, it is worth discussing it in greater detail. As previously noted, Ada
is an object-oriented, high-level programming language which was first developed and
adopted by the U.S. Department of Defense (DoD) to implement various defense mission-
critical software applications (Ada, 1980; Baker & Shaw, 1989). Ada appeared as a standard
language in 1983 – when Ada83 was released – and was later reviewed and improved in
1995 by producing Ada95. Since developed, Ada has gained a great deal of interest by many
real-time and embedded systems developers (e.g. see Real-Time Systems (RTS) Group
webpage, The University of York, UK). It was declared that Ada embodies features which

Choosing Appropriate Programming Language
to Implement Software for Real-Time Resource-Constrained Embedded Systems

329

facilitate the achievement of safety, reliability and predictability in the system behavior
(Halang & Stoyenko, 1990). Halang & Stoyenko (1990) carried out a detailed survey on a
number of representative real-time programming languages including Ada, FORTRAN,
HALL/S, LTR, PEARL, PL/I and Euclid, and concluded that Ada and PEARL were the
most widely available and used languages among the others which had been surveyed.

In addition to the previous sets of modified and specialized real-time languages, it was
accepted that universal, procedural programming languages (such as C) can also be used for
real-time programming although they contain just rudimentary real-time features: this is
mainly because such languages are more popular and widely available than genuine real-
time languages (Halang & Stoyenko, 1990). Later generations of O-O languages such as C++
and Java also have popularity in embedded programming (Fisher et al., 2004). Embedded
versions of famous “.Net” languages are gaining more popularity in the field of embedded
systems development. However, they are not a favorite choice when it comes to resource
constrained embedded systems as they are O-O languages, hence, they require a lot of
resources as compared to the requirements of “C”.

6. Choosing a suitable programming language for embedded design
In real-time embedded systems development, the choice of programming language is an
important design consideration since it plays a significant role in reducing the total
development time (Grogono, 1999).

Overall, it has been widely accepted that the low-level Assembly language suffers high
development costs and lack of code portability, and only very few highly-skilled Assembly
programmers can be found today (see Barr, 1999; Walls, 2005). If the decision is therefore
made not to use the Assembly language due to its inevitable drawbacks, there is no scientific
way to select the most optimal high-level programming language for a particular
application (Sammet, 1969; Pont, 2002). Instead, researchers tend to discuss the important
factors which should be considered in the choice of a language. For example, Sammet (1969)
indicated that a major factor in selecting a language is the language suitability to solve the
particular classes of problems for which it is intended, and the type of the actual user (i.e.
user level of professionalism). It has also been noted by Sammet that factors such as
availability on the desired computer hardware, history and previous evaluation,
implementation consequences of the language are also key factors to take into account
during the language selection process. However, Sammet stressed that a successful choice
can only be made if the language includes the required technical features.

Specifically, when choosing a language for embedded systems development, the following
factors must be considered (Pont, 2003):

 Embedded processors normally have limited speed and memory, therefore the
language used must be efficient to meet the system resource constraints.

 Programming embedded systems requires a low-level access to the hardware. For
example, there might be a need to read from / write to particular memory locations.
Such actions require appropriate accessing mechanisms, e.g. pointers.

 The language must support the creation of flexible libraries, making it easy to re-use
code components in various projects. It is also important that the developed software

Embedded Systems – Theory and Design Methodology

330

should be easily ported and adapted to work on different processors with minimal
changes.

 The language must be widely used in order to ensure that the developer can continue to
recruit experienced professional programmers, and to guarantee that the existing
programmers can have access to information sources (such as books, manuals,
websites) for examples of good design and programming practices.

Of course, there is no perfect choice of programming language. However, the chosen
language is required to be well-defined, efficient, supports low-level access to hardware,
and available for the platform on which it is intended to be used. Against all of these factors,
“C” language scores well, hence it turns out to be the most appropriate language to
implement software for low-cost resource-constrained embedded systems. Pont (2003)
stated that “C’s strengths for embedded system greatly outweigh its weaknesses. It may not be an
ideal language for developing embedded systems, but it is unlikely that a ‘perfect’ language will be
created”.

7. The “C” programming language
In his famous book “Programming Embedded Systems in “C” and C++”, Michael Barr
(1999) emphasized that “C” language has been a constant factor across all embedded
software development due to the following advantages:

 It is small and easy to learn.
 Its compilers are available for almost every processor in use today.
 There are so many experienced “C” programmers around the world.
 It is a hardware-independent programming language, a feature which allows the

programmer to concentrate only on the algorithm rather than on the architecture of the
processor on which the program will be running.

Despite this, Barr highlighted that the key advantage of “C” which made it the favorite
choice for many embedded programmers is its low-level nature that provides the
programmer with the ability to interact easily with the underlying hardware without
sacrificing the benefits of using high-level programming.

In (Grogono, 1999), it was declared that “C” is based on a small number of primitive
concepts, therefore it is an easy language to learn and program by both skilled and unskilled
programmers. Moreover, Grogono stated that “C” can be easily compiled to produce
efficient object code.

In a more recent publication, Pont (2002) stated that “C’s strengths for embedded system greatly
outweigh its weaknesses. It may not be an ideal language for developing embedded systems, but it is
unlikely that a ‘perfect’ language will be created”. According to (Pont, 2002, 2003), the key
features of the “C” language can be summarized as follows.

 It is a mid-level language with both high-level features (such as support for functions
and modules) and low-level features (such as access to hardware via pointers).

 It is very efficient, popular and well understood even by desktop developers who
programmed on C++ or Java.

 It has well-proven compilers available nowadays for every embedded processor (e.g. 8-,
16-, 32-bit or more).

Choosing Appropriate Programming Language
to Implement Software for Real-Time Resource-Constrained Embedded Systems

331

 Books, training courses, code examples and websites that discuss the use of the
language are all widely available.

In (Jones, 2002), it was noted that features such as easy access to hardware, low memory
requirements, and efficient run-time performance make the “C” language popular and
foremost among other languages. In (Brosgol, 2003), it was made clear that “C” is the typical
choice for programming embedded applications as it is processor-independent, has low-
level features, can be implemented on any architecture, has reasonable run-time
performance, is an international standard, and is familiar to almost all embedded systems
programmers. Fisher et al. (2004) emphasized that, in addition to portability and low-level
features of the language, C structured programming drives embedded programmers to
choose “C” language for their designs. Moreover, it has been clearly noted that “C” cannot
be competed in producing a compact, efficient code for almost all processors used today
(Ciocarlie & Simon, 2007).

Furthermore, since “C” was recognized as the de facto language for coding embedded
systems including those which are safety-related (Jones, 2002; Pont, 2002; Walls, 2005), there
have been attempts to make “C” a standard language for such applications by improving its
safety characteristics rather than promoting the use of safer languages that are less popular
(such as Ada). For example, The UK-based Motor Industry Software Reliability Association
(MISRA) has produced a set of guidelines (and rules) for the use of “C” language in safety-
critical software: such guidelines are well known as “MISRA C”. For more details, see
(Jones, 2002).

8. Why does “C” outperform other languages?
When comparing “C” to other alternative languages such as C++ or Ada, the following
observations have been made. C++ is a good alternative to “C” as it provides better data
abstraction and offers a better O-O programming style, but some of its features may cause
degradation in program efficiency (Barr, 1999). Also, such a new generation O-O language is
not readily available for the small embedded systems, primarily because of the overheads
inherent in the O-O approach, e.g. CPU-time overhead (Pont, 2003).

Despite that Ada was a leading language that provided full support for concurrent and real-
time programming, it has not gained much popularity (Brosgol, 2003) and has rarely been
used outside the areas related to defense and aerospace applications (Barr, 1999; Ciocarlie &
Simon, 2007). Unlike C, not many programmers nowadays are experienced in Ada, therefore
only a small number of embedded systems are currently developed using this language
(Ciocarlie & Simon, 2007). In addition, despite their approved efficiency, Ada compilers are
not widely available for small embedded microcontrollers and usually need hard work to
accept the program; especially by new programmers (Dewar, 2006). Indeed, both Ada and
C++ have too large demand on low-cost embedded systems resources (e.g. memory
requirements) and therefore cannot be suitable languages for such applications1 (Walls, 2005).

1 However, despite the indicated limitations of Ada, there has been a great deal of work on assessing a
new version of Ada language (i.e. Ada-2005) to widen its application domain (see Burns, 2006; Taft et al.,
2007). It has been noted that Ada-2005 can have the potential to overwhelm the use of “C” and its
descendants in embedded systems programming (Brosgol and Ruiz, 2007).

Embedded Systems – Theory and Design Methodology

332

In a survey carried out by Embedded Systems Design (ESD) in 2006, it was shown that the
majority of existing and future embedded projects to which the survey applied were
programmed (and likely to be programmed) in C. In particular, the results show that for
2006 projects, 51% were programmed in C, 30% in C++, and less than 5% were programmed
in Ada. The survey shows that 47% of the embedded programmers were likely to continue
to use “C” in their next projects. See Fig. 1 for further details.

Fig. 1. Programming languages used in embedded system projects surveyed by ESD in 2006.
The figure is derived from the data provided in (Nahas, 2008).

9. Using “C” to implement software for real-time embedded systems
Since “C” remains the most popular means for developing software in real-time embedded
systems, it has been extensively used in the implementation of real-time schedulers and
operating systems for embedded applications. In general, “C” was adopted in the software
development of almost all operating systems (including RTOSs) in which schedulers are the
core components (Laplante, 2004). In Michael Barr’s book on embedded systems
programming (i.e. Barr, 1999), it was noted that “C” is the main focus of any book about
embedded programming. Therefore, most of the sample codes presented in Barr’s book – for
both schedulers and operating systems – were written in “C” and the key focus of the
discussion was on how to use “C” language for ‘in-house’ embedded software development.
However, some of the example code presented later in the book was written in C++ while
Assembly language was avoided as much as possible. In (Barr & Massa, 2006), possible
ways for implementing the eCos and the Embedded Linux, as a small and a large open-
source operating systems (respectively), in “C” language were discussed. Other books
which discuss the use of “C” language in the software implementation of real-time
embedded systems include (Ganssle, 1992; Brown, 1994; Sickle, 1997; Zurell, 2000; Labrosse ,
2000; Samek, 2002; Barnett et al., 2003; Laplante, 2004).

Choosing Appropriate Programming Language
to Implement Software for Real-Time Resource-Constrained Embedded Systems

333

More specifically, using “C” language to implement the software code for particular
scheduling algorithms is quite common. For example, Mooney et al. (1997) described a
strategy for implementing a dynamic run-time scheduler using both hardware and software
components: the software part was implemented using “C” language. Kravetz & Franke
(2001) described an alternative implementation of the Linux operating system scheduler
using “C” programming. It was emphasized that the new implementation can maintain the
existing scheduler behavior / semantics with very little changes in the existing code.

Rao et al. (2008) discussed the implementation of a new pre-emptive scheduler framework
using “C” language. The study basically reviewed and extracted the positive characteristics
of existing pre-emptive algorithms (e.g. rate monotonic, EDF and LLF) to implement a new
robust, fully pre-emptive real-time scheduler aimed at providing better performance in
terms of timing and resource utilization.

Researchers of the Embedded Systems Laboratory (ESL), University of Leicester, UK have
been greatly concerned with developing techniques and tools to support the design and
implementation of reliable embedded systems, mainly using “C” programming language.
An early work in this area was carried out by Pont (2001) which described techniques for
implementing Time-Triggered Co-operative (TTC) architectures using a comprehensive set
of “software design patterns” written in “C” language. The resulting “pattern language”
was referred to as “PTTES2 Collection” which contained more than seventy different
patterns. As experience in this area has grown, this pattern collection has expanded and
subsequently been revised in a series of ESL publications (e.g. Pont & Ong, 2003; Pont &
Mwelwa, 2003; Mwelwa et al., 2003; Mwelwa & Pont, 2003; Pont et al., 2003; Pont & Banner,
2004; Mwelwa et al., 2004; Kurian & Pont, 2005; Kurian & Pont, 2006b; Pont et al., 2006;
Wang et al., 2007, Kurian & Pont, 2007).

In (Nahas et al., 2004), a low-jitter TTC scheduler framework was described using “C”
language. Phatrapornnant and Pont (2004a, 2004b) looked at ways for implementing low-
power TTC schedulers by applying “dynamic voltage scaling” (DVS) algorithm programmed
in “C” language. Moreover, Hughes & Pont (2008) described an implementation of TTC
schedulers – in “C” language – with a wide range of “task guardian” mechanisms that aimed
to reduce the impact of a task-overrun problem on the real-time performance of a TTC system.
On the other hand, various ways in which Time-Triggered Hybrid (TTH) scheduler can be
implemented in practice using “C” have been described in (Pont, 2001; Maaita & Pont, 2005;
Hughes & Pont, 2008; Phatrapornnant, 2007). The ESL group has also been involved in
creating software platforms for distributed embedded systems in which Shared-Clock (S-C)
scheduling protocols are employed to achieve time-triggered operation over standard network
protocols. All different S-C schedulers were implemented using “C” (for further details, see
Pont, 2001; Ayavoo et al., 2007).

10. Conclusions
Selecting a suitable programming language is a key aspect in the success of the software
development process. It has been shown that there is no specific method for selecting an
appropriate programming language for the development of a specific project. However, the

2 PTTES stands for Patterns for Time-Triggered Embedded Systems.

Embedded Systems – Theory and Design Methodology

334

accumulation of experience along with subjective judgment enables software developers to
make intelligent choices of programming languages for different application types.

Embedded software developers utilize different programming languages such as: Assembly,
Ada, C, and C++. We have demonstrated that C is the most dominant programming language
for embedded systems development. Although other languages may be winning ground when
it comes to usage, C remains the de facto language for developing resource-constrained
embedded systems which comprise a large portion of today’s embedded applications.

11. Acknowledgement
The research summarized in this paper was partially carried out in the Embedded Systems
Laboratory (ESL) at University of Leicester, UK, under the supervision of Professor Michael
Pont, to whom the authors are thankful.

12. References
Ada (1980) “Reference Manual for the Ada Programming Language”, proposed standard

document, U.S. Department of Defense.
ANSVIP (1970) “American National Standard Vocabulary for Information Processing”,

American National Standards Institute, Inc., 1430 Broadway, New York, N.Y.
Ayavoo, D., Pont, M.J., Short, M. and Parker, S. (2007) "Two novel shared-clock scheduling

algorithms for use with CAN-based distributed systems", Microprocessors and
Microsystems, Vol. 31(5), pp. 326-334.

Baker, T.P. and Shaw, A. (1989) “The cyclic executive model and Ada. Real-Time Systems”,
Vol. 1 (1), pp. 7-25.

Barnett, R.H., O'Cull, L. and Cox, S. (2003) “Embedded C Programming and the Atmel Avr”,
Thomson Delmar Learning.

Barr, M. (1999) “Programming Embedded Systems in C and C++”, O'Reilly Media.
Bates, D.G. (1968) “PROSPRO/1800”, IEEE Transactions on Industrial Electronics and

Control Instrumentation, Vol. 15, pp. 70-75.
Bieman, J.M., and Murdock, V. (2001) “Finding code on the World Wide Web: a preliminary

investigation”, Proceedings First IEEE International Workshop on Source Code
Analysis and Manipulation, pp. 73-78.

Booch, G. (1991) “Object Oriented Design with Applications”, Benjamin / Cummings.
Boulton, P.I.P. and Reid, P.A. (1969) “A Process-Control Language”, IEEE Transactions on

Computers, Vol. 18 (11), pp. 1049-1053.
Brosgol, B. and Ruiz, J. (2007) “Ada enhances embedded-systems development”,

Embedded.com, WWW website (Last accessed: November 2010)
 http://www.embedded.com/columns/technicalinsights/196800175?_requestid=1

67577
Broster, I. (2003) “Flexibility in dependable real-time communication”, PhD thesis,

University of York, York, U.K.
Brown, J.F. (1994) “Embedded Systems Programming in C and Assembly”, Kluwer

Academic Publishers.
Budlong, M. (1999) “Teach Yourself COBOL in 21 days”, Sams.
Burns, A. (2006) “Real-Time Languages”, Network of Excellence on Embedded Systems

Design, WWW website (Last accessed: November 2010) http://www.artist-
embedded.org/artist/Real-Time-Languages.html

Choosing Appropriate Programming Language
to Implement Software for Real-Time Resource-Constrained Embedded Systems

335

Calgary (2005) “Calgary Ecommerce Services – Glossary”, WWW website (Last accessed:
November 2010) http://www.calgary-ecommerce-services.com/glossary.html

Carr, D. and Kizior, R.J. (2000) “The case for continued Cobol education”, IEEE Software,
Vol. 17 (2), pp. 33-36.

Chapman, S.J (2004) “Fortran 90/95 for Scientists and Engineers”, McGraw-Hill Science
Engineering.

Ciocarlie, H. and Simon, L. (2007) “Definition of a High Level Language for Real-Time
Distributed Systems Programming”, EUROCON 2007 The International Conference
on “Computer as a Tool”, Warsaw, September 9-12.

Cook, D. (1999) “Evolution of Programming Languages and Why a Language is Not Enough
to Solve Our Problems”, Software Technology Support Center, available online
(Last accessed: November 2010)

 http://www.stsc.hill.af.mil/crosstalk/1999/12/cook.asp
Davidgould (2008) “Davidgould – Glossary”, WWW website (Last accessed: November

2010) http://www.davidgould.com/Glossary/Glossary.htm
Dewar, R.B.K. (2006) “Safety-critical design for secure systems: The languages, tools and

methods needed to build error-free-software”, WWW website (Last accessed:
November 2010)

 http://www.embedded.com/columns/technicalinsights/190400498?_requestid=1
77701

DIN (1979) “Programming language PEARL”, Part 1. Basic PEARL, Part 2: Full PEARL,
Deutsches Institut für Normung (DIN) German Standards Institute, Berlin, DIN
66253, 1979 (in English).

Fisher, J.A., Faraboschi, P. and Young, C. (2004) “Embedded Computing: A VLIW Approach
to Architecture, Compilers and Tools”, Morgan Kaufmann.

Flynn, I.M. (2001) “Generations, Languages”, Macmillan Science Library: Computer
Sciences, WWW website (Last accessed: November 2010)

 http://www.bookrags.com/research/generations-languages-csci-01/
Ganssle, J. (1992) “The art of programming embedded systems”, Academic Press, San Diego,

USA.
Grogono, P. (1999) “The Evolution of Programming Languages”, Course Notes, Department

of Computer Science, Concordia University, Montreal, Quebec, Canada.
Halang, W.A. and Stoyenko, A.D. (1990) “Comparative evaluation of high-level real-time

programming languages”, Real-Time Systems, Vol. 2 (4), pp. 365-382.
Hansen, P.B. (1975) “The programming language Concurrent Pascal”, IEEE Transactions on

Software Engineering, Vol. 1 (2), pp. 199-207.
Hohmeyer, R.E. (1968) “CDC 1700 FORTRAN for process control”, IEEE Transactions on

Industrial Electronics and Control Instrumentation, Vol. 15, pp. 67-70.
Holyer, I (2008) “Dictionary of Computer Science”, Department of Computer Science,

University of Bristol, UK, WWW website (Last accessed: November 2010)
http://www.cs.bris.ac.uk/Teaching/Resources/COMS11200/jargon.html

Hughes, Z.M. and Pont, M.J. (2008) “Reducing the impact of task overruns in resource-
constrained embedded systems in which a time-triggered software architecture is
employed”, Trans Institute of Measurement and Control.

IFIP-ICC (1966) “The IFIP-ICC Vocabulary of Information Processing”, North-Holland Pub.
Co., Amsterdam.

ISO (2001) “ISO 5127 Information and documentation –Vocabulary”, International
Organisation for Standardisation (ISO).

Jalote, P. (1997) “An integrated approach to software engineering”, Springer-Verlag.

Embedded Systems – Theory and Design Methodology

336

Jarvis, P.H. (1968) “Some experiences with process control languages,” IEEE Transactions on
Industrial Electronics and Control Instrumentation, Vol. 15, pp. 54-56.

Jones, N. (2002) “Introduction to MISRA C”, Embedded.com, WWW website (Last accessed:
November 2010) http://www.embedded.com/columns/beginerscorner/9900659

Kircher, O. and Turner, E.B. (1968) “On-line MISSIL”, IEEE Transactions on Industrial
Electronics and Control Instrumentation, Vol. 15, pp. 80-84.

Koch, B. (1999) “The Theory of Task Scheduling in Real-Time Systems: Compilation and
Systematization of the Main Results”, Studies thesis, University of Hamburg.

Kravetz, M. and Franke, H. (2001) “Implementation of a Multi-Queue Scheduler for Linux”,
IBM Linux Technology Center, Version 0.2, April 2001.

Kurian, S. and Pont, M.J. (2005) “Building reliable embedded systems using Abstract
Patterns, Patterns, and Pattern Implementation Examples”, In: Koelmans, A.,
Bystrov, A., Pont, M.J., Ong, R. and Brown, A. (Eds.), Proceedings of the Second UK
Embedded Forum (Birmingham, UK, October 2005), pp. 36-59. Published by
University of Newcastle upon Tyne.

Kurian, S. and Pont, M.J. (2006) “Restructuring a pattern language which supports time-
triggered co-operative software architectures in resource-constrained embedded
systems”, Paper presented at the 11th European Conference on Pattern Languages
of Programs (EuroPLoP 2006), Germany, July 2006.

Kurian, S. and Pont, M.J. (2007) “Maintenance and evolution of resource-constrained
embedded systems created using design patterns”, Journal of Systems and
Software, Vol. 80 (1), pp. 32-41.

Labrosse, J.J. (2000) “Embedded Systems Building Blocks: Complete and Ready-to-use
Modules in C”, Focal Press.

Lambert, K.A. and Osborne, M. (2000) “Java: A Framework for Program Design and Data
Structures”, Brooks / Cole.

Laplante, P.A. (2004) “Real-time Systems Design and Analysis”, Wiley-IEEE.
Liberty, J. and Jones, B. (2004) “Teach Yourself C++ in 21 Days”, Sams.
Maaita, A. and Pont, M.J. (2005) “Using 'planned pre-emption' to reduce levels of task jitter

in a time-triggered hybrid scheduler”. In: Koelmans, A., Bystrov, A., Pont, M.J.,
Ong, R. and Brown, A. (Eds.), Proceedings of the Second UK Embedded Forum
(Birmingham, UK, October 2005), pp. 18-35. Published by University of Newcastle
upon Tyne

Martin, J. and Leben, J. (1986) “Fourth Generation Languages Volume 1: Principles”,
Prentice Hall.

Mensh, M. and Diehl, W. (1968) “Extended FORTRAN for process control”, IEEE
Transactions on Industrial Electronics and Control Instrumentation, Vol. 15, pp. 75-
79.

Mitchell, J.C. (2003) “Concepts in Programming Languages”, Cambridge University Press.
Mwelwa C., Pont M.J. and Ward D. (2003) “Towards a CASE Tool to Support the

Development of Reliable Embedded Systems Using Design Patterns”, In: Bruel, J-M
[Ed.] Proceedings of the 1st International Workshop on Quality of Service in
Component-Based Software Engineering, June 20th 2003, Toulouse, France,
Published by Cepadues-Editions, Toulouse.

Mwelwa, C. and Pont, M.J. (2003) “Two new patterns to support the development of reliable
embedded systems”, Paper presented at VikingPLoP 2003 (Bergen, Norway,
September 2003).

Mwelwa, C., Pont, M.J. and Ward, D. (2004) “Code generation supported by a pattern-based
design methodology”, In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.)

Choosing Appropriate Programming Language
to Implement Software for Real-Time Resource-Constrained Embedded Systems

337

Proceedings of the UK Embedded Forum 2004 (Birmingham, UK, October 2004),
pp. 36-55. Published by University of Newcastle upon Tyne

Nahas, M. (2008) “Bridging the gap between scheduling algorithms and scheduler
implementations in time-triggered embedded systems”, PhD thesis, Department of
Engineering, University of Leicester, UK.

Nahas, M., Pont, M.J. and Jain, A. (2004) “Reducing task jitter in shared-clock embedded
systems using CAN”, In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.)
Proceedings of the UK Embedded Forum 2004 (Birmingham, UK, October 2004),
pp. 184-194. Published by University of Newcastle upon Tyne.

Network Dictionary (2008) “Concurrent programming”, WWW website (Last accessed:
November 2010)
http://wiki.networkdictionary.com/index.php/Concurrent_programming

Oerter, G.W. (1968) “A new implementation of decision tables for a process control
language”, IEEE Transactions on Industrial Electronics and Control
Instrumentation, Vol. 15, pp. 57-61.

Opler, A. (1966) “Requirements for real-time languages”, Communications of the ACM,
Vol. 9 (3), pp. 196-199.

O'Reilly, T. (2006) “Programming Language Trends”, WWW website (Last accessed:
November 2010) http://radar.oreilly.com/archives/2006/08/programming-
language-trends.html

Phatrapornnant, T. (2007) “Reducing Jitter in Embedded Systems Employing a Time-
Triggered Software Architecture and Dynamic Voltage Scaling”, PhD thesis,
Department of Engineering, University of Leicester, UK.

Phatrapornnant, T. and Pont, M.J. (2004a) “The application of dynamic voltage scaling in
embedded systems employing a TTCS software architecture: A case study”,
Proceedings of the IEE / ACM Postgraduate Seminar on “System-On-Chip Design,
Test and Technology”, Loughborough, UK, 15 September 2004. Published by IEE.
ISBN: 0 86341 460 5 (ISSN: 0537-9989), pp. 3-8.

Phatrapornnant, T. and Pont, M.J. (2004b) “The application of dynamic voltage scaling in
embedded systems employing a TTCS software architecture: A case study”,
Proceedings of the IEE / ACM Postgraduate Seminar on “System-On-Chip Design,
Test and Technology”, Loughborough, UK, 15 September 2004. Published by IEE.
ISBN: 0 86341 460 5 (ISSN: 0537-9989), pp. 3-8.

Pont, M.J. (2001) “Patterns for time-triggered embedded systems: Building reliable
applications with the 8051 family of microcontrollers”, ACM Press / Addison-
Wesley.

Pont, M.J. (2003) “An object-oriented approach to software development for embedded
systems implemented using C”, Transactions of the Institute of Measurement and
Control, Vol. 25 (3), pp. 217-238.

Pont, M.J. and Banner, M.P. (2004) “Designing embedded systems using patterns: A case
study”, Journal of Systems and Software, Vol. 71 (3), pp. 201-213.

Pont, M.J. and Mwelwa, C. (2003) “Developing reliable embedded systems using 8051 and
ARM processors: Towards a new pattern language”, Paper presented at Viking
PLoP 2003 (Bergen, Norway, September 2003).

Pont, M.J. and Ong, H.L.R. (2003) “Using watchdog timers to improve the reliability of TTCS
embedded systems”, in Hruby, P. and Soressen, K. E. [Eds.]Proceedings of the First
Nordic Conference on Pattern Languages of Programs, September, 2002, pp.159-
200. Published by Micrsoft Business Solutions.

Embedded Systems – Theory and Design Methodology

338

Pont, M.J., Kurian, S. and Bautista-Quintero, R. (2006) “Meeting real-time constraints using
‘Sandwich Delays’”, In: Zdun, U. and Hvatum, L. (Eds) Proceedings of the
Eleventh European conference on Pattern Languages of Programs (EuroPLoP '06),
Germany, July 2006: pp. 67-77. Published by Universitätsverlag Konstanz.

Pont, M.J., Norman, A.J., Mwelwa, C. and Edwards, T. (2003) “Prototyping time-triggered
embedded systems using PC hardware”. Paper presented at EuroPLoP 2003
(Germany, June 2003).

Rao, M.V.P, Shet, K.C, Balakrishna, R. and Roopa, K. (2008) “Development of Scheduler for
Real Time and Embedded System Domain”, 22nd International Conference on
Advanced Information Networking and Applications - Workshops, 25-28 March
2008, AINAW, pp. 1-6.

Roberts, B.C (1968) “FORTRAN IV in a process control environment”, IEEE Transactions on
Industrial Electronics and Control Instrumentation, Vol. 15, pp. 61-63.

Samek, M. (2002) “Practical Statecharts in C/C++: Quantum Programming for Embedded
Systems”, CMP Books.

Sammet, J.E. (1969) “Programming languages: history and fundamentals”, Prentice-Hall.
Sanders, J. (2007) “Simple Glossary”, WWW website (Last accessed: October 2007)

http://www-xray.ast.cam.ac.uk/~jss/lecture/computing/notes/out/glossary/
Schoeffler, J.D. and Temple, R.H. (1970) “A real-time language for industrial process

control”, Proceedings of the IEEE, Vol. 58 (1), pp. 98-111.
Schutz, H.A. (1979) “On the Design of a Language for Programming Real-Time Concurrent

Processes”, IEEE Transactions on Software Engineering, Vol. 5 (3), pp. 248-255.
Sickle, T.V. (1997) “Reusable Software Components: Object-Oriented Embedded Systems

Programming in C”, Prentice Hall.
Sommerville, I. (2007) “Software engineering”, 8th edition, Harlow: Addison-Wesley.
Steusloff, H.U. (1984) “Advanced real time languages for distributed industrial process

control”, IEEE Computer, pp. 37-46.
Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E. and Leroy, P. (2007) “Ada 2005

Reference Manual: Language and Standard Libraries”, Springer.
Walls, C. (2005) “Embedded Software: The Works”, Newnes.
Wang, H., Pont, M.J. and Kurian, S. (2007) “Patterns which help to avoid conflicts over

shared resources in time-triggered embedded systems which employ a pre-emptive
scheduler”, Paper presented at the 12th European Conference on Pattern
Languages of Programs (EuroPLoP 2007).

Watson, D. (1989) “High Level Languages and Their Compilers”, Addison-Wesley.
Wexelblat, L. (1981) “History of Programming Languages”, Academic Press.
Wilson, L.B. and Clark, R.G. (2000) “Comparative Programming Languages”, Addison-

Wesley.
Wirth, N (1993) “Recollections about the development of Pascal”, Proceedings of the 2nd

ACM SIGPLAN conference on history of programming languages, pp. 333-342.
Wirth, N. (1977) “Modula - A programming language for modular multiprogramming”,

Software - Practice and Experience, Vol. 7, pp. 3-35.
Wizitt (2001) “T223 – A Glossary of Terms (Block 2)”, Wizard Information Technology

Training (Wizitt), WWW website (Last accessed: November 2010)
http://wizitt.com/t223/glossary/glossary2.htm

Zurell, K. (2000) “C programming for embedded systems”, CMP Books.
Zuse, K (1995) “A Brief History of Programming Languages”, Byte.com, WWW website

(Last accessed: November 2010) http://www.byte.com/art/9509/sec7/art19.htm

Part 3

High-Level Synthesis, SRAM Cells,
and Energy Efficiency

16

High-Level Synthesis for Embedded Systems
Michael Dossis

Technological Educational Institute of Western Macedonia,
Dept. of Informatics & Computer Technology

Greece

1. Introduction
Embedded systems comprise small-size computing platforms that are self-sufficient. This
means that they contain all the software and hardware components which are “embedded”
inside the system so that complete applications can be realised and executed without the aid
of other means or external resources. Usually, embedded systems are found in portable
computing platforms such as PDAs, mobile and smart phones as well as GPS receivers.
Nevertheless, larger systems such as microwave ovens and vehicle electronics, contain
embedded systems. An embedded platform can be thought of as a configuration that
contains one or more general microprocessor or microprocessor core, along with a number
of customized, special function co-processors or accelerators on the same electronic board or
integrated inside the same System-on-Chip (Soc). Often in our days, such embedded
systems are implemented using advanced Field-Programmable Gate Arrays (FPGAs) or
other types of Programmable Logic Devices (PLDs). FPGAs have improved a great deal in
terms of integrated area, circuit performance and low power features. FPGA
implementations can be easily and rapidly prototyped, and the system can be easily
reconfigured when design updates or bug fixes are present and needed.

During the last 3-4 decades, the advances on chip integration capability have increased the
complexity of embedded and in general custom VLSI systems to such a level that sometimes
their spec-to-product development time exceeds even their product lifetime in the market.
Because of this, and in combination with the high design cost and development effort
required for the delivery of such products, they often even miss their market window. This
problem generates competitive disadvantages for the relevant industries that design and
develop these complex computing products. The current practice in the used design and
engineering flows, for the development of such systems and applications, includes to a large
extent approaches which are semi-manual, add-hoc, incompatible from one level of the
design flow to the next, and with a lot of design iterations caused by the discovery of
functional and timing bugs, as well as specification to implementation mismatches late in
the development flow. All of these issues have motivated industry and academia to invest in
suitable methodologies and tools to achieve higher automation in the design of
contemporary systems. Nowadays, a higher level of code abstraction is pursued as input to
automated E-CAD tools. Furthermore, methodologies and tools such as High-level
Synthesis (HLS) and Electronic System Level (ESL) design entry employ established
techniques, which are borrowed from the computer language program compilers and

Embedded Systems – Theory and Design Methodology

342

mature E-CAD tools and new algorithms such as advanced scheduling, loop unrolling and
code motion heuristics.

The conventional approach in designing complex digital systems is the use of Register-
Transfer Level (RTL) coding in hardware description languages such as VHDL and Verilog.
However, for designs that exceed an area of a hundred thousand logic gates, the use of RTL
models for specification and design can result into years of design flow loops and
verification simulations. Combined with the short lifetime of electronic products in the
market, this constitutes a great problem for the industry. The programming style of the
(hardware/software) specification code has an unavoidable impact on the quality of the
synthesized system. This is deteriorated by models with hierarchical blocks, subprogram
calls as well as nested control constructs (e.g. if-then-else and while loops). For these models
the complexity of the transformations that are required for the synthesis tasks (compilation,
algorithmic transformations, scheduling, allocation and binding) increases at an exponential
rate, for a linear increase in the design size.

Usually the input code (such as ANSI-C or ADA) to HLS tool, is first transformed into a
control/data flow graph (CDFG) by a front-end compilation stage. Then various synthesis
transformations are applied on the CDFG to generate the final implementation. The most
important HLS tasks of this process are scheduling, allocation and binding. Scheduling
makes an as-much-as-possible optimal order of the operations in a number of control steps
or states. Optimization at this stage includes making as many operations as possible parallel,
so as to achieve shorter execution times of the generated implementation. Allocation and
binding assign operations onto functional units, and variables and data structures onto
registers, wires or memory positions, which are available from an implementation library.

A number of commercial HLS tools exist nowadays, which often impose their own
extensions or restrictions on the programming language code that they accept as input, as
well as various shortcuts and heuristics on the HLS tasks that they execute. Such tools are
the CatapultC by Mentor Graphics, the Cynthesizer by Forte Design Systems, the Impulse
CoDeveloper by Impulse Accelerated Technologies, the Synfony HLS by Synopsys, the C-to-
silicon by Cadence, the C to Verilog Compiler by C-to-Verilog, the AutoPilot by AutoESL,
the PICO by Synfora, and the CyberWorkBench by NEC System Technologies Ltd. The
analysis of these tools is not the purpose of this work, but most of them are suitable for
linear, dataflow dominated (e.g. stream-based) applications, such as pipelined DSP and
image filtering.

An important aspect of the HLS tools is whether their transformation tasks (e.g. within the
scheduler) are based on formal techniques. The latter would guarantee that the produced
hardware implementations are correct-by-construction. This means that by definition of the
formal process, the functionality of the implementation matches the functionality of the
behavioral specification model (the source code). In this way, the design will need to be
verified only at the behavioral level, without spending hours or days (or even weeks for
complex designs) of simulations of the generated register-transfer level (RTL), or even worse
of the netlists generated by a subsequent RTL synthesis of the implementations. Behavioral
verification (at the source code level) is orders of magnitude faster than RTL or even more
than gate-netlist simulations. Releasing an embedded product with bugs can be very
expensive, when considering the cost of field upgrades, recalls and repairs. Something that

High-Level Synthesis for Embedded Systems

343

is less measurable, but very important as well, is the damage done to the industry’s
reputation and the consequent loss of customer trust. However, many embedded products
are indeed released without all the testing that is necessary and/or desirable. Therefore, the
quality of the specification code as well as formal techniques employed during
transformations (“compilations”) in order to deliver the hardware and software components
of the system, are receiving increasing focus in embedded application development.

This chapter reviews previous and existing work of HLS methodologies for embedded
systems. It also discusses the usability and benefits using the prototype hardware
compilation system which was developed by the author. Section 2 discusses related work.
Section 3 presents HLS problems related to the low energy consumption which is
particularly interesting for embedded system design. The hardware compilation design flow
is explained in section 4. Section 5 explains the formal nature of the prototype compiler’s
formal logic inference rules. In section 6 the mechanism of the formal high-level synthesis
transformations of the back-end compiler is presented. Section 7 outlines the structure and
logic of the PARCS optimizing scheduler which is part of the back-end compiler rules.
Section 8 explains the available options for target micro-architecture generation and the
communication of the accelerators with their computing environment. Section 9 outlines the
execution environment for the generated hardware accelerators. Sections 10 and 11 discuss
experimental results, draw useful conclusions, and propose future work.

2. Background and review of ESL methodologies
2.1 The scheduling task

The scheduling problem covers two major categories: time-constrained scheduling and
resource-constrained scheduling. Time-constrained scheduling attempts to achieve the
lowest area or number of functional units, when the total number of control steps (states)
is given (time constraint). Resource-constrained scheduling attempts to produce the
fastest schedule (the fewest control states) when the amount of hardware resources or
hardware area are given (resource constraint). Integer linear programming (ILP) solutions
have been proposed, but their run time grows exponentially with the increase of design
size, which makes them impractical. Heuristic methods have also been proposed to
handle large designs and to provide sub-optimal but practical implementations. There are
two heuristic scheduling techniques: constructive solutions and iterative refinement. Two
constructive methods are the as-soon-as-possible (ASAP) and the as-late-as-possible
(ALAP) approach.

In both ASAP and ALAP scheduling, the operations that belong to the critical path of the
design are not given any special priority over other operations. Thus, excessive delay may
be imposed on the critical path operations. This is not good for the quality of the produced
implementation. On the contrary, list scheduling utilizes a global priority function to select
the next operation to be scheduled. This global priority function can be either the mobility
(Pangrle & Gajski, 1987) of the operation or its urgency (Girczyc et al., 1985). Force-directed
scheduling (Paulin & Knight, 1989) calculates the range of control steps for each operation
between the operation’s ASAP and ALAP state assignment. It then attempts to reduce the
total number of functional units of the design’s implementation, in order to evenly
distribute the operations of the same type into all of the available states of the range.

Embedded Systems – Theory and Design Methodology

344

The problem with constructive scheduling is that there is not any lookahead into future
assignment of operations into the same control step, which may lead to sub-optimal
implementations. After an initial schedule is delivered by any of the above scheduling
algorithms, then iterative scheduling produces new schedules, by iteratively re-scheduling
sequences of operations that maximally reduce the cost functions (Park & Kyung, 1991). This
method is suitable for dataflow-oriented designs with linear control. In order to schedule
control-intensive designs, the use of loop pipelining (Park & Parker, 1988) and loop folding
(Girczyc, 1987), have been reported in the bibliography.

2.2 Allocation and binding tasks

Allocation determines the type of resource storage and functional units, selected from the
library of components, for each data object and operation of the input program. Allocation
also calculates the number of resources of each type that are needed to implement every
operation or data variable. Binding assigns operations, data variables, data structures and
data transfers onto functional units, storage elements (registers or memory blocks) and
interconnections respectively. Also binding makes sure that the design’s functionality does
not change by using the selected library components.

Generally, there are three kinds of solutions to the allocation problem: constructive
techniques, decomposition techniques and iterative approaches. Constructive allocation
techniques start with an empty implementation and progressively build the datapath and
control parts of the implementation by adding more functional, storage and interconnection
elements while they traverse the CDFG or any other type of internal graph/representation
format. Decomposition techniques divide the allocation problem into a sequence of well-
defined independent sub-tasks. Each such sub-task is a graph-based theoretical problem
which is solved with any of the three well known graph methods: clique partitioning, the
left-edge technique and the weighted bipartite matching technique. The task of finding the
minimum cliques in the graph which is the solution for the sub-tasks, is a NP-hard problem,
so heuristic approaches (Tseng & Siewiorek, 1986) are utilized for allocation.

Because the conventional sub-task of storage allocation, ignores the side-effects between the
storage and interconnections allocation, when using the clique partitioning technique, graph
edges are enhanced with weights that represent the effect on interconnection complexity.
The left-edge algorithm is applied on the storage allocation problem, and it allocates the
minimum number of registers (Kurdahi & Parker, 1987). A weighted, bipartite-matching
algorithm is used to solve both the storage and functional unit allocation problems. First a
bipartite graph is generated which contains two disjoint sets, e.g. one for variables and one
for registers, or one for operations and one for functional units. An edge between one node
of the one of the sets and one node of the other represents an allocation of e.g. a variable to a
register. The bipartite-matching algorithm considers the effect of register allocation on the
design’s interconnection elements, since the edges of the two sets of the graph are weighted
(Huang et al., 1990). In order to improve the generated datapaths iteratively, a simple
assignment exchange, using the pairwise exchange of the simulated annealing, or by using a
branch-and-bound approach is utilized. The latter reallocates groups of elements of different
types (Tsay & Hsu, 1990).

High-Level Synthesis for Embedded Systems

345

2.3 Early high-level synthesis

HLS has been an active research field for more than two decades now. Early approaches of
experimental synthesis tools that synthesized small subsets of programming constructs or
proprietary modeling formats have emerged since the late 80’s. As an example, an early tool
that generated hardware structures from algorithmic code, written in the PASCAL-like,
Digital System Specification language (DSL) is reported in (Camposano & Rosenstiel, 1989).
This synthesis tool performs the circuit compilation in two steps: first step is datapath
synthesis which is followed by control synthesis. Examples of other behavioral circuit
specification languages of that time, apart from DSL, were DAISY (Johnson, 1984), ISPS
(Barbacci et al., 1979), and MIMOLA (Marwedel, 1984).

In (Casavant et al., 1989) the circuit to be synthesized is described with a combination of
algorithmic and structural level code and then the PARSIFAL tool synthesizes the code into
a bit-serial DSP circuit implementation. The PARSIFAL tool is part of a larger E-CAD
system called FACE and which included the FACE design representation and design
manager core. FACE and PARSIFAL were suitable for DSP pipelined implementations,
rather than for a more general behavioral hardware models with hierarchy and complex
control.

According to (Paulin & Knight, 1989) scheduling consists of determining the propagation
delay of each operation and then assigning all operations into control steps (states) of a finite
state machine. List-scheduling uses a local priority function to postpone the assignment of
operations into states, when resource constraints are violated. On the contrary, force-
directed scheduling (FDS) tries to satisfy a global execution deadline (time constraint) while
minimizing the utilized hardware resources (functional units, registers and busses). The
force-directed list scheduling (FDLS) algorithm attempts to implement the fastest schedule
while satisfying fixed hardware resource constraints.

The main HLS tasks in (Gajski & Ramachandran, 1994) include allocation, scheduling and
binding. According to (Walker & Chaudhuri, 1995) scheduling is finding the sequence of
which operations to execute in a specific order so as to produce a schedule of control steps
with allocated operations in each step of the schedule; allocation is defining the required
number of functional, storage and interconnect units; binding is assigning operations to
functional units, variables and values to storage elements and forming the interconnections
amongst them to form a complete working circuit that executes the functionality of the
source behavioral model.

The V compiler (Berstis, 1989) translates sequential descriptions into RTL models using
parsing, scheduling and resource allocation. The source sequential descriptions are written
in the V language which includes queues, asynchronous calls and cycle blocks and it is
tuned to a kind of parallel hardware RTL implementations. The V compiler utilizes
percolation scheduling (Fisher, 1981) to achieve the required degree of parallelism by
meeting time constraints.

A timing network is generated from the behavioral design in (Kuehlmann & Bergamaschi,
1992) and is annotated with parameters for every different scheduling approach. The
scheduling approach in this work attempts to satisfy a given design cycle for a given set of
resource constraints, using the timing model parameters. This approach uses an integer
linear program (ILP) which minimizes a weighted sum of area and execution time of the

Embedded Systems – Theory and Design Methodology

346

implementation. According to the authors, their Symphony tool delivers better area and
speed than ADPS (Papachristou & Konuk, 1990). This synthesis technique is suitable for
data-flow designs (e.g. DSP blocks) and not for more general complex control flow designs.

The CALLAS synthesis framework (Biesenack et al., 1993), transforms algorithmic,
behavioral VHDL models into VHDL RTL and gate netlists, under timing constraints. The
generated circuit is implemented using a Moore-type finite state machine (FSM), which is
consistent with the semantics of the VHDL subset used for the specification code. Formal
verification techniques such as equivalence checking, which checks the equivalence between
the original VHDL FSM and the synthesized FSM are used in the CALLAS framework by
using the symbolic verifier of the Circuit Verification Environment (CVE) system (Filkorn,
1991).

The Ptolemy framework (Kalavade & Lee, 1993) allows for an integrated hardware-software
co-design methodology from the specification through to synthesis of hardware and
software components, simulation and evaluation of the implementation. The tools of
Ptolemy can synthesize assembly code for a programmable DSP core (e.g. DSP processor),
which is built for a synthesis-oriented application. In Ptolemy, an initial model of the entire
system is partitioned into the software and hardware parts which are synthesized in
combination with their interface synthesis.

The Cosyma hardware-software co-synthesis framework (Ernst et al., 1993) realizes an
iterative partitioning process, based on a hardware extraction algorithm which is driven by
a cost function. The primary target in this work is to minimize customized hardware within
microcontrollers but the same time to allow for space exploration of large designs. The
specialized co-processors of the embedded system can be synthesized using HLS tools. The
specification language is based on C with various extensions. The generated hardware
descriptions are in turn ported to the Olympus HLS tool (De Micheli et al., 1990). The
presented work included tests and experimental results based on a configuration of an
embedded system, which is built around the Sparc microprocessor.

Co-synthesis and hardware-software partitioning are executed in combination with control
parallelism transformations in (Thomas et al., 1993). The hardware-software partition is
defined by a set of application-level functions which are implemented with application-
specific hardware. The control parallelism is defined by the interaction of the processes of
the functional behavior of the specified system. The system behavior is modeled using a set
of communicating sequential processes (Hoare, 1985). Each process is then assigned either to
hardware or to software implementation.

A hardware-software co-design methodology, which employs synthesis of heterogeneous
systems, is presented in (Gupta & De Micheli, 1993). The synthesis process is driven by
timing constraints which drive the mapping of tasks onto hardware or software parts so that
the performance requirements of the intended system are met. This method is based on
using modeling and synthesis of programs written in the HardwareC language. An example
application which was used to test the methodology in this work was an Ethernet-based
network co-processor.

2.4 Next generation high-level synthesis tools

More advanced methodologies and tools started appearing from the late 90s and continue
with improved input programming code sets as well as scheduling and other optimization

High-Level Synthesis for Embedded Systems

347

algorithms. The CoWare hardware-software co-design environment (Bolsens et al., 1997) is
based on a data model that allows the user to specify, simulate and produce heterogeneous
implementations from heterogeneous specification source models. This synthesis approach
focuses on designing telecommunication systems that contain DSP, control loops and user
interfaces. The synchronous dataflow (SDF) type of algorithms found in a category of DSP
applications, can easily be synthesized into hardware from languages such as SILAGE
(Genin et al., 1990), DFL (Willekens et al., 1994), and LUSTRE (Halbwachs et al. 1991). In
contrast to this, dynamic dataflow (DDF) algorithms consume and produce tokens that are
data-dependent, and thus they allow for complex if-then-else and while loop control
constructs. CAD systems that allow for specifying both SDF and DDF algorithms and
perform as much as possible static scheduling are the DSP-station from Mentor Graphics
(Van Canneyt, 1994), PTOLEMY (Buck et al., 1994), GRAPE-II (Lauwereins et al., 1995),
COSSAP from Synopsys and SPW from the Alta group (Rafie et al., 1994).

C models that include dynamic memory allocation, pointers and the functions malloc and
free are mapped onto hardware in (Semeria et al., 2001). The SpC tool which was developed
in this work resolves pointer variables at compile time and thus C functional models are
synthesized into Verilog hardware models. The synthesis of functions in C, and therefore
the resolution of pointers and malloc/free inside of functions, is not included in this work.
The different techniques and optimizations described above have been implemented using
the SUIF compiler environment (Wilson et al., 1994).

A heuristic for scheduling behavioral specifications that include a lot of conditional control
flow, is presented in (Kountouris & Wolinski, 2002). This heuristic is based on a powerful
intermediate design representation called hierarchical conditional dependency graph
(HCDG). HCDG allows chaining and multicycling, and it enables advanced techniques such
as conditional resource sharing and speculative execution, which are suitable for scheduling
conditional behaviors. The HLS techniques in this work were implemented in a prototype
graphical interactive tool called CODESIS which used HCDG as its internal design
representation. The tool generates VHDL or C code from the HCDG, but no translation of
standard programming language code into HCDG are known so far.

A coordinated set of coarse-grain and fine-grain parallelizing HLS transformations on the
input design model are discussed in (Gupta et al., 2004). These transformations are executed
in order to deliver synthesis results that don’t suffer from the negative effects of complex
control constructs in the specification code. All of the HLS techniques in this work were
implemented in the SPARK HLS tool, which transforms specifications in a small subset of C
into RTL VHDL hardware models. SPARK utilizes both control/data flow graphs (CDFGs)
as well as an encapsulation of basic design blocks inside hierarchical task graphs (HTGs),
which enable coarse-grain code restructuring such as loop transformations and an efficient
way to move operations across large pieces of specification code.

Typical HLS tasks such as scheduling, resource allocation, module binding, module
selection, register binding and clock selection are executed simultaneously in (Wang et al.,
2003) so as to achieve better optimization in design energy, power and area. The scheduling
algorithm utilized in this HLS methodology applies concurrent loop optimization and
multicycling and it is driven by resource constraints. The state transition graph (STG) of the
design is simulated in order to generate switched capacitance matrices. These matrices are
then used to estimate power/energy consumption of the design’s datapath. Nevertheless,

Embedded Systems – Theory and Design Methodology

348

the input to the HLS tool, is not programming language code but a proprietary format
representing an enhanced CDFG as well as a RTL design library and resource constraints.

An incremental floorplanner is described in (Gu et al., 2005) which is used in order to
combine an incremental behavioral and physical optimization into HLS. These techniques
were integrated into an existing interconnect-aware HLS tool called ISCALP (Zhong & Jha,
2002). The new combination was named IFP-HLS (incremental floorplanner high-level
synthesis) tool, and it attempts to concurrently improve the design’s schedule, resource
binding and floorplan, by integrating high-level and physical design algorithms.

(Huang et al., 2007) discusses a HLS methodology which is suitable for the design of
distributed logic and memory architectures. Beginning with a behavioral description of the
system in C, the methodology starts with behavioral profiling in order to extract simulation
statistics of computations and references of array data. Then array data are distributed into
different partitions. An industrial tool called Cyber (Wakabayashi, 1999) was developed
which generates a distributed logic/memory micro-architecture RTL model, which is
synthesizable with existing RTL synthesizers, and which consists of two or more partitions,
depending on the clustering of operations that was applied earlier.

A system specification containing communicating processes is synthesized in (Wang et al.,
2003). The impact of the operation scheduling is considered globally in the system critical
path (as opposed to the individual process critical path), in this work. It is argued by the
authors in this work, that this methodology allocates the resources where they are mostly
needed in the system, which is in the critical paths, and in this way it improves the overall
multi-process designed system performance.

The work in (Gal et al., 2008) contributes towards incorporating memory access
management within a HLS design flow. It mainly targets digital signal processing (DSP)
applications but also other streaming applications can be included along with specific
performance constraints. The synthesis process is performed on the extended data-flow
graph (EDFG) which is based on the signal flow graph. Mutually exclusive scheduling
methods (Gupta et al., 2003; Wakabayashi & Tanaka, 1992) are implemented with the EDFG.
The graph which is processed by a number of annotations and improvements is then given
to the GAUT HLS tool (Martin et al., 1993) to perform operator selection and allocation,
scheduling and binding.

A combined execution of operation decomposition and pattern-matching techniques is
targeted to reduce the total circuit area in (Molina et al., 2009). The datapath area is reduced
by decomposing multicycle operations, so that they are executed on monocycle functional
units (FUs that take one clock cycle to execute and deliver their results). A simple formal
model that relies on a FSM-based formalism for describing and synthesizing on-chip
communication protocols and protocol converters between different bus-based protocols is
discussed in (Avnit, 2009). The utilized FSM-based format is at an abstraction level which is
low enough so that it can be automatically translated into HDL implementations. The
generated HDL models are synthesizable with commercial tools. Synchronous FSMs with
bounded counters that communicate via channels are used to model communication
protocols. The model devised in this work is validated with an example of communication
protocol pairs which included AMBA APB and ASB. These protocols are checked regarding
their compatibility, by using the formal model.

High-Level Synthesis for Embedded Systems

349

The methodology of SystemCoDesigner (Keinert et al., 2009) uses an actor-oriented
approach so as to integrate HLS into electronic system level (ESL) design space exploration
tools. The design starts with an executable SystemC system model. Then, commercial
synthesizers such as Forte’s Cynthesizer are used in order to generate hardware
implementations of actors from the behavioral model. This enables the design space
exploration in finding the best candidate architectures (mixtures of hardware and software
modules). After deciding on the chosen solution, the suitable target platform is then
synthesized with the implementations of the hardware and software parts. The final step of
this methodology is to generate the FPGA-based SoC implementation from the chosen
hardware/software solution. Based on the proposed methodology, it seems that
SystemCoDesigner method is suitable for stream-based applications, found in areas such as
DSP, image filtering and communications.

A formal approach is followed in (Kundu et al., 2010) so as to prove that every HLS
translation of a source code model produces a RTL model that is functionally-equivalent to
the one in the behavioral input to the HLS tools. This technique is called translation
validation and it has been maturing via its use in the optimizing software compilers. The
validating system in this work is called SURYA, it is using the Symplify theorem prover and
it was used to validate the SPARK HLS tool. This validation work found two bugs in the
SPARK compilations.

The replacement of flip-flop registers with latches is proposed in (Paik et al., 2010) in order
to yield better timing in the implemented designs. The justification for this is that latches are
inherently more tolerant to process variations than flip-flops. These techniques were
integrated into a tool called HLS-1. HLS-1 translates behavioral VHDL code into a
synthesized netlist. Nevertheless, implementing registers with latches instead of edge-
triggered flip-flops is generally considered to be cumbersome due to the complicated timing
behavior of latches.

3. Synthesis for low power
A number of portable and embedded computing systems and applications such as mobile
(smart) phones, PDAs, etc, require low power consumption therefore synthesis for low
energy is becoming very important in the whole area of VLSI and embedded system design.
During the last decade, industry and academia invested on significant part of research
regarding VLSI techniques and HLS for low power design. In order to achieve low energy in
the results of HLS and system design, new techniques that help to estimate power
consumption at the high-level description level, are needed. In (Raghunathan et al., 1996),
switching activity and power consumption are estimated at the RTL description taking also
into account the glitching activity on a number of signals of the datapath and the controller.
The spatial locality, the regularity, the operation count and the ratio of critical path to
available time are identified in (Rabaey et al., 1995) with the aim to reduce the power
consumption of the interconnections. The HLS scheduling, allocation and binding tasks
consider such algorithmic statistics and properties in order to reduce the fanins and fanouts
of the interconnect wires. This will result into reducing the complexity and the power
consumed on the capacitance of the inteconnection buses (Mehra & Rabaey, 1996).

The effect of the controller on the power consumption of the datapath is considered in
(Raghunathan & Jha, 1994). Pipelining and module selection was proposed in (Goodby et

Embedded Systems – Theory and Design Methodology

350

al., 1994) for low power consumption. The activity of the functional units was reduced in
(Musoll & Cortadella, 1995) by minimizing the transitions of the functional unit’s inputs.
This was utilized in a scheduling and resource binding algorithm, in order to reduce power
consumption. In (Kumar et al., 1995) the DFG is simulated with profiling stimuli, provided
by the user, in order to measure the activity of operations and data carriers. Then, the
switching activity is reduced, by selecting a special module set and schedule. Reducing
supply voltage, disabling the clock of idle elements, and architectural tradeoffs were utilized
in (Martin & Knight, 1995) in order to minimize power consumption within HLS.

The energy consumption of memory subsystem and the communication lines within a
multiprocessor system-on-a-chip (MPSoC) is addressed in (Issenin et al., 2008). This work
targets streaming applications such as image and video processing that have regular
memory access patterns. The way to realize optimal solutions for MPSoCs is to execute the
memory architecture definition and the connectivity synthesis in the same step.

4. The CCC hardware synthesis method
The previous two sections reviewed related work in HLS methodologies. This section and
the following six sections describe a particular, formal HLS methodology which is directly
applicable on embedded system design, and it has been developed solely by the author of
this chapter. The Formal Intermediate Format (FIF)1 was invented and designed by the
author of this chapter as a tool and media for the design encapsulation and the HLS
transformations in the CCC (Custom Coprocessor Compilation) hardware compilation tool2.
A near-complete analysis of FIF syntax and semantics can be found in (Dossis, 2010). The
formal methodology discussed here is based on using predicate logic to describe the
intermediate representations of the compilation steps, and the resolution of a set of
transformation Horn clauses (Nilsson & Maluszynski, 1995) is used, as the building blocks
of the prototype HLS tool.

The front-end compiler translates the algorithmic data of the source programs into the FIF’s
logic statements (logic facts). The inference logic rules of the back-end compiler transform
the FIF facts into the hardware implementations. There is one-to-one correspondence
between the source specification’s subroutines and the generated hardware modules. The
source code subroutines can be hierarchical, and this hierarchy is maintained in the
generated hardware implementation. Each generated hardware model is a FSM-controlled
custom processor (or co-processor, or accelerator), that executes a specific task, described in
the source program code. This hardware synthesis flow is depicted in Figure 1.

Essentially the front-end compilation resembles software compilation and the back-end
compilation executes formal transformation tasks that are normally found in HLS tools. This
whole compilation flow is a formal transformation process, which converts the source code
programs into implementable RTL (Register-Transfer Level) VHDL hardware accelerator
models. If there are function calls in the specification code, then each subprogram call is
transformed into an interface event in the generated hardware FSM. The interface event is

1 The Formal Intermediate Format is patented with patent number: 1006354, 15/4/2009, from the Greek
Industrial Property Organization
2 This hardware compiler method is patented with patent number: 1005308, 5/10/2006, from the Greek
Industrial Property Organization

High-Level Synthesis for Embedded Systems

351

used so that the “calling” accelerator uses the “services” of the “called” accelerator, as it is
depicted in the source code hierarchy as well.

Fig. 1. Hardware synthesis flow and tools.

5. Back-end compiler inference logic rules
The back-end compiler consists of a very large number of logic rules. The back-end compiler
logic rules are coded with logic programming techniques, which are used to implement the
HLS algorithms of the back-end compilation phase. As an example, one of the latter
algorithms reads and incorporates the FIF tables’ facts into the compiler’s internal inference
engine of logic predicates and rules (Nilsson & Maluszynski, 1995). The back-end compiler
rules are given as a great number of definite clauses of the following form:

 A0 ← A1 ∧ … ∧ An (where n ≥ 0) (form 1)

where ← is the logical implication symbol (A ← B means that if B applies then A applies),
and A0, … , An are atomic formulas (logic facts) of the form:

 predicate_symbol(Var_1, Var_2, …, Var_N) (form 2)

where the positional parameters Var_1,…,Var_N of the above predicate “predicate_symbol”
are either variable names (in the case of the back-end compiler inference rules), or constants
(in the case of the FIF table statements). The predicate syntax in form 2 is typical of the way
that the FIF facts and other facts interact with each other, they are organized and they are
used internally in the inference engine. Thus, the hardware descriptions are generated as
“conclusions” of the inference engine upon the FIF ”facts”. This is done in a formal way
from the input programs by the back-end phase, which turns the overall transformation into
a provably-correct compilation process. In essence, the FIF file consists of a number of such

front-end
compiler

specification
programs

software compilation

FIF database

FIF compilation

back-end compiler
inference rules

FIF loading

hardware
implementation

high-level synthesis

Embedded Systems – Theory and Design Methodology

352

atomic formulas, which are grouped in the FIF tables. Each such table contains a list of
homogeneous facts which describe a certain aspect of the compiled program. E.g. all
prog_stmt facts for a given subprogram are grouped together in the listing of the program
statements table.

6. Inference logic and back-end transformations
The inference engine of the back-end compiler consists of a great number of logic rules (like
the one in form 1) which conclude on a number of input logic predicate facts and produce
another set of logic facts and so on. Eventually, the inference logic rules produce the logic
predicates that encapsulate the writing of RTL VHDL hardware co-processor models. These
hardware models are directly implementable to any hardware (e.g. ASIC or FPGA)
technology, since they are technology and platform – independent. For example, generated
RTL models produced in this way from the prototype compiler were synthesized
successfully into hardware implementations using the Synopsys DC Ultra, the Xilinx ISE
and the Mentor Graphics Precision software without the need of any manual alterations of
the produced RTL VHDL code. In the following form 3 an example of such an inference rule
is shown:

dont_schedule(Operation1, Operation2) ←

 examine(Operation1, Operation2),

 predecessor(Operation1, Operation2). (form 3)

The meaning of this rule that combines two input logic predicate facts to produce another
logic relation (dont_schedule), is that when two operations (Operation1 and Operation2) are
examined and the first is a predecessor of the second (in terms of data and control
dependencies), then don’t schedule them in the same control step. This rule is part of a
parallelizing optimizer which is called “PARCS” (meaning: Parallel, Abstract Resource –
Constrained Scheduler).

The way that the inference engine rules (predicates relations-productions) work is depicted
in Figure 2. The last produced (from its rule) predicate fact is the VHDL RTL writing
predicate at the top of the diagram. Right bellow level 0 of predicate production rule there is
a rule at the -1 level, then level -2 and so on. The first predicates that are fed into this engine
of production rules belong to level –K, as shown in this figure. Level –K predicate facts
include of course the FIF facts that are loaded into the inference engine along with the other
predicates of this level.

In this way, the back-end compiler works with inference logic on the basis of predicate
relation rules and therefore, this process is a formal transformation of the FIF source
program definitions into the hardware accelerator (implementable) models. Of course in the
case of the prototype compiler, there is a very large number of predicates and their relation
rules that are defined inside the implementation code of the back-end compiler, but the
whole concept of implementing this phase is as shown in Figure 2. The user of the back-end
compiler can select certain environment command list options as well as build an external
memory port parameter file as well as drive the compiler’s optimizer with specific resource
constraints of the available hardware operators.

High-Level Synthesis for Embedded Systems

353

Fig. 2. The back-end inference logic rules structure.

RTL writer predicate rule

VHDL writing predicate

level -1
predicate fact 1

level -1
predicate fact 2

level -1
predicate fact L

level -1 predicate rule for fact 2

level -2
predicate fact 1

level -2 predicate
fact 2

level -2 predicate
fact M

level -2 predicate rule for fact 2

level –K
predicate fact 1

level -K
predicate fact 2

level -K
predicate fact N

Embedded Systems – Theory and Design Methodology

354

Fig. 3. The processing stages of the back-end compiler.

The most important of the back-end compilation stages can be seen in Figure 3. The
compilation process starts with the loading of the FIF facts into the inference rule engine.
After the FIF database is analyzed, the local data object, operation and initial state lists are
built. Then the environment options are read and the temporary lists are updated with the
special (communication) operations as well as the predecessor and successor dependency
relation lists. After the complete initial schedule is built and concluded, the PARCS
optimizer is run on it, and the optimized schedule is delivered to the micro-architecture
generator. The transformation is concluded with the formation of the FSM and datapath
implementation and the writing of the RTL VHDL model for each accelerator that is defined
in each subprogram of the source code program.

A separate hardware accelerator model is generated from each subprogram in the system
model code. All of the generated hardware models are directly implementable into
hardware using commercial CAD tools, such as the Synopsys DC-ultra, the Xilinx ISE and
the Mentor Graphics Precision RTL synthesizers. Also the hierarchy of the source program
modules (subprograms) is maintained and the generated accelerators may be hierarchical.
This means that an accelerator can invoke the services of another accelerator from within its
processing states, and that other accelerator may use the services of yet another accelerator
and so on. In this way, a subprogram call in the source code is translated into an external
coprocessor interface event of the corresponding hardware accelerator.

Building of local data and states lists

External FIF database (produced by the front-end)

Processing of multi-dimensional objects (e.g. arrays)
and environment interface events

FIF loading and analysis

Scheduled hardware FSM model in implementable RTL HDL code

Building of addressing and protocols for
communication with external (shared) memories

Environment
parameters

FSM state optimizations (PARCS)

FSM and datapath micro-architecture generation

High-Level Synthesis for Embedded Systems

355

7. The PARCS optimizer
PARCS aggressively attempts to schedule as many as possible operations in the same
control step. The only limits to this are the data and control dependencies as well as the
optional resource (operator) constraints, which are provided by the user.

Fig. 4. Pseudo-code of the PARCS scheduling algorithm.

The pseudo-code for the main procedures of the PARCS scheduler is shown in Figure 4. All
of the predicate rules (like the one in form 1) of PARCS are part of the inference engine of
the back-end compiler. A new design to be synthesized is loaded via its FIF into the back-
end compiler’s inference engine. Hence, the FIF’s facts as well as the newly created predicate
facts from the so far logic processing, “drive” the logic rules of the back-end compiler which
generate provably-correct hardware architectures. It is worthy to note that although the HLS
transformations are implemented with logic predicate rules, the PARCS optimizer is very
efficient and fast. In most of benchmark cases that were run through the prototype
hardware compiler flow, compilation did not exceed 1-10 minutes of run-time and the
results of the compilation were very efficient as explained bellow.

8. Generated hardware architectures
The back-end stage of micro-architecture generation can be driven by command-line options.
One of the options e.g. is to generate massively parallel architectures. The results of this
option are shown in Figure 5. This option generates a single process – FSM VHDL
description with all the data operations being dependent on different machine states. This
implies that every operator is enabled by single wire activation commands that are driven
by different state register values. This in turn means that there is a redundancy in the
generated hardware, in a way that during part of execution time, a number of state-
dedicated operators remain idle. However, this redundancy is balanced by the fact that this
option achieves the fastest clock cycle, since the state command encoder, as well as the data

1. start with the initial schedule (including the special external port operations)
2. Current PARCS state <- 1
3. Get the 1st state and make it the current state
4. Get the next state
5. Examine the next state’s operations to find out if there are any dependencies

with the current state
6. If there are no dependencies then absorb the next state’s operations into the

current PARCS state; If there are dependencies then finalize the so far
absorbed operations into the current PARCS state, store the current PARCS
state, PARCS state <- PARCS state + 1; make next state the current state; store
the new state’s operations into the current PARCS state

7. If next state is of conditional type (it is enabled by guarding conditions) then
call the conditional (true/false branch) processing predicates, else continue

8. If there are more states to process then go to step 4, otherwise finalize the so far
operations of the current PARCS state and terminate

Embedded Systems – Theory and Design Methodology

356

Fig. 5. Massively-parallel microarchitecture generation option.

multiplexers are replaced by single wire commands which don’t exhibit any additional
delay, and this option is very suitable to implement on large ASICs with plenty of resources.

Another micro-architecture option is the generation of traditional FSM + datapath based
VHDL models. The results of this option are shown in Figure 6. With this option activated
the generated VHDL models of the hardware accelerators include a next state process as
well as signal assignments with multiplexing which correspond to the input data
multiplexers of the activated operators. Although this option produces smaller hardware
structures (than the massively-parallel option), it can exceed the target clock period due to
larger delays through the data multiplexers that are used in the datapath of the accelerator.

Using the above micro-architecture options, the user of the CCC HLS tool can select various
solutions between the fastest and larger massively-parallel micro-architecture, which may
be suitable for richer technologies in terms of operators such as large ASICs, and smaller
and more economic (in terms of available resources) technologies such as smaller FPGAs.

As it can be seen in Figure 5 and Figure 6, the produced co-processors (accelerators) are
initiated with the input command signal START. Upon receiving this command the co-
processors respond to the controlling environment using the handshake output signal BUSY

Cloud of state
registers and next

state encoding
logic

START

DONE

operator (FU) 1

operator (FU) k

operator (FU) m

●●●

●●●

●●●

operator (FU) n

state 1

state L

data in

data out

●●●

High-Level Synthesis for Embedded Systems

357

Fig. 6. The traditional FSM + datapath generated micro-architecture option.

and right after this, they start processing the input data in order to produce the results. This
process may take a number of clock cycles and it is controlled by a set of states (discrete
control steps). When the co-processors complete their processing, they notify their
environment with the output signal DONE. In order to conclude the handshake the
controlling environment (e.g. a controlling central processing unit) responds with the
handshake input RESULTS_READ, to notify the accelerator that the processed result data
have been read by the environment. This handshake protocol is also followed when one
(higher-level) co-processor calls the services of another (lower-level) co-processor.
The handshake is implemented between any number of accelerators (in pairs) using
the START/BUSY and DONE/RESULTS_READ signals. Therefore, the set of executing
co-processors can be also hierarchical in this way.

Other environment options, passed to the back-end compiler, control the way that the data
object resources are used, such as registers and memories. Using a memory port
configuration file, the user can determine that certain multi-dimensional data objects, such
as arrays and array aggregates are implemented in external (e.g. central, shared) memories
(e.g. system RAM). Otherwise, the default option remains that all data objects are allocated
to hardware (e.g. on-chip) registers. All of the related memory communication protocols and

Cloud of state
registers and

next state
encoding logic

START

DONE

operator (FU) 1

operator (FU) m

●●●

state vector

data in

data out

data
multiplexer

data
multiplexer

Embedded Systems – Theory and Design Methodology

358

hardware ports/signals, are automatically generated by the back-end synthesizer, and
without the need for any manual editing of the RTL code by the user. Both synchronous and
asynchronous memory communication protocol generation are supported.

9. Co-processor execution system
The generated accelerators can be placed inside the computing environment that they
accelerate or can be executed standalone. For every subprogram in the source specification
code one co-processor is generated to speed up (accelerate) the particular system task. The
whole system (both hardware and software models) is modeled in algorithmic ADA code
which can be compiled and executed with the host compiler and linker to run and verify the
operation of the whole system at the program code level. In this way, extremely fast
verification can be achieved at the algorithmic level. It is evident that such behavioral (high-
level) compilation and execution is orders of magnitude faster than conventional RTL
simulations.

After the required co-processors are specified, coded in ADA, generated with the prototype
hardware compiler and implemented with commercial back-end tools, they can be
downloaded into the target computing system (if the target system includes FPGAs) and
executed to accelerate certain system tasks. This process is shown in Figure 7. The
accelerators can communicate with each other and with the host computing environment
using synchronous handshake signals and connections with the system’s handshake logic.

10. Experimental results and evaluation of the method
In order to evaluate the efficiency of the presented HLS and ESL method, many designs
from the area of hardware compilation and high-level synthesis were run through the front-
end and the back-end compilers. Five selected benchmarks include a DSP FIR filter, a
second order differential equation iterative solver, a well-known high-level synthesis
benchmark, a RSA crypto-processor from cryptography applications, a synthetic benchmark
that uses two level nested for-loops, and a large MPEG video compression engine. The
fourth benchmark includes subroutines with two-dimensional data arrays stored in external
memories. These data arrays are processed within the bodies of 2-level nested loops. All of
the above generated accelerators were simulated and the RTL behavior matched the input
source program’s functionality. The state number reduction after applying the PARCS
optimizer, on the various modules of the five benchmarks is shown in Table 1.

Moreover, the number of lines of RTL code is orders of magnitude more compared with the
lines of the source code model for each sub-module. This indicates the gain in engineering
productivity when the prototype ESL tools are used to automatically implement the
computing products. It is well accepted in the engineering community that the coding &
verification time at the algorithmic program level is only a small fraction of the time
required for verifying designs at the RTL or the gate-netlist level. There were more than 400
states in the initial schedule of the MPEG benchmark. In addition to this, manual coding is
extremely prone to errors which are very cumbersome and time-consuming to correct with
(traditional) RTL simulations and debugging.

The specification (source code) model of the various benchmarks, and all of the designs
using the prototype compilation flow, contains unaltered regular ADA program code,

High-Level Synthesis for Embedded Systems

359

Fig. 7. Host computing environment and accelerators execution configuration.

without additional semantics and compilation directives which are usual in other synthesis
tools which compile code in SystemC, HandelC, or any other modified program code with
additional object class and TLM primitive libraries. This advantage of the presented
methodology eliminates the need for the system designers to learn a new language, a new
set of program constructs or a new set of custom libraries. Moreover, the programming
constructs and semantics, that the prototype HLS compiler utilizes are the subset which is
common to almost all of the imperative and procedural programming languages such as
ANSI C, Pascal, Modula, Basic etc. Therefore, it is very easy for a user that is familiar with
these other imperative languages, to get also familiar with the rich subset of ADA that the
prototype hardware compiler processes. It is estimated that this familiarization doesn’t
exceed a few days, if not hours for the very experienced software/system
programmer/modeler.

Prototype hardware compiler co-design method

Program code model for mixed HW/SW, special purpose,
customised architecture (verified) model

Host processor(s)

Accelerator 1 (+ local
memory)

SW implementation with
host compiler and linker

HW implementation with prototype
hardware compiler

Accelerator 2 (+ local
memory)

Accelerator K (+
local memory)

•••

Main
(shared)
memory

Interface and
handshake logic and

other computing
environment

Embedded Systems – Theory and Design Methodology

360

Module name Initial schedule
states

PARCS parallelized
states

State reduction
rate

FIR filter main routine 17 10 41%
Differential equation solver 20 13 35%
RSA main routine 16 11 31%
nested loops
1st subroutine 28 20 29%

nested loops
2nd subroutine (with embedded
mem)

36 26 28%

nested loops
2nd subroutine (with external mem) 96 79 18%

nested loops
3rd subroutine 15 10 33%

nested loops
4th subroutine 18 12 33%

nested loops
5th subroutine 17 13 24%

MPEG 1st subroutine 88 56 36%
MPEG 2nd subroutine 88 56 36%
MPEG 3rd subroutine 37 25 32%
MPEG top subroutine (with embed.
mem) 326 223 32%

MPEG top subroutine (with external
mem) 462 343 26%

Table 1. State reduction statistics from the IKBS PARCS optimizer.

The following Table 2 contains the area and timing statistics of the main module of the
MPEG application synthesis runs. Synthesis was executed on a Ubuntu 10.04 LTS linux
server with Synopsys DC-Ultra synthesizer and the 65nm UMC technology libraries. From
this table a reduction in terms of area can be observed for the FSM+datapath
implementation against the massively parallel one. Nevertheless, due to the quality of the
technology libraries the speed target of 2 ns clock period was achieved in all 4 cases.

Area/time statistic

massively-
parallel,
initial
schedule

massively-
parallel,
PARCS
schedule

FSM +
datapath,
initial
schedule

FSM +
datapath,
PARCS
schedule

area in square nm 117486 114579 111025 107242
equivalent number of
NAND2 gates 91876 89515 86738 83783

achievable clock period 2 ns 2 ns 2 ns 2 ns
achievable clock
frequency 500 MHz 500 MHz 500 MHz 500 MHz

Table 2. Area and timing statistics from UMC 65nm technology implementation.

High-Level Synthesis for Embedded Systems

361

Moreover, the area reduction for the FSM+datapath implementations of both the initial
schedule and the optimized (by PARCS) one isn’t dramatic and it reaches to about 6 %. This
happens because the overhead of massively-parallel operators is balanced by the large
amount of data and control multiplexing in the case of the FSM+datapath option.

11. Conclusions and future work
This chapter includes a discussion and survey of past and present existing ESL HLS tools
and related synthesis methodologies suitable for embedded systems. Formal and heuristic
techniques for the HLS tasks are discussed and more specific synthesis issues are analyzed.
The conclusion from this survey is that the authors prototype ESL behavioral synthesizer is
unique in terms of generality of input code constructs, the formal methodologies employed
and the speed and utility of the developed hardware compiler.

One important contribution of this work is a provably-correct, ESL, and HLS method and a
unified prototype tool-chain, which is based on compiler-compiler and formal logic
inference techniques. The prototype tools transform a number of arbitrary input
subprograms (for now coded in the ADA language) into an equivalent number of correct-
by-construction and functionally-equivalent RTL VHDL hardware accelerator descriptions.
Encouraging state-reduction rates of the PARCS scheduler-optimizer were observed for five
benchmarks in this chapter, which exceed 30% in some cases. Using its formal flow, the
prototype hardware compiler can be used to develop complex embedded systems in orders
of magnitude shorter time and lower engineering effort, than that which are usually
required using conventional design approaches such as RTL coding or IP encapsulation and
schematic entry using custom libraries.

Existing HLS tools compile usually a small-subset of the programming language, and
sometimes with severe restrictions in the type of constructs they accept (some of them don’t
accept while-loops for example). Furthermore, most of them are suited for linear, data-flow
oriented specifications. However, a large number of applications found in embedded and
telecommunication systems, mobile and other portable computing platforms involve a great
deal of complex control flow with nesting and hierarchy levels. For this kind of applications
most of HLS tools produce low level of quality results. The prototype ESL tool developed by
the author has proved that it can deliver a better quality of results in applications with
complex control such as image compression and processing standards.

Future extensions of this work include undergoing work to upgrade the front-end phase to
accommodate more input programming languages (e.g. ANSI-C, C++) and the back-end
HDL writer to include more back-end RTL languages (e.g. Verilog HDL), which are
currently under development. Another extension could be the inclusion of more than 2
operand operations as well as multi-cycle arithmetic unit modules, such as multi-cycle
operators, to be used in datapath pipelining. Moreover, there is ongoing work to extend the
FIF’s semantics so that it can accommodate embedding of IP blocks (such as floating-point
units) into the compilation flow, and enhance further the schedule optimizer algorithm for
even more reduced schedules. Furthermore, connection flows from the front-end compiler
to even more front-end diagrammatic system modeling formats such as the UML
formulation are currently investigated.

Embedded Systems – Theory and Design Methodology

362

12. References
Avnit K., D'silva V., Sowmya A., Ramesh S. & Parameswaran S (2009) Provably correct on-

chip communication: A formal approach to automatic protocol converter synthesis.
ACM Trans on Des Autom of Electr Sys (TODAES), ISSN: 1084-4309, Vol. 14, No. 2,
article no: 19, March 2009.

Barbacci M., Barnes G., Cattell R. & Siewiorek D. (1979). The ISPS Computer Description
Language. Report CMU-CS-79-137, dep. of Computer Science, Carnegie-Mellon
University, USA.

Berstis V. (1989). The V compiler: automatic hardware design. IEEE Des & Test of Comput,
Vol. 6, No. 2, pp. 8–17.

Biesenack J., Koster M., Langmaier A., Ledeux S., Marz S., Payer M., Pilsl M., Rumler S.,
Soukup H., Wehn N. & Duzy P. (1993). The Siemens high-level synthesis system
CALLAS. IEEE trans on Very Large Scale Integr (VLSI) sys, Vol. 1, No. 3, September
1993, pp. 244-253.

Bolsens I., De Man H., Lin B., Van Rompaey K., Vercauteren S. & Verkest D. (1997).
Hardware/software co-design of digital telecommunication systems. Proceedings of
the IEEE, Vol. 85, No. 3, pp. 391-418.

Buck J., Ha S., Lee E. & Messerschmitt D. (1992). PTOLEMY: A framework for simulating
and prototyping heterogeneous systems. Invited Paper in the International Journal of
Computer Simulation, 31 August 1992. pp. 1-34.

Camposano R. & Rosenstiel W. (1989). Synthesizing circuits from behavioral descriptions.
IEEE Trans Comput-Aided Des Integr Circuits Syst, Vol. 8, No. 2, pp. 171-180.

Casavant A., d'Abreu M., Dragomirecky M., Duff D., Jasica J., Hartman M., Hwang K. &
Smith W. (1989). A synthesis environment for designing DSP systems. IEEE Des &
Test of Comput, Vol. 6, No. 2, pp. 35–44.

De Micheli G., Ku D., Mailhot F. & Truong T. (1990). The Olympus synthesis system. IEEE
Des & Test of Comput, Vol. 7, No. 5, October 1990, pp. 37-53.

Dossis M (2010) Intermediate Predicate Format for design automation tools. Journal of Next
Generation Information Technology (JNIT), Vol. 1, No. 1, pp. 100-117.

Ernst R., Henkel J. & Benner T. (1993). Hardware-software cosynthesis for microcontrollers.
IEEE Des & Test of Comput, Vol. 10, No. 4, pp. 64-75.

Filkorn T. (1991). A method for symbolic verification of synchronous circuits, Proceedings of
the Comp Hardware Descr Lang and their Application (CHDL 91), pp. 229-239,
Marseille, France 1991.

Fisher J (1981). Trace Scheduling: A technique for global microcode compaction. IEEE trans.
on comput, Vol. C-30, No. 7, pp. 478-490.

Gajski D., & Ramachandran L. (1994). Introduction to high-level synthesis. IEEE Des & Test
of Comput, Vol. 11, No. 4, pp. 44-54.

Gal B., Casseau E. & Huet S. (2008) Dynamic Memory Access Management for High-
Performance DSP Applications Using High-Level Synthesis. IEEE Trans on Very
Large Scale Integr (VLSI), ISSN: 1063-8210, Vol. 16, No. 11, November 2008, pp. 1454-
1464.

Genin D., Hilfinger P., Rabaey J., Scheers C. & De Man H. (1990). DSP specification using the
SILAGE language, Proceedings of the Int Conf on Acoust Speech Signal Process, pp.
1056–1060, Albuquerque, NM., USA, 3-6 April 1990.

High-Level Synthesis for Embedded Systems

363

Girczyc E. (1987). Loop winding—a data flow approach to functional pipelining, Proceedings
of the International Symp on Circ and Syst, pp. 382–385, 1987.

Girczyc E., Buhr R. & Knight J. (1985). Applicability of a subset of Ada as an algorithmic
hardware description language for graph-based hardware compilation. IEEE Trans
Comput-Aided Des Integ Circuits Syst, Vol. 4, No. 2, pp. 134-142.

Goodby L., Orailoglu A. & Chau P. (1994) Microarchitecture synthesis of performance-
constrained low-power VLSI designs, Proceedings of the Intern Conf on Comp Des
(ICCD), ISBN: 0-8186-6565-3, Cambridge, MA , USA, 10-12 October 1994, pp. 323–
326.

Gu Z., Wang J., Dick R. & Zhou H. (2005) Incremental exploration of the combined physical
and behavioral design space. Proceedings of the 42nd annual conf on des aut DAC '05,
Anaheim, CA, USA, June 13-17, 2005, pp. 208-213.

Gupta R. & De Micheli G. (1993). Hardware-software cosynthesis for digital systems. IEEE
Des & Test of Comput, Vol. 10, No. 3, pp. 29-41.

Gupta S., Gupta R., Dutt N. & Nicolau A., (2003) Dynamically increasing the scope of code
motions during the high-level synthesis of digital circuits, Proceedings of the IEEE
Conf Comput Digit Techn, ISSN: 1350-2387, 22 Sept. 2003, Vol. 150, No. 5, pp. 330–
337.

Gupta S., Gupta R., Dutt N. & Nikolau A. (2004) Coordinated Parallelizing Compiler
Optimizations and High-Level Synthesis. ACM Trans on Des Aut of Electr Sys, Vol.
9, No. 4, September 2004, pp. 441–470.

Halbwachs N., Caspi P., Raymond P. & Pilaud D. (1991). The synchronous dataflow
programming language Lustre, Proceedings of the IEEE, Vol. 79, No. 9, pp. 1305–
1320.

Hoare C. (1985). Communicating sequential processes. Prentice-Hall, Englewood Cliffs, N.J.,
USA.

Huang C., Chen Y., Lin Y. & Hsu Y. (1990). Data path allocation based on bipartite weighted
matching, Proceedings of the Des Autom Conf (DAC), pp. 499–504, Orlando, Florida,
USA, June, 1990.

Huang C., Ravi S., Raghunathan A. & Jha N. (2007) Generation of Heterogeneous
Distributed Architectures for Memory-Intensive Applications Through High-Level
Synthesis. IEEE Trans on Very Large Scale Integr (VLSI), Vol. 15, No. 11, November
2007, pp. 1191-1204.

Issenin I, Brockmeyer E, Durinck B, Dutt ND (2008) Data-Reuse-Driven Energy-Aware
Cosynthesis of Scratch Pad Memory and Hierarchical Bus-Based Communication
Architecture for Multiprocessor Streaming Applications. IEEE Trans on Comp-Aided
Des of Integr Circ and Sys, ISSN: 0278-0070, Vol. 27, No. 8, Aug. 2008, pp. 1439-1452.

Johnson S. (1984) Synthesis of Digital Designs from Recursion Equations. MA: MIT press,
Cambridge.

Kalavade A. & Lee E. (1993). A hardware-software codesign methodology for DSP
applications. IEEE Des & Test of Comput, Vol. 10, No. 3, pp. 16-28.

Keinert J., Streubuhr M., Schlichter T., Falk J., Gladigau J., Haubelt C., Teich J. & Meredith
M. (2009) SystemCoDesigner—an automatic ESL synthesis approach by design
space exploration and behavioral synthesis for streaming applications. ACM Trans
on Des Autom of Electr Sys (TODAES), ISSN: 1084-4309, Vol. 14, No. 1, article no: 1,
January 2009.

Embedded Systems – Theory and Design Methodology

364

Kountouris A. & Wolinski C. (2002) Efficient Scheduling of Conditional Behaviors for High-
Level Synthesis. ACM Trans. on Design Aut of Electr Sys, Vol. 7, No. 3, July 2002, pp.
380–412.

Kuehlmann A. & Bergamaschi R. (1992). Timing analysis in high-level synthesis, Proceedings
of the 1992 IEEE/ACM international conference on Computer-aided design (ICCAD '92),
pp. 349-354.

Kumar N., Katkoori S., Rader L. & Vemuri R. (1995) Profile-driven behavioral synthesis for
low-power VLSI systems. IEEE Des Test of Comput, ISSN: 0740-7475, Vol. 12, No. 3,
Autumn 1995, pp. 70–84.

Kundu S., Lerner S. & Gupta R. (2010) Translation Validation of High-Level Synthesis. IEEE
Trans Comput-Aided Des Integ Circuits Syst, ISSN: 0278-0070 ,Vol. 29, No. 4, April
2010, pp. 566-579.

Kurdahi F. & Parker A. (1987). REAL: A program for register allocation, Proceedings of the
Des Autom Conf (DAC), pp. 210–215 , Miami Beach, Florida, USA, June, 1987.

Lauwereins R., Engels M., Ade M. & Peperstraete, J. (1995). GRAPE-II: A system level
prototyping environment for DSP applications. IEEE Computer, Vol. 28, No. 2,
February 1995, pp. 35–43.

Martin E., Santieys O. & Philippe J. (1993) GAUT, an architecture synthesis tool for
dedicated signal processors, Proceedings of the IEEE Int Eur Des Autom Conf (Euro-
DAC), Hamburg, Germany, Sep. 1993, pp. 14–19.

Martin R. & Knight J. (1995) Power-profiler: Optimizing ASICs power consumption at the
behavioral level, Proceedings of the Des Autom Conf (DAC), ISBN: 0-89791-725-1, San
Francisco, CA, USA, 1995, pp. 42-47.

Marwedel P. (1984). The MIMOLA design system: Tools for the design of digital processors,
Proceedings of the 21st Design Automation Conf (DAC), pp. 587-593.

Mehra R. & Rabaey J. (1996) Exploiting regularity for low-power design. Dig of Techn Papers,
Intern Conf on Comp-Aided Des (ICCAD), ISBN:0-8186-7597-7, San Jose, CA, USA,
November 1996, pp. 166–172.

Molina M., Ruiz-Sautua R., Garcia-Repetto P. & Hermida R (2009) Frequent-Pattern-Guided
Multilevel Decomposition of Behavioral Specifications. IEEE Trans Comput-Aided
Des Integ Circuits Syst, ISSN: 0278-0070, Vol. 28, No. 1, January 2009, pp. 60-73.

Musoll E. & Cortadella J. (1995) Scheduling and resource binding for low power, Proceedings
of the Eighth Symp on Sys Synth, ISBN: 0-8186-7076-2, Cannes , France, 13-15
September 1995, pp.104–109.

Nilsson U. & Maluszynski J. (1995) Logic Programming and Prolog. John Wiley & Sons Ltd.,
2nd Edition, 1995.

Paik S., Shin I., Kim T. & Shin Y (2010) HLS-l: A High-Level Synthesis framework for latch-
based architectures. IEEE Trans Comput-Aided Des Integ Circuits Syst, ISSN: 0278-
0070, Vol. 29, No. 5, May 2010, pp. 657-670.

Pangrle B. & Gajski D. (1987). Design tools for intelligent silicon compilation. IEEE Trans
Comput-Aided Des Integ Circuits Syst, Vol. 6, No. 6. pp. 1098–1112.

Papachristou C. & Konuk H. (1990). A Linear program driven scheduling and allocation
method followed by an interconnect optimization algorithm, Proceedings of the 27th
ACM/IEEE Design Automation Conf (DAC), pp. 77-83.

High-Level Synthesis for Embedded Systems

365

Park I. & Kyung C. (1991). Fast and near optimal scheduling in automatic data path
synthesis, Proceedings of the Des Autom Conf (DAC), pp. 680–685, San Francisco,
USA, 1991.

Park N. & Parker A. (1988). Sehwa: A software package for synthesis of pipelined data path
from behavioral specification. IEEE Trans Comput Aided Des Integrated Circuits Syst,
Vol. 7, No. 3, pp.356–370.

Paulin P. & Knight J. (1989). Algorithms for high-level synthesis. IEEE Des & Test of Comput,
Vol. 6, No. 6, pp. 18-31.

Paulin P. & Knight J. (1989). Force-directed scheduling for the behavioral synthesis of ASICs.
IEEE Trans Comput-Aided Des Integ Circuits Syst, Vol. 8, No 6, pp. 661–679.

Rabaey J., Guerra L. & Mehra R. (1995) Design guidance in the power dimension, Proceedings
of the 1995 Intern Conf on Acoustics, Speech, and Signal Proc, ISBN: 0-7803-2431-5,
Detroit, MI , USA, 9-12 May 1995, pp. 2837–2840.

Rafie M., et al. (1994) Rapid design and prototyping of a direct sequence spread-spectrum
ASIC over a wireless link. DSP and Multimedia Technol, Vol. 3, No. 6, pp. 6–12.

Raghunathan A. & Jha N. (1994) Behavioral synthesis for low power, Proceedings of the Intern
Conf on Comp Des (ICCD), ISBN: 0-8186-6565-3, Cambridge, MA , USA, 10-12
October 1994 pp. 318–322.

Raghunathan A., Dey S. & Jha N. (1996) Register-transfer level estimation techniques for
switching activity and power consumption, Dig of Techn Papers, Intern Conf on
Comp-Aided Des (ICCAD), ISBN: 0-8186-7597-7, San Jose, CA , USA, 10-14
November 1996, pp. 158–165.

Semeria L., Sato K. & De Micheli G. (2001) Synthesis of hardware models in C with pointers
and complex data structures. IEEE Trans VLSI Systems, Vol. 9, No. 6, pp. 743–756.

Thomas D., Adams J. & Schmit H. (1993). A model and methodology for hardware-software
codesign. IEEE Des & Test of Comput, Vol. 10, No. 3, pp. 6-15.

Tsay F., & Hsu Y. (1990). Data path construction and refinement. Digest of Techn papers, Int
Conf on Comp-Aided Des (ICCAD), pp. 308–311 , Santa Clara, CA, USA, November,
1990.

Tseng C. & Siewiorek D. (1986). Automatic synthesis of data path on digital systems. IEEE
Trans Comput Aided Des.Integ Circuits Syst, Vol. 5, No. 3, pp. 379–395.

Van Canneyt M. (1994). Specification, simulation and implementation of a GSM speech
codec with DSP station. DSP and Multimedia Technol, Vol. 3, No. 5, pp. 6–15.

Wakabayashi K. & Tanaka H. (1992) Global scheduling independent of control
dependencies based on condition vectors, Proceedings of the 29th ACM/IEEE Conf
Des Autom (DAC), ISBN: 0-8186-2822-7, Anaheim, CA , USA, 8-12 June 1992, pp.
112-115.

Wakabayashi K. (1999) C-based synthesis experiences with a behavior synthesizer, “Cyber”.
Proceedings of the Des Autom and Test in Eur Conf, ISBN: 0-7695-0078-1, Munich,
Germany, 9-12 March1999, pp. 390–393.

Walker R. & Chaudhuri S. (1995). Introduction to the scheduling problem. IEEE Des & Test of
Comput, Vol. 12, No. 2, pp. 60–69.

Wang W., Raghunathan A., Jha N. & Dey S. (2003) High-level Synthesis of Multi-process
Behavioral Descriptions, Proceedings of the 16th IEEE International Conference on VLSI
Design (VLSI’03), ISBN: 0-7695-1868-0, 4-8 Jan. 2003, pp. 467-473.

Embedded Systems – Theory and Design Methodology

366

Wang W., Tan T., Luo J., Fei Y., Shang L., Vallerio K., Zhong L., Raghunathan A. & Jha N.
(2003) A comprehensive high-level synthesis system for control-flow intensive
behaviors, Proceedings of the 13th ACM Great Lakes symp on VLSI GLSVLSI '03,
ISBN:1-58113-677-3, Washington, DC, USA, April 28-29, 2003, pp. 11-14.

Willekens P, et al (1994) Algorithm specification in DSP station using data flow language.
DSP Applicat. 3(1):8–16.

Wilson R., French R., Wilson C., Amarasinghe S., Anderson J., Tjiang S., Liao S-W., Tseng C-
W., Hall M., Lam M. & Hennessy J. (1994) Suif: An infrastructure for research on
parallelizing and optimizing compilers. ACM SIPLAN Notices, Vol. 28, No. 9,
December 2994, pp. 67–70.

Wilson T., Mukherjee N., Garg M. & Banerji1 D. (1995). An ILP Solution for Optimum
Scheduling, Module and Register Allocation, and Operation Binding in Datapath
Synthesis. VLSI Design, Vol. 3, No. 1, pp. 21-36.

Zhong L. & Jha N. (2002) Interconnect-aware high-level synthesis for low power. Proceedings
of the IEEE/ACM Int Conf Comp-Aided Des, ISBN:0-7803-7607-2, November 2002, pp.
110-117.

1. Introduction

Embedded systems have been widely used in the mobile computing applications. The
mobility requires high performance under strict power consumption, which leads to a big
challenge for the traditional single-processor architecture. Hardware accelerators provide
an energy efficient solution but lack the flexibility for different applications. Therefore,
the hardware configurable embedded systems become the promising direction in future.
For example, Intel just announced a system on chip (SoC) product, combining the ATOM
processor with a FPGA in one package (Intel Inc., 2011).

The configurability puts more requirements on the hardware design productivity. It worsens
the existing gap between the transistor resources and the design outcomes. To reduce the gap,
design community is seeking a higher abstraction rather than the register transfer level(RTL).
Compared with the manual RTL approach, the C language to RTL (C2RTL) flow provides
magnitudes of improvements in productivity to better meet the new features in modern
SoC designs, such as extensive use of embedded processors, huge silicon capacity, reuse of
behavior IPs, extensive adoption of accelerators and more time-to-market pressure. Recently,
people (Cong et al., 2011) observed a rapid rising demand for the high quality C2RTL tools.

In reality, designers have successfully developed various applications using C2RTL tools
with much shorter design time, such as face detection (Schafer et al., 2010), 3G/4G wireless
communication (Guo & McCain, 2006), digital video broadcasting (Rossler et al., 2009) and so
on. However, the output quality of the C2RTL tools is inferior to that of the human-designed
ones especially for large behavior descriptions. Recently, people proposed more scalable
design architectures including different small modules connected by first-in first-out (FIFO)
channels. It provides a natural way to generate a design hierarchically to solve the complexity
problem.

However, there exist several major challenges of the FIFO-connected architecture in practice.
First of all, the current tools leave the user to determine the FIFO capacity between modules,
which is nontrivial. As shown in Section 2, the FIFO capacity has a great impact on the system
performance and memory resources. Though determining the FIFO capacity via extensive

A Hierarchical C2RTL Framework for Hardware
Configurable Embedded Systems

Yongpan Liu1, Shuangchen Li1, Huazhong Yang1 and Pei Zhang2

1Tsinghua University, Beijing,
2Y Explorations, Inc., San Jose, CA

1P.R.China
2USA

17

2 Will-be-set-by-IN-TECH

RTL-level simulations may work for several modules, the exploration space will become
prohibitive large in the multiple-module case. Therefore, previous RTL-level simulating
method is neither time-efficient nor optimal. Second, the processing rate among modules
may bring a large mismatch, which causes a serious performance degradation. Block level
parallelism should be introduced to solve the mismatches between modules. Finally, the C
program partition is another challenge for the hierarchical design methodology.

This chapter proposed a novel C2RTL framework for configurable embedded systems. It
supports a hierarchical way to implement complex streaming applications. The designers
can determine the FIFO capacity automatically and adopt the block level parallelism. Our
contributions are listed as below: 1) Unlike treating the whole algorithm as one module in the
flatten design, we cut the complex streaming algorithm into modules and connect them with
FIFOs. Experimental results showed that the hierarchical implementation provides up to 10.43
times speedup compared to the flatten design. 2) We formulate the parameters of modules
in streaming applications and design a behavior level simulator to determine the optimal
FIFO capacity very fast. Furthermore, we provide an algorithm to realize the block level
parallelism under certain area requirement. 3) We demonstrate the proposed method in seven
real applications with good results. Compared to the uniform FIFO capacity, our method
can save memory resources by 14.46 times. Furthermore, the algorithm can optimize FIFO
capacity in seconds, while extensive RTL level simulations may need hours. Finally, we show
that proper block level parallelism can provide up to 22.94 times speedup in performance with
reasonable area overheads.

The rest of the chapter is organized as follows. Section 2 describes the motivation of our work.
We present our model framework in Section 3. The algorithm for optimal FIFO size and block
level parallelism is formulated in Section 4 and 5. Section 6 presents experimental results.
Section 7 illustrates the previous work in this domain. Section 8 concludes this paper.

2. Motivation

This section provides the motivation of the proposed hierarchical C2RTL framework for
FIFO-connected streaming applications. We first compare the hierarchical approach with the
flatten one. And then we point out the importance of the research of block level parallelism
and FIFO sizing.

2.1 Hierarchical vs flatten approach

The flatten C2RTL approach automatically transforms the whole C algorithm into a large
module. However, it faces two challenges in practice. 1) The translating time is unacceptable
when the algorithm reaches hundreds of lines. In our experiments, compiling algorithms over
one thousand lines into the hardware description language (HDL) codes may lead to several
days to run or even failed. 2) The synthesized quality for larger algorithms is not so good
as the small ones. Though the user may adjust the code style, unroll the loop or inline the
functions, the effect is usually limited.

Unlike the flatten method, the hierarchical approach splits a large algorithm into several
small ones and synthesizes them separately. Those modules are then connected by FIFOs.

368 Embedded Systems – Theory and Design Methodology

A Hierarchical C2RTL Framework for Hardware

Configurable Embedded Systems 3

It provides a flexible architecture as well as small modules with better performance. For
example, we synthesized the JPEG encode algorithm into HDLs using eXCite (Y Exploration
Inc., 2011) directly compared to the proposed solution. The flatten one costs 42’475’202 clock
cycles with a max clock frequency of 69.74MHz to complete one computation, while the
hierarchical method spends 4’070’603 clock cycles with a max clock frequency of 74.2MHz.
It implies a 10.43 times performance speedup and a 7.2% clock frequency enhancement.

2.2 Performance with different block number

Among multiple blocks in a hierarchical design, there exist processing rate mismatches. It
will have a great impact on the system performance. For example, Figure 1 shows the IDCT
module parallelism. It is in the slowest block in the JPEG decoder. The JPEG decoder can
be boosted by duplicating the IDCT module. However, block level parallelism may lead to
nontrivial area overheads. It should be careful to find a balance point between the area and
the performance.

20.19

40.59

61.11

81.63

101.77

122.27

141.75

161.69 165.36 165.36

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

Sy
st

em
 th

ro
ug

pu
t (

bi
t/c

yc
le

*1
0-

3)

Parallelism degree of PE3 in JPEG decoder case

Fig. 1. System throughput under different parallelism degrees

2.3 Performance with different FIFO capacity

What’s more, determining the FIFO size becomes relevant in the hierarchial method. We
demonstrate the clock cycles of a JPEG encoder under different FIFO sizes in Figure 2. As we
can see, the FIFO size will lead to an over 50% performance difference. It is interesting to see
that the throughput cannot be boosted after a threshold. The threshold varies from several to
hundreds of bits for different applications as described in Section 6. However, it is impractical
to always use large enough FIFOs (several hundreds) due to the area overheads. Furthermore,
designers need to decide the FIFO size in an iterative way when exploring different function
partitions in the architecture level. Considering several FIFOs in a design, the optimal FIFO
sizes may interact with each other. Thus, determining the proper FIFO size accurately and
efficiently is important but complicated. More efficient methods are preferred.

369A Hierarchical C2RTL Framework for Hardware Configurable Embedded Systems

4 Will-be-set-by-IN-TECH

500
520
540
560
580
600

cy
cl
es
) x

10
00

0

400
420
440
460
480
500

0 5 10 15 20 25 30 35 40 45 50 55 60

Ta
ll
(T
ot
al
cl
oc
k

0 5 10 15 20 25 30 35 40 45 50 55 60

D12 (FIFO depth between PE1 and PE2)
Fig. 2. Computing cycles under different FIFO sizes

3. Hierarchical C2RTL framework

This section first shows the diagram of the proposed hierarchical C2RTL framework. We then
define four major stages: function partition, parameter extraction, block level parallelism and
FIFO interconnection.

3.1 System diagram

The framework consists of four steps in Figure 3. In Step 1, we partition C codes into
appropriate-size functions. In Step 2, we use C2RTL tools to transform each function into a
hardware process element (PE), which has a FIFO interface. We also extract timing parameters
of each PE to evaluate the partition in Step 1. If a partition violates the timing constraints, a
design iteration will be done. In Step 3, we decide which PEs should be parallelized as well
as the parallelism degree. In Step 4, we connect those PEs with proper sized FIFOs. Given
a large-scale streaming algorithm, the framework will generate the corresponding hardware
module efficiently. The synthesizing time is much shorter than that in the flatten approach.
The hardware module can be encapsulated as an accelerator or a component in other designs.
Its interface supports handshaking, bus, memory or FIFO. We denote several parameters for
the module as below: the number of PEs in the module as N, the module’s throughput as
THall , the clock cycles to finish one computation as Tall , the clock frequency as CLKall and the
design area as Aall .

As C2RTL tools can handle the small-sized C codes synthesis (Step 2) efficiently, four main
problems exist: how to partition the large-scale algorithm into proper-sized functions (Step 1),
what parameters to be extracted from each PE(In Step 2), how to determine the parallelized
PEs and their numbers (Step 3) and how to decide the optimal FIFO size between PEs (Step
4). We will discuss them separately.

370 Embedded Systems – Theory and Design Methodology

A Hierarchical C2RTL Framework for Hardware

Configurable Embedded Systems 5

3.2 Function partition

The C code partition greatly impacts the final performance. On one hand, the partition will
affect the speed of the final hardware. For example, a very big function may lead to a very
slow PE. The whole design will be slowed down, since the system’s throughput is decided by
the slowest PE. Therefore, we need to adjust the slowest PE’s partition. The simplest method
is to split it into two modules. In fact, we observe that the ideal and most efficient partition
leads to an identical throughput of each PE. On the other hand, the partition will also affect the

Determinate which PEs
should be paralleled and their degrees

Function
1 (C file)

Conversion by C2RTL tool (eXCite)

.

PE 1
(HDL file)

.

Q: How to partition
the software?

Function
2 (C file)

Function
n (C file)

PE 2
(HDL file)

PE n
(HDL file)

C files

STEP 1:

STEP 2:

Make the top level file to interconnect all the PEs

Q: How to decide
the size of FIFOs
inserted between
PEs?

PE n

STEP 4:

PE 1 FIFO1-2 FIFO2-3 .

Structure of the final
hardware

STEP 3:

PE 1
(HDL file)

.
PE n

(HDL file)

P
E

2
1

P
E

2
2

P
E

2
m.

Parallelism
degree of m

Q: How to decide
which blocks to do
parallelism and
their degrees?

PE 21

PE 22

PE 2m

PE 2'
(after parallelism)

Extract timing parameters of each PE
and evaluate the partition

Guide the partition

Fig. 3. Hierarchical C2RTL Flow

371A Hierarchical C2RTL Framework for Hardware Configurable Embedded Systems

6 Will-be-set-by-IN-TECH

Name Description Examples2

Type Interface type,I or II II
THni/o Throughput of input or output interface 0.0755

tni/o Input or output time in Tn (cycles) 128
Tn Period of PEn (cycles) 848
An Area of PEn (LE) 4957
fn THno/THni/i 1

SoPn(m)1 State of PEn at mth cycle
0:Processing;1:Reading; 2:Writing;3:Reading and writing

1 m means mth cycle.
2 Output of PE2 in the JPEG encode case, as shown in Figre 4

Table 1. The parameter of the nth PE’s input/output interfaces

area. Too fine-grained partitions lead to many independent PEs, which will not only reduce
the resource sharing but also increase the communication costs.

In this design flow, we use a manual partition strategy, because no timing information in C
language makes the automatic partition difficult. In this framework, we introduce an iterative
design flow. Based on the timing parameters1 extracted by the PEs from the C2RTL tools, the
designers can determine the C code partition. However, automatizing this partition flow is an
interesting work which will be addressed in our future work.

3.3 Parameter extraction

We get the PE’s timing information after the C2RTL conversion. In streaming applications,
each PE has a working period Tn, under which the PE will never be stopped by overflows
or underflows of an FIFO. During the period Tn, the PE will read, process, and write data.
We denote the input time as tni and the output time as tno. In summary, we formulate the
parameters of the nth PE interface in Table 1. Based on a large number of PEs converted by
eXCite, we have observed two types of interface parameters. Figure 4 shows the waveform
of the type II. As we can see, tn is less than Tn in this case. In type I, tn equals to Tn, which
indicates the idle time is zero.

2

F23_dat_o:

F23_dat_i:

F23_we:
2o

2i

F23_re:

Fig. 4. Type II case: Output of PE2 in the JPEG encoder

3.4 Block level parallelism

To implement block level parallelism, we denote the nth PE’s parallelism degree as Pn.2 Thus,
Pn=1 means that the design does not parallelize this PE. When Pn > 1, we can implement
block level parallelism using a MUX, a DEMUX, and a simple controller in Figure 5.

1 We will define those parameters in the next section.
2 We assume that no data dependence exists among PEn’s task.

372 Embedded Systems – Theory and Design Methodology

A Hierarchical C2RTL Framework for Hardware

Configurable Embedded Systems 7

Figure 6 illustrates the working mechanism of the nth parallelized PE. It shows a case with
two-level block parallelism with tni>tno. In this case, the input and the output of the
parallelized blocks work serially. It means that the PEn2 block must be delayed for tni by
the controller, so as to wait for the PEn1 to load its input data. However, when another work
period Tn starts, the PEn1 can start its work immediately without waiting for the PEn2 .

As we can see, the interface of the new PEn after parallelism remains the same as Table 1.
However, the values of the input and the output parameters should be updated due to the
parallelism. It will be discussed in Section 4.2.

3.5 FIFO interconnection

To deal with the FIFO interconnection, we first define the parameters of a FIFO. They will be
used to analyze the performance in the next section. Figure 7 shows the signals of a FIFO.
F_clk denotes the clock signal of the FIFO F. F_we and F_re denote the enable signals of
writing and reading. F_dat_i and F_dat_o are the input and the output data bus. F_ful and
F_emp indicate the full and empty state, which are active high. Given a FIFO, its parameters
are shown in Table 2. To connect modules with FIFOs, we need to determine D(n−1)n and
W(n−1)n.

PE n new
(After parallelism)

Input
signals

Output
signals

PE n

PE n1

PE n2

PE nm

Input
signals

Output
signals

Controller

PE n old
(Before parallelism)

Fig. 5. Realization of block level parallelism

PE n1

PE n2

t

E
ve

nt

0 tni 2tni Tn 2Tn2tni+Tn

PE n1

PE n2

Fig. 6. Working mechanism of block level parallelism(Pn ≤ �Tn/tni�)

373A Hierarchical C2RTL Framework for Hardware Configurable Embedded Systems

8 Will-be-set-by-IN-TECH

Name Description Examples2

Fclk(n−1)n Clock frequency (MHz) 50
W(n−1)n Data bus width 16

AFIFO(n−1)n Area: memory resource used (bit) 704
D(n−1)n FIFO depth 44

f(n−1)n(m) 1 Number of data in FIFO at mth cycle

SoF(n−1)n(m) State of FIFO at mth cycle;
1:Full; -1:Empty; 0:Other state

1 m means mth cycle.
2 This example comes from the FIFO between PE1 and PE2

in the JPEG encode case.

Table 2. The parameter of FIFO between PEn−1 and PEn

4. Algorithm for block level parallelism

This section formulates the block level parallelism problem. After that, we propose an
algorithm to solve the problem for multiple PEs in the system level.

4.1 Block level parallelism formulation

Given a design with N PEs, the throughput constraint THre f and the area constraint Are f
3, we

decide the nth PE’s parallelism degree Pn. That is

MIN.Pn, ∀n ∈ [1, N] (1)

s.t.THall ≥ THre f and
N

∑
n=1

Ân ≤ Are f (2)

where THall denotes the entire throughput and Ân is the PEn’s area after the block level
parallelism. Without losing generality, we assume that the capacity of all FIFOs is infinite
and Are f =∞. We leave the FIFO sizing in the next section.

12_dat_i

12

12 12

12

12

12

12_dat_o 2 23_dat_i

23

23 23

23

23

23

23_dat_o

2

Fig. 7. Circuit diagram of FIFO blocks connecting to PE2

3 This area constraint doesn’t consider the FIFO area.

374 Embedded Systems – Theory and Design Methodology

A Hierarchical C2RTL Framework for Hardware

Configurable Embedded Systems 9

4.2 Parameter extraction after block level parallelism

Before determining the parallelism degree of each PE, we first discuss how to extract new
interface parameters for each PE after parallelism. That is to update the following parameters:
T̂Hni/o, Ân, T̂n, f̂n, and ŜoPn, which are calculated based on Pn, THni/o, An, Tn, fn, and SoPn.

First of all, we calculate THni/o. As Figure 8 shows, larger parallelism degree won’t always
increase the throughput. It is limited by the input time tni. Assuming tni>tno and Pn ≤
�Tn/tni�, we have

T̂Hni/o = Pn ∗ THni/o when Pn ≤ �Tn/tni� (3)

For example, as shown in Figure 6, T̂Hni/o=2*THni/o because Pn=2< �Tn/tni�=3. When Pn ≥

PE n1

PE n2

t

E
ve

nt

0 tni 2tniTn

PE n1

PE n2

3tni 4tni

Fig. 8. Working mechanism of block level parallelism(Pn ≥ 	Tn/tni
)

	Tn/tni
, we have

T̂Hni/o = Tn/tni ∗ THni/o when Pn ≥ 	Tn/tni
 (4)

where the throughput is limited by the input time tni. More parallelism degree is useless in
this case. For example, as shown in Figure 8, T̂Hni/o=Tn/tni*THni/o, because Pn=2=	Tn/tni
.
When tni<tno we have the similar conclusions. In summary, we have

T̂Hni/o =

{
Pn ∗ THni/o Pn < pn

Tn/max{tni, tno} ∗ THni/o others
(5)

where
pn = 	Tn/max{tni, tno}
 (6)

Second, we can solve Ân, T̂n, and f̂n. Ignoring the area of the controller, we have

Ân = Pn ∗ An (7)

Based on Figure 6 and 8, we conclude

T̂n =

{
Tn + (Pn − 1) ∗ max{tni, tno} Pn ≤ pn

Pn ∗ max{tni, tno} others
(8)

375A Hierarchical C2RTL Framework for Hardware Configurable Embedded Systems

10 Will-be-set-by-IN-TECH

Equation 5 shows that T̂Hni and T̂Hno change at the same rate. Therefore,

f̂n = T̂Hno/T̂Hni = THni/THni = fn (9)

Furthermore, we calculate ŜoPn. ŜoPn is the combination of each sub-block’s SoP. Therefore

ŜoPn =

{
∑Pn

i=0 SoPn(m − i ∗ tni) tni ≥ tno

∑Pn
i=0 SoPn(m − i ∗ (Tn − tno)) tni < tno

(10)

Finally, we can obtain all new parameters of a PE after parallelism. We will use those
parameters to decide the parallelism degree in Section 4.3 and Section 5.

4.3 Block level parallelism degree optimization

To solve the optimization question in Section 4.1, we need to understand the relationship
between THall and T̂Hni/o. When PEn is connected to the chain from PE1 to PE(n−1), we
define the output interface’s throughput of PEn as TH’no. This parameter is different from
T̂Hni/o because it has considered the rate mismatch effects from previous PEs. We have

TH′
no =

⎧⎨
⎩ T̂Hno TH′

(n−1)o > T̂Hni

f̂n ∗ TH′
(n−1)o others

(11)

In fact, THall=TH’No. Therefore, we can express THall in the following format

THall = T̂Hbo

N

∏
i=b+1

fi (12)

where b is the index of the slowest PEb. It is the bottleneck of the system.

To do the optimization of parallelism degrees, we purpose an algorithm shown in
Algorithm 1. In the algorithm, the inputs are the number of PE N, the parameters of each
PE ParaG[N], each PE’s maxim parallelism degree by Equation 6, and the design constraint
TH_re f =THre f . ParaG[N] includes THni/o,tni/o,Tn,SoPn shown in Table 14.

The output is each PE’s optimal parallelism degree P[N]. Lines 1 − 7 are to check if the
optimization object is possible. Lines 8 − 14 are the initializing process. Lines 15 − 20 are the
main loop. pTH[N] equals to T̂Hni/o and TH_best denotes the best performance. Function
get_pTH() returns the PE’s T̂Hni/o. Function get_THall() returns TH_now which means the
THall under T̂Hni/o condition. Line 2 sets all the parallelism degree to its maximum value.
After that, we get the fastest THall in Line 4. If the system can never approach the optimizing
target, we will change the target in Line 6. In the main loop, we find the bottleneck in each
step in Line 16 and add more parallelism degree to it. We will update T̂Hni/o in Line 18
and evaluate the system again in Line 19. We end this loop until the design constraints are
satisfied.

4 These parameters are initial ones got by Step 2

376 Embedded Systems – Theory and Design Methodology

A Hierarchical C2RTL Framework for Hardware

Configurable Embedded Systems 11

Algorithm 1 Block Level Parallelism Degree Optimization Algorithm

Input: N, ParaG[N], p[N], TH_re f
Output: P[N]
1: for k = 1 → N do
2: pTH[k] = get_pTH(p[k], ParaG[k], p[k]), k = k + 1
3: end for
4: TH_best = get_THall(pTH, ParaG)
5: if TH_best > TH_re f then
6: TH_re f = TH_best
7: end if
8: for k = 1 → N do
9: P[k] = 1, k = k + 1

10: end for
11: for k = 1 → N do
12: pTH[k] = get_pTH(P[k], ParaG[k], p[k]), k = k + 1
13: end for
14: TH_now = get_THall(pTH, ParaG)
15: while TH_now ≥ TH_re f do
16: Bottleneck = get_bottle(pTH, ParaG)
17: P[Bottleneck] + +
18: k = Bottleneck
19: pTH[k] = get_pTH(P[k], ParaG[k], p[k]), k = k + 1
20: TH_now = get_THall(pTH, ParaG)
21: end while

5. Algorithm for FIFO-connected blocks

This section formulates the FIFO interconnecting problem. We then demonstrate that this
problem can be solved by a binary searching algorithm. Finally, we propose an algorithm to
solve the FIFO interconnecting problem of multiple PEs in the system level.

5.1 FIFO interconnection formulation

Given a design consisting of N PEs, we need to determine the depth D(i−1)i of each FIFO5,
which maximizes the entire throughput THall and minimizes the FIFO area of AFIFOall .

MIN.
N

∑
i=2

D(i−1)i (13)

s.t. THall ≥ THre f and AFIFOall ≤ AFIFOre f (14)

where THre f and AFIFOre f can be the user-specified constraints or optimal values of the design.
Without losing generality, we set THre f =(THall)max and AFIFO_re f =∞. We assume that F01
never empties and FN(N+1) never fulls. That is, ∀m, SoF01(m) = −1 and SoFN(N+1)(m) =
16.

5 We assume that the W(i−1)i is decided by the application.
6 This means that we only consider the operating state of the design instead of the halted state.

377A Hierarchical C2RTL Framework for Hardware Configurable Embedded Systems

12 Will-be-set-by-IN-TECH

5.2 FIFO capacity optimization

We can conclude a brief relationship between THni/o and Di. For PEn, we define the real
throughput as T̃Hni/o, when connected with Fn−1 of Dn−1 and Fn+1 of Dn+1. Then we set

T̃Hni/o = f (Dn−1, Dn+1) (15)

We know that a small Dn−1 or Dn+1 will cause T̃Hni/o<THni/o. Also, when T̃Hni/o=THni/o,
larger Dn−1 or Dn+1 will not increase performance any more. Therefore, as it is shown in
Figure 2, f (x) is a monotone nondecreasing function with a boundary.

With the fixed relationship between THni/o and Di, we can solve the FIFO capacity
optimization problem by a binary searching algorithm based on the system level simulations.
We describe this method to determine the FIFO capacity for multiple PEs (N > 2) in
Algorithm 2.

Algorithm 2 FIFO Capacity Algorithm for N ≥ 2

Input: N, ParaG[N], Inital_D[N]
Output: D[N]
1: k = 1, n = 1
2: while k < N do
3: D[k] = Initial_D[k]
4: end while
5: TH_obj = get_TH(D, ParaG)
6: TH_new = TH_obj, Upper = D[1], Mid = D[1], Lower = 1
7: while n < N do
8: if TH_new = TH_obj then
9: D[n] = ceil((Mid − Lower)/2)

10: Upper = Mid, Mid = D[n]
11: else
12: D[n] = ceil((Upper − Mid)/2)
13: Lower = Mid, Mid = D[n]
14: end if
15: TH_new = get_TH(D, ParaG)
16: if Upper = Lower then
17: n = n + 1
18: Upper = D[n], Mid = D[n], Lower = 1
19: end if
20: end while

The inputs are the number of PE N, the parameters of each PE ParaG[N] and each FIFO’s
initial capacity Initial_D[N]. ParaG[N] includes THni/o, tni/o, Tn, SoPn shown in Table 17.
Initial_D[n] means the initial searching value of Dn(n+1), which is big enough to ensure

T̃Hni/o=THall . The output is each FIFO’s optimal depth D[N]. Lines 1 − 6 are the initializing
process. Lines 7 − 20 are the main loop. Function get_TH() in line 5 and 15 can return
the entire throughput under different D[N] settings. Variable TH_obj is the searching
object calculated by Initial_D[N]. Initial_D[N] equals to THall and TH_new is the current
throughput calculated based on D[N]. Upper, Mid, and Lower decide the binary searching
range. In each loop, n means that the capacity of Fn(n+1) is processed. We get the searching

7 These parameters are updated by Block Level Parallelism step

378 Embedded Systems – Theory and Design Methodology

A Hierarchical C2RTL Framework for Hardware

Configurable Embedded Systems 13

point and the range according to TH_new in lines 8 − 14. We update TH_new in line 15.
The end condition is checked in line 16. When n = N, it means that all FIFOs have their
optimal capacity. As we can see, the most time-consuming part of the algorithm is the getTH()
function. It calls for an entire simulation of the hardware. Therefore, we build a system level
simulator instead of a RTL level one. It can shorten the optimization greatly. The system level
simulator adopts the parameters extracted in Step 2. The C-based system level simulator will
be released on our website soon.

6. Experiments

In this section, we first explain our experimental configurations. Then, we compare the flatten
approach, the hierarchical method without block level parallelism (BLP) and with BLP under
several real benchmarks. After that, we break down the advantages by two aspects: the
block level parallelism and the FIFO sizing. We then show the effectiveness of the proposed
algorithm to optimize the parallel degree. Finally, we demonstrate the advantages from the
FIFO sizing method.

6.1 Experimental configurations

In our experiments, we use a C2RTL tool called eXCite (Y Exploration Inc., 2011). The HDL
files are simulated by Mentor Graphics’ ModelSim to get the timing information. The area and
clock information is obtained by Quartus II from Altera. Cyclone II FPGAs are selected as the
target hardware. We derive seven large streaming applications from the high-level synthesis
benchmark suits CHstone(Hara et al. (2008)). They come from real applications and consist of
programs from the areas of image processing, security, telecommunication and digital signal
processing.

• JPEG encode/decode: JPEG transforms image between JPEG and BMP format.

• AES encryption/decryption: AES (Advanced Encryption Standard) is a symmetric key
crypto system.

• GSM: LPC (Linear Predictive Coding) analysis of GSM (Global System for Mobile
Communications).

• ADPCM: Adaptive Differential Pulse Code Modulation is an algorithm for voice
compression.

• Filter Group: The group includes two FIR filters, a FFT and an IFFT block.

6.2 System optimization for real cases

We show the synthesized results for seven benchmarks and compare the flatten approach,
the hierarchical approach without and with BLP. Table 3 shows the clock cycles saved by the
hierarchical method without and with BLP. The last column in Table 3 shows the BLP vector
for each PE. The ith element in the vector denotes the parallel degree of the PEi. The total
speedup represents the clock cycle reductions from the hierarchical approach with BLP. As we
can see, the hierarchical method without BLP achieves up to 10.43 times speedup compared
with the flatten approach. However, the BLP can provide considerable extra up to another
5 times speedup compared with the hierarchial method without BLP. It should be noted that

379A Hierarchical C2RTL Framework for Hardware Configurable Embedded Systems

14 Will-be-set-by-IN-TECH

Benchmark Flatten Hierarchical Hierarchical BLP degree
approach W.O. BLP(speedup) W. BLP(speedup) (P1..Pn)

JPEG encode 42,475,202 4,070,603 (x10.43) 1,850,907 (x22.94) (1,3,1)
JPEG decode 623,090 456,821 (x1.364) 115,622 (x5.389) (1,1,4,1)

Min AES encryption 1,904,802 719,263 (x2.648) 216,393 (x8.803) (4,2,3,2)
Tall AES decryption 2,185,802 867,306 (x2.388) 229,570 (x9.521) (4,2,4,2)

(cycles) GSM 620,802 204,356 (x3.038) 55,306 (x11.22) (4,4,4,1,1,1)
ADPCM 35,691 12,464 (x2.864) 3,762 (x9.487) (4,2,2,2,3)

Filter groups 6,537,416 1,702,406 (x3.84) 511,853 (x12.77) (2,1,1,4,1,2)

BLP: Block level parallelism.

Table 3. System optimization result of minimal clock cycles

Benchmark Flatten Hierarchical Hierarchical Total
approach W.O. BLP W. BLP Speedup

JPEG encode 69.74 74.2 74.2 x1.064
JPEG decode 71.15 71.3 71.3 x1.002

Max AES encode 71.24 91.06 91.06 x1.278
Clkall AES decode 75.56 87.35 87.35 x1.156
(MHz) GSM 55.73 59.16 59.16 x1.062

ADPCM 53.29 68.32 68.32 x1.282
Filter groupe 93.41 96.69 96.69 x1.035

BLP: Block level parallelism.

Table 4. System optimization result of maximal clock frequency

the BLP will lead to area overheads in some extents. We will discuss those challenges in the
following experiments. Furthermore, Table 4 shows the maximum clock frequency of three
approaches. As we can see, the BLP does not introduce extra delay compared with the pure
hierarchical method.

6.3 Block level parallelism

The previous experimental results show the total advantages from the hierarchial method
with BLP. This section will discuss the performance and the area overheads of BLP alone. We
show the throughput improvement and the area costs in the GSM benchmark in Figure 98.
We list the BLP vector as the horizontal axis. As we can see, parallelizing some PEs will
increase the throughput. For the BLP vector (1, 2, 1, 1, 1, 1), we duplicate the second PE2 by
two. It will improve the performance by 4% with 48% area overheads. The result comes
from the rate mismatch between PEs. It indicates that duplicating single PE may not increase
the throughput effectively and the area overheads may be quite large. Therefore, we should
develop an algorithm to find the optimal BLP vector to boost the performance without
introducing too many overheads. For example, the BLP vector (4, 4, 4, 1, 1, 1) leads to over
4 times performance speedup while with only less than 3 times area overheads.

Furthermore, we evaluate the proposed BLP algorithm with the approach duplicating the
entire hardware. Figure 10 demonstrates that our algorithm can increase the throughput
with less area. It is because the BLP algorithm does not parallelize every PE and can explore
more fine-grained design space. Obviously, the BLP method provides a solution to trade off

8 We observe similar trends in other cases.

380 Embedded Systems – Theory and Design Methodology

A Hierarchical C2RTL Framework for Hardware

Configurable Embedded Systems 15

performance with area more flexibly and efficiently. In fact, as the modern FPGA can provide
more and more logic elements, it makes the area not so urgent as the performance, which is
the first-priority metric in most cases.

3

3.1

3.62

4.00
23.50

4.00

4.50

m

Improvement of performance Cost of area

1.

2.01

2.10

2.43

3.00

13

1.48

1.52

1.65

2.12

2.17

2.29

2.77

2.82

2.94

1 50

2.00

2.50

3.00

ar
is

on
to

N
o

Pa
ra

lle
lis

m

1.00

1.04

211.00

0.00

0.50

1.00

1.50

Co
m

p

Paralllelism Degree (P1,P2,P3,P4,P5,P6)

Fig. 9. Speedup and Area cost in GSM case

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1.00 1.04 1.21 2.01 2.10 2.43 3.00 3.13 3.62 4.00

Ar
ea

 c
os

t (
LE

)
x

10
00

0

Throughput Speed Up

Block level Parallelism Parallel All

Fig. 10. Advantage of Block Level Parallelism algorithm

381A Hierarchical C2RTL Framework for Hardware Configurable Embedded Systems

16 Will-be-set-by-IN-TECH

Benchmark D12 D23 D34 D45 D56 Tall

JPEG encode System Level 43 2 - - - 4080201
RTL Level 44 2 - - - 4070603

JPEG decode System Level 2 33 17 2 - 456964
RTL Level 2 33 18 2 - 456821

AES encryption System Level 2 2 2 - - 719364
RTL Level 3 2 3 - - 719263

AES decryption System Level 2 257 2 - - 867407
RTL Level 3 249 3 - - 867306

GSM System Level 54 2 2 2 2 204554
RTL Level 55 2 2 2 2 204356

ADPCM System Level 2 2 2 2 2 12464
RTL Level 2 2 2 2 1 12464

Filter group System Level 2 2 86 2 2 1701896
RTL Level 2 2 87 2 2 1701846

Table 5. Optimal FIFO capacity algorithm experiment result in 7 real cases

6.4 Optimal FIFO capacity

We show the simulated results for real designs with multiple PEs. First of all, we show the
relationship between the FIFO size and the running time Tall . Figure 11 shows the JPEG
encoding case. As we can see, the FIFO size has a great impact on the performance of the
design. In this case, the optimal FIFO capacity should be D12=44, D23=2.

370

390

410

430

450

470

490

510

530

30 35 40 45 50

Ta
ll
(T
ot
al
cl
oc
k
cy
cl
es
) x
10

00
0

D12 (Depth of F12)

(Depth of F23)

D23 2 D23=1

Fig. 11. FIFO capacity in JPEG encode case

Table 5 lists both the system level simulation results and the RTL level experimental ones on
FIFO size in seven cases. It shows that our approach is accurate enough for those real cases.
Though little mismatch exists, the difference is very small. Compared to the magnitudes of
speedup to determine the FIFO size, our approach is quite promising to be used in architecture
level design space exploration.

382 Embedded Systems – Theory and Design Methodology

A Hierarchical C2RTL Framework for Hardware

Configurable Embedded Systems 17

Benchmark
Memory resource used(bit)

SavingsFIFOs with 1 FIFOs with
enough size optimized size

JPEG encode 10,048 2,624 x3.83
JPEG decode 38,776 8,376 x4.63
AES encode 92,160 67,968 x1.36
AES decode2 92,160 75,808 x1.22

GSM 36,028 8,602 x4.19
ADPCM 54,040 3,736 x14.46

Filter groupe 114,400 76,736 x1.49
1 We set each FIFO depth as 128.
2 In this case we set each FIFO depth as 256.

Table 6. Area saved

The memory resource savings by well designing FIFO are listed in Table 6. Compared to
the large enough design strategy, the memory savings are significant. Moreover, compared
to the method using RTL level simulator to decide FIFO capacity, our work is extremely time
efficient. Considering a hardware with N FIFO to design, each FIFO size is fixed using a binary
searching algorithm. It will request log2(p) times simulations with the initial FIFO depth
value D(n−1)n = p. Assuming that the average time cost by ModelSim RTL level simulation is
C, the entire exploration time is N ∗ log2(p) ∗ C. Considering the FilerGroup case with N = 5,
p = 128 and C = 170 seconds, which are typical values on a normal PC, we have to wait
100 minutes to find the optimal FIFO size. However, our system level solution can finish the
exploration in seconds.

7. Related works

Many C2RTL tools (Gokhale et al., 2000; Lhairech-Lebreton et al., 2010; Mencer, 2006;
Villarreal et al., 2010) are focusing on streaming applications. They create design
architectures including different modules connected by first-in first-out (FIFO) channels.
There are some other tools focusing on general purpose applications. For example,
Catapult C (Mentor Graphics, 2011) takes different timing and area constraints to generate
Pareto-optimal solutions from common C algorithms. However, little control on the
architecture leads to suboptimal results. As (Agarwal, 2009) has shown, FIFO-connected
architecture can generate much faster and smaller results in streaming applications.

Among C2RTL tools for streaming applications, GAUT (Lhairech-Lebreton et al., 2010)
transforms C functions into pipelined modules consisting of processing units, memory units
and communication units. Global asynchronous local synchronous interconnections are
adopted to connect different modules with multiple clocks. ROCCC (Villarreal et al., 2010)
can create efficient pipelined circuits from C to be re-used in other modules or system
codes. Impulse C (Gokhale et al., 2000) provides a C language extension to define parallel
processes and communication channels among modules. ASC (Mencer, 2006) provides a
design environment for users to optimize systems from algorithm level to gate level, all within
the same C++ program. However, previous works keep how to determine the FIFO capacity
efficiently unsolved. Most recently, (Li et al., 2012) presented a hierarchical C2RTL framework
with analytical formulas to determine the FIFO capacity. However, block level parallelism

383A Hierarchical C2RTL Framework for Hardware Configurable Embedded Systems

18 Will-be-set-by-IN-TECH

is not supported and their FIFO sizing method is limited to PEs with certain input/output
interfaces.

During the hierarchical C2RTL flow, a key step is to partition a large C program into several
functions. Plenty of works have been done in this field. Many C-based high level synthesis
tools, such as SPARK (Gupta et al., 2004), eXcite (Y Exploration Inc., 2011), Cyber (NEC Inc.,
2011) and CCAP (Nishimura et al., 2006), can partition the input code into several functions.
Each function has a corresponding hardware module. However, it leads to a nontrivial
datapath area overhead because it eliminates the resource sharing among modules. On the
contrary, function inline technique can reduce the datapath area via resource sharing. The fast
increasing complexity of the controller makes the method inefficient. Appropriate function
clustering (Okada et al., 2002) in a sub module provides a more elegant way to solve the
partition problem. But it is hard to find a proper clustering rule. For example, too many
functions in one cluster will also lead to a prohibitive complexity in controllers. In practise,
architects often help the partition program to divide the C algorithms manually.

Similar to the hierarchical C2RTL, multiple FIFO-connected processing elements (PE) are
used to process audio and video streams in the mobile embedded devices. Researchers had
investigated on the input streaming rates to make sure that the FIFO between PEs will not
overflow, while the real-time processing requirements are met. On-chip traffic analysis of
the SoC architecture (Lahiri et al., 2001) had been explored. However, their simulation-based
approaches suffer from a long executing time and fail in exploring large design space. A
mathematical framework of rate analysis for streaming applications have been proposed in
reference (Cruz, 1995). Based on the network calculus, reference (Maxiaguine et al., 2004)
extended the service curves to show how to shape an input stream to meet buffer constraints.
Furthermore, reference (Liu et al., 2006) discussed the generalized rate analysis for multimedia
processing platforms. However, all of them adopts a more complicated behavior model for
PE streams, which is not necessary in the hierarchical C2RTL framework.

8. Conclusion

Improving the booming design methodology of C2RTL to make it more widely used is the
goal of many researchers. Our work of the framework does have achieved the improvement.
We first propose a hierarchical C2RTL design flow to increase the performance of a traditional
flatten one. Moreover, we propose a method to increase throughput by making block
level parallelism and an algorithm to decide the degree. Finally, we develop an heuristic
algorithm to find the optimal FIFO capacity in a multiple-module design. Experimental results
show that hierarchical approach can improve performance by up to 10.43 times speedup,
and block level parallelism can make extra 4 times speedup with 194% area overhead.
What’s more, it determines the optimal FIFO capacity accurately and fast. The future work
includes automatical C code partition in the hierarchical C2RTL framework and adopting our
optimizing algorithm in more complex architectures with feedback and branches.

9. Acknowledgement

The authors would like to thank reviewers for their helpful suggestions to improve the
chapter. This work was supported in part by the NSFC under grant 60976032 and 61021001,

384 Embedded Systems – Theory and Design Methodology

A Hierarchical C2RTL Framework for Hardware

Configurable Embedded Systems 19

National Science and Technology Major Project under contract 2010ZX03006-003-01, and
High-Tech Research and Development (863) Program under contract 2009AA01Z130.

10. References

Agarwal, A. (2009). Comparison of high level design methodologies for algorithmic IPs: Bluespec and
C-based synthesis, PhD thesis, Massachusetts Institute of Technology.

Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K. & Zhang, Z. (2011). High-level
synthesis for fpgas: From prototyping to deployment, Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on 30(4): 473–491.

Cruz, R. (1995). Quality of service guarantees in virtual circuit switched networks, Selected
Areas in Communications, IEEE Journal on 13(6): 1048–1056.

Gokhale, M., Stone, J., Arnold, J. & Kalinowski, M. (2000). Stream-oriented fpga computing in
the streams-c high level language, fccm, IEEE, p. 49.

Guo, Y. & McCain, D. (2006). Rapid prototyping and vlsi exploration for 3g/4g mimo
wireless systems using integrated catapult-c methodology, Wireless Communications
and Networking Conference, 2006. WCNC 2006. IEEE, Vol. 2, IEEE, pp. 958–963.

Gupta, S., Gupta, R. & Dutt, N. (2004). SPARK: a parallelizing approach to the high-level synthesis
of digital circuits, Vol. 1, Kluwer Academic Pub.

Hara, Y., Tomiyama, H., Honda, S., Takada, H. & Ishii, K. (2008). Chstone: A benchmark
program suite for practical c-based high-level synthesis, IEEE International Symposium
on Circuits and Systems, IEEE, pp. 1192–1195.

Intel Inc. (2011). Stellarton atom processor, Website: http://www. intel. com .
Lahiri, K., Raghunathan, A. & Dey, S. (2001). System-level performance analysis for designing

on-chip communication architectures, Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on 20(6): 768–783.

Lhairech-Lebreton, G., Coussy, P. & Martin, E. (2010). Hierarchical and multiple-clock domain
high-level synthesis for low-power design on fpga, 2010 International Conference on
Field Programmable Logic and Applications, IEEE, pp. 464–468.

Li, S., Liu, Y., Zhang, D., He, X., Zhang, P. & Yang, H. (2012). A hierarchical c2rtl framework
for fifo-connected stream applications, Proceedings of the 2012 Asia and South Pacific
Design Automation Conference, IEEE Press, pp. 1–4.

Liu, Y., Chakraborty, S. & Marculescu, R. (2006). Generalized rate analysis for
media-processing platforms, Proceedings of the 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, RTCSA, Vol. 6, Citeseer,
pp. 305–314.

Maxiaguine, A., Künzli, S., Chakraborty, S. & Thiele, L. (2004). Rate analysis for streaming
applications with on-chip buffer constraints, Proceedings of the 2004 Asia and South
Pacific Design Automation Conference, IEEE Press, pp. 131–136.

Mencer, O. (2006). Asc: a stream compiler for computing with fpgas, Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 25(9): 1603–1617.

Mentor Graphics, M. (2011). Catapult c synthesis, Website: http://www. mentor. com .
NEC Inc. (2011). CyberWorkBench, Website: http://www.nec.com/global/prod/cwb/ .
Nishimura, M., Nishiguchi, K., Ishiura, N., Kanbara, H., Tomiyama, H., Takatsukasa,

Y. & Kotani, M. (2006). High-level synthesis of variable accesses and function

385A Hierarchical C2RTL Framework for Hardware Configurable Embedded Systems

20 Will-be-set-by-IN-TECH

calls in software compatible hardware synthesizer ccap, Proc. Synthesis And System
Integration of Mixed Information technologies (SASIMI) pp. 29–34.

Okada, K., Yamada, A. & Kambe, T. (2002). Hardware algorithm optimization using bach
c, IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences 85(4): 835–841.

Rossler, M., Wang, H., Heinkel, U., Engin, N. & Drescher, W. (2009). Rapid prototyping of
a dvb-sh turbo decoder using high-level-synthesis, Forum on Specification & Design
Languages, 2009., IEEE, pp. 1–6.

Schafer, B., Trambadia, A. & Wakabayashi, K. (2010). Design of complex image processing
systems in esl, Proceedings of the 2010 Asia and South Pacific Design Automation
Conference, IEEE Press, pp. 809–814.

Villarreal, J., Park, A., Najjar, W. & Halstead, R. (2010). Designing modular hardware
accelerators in c with roccc 2.0, 2010 18th IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines, IEEE, pp. 127–134.

Y Exploration Inc. (2011). eXCite, Website: http://www.yxi.com .

386 Embedded Systems – Theory and Design Methodology

18

SRAM Cells for Embedded Systems
Jawar Singh1 and Balwinder Raj2

1PDPM- Indian Institute of Information Technology, Design & Manufacturing, Jabalpur,
2ABV-Indian Institute of Information Technology and Management, Gwalior,

India

1. Introduction
Static Random Access Memories (SRAMs) continue to be critical components across a wide
range of microelectronics applications from consumer wireless to high performance server
processors, multimedia and System on Chip (SoC) applications. It is also projected that the
percentage of embedded SRAM in SoC products will increase further from the current 84%
to as high as 94% by the year 2014 according to the International Technology Roadmap for
Semiconductors (ITRS). This trend has mainly grown due to ever increased demand of
performance and higher memory bandwidth requirement to minimize the latency,
therefore, larger L1, L2 and even L3 caches are being integrated on-die. Hence, it may not be
an exaggeration to say that the SRAM is a good technology representative and a powerful
workhorse for the realization of modern SoC applications and high performance processors.

This chapter covers following SRAM aspects, basic operations of a standard 6-transistor (6T)
SRAM cells and design metrics, nano-regime challenges and conflicting read-write
requirements, recent trends in SRAM designs, process variation and Negative Bias
Temperature Instability (NBTI), and SRAM cells for emerging devices such as Tunnel-FET
(TFET) and Fin-FET. The basic operation of a SRAM cell as a storage element includes
reading and writing data from/into the cell. Success of these operations is mainly gauged by
two design metrics: Read Static Noise Margin (RSNM) and Write Static Noise Margin
(WSNM). Apart from these metrics, an inline metric, N-curve is also used for measurement
of read and write stability. The schematic diagrams and measurement process supported
with HSPICE simulations results of different metrics will be presented in this chapter.

As standard 6T SRAM cell has failed to deliver the adequate read and write noise margins
below 600mv for 65nm technology nodes, several new SRAM designs have been proposed
in the recent past to meet the nano-regime challenges. In standard 6T, both read and write
operations are performed via same pass-gate transistors, therefore, poses a conflicting sizing
requirement. The recent SRAM cell designs which comprise of 7 to 10 transistor resolved the
conflicting requirement by providing separate read and write ports.

SRAM cells are the first to suffer from the Process Variation (PV) induced side-effects.
Because SRAM cells employ the minimum sized transistors to increase the device density
into a die. PV significantly degrades the read and write noise margins and further
exacerbates parametric yield when operating at low supply voltage. Furthermore, SRAM
cells are particularly more susceptible to the NBTI effect because of their topologies. Since,
one of the PMOS transistors is always negative bias if the cell contents are not flipped, it

Embedded Systems – Theory and Design Methodology

388

introduces asymmetry in the standard 6T SRAM cell due to shift in threshold voltage in
either of PMOS devices, as a result poor read and write noise margin. A brief discussion on
the impact of PV and NBTI on the SRAM will be covered in this chapter.

Finally, SRAM architectures for emerging devices such as TFET and Fin-FET will be
discussed in this chapter. Also issues related to uni-directional devices (TFET) for realization
of SRAM cell will be highlighted as uni-directional devices poses severe restriction on the
implementation of SRAM cell.

2. Random-Access Memories (RAMs)
A random-access memory is a class of semiconductor memory in which the stored data can
be accessed in any fashion and its access time is uniform regardless of the physical location.
Random-access memories in general classified as read-only memory (ROM) and read/write
memory. Read/write random-access memories are generally referred to as RAM. RAM can
also be classified based on the storage mode of the memory: volatile and non-volatile
memory. Volatile memory retains its data as long as power is supplied, while non-volatile
memory will hold data indefinitely. RAM is referred as volatile memory, while ROM is
referred as nonvolatile memory.

Memory cells used in volatile memories can be further classified into static or dynamic
structures. Static RAM (SRAM) cells use feedback (or cross coupled inverters) mechanism to
maintain their state, while dynamic RAM (DRAM) cells use floating capacitor to hold
charge as a data. The charged stored in the floating capacitor is leaky, so dynamic cells must
be refreshed periodically to retain stored data. The positive feedback mechanism, between
two cross coupled inverters in SRAM provides a stable data and facilitates high speed read
and write operations. However, SRAMs are faster and it requires more area per bit than
DRAMs.

2.1 SRAM architecture

An SRAM cache consists of an array of memory cells along with peripheral circuitries, such
as address decoder, sense amplifiers and write drivers etc. those enable reading from and
writing into the array. A classic SRAM memory architecture is shown in Figure 1. The
memory array consists of 2n words of 2m bits each. Each bit of information is stored in one
memory cell. They share a common word-line (WL) in each row and a bit-line pairs (BL,
complement of BL) in each column. The dimensions of each SRAM array are limited by its
electrical characteristics such as capacitances and resistances of the bit lines and word lines
used to access cells in the array. Therefore, large size memories may be folded into multiple
blocks with limited number of rows and columns. After folding, in order to meet the bit and
word line capacitance requirement each row of the memory contains 2k words, so the array
is physically organized as 2n-k rows and 2m+k columns. Every cell can be randomly
addressed by selecting the appropriate word-line (WL) and bit-line pairs (BL, complement
of BL), respectively, activated by the row and the column decoders.

The basic static RAM cell is shown in inset of Figure 1. It consists of two cross-coupled
inverters (M3, M1 and M4, M2) and two access transistors (M5 and M6). The access
transistors are connected to the wordline at their respective gate terminals, and the bitlines
at their source/drain terminals. The wordline is used to select the cell while the bitlines are

SRAM Cells for Embedded Systems

389

Fig. 1. SRAM architecture.

used to perform read or write operations on the cell. Internally, the cell holds the stored
value on one side and its complement on the other side. The two complementary bitlines are
used to improve speed and noise rejection properties [D. A. Hodges, 2003; S. M. Kang, 2003].

The voltage transfer characteristics (VTC) of cross-coupled inverters are shown in Figure 2.
The VTC conveys the key cell design considerations for read and write operations. In the
cross-coupled configuration, the stored values are represented by the two stable states in the
VTC. The cell will retain its current state until one of the internal nodes crosses the
switching threshold, VS. When this occurs, the cell will flip its internal state. Therefore,
during a read operation, we must not disturb its current state, while during the write
operation we must force the internal voltage to swing past VS to change the state.

2.2 Standard six transistor (6T) SRAM

The standard six transistor (6T) static memory cell in CMOS technology is illustrated
schematically in Figure 3. The cross-coupled inverters, M1, M3 and M2, M4, act as the storage
element. Major design effort is directed at minimizing the cell area and power consumption

Embedded Systems – Theory and Design Methodology

390

Fig. 2. Basic voltage transfer characteristics (VTC) of SRAM.

so that millions of cells can be placed on a chip. The steady state power consumption of the
cell is controlled by sub-threshold leakage currents, so a larger threshold voltage is often
used in memory circuits [J. Rabaey, 1999, J. P. Uyemura, 2002; A. S. Sedra 2003].

VDD0

VBL VBLB

WL WL

VDD

M5 M6

M3

M1

M4

M2

qq

INV-1 INV-2

VSS

Fig. 3. Standard 6T SRAM cell.

3. Challenges in Bulk-Si SRAM scaling
Challenges for MOSFET scaling in the nanoscale regime including gate oxide leakage,
control of short channel effects (SCE), contact resistance, ultra-shallow and abrupt junction
technology apply to SRAM scaling as well. While it is possible to scale the classical bulk-Si
MOSFET structure to sub-45 nm nodes [H. Wakabayashi et al., 2003], effective control of SCE
requires heavy channel doping (>5x1018 cm-3) and heavy super-halo implants to suppress
sub-surface leakage currents. As a result, carrier mobilities are severely degraded due to
impurity scattering and a high transverse electric field in the ON-state. Further, more
degraded SCE result in large leakage and larger subthreshold slope. Threshold voltage (VTH)
variability caused by random dopant fluctuations is another concern for nanoscale bulk-Si
MOSFETs and is perceived as a fundamental roadblock for scaling SRAM. In addition to

SRAM Cells for Embedded Systems

391

statistical dopant fluctuations, line-edge roughness increases the spread in transistor
threshold voltage (VTH) and thus the on- and off- currents and can limit the size of the cache
[A. J. Bhavnagarwala et al., 2001; A. Asenov et al., 2001].

3.1 Process variations

The study of process variations has greatly increased due to aggressive scaling of CMOS
technology. The critical sources have variation including gate length and width, random
dopant fluctuation, line-edge and line-width roughness, variation associated with oxide
thickness, patterning proximity effect etc. These variations result in dramatic changes in
device and circuit performance and characteristics in positive and negative directions.
SRAM cells are especially susceptible to process variations due to the use of minimum sized
transistors within the cell to increase the SRAM density. Furthermore, the transistors within
a cell must be closely matched in order to maintain good noise margins. An individual
SRAM cell does not benefit from the “averaging effect” observed in multi-stage logic circuits
whereby random device variations along a path tend to partially cancel one another.

The stability of a 6T SRAM cell under process variation can be verified by examining its
butterfly curves obtained by voltage transfer characteristics (VTC) and inverse voltage
transfer characteristics (VTC-1). Under process variation the read static noise margin (SNM)
of a standard 6T SRAM cell is shown in Figure. 4 (a). One can observe that the SNM window
has narrowed down due to process variation and this effect becomes severe at lower VDD

=0.3V, as shown in Figure. 5 (a). Therefore, process variation affects the reliability and
performance severely at lower voltages. However, recently different SRAM cells have been
proposed to circumvent the read SNM problem in SRAM cell. The most attracting cell in this
direction is referred as read SNM free 8T SRAM cell. This cell provides 2-3X times better
read SNM even at lower voltages as shown in Figure. 4 (b) and 5 (b).

N
od

e
q

N
od

e
q

Fig. 4. Measurement of read static noise margin (SNM) at VDD=0.9V for 45nm technology
node (a) standard 6T SRAM cell, and (b) read SNM free 8T SRAM cell.

Embedded Systems – Theory and Design Methodology

392

Fig. 5. Measurement of read static noise margin (SNM) at VDD=0.3V for 45nm technology
node (a) standard 6T SRAM cell, and (b) read SNM free 8T SRAM cell.

3.2 Device size requirements in SRAM cell

The standard 6T SRAM cell design space is continuously narrowing down due to lowering
the supply voltage, shrinkage in device dimensions- attempting to achieve the high density
and high performance objectives of on-chip caches. The SRAM cell stability, that is, read
SNM and write-ability margins are further degraded by supply voltage scaling as shown
above. The degradation in noise margins is mainly due to conflicting read and write
requirements of the device size in the 6T cell. Both operations are performed via the same
pass-gate (NMOS) devices, M5 and M6, as shown in Figure 3. For a better read stability (or
read SNM), both pull down devices, M1 and M2 of the storage inverters must be stronger
than the pass-gate devices, M5 and M6. While for write operation the opposite is desirable,
that is, pass-gate devices, M5 and M6, must be stronger than pull up devices, M3 and M4, to
achieve better write-ability, that is, weak storage inverters and strong pass-gate devices.
Combining these constraints, yield the following relation.

 strength (PMOS pull-up) < strength (NMOS access) < strength (NMOS pull-down)

The conflicting trend is also observed when read SNM and write noise margin (WNM) for
different cell ratios and pull up ratios are simulated. Figure 6 shows the standard 6T SRAM
cells’ normalized read SNM and WNM measured for different cell ratio (CR), while the pull-
up ratio is kept constant (PR=1). It can be seen from Figure 6 that the SNM is sharply
increasing with increase in the cell ratio, while there is a gradual decrease in the WNM. For
different pull-up ratio (PR), the normalized read SNM and WNM exhibit the similar trend.
For example, there is a sharp increase in the read SNM and gradual decrease in WNM with
increasing PR, while CR is kept constant to 2, as shown in Figure 7. In general, for a
standard 6T cell the PR is kept to 1 while the CR is varied from 1.25 to 2.5 for a functional
cell, in order to have a minimum sized cell for high density SRAM arrays. Therefore, in high
density and high performance standard 6T SRAM cell, the recommended value for CR and
PR are 2 and 1, respectively.

SRAM Cells for Embedded Systems

393

Fig. 6. Normalized read SNM and WNM of a standard 6T SRAM cell for different cell ratios
(CR), while pull-up ratio (PR) was fixed to 1.

Fig. 7. Normalized read SNM and WNM of a standard 6T SRAM cell for different pull-up
ratios (PR), while cell ratio (CR) is was fixed to 2.

Embedded Systems – Theory and Design Methodology

394

3.3 Impact of NBTI on SRAM cells

A systematic shift in PMOS transistor parameters such as reduction in trans-conductance
and drain current due to Negative Bias Temperature Instability (NBTI) over the life time of a
system is becoming a significant reliability concern in nanometer regime. Particularly, sub-
threshold devices and circuits which demand a high drive current for operation are hugely
affected by threshold shifts and drive current losses due to NBTI. SRAM cells are
particularly more susceptible to the NBTI effect because of their symmetric topologies. In
other words, one of the PMOS transistor is always under stress if the SRAM cell contents are
not periodically flipped. As a result, it introduces an asymmetric threshold shifts in both
PMOS devices of a SRAM cell. The performance and reliability (noise margins) are
significantly degraded in SRAM cells due to assymetric threshold voltage shift of PMOS
devices. The degradation in read SNM of a standard 6T for different duty cycles (beta β) is
shown in Figure 8. One can observe that there is a drastic reduction in read SNM of SRAM
cell after five years of time span.

Fig. 8. Standard 6T SRAM cell read SNM degradation due to NBTI for different duty cycles.

3.4 SRAM scaling issues

Static Random Access Memory (SRAM) is by far the dominant form of embedded memory
found in today’s Integrated Circuits (ICs) occupying as much as 60-70% of the total chip
area and about 75%-85% of the transistor count in some IC products. The most commonly
used memory cell design uses Six Transistors (6-T) to store a bit, so all of the issues
associated with MOSFET scaling apply to scaling of SRAM [A. Bhavnagarwala, et. al., 2005].
As memory will continue to consume a large fraction of the area in many future IC chips,

SRAM Cells for Embedded Systems

395

scaling of memory density must continue to track the scaling trends of logic. [Z. Guo et al.,
2005]. Statistical dopant fluctuations, variations in oxide thickness and line-edge roughness
increase the spread in transistor threshold voltage and thus on- and off- currents as the
MOSFET is scaled down in the nanoscale regime [A. Bhavnagarwala et al., 2005]. Increased
transistor leakage and parameter variations present the biggest challenges for the scaling of
6-T SRAM memory arrays [C. H. Kim, et. al., 2005, H. Qin, et. al., 2004].

The functionality and density of a memory array are its most important properties.
Functionality is guaranteed for large memory arrays by providing sufficiently large design
margins (to be able to be read without changing the state, to hold the state, to be writable
and to function within a specified timeframe), which are determined by device sizing
(channel widths and lengths), the supply voltage and, marginally, by the selection of
transistor threshold voltages. Increase in process-induced variations results in a decrease in
SRAM read and write margins, which prevents the stable operation of the memory cell and
is perceived as the biggest limiter to SRAM scaling [E. J. Nowak, et. al., 2003].

The 6-T SRAM cell size, thus far, has been scaled aggressively by ~0.5x every generation
(Figure 9), however it remains to be seen if that trend will continue. Since the control of
process variables does not track the scaling of minimum features, design margins will need
to be increased to achieve large functional memory arrays. Moving to more lithography
friendly regular layouts with gate lines running in one direction, has helped in gate line
printability [P. Bai et al., 2005], and could be the beginning of more layout regularization in
the future. Also, it might become necessary to slow down the scaling of transistor
dimensions to increase noise margins and ensure functionality of large arrays, i.e., tradeoff
cell area for SRAM robustness. [Z. Guo et al., 2005].

Fig. 9. SRAM cell size has been scaling at ~0.5 x per generation.

Embedded Systems – Theory and Design Methodology

396

SRAM cells based on advanced transistor structures such as the planar UTB FETs and
FinFETs have been demonstrated [E. J. Nowak et al., 2003; T. Park et al., 2003] to have
excellent stability and leakage control. Some techniques to boost the SRAM cell stability,
such as dynamic feedback [P. Bai et al., 2005], are best implemented using FinFET
technology, because there is no associated layout area or leakage penalty. FinFET-based
SRAM are attractive for low-power, low voltage applications [K. Itoh, et. al., 1998, M.
Yamaoka, et. al., 2005].

3.5 SRAM design Tradeoff’s

a. Area vs. Yield

The functionality and density of a memory array are its most important properties. The area
efficiency and the reliable printing of the SRAM cell which directly impacts yield are both
reliant on lithography technology. Given lithography challenges, functionality for large
memory arrays is guaranteed by providing sufficiently large design margins, which are
determined by device sizing (channel widths and lengths), the supply voltage and,
marginally, by the selection of transistor threshold voltages. Although upsizing the
transistors increases the noise margins, it increases the cell area and thus lowers the density
[Z. Guo et al., 2005].

b. Hold Margin

In standby mode, when the memory is not being accessed, it still has to retain its state. The
stored ‘1’ bit is held by the PMOS load transistor (PL), which must be strong enough to
compensate for the sub-threshold and gate leakage currents of all the NMOS transistors
connected to the storage node VL (Figure 8). This is becoming more of a concern due to the
dramatic increase in gate leakage currents and degradation in ION/IOFF ratio in recent
technology nodes [H. Pilo et al., 2005]. While hold stability was not of concern before, there
has been a recent trend [H. Qin et al., 2004] to decrease the cell supply voltage during
standby to reduce static power consumption. The minimum supply voltage or the data
retention voltage in standby is dictated by the hold margin. Degraded hold margins at low
voltages make it increasingly more difficult to design robust low-power memory arrays.
Hold stability is commonly quantified by the cell Static Noise Margin (SNM) in standby
mode with the voltage on the word line VWL=0 V. The SNM of an SRAM cell represents the
minimum DC-voltage disturbance necessary to upset the cell state [E. Seevinck et al., 1987],
and can be quantified by the length of the side of the maximum square that can fit inside the
lobes of the butterfly plot formed by the transfer characteristics of the cross-coupled
inverters (Figure 10).

c. Read Margin

During a read operation, with the bit lines (BL and CBL) in their precharged state, the Word
Line (WL) is turned on (i.e., biased at VDD), causing the storage node voltage, VR, to rise
above 0V, to a voltage determined by the resistive voltage divider formed by the access
transistor (AXR) and the pull-down transistor (NR) between BL and ground (Figure 8). The
ratio of the strengths of the NR and AXR devices (ratio of width/length of the two devices)
determines how high VR will rise, and is commonly referred to as the cell β-ratio. If VR
exceeds the trip voltage of the inverter formed by PL and NL, the cell bit will flip during the

SRAM Cells for Embedded Systems

397

Fig. 10. Butterfly plot represents the voltage-transfer characteristics of the cross-coupled
inverters in the SRAM cell.

read operation, causing a read upset. Read stability can be quantified by the cell SNM
during a read access.

Since AXR operates in parallel to PR and raises VR above 0V, the gain in the inverter transfer
characteristic is decreased [A. J. Bhavnagarwala et al., 2001], causing a reduction in the
separation between the butterfly curves and thus in SNM. For this reason, the cell is
considered most vulnerable to electrical disturbs during the read access. The read margin
can be increased by upsizing the pull-down transistor, which results in an area penalty,
and/or increasing the gate length of the access transistor, which increases the WL delay and
also hurts the write margin. [J. M. Rabaey et al., 2003] Process-induced variations result in a
decrease in the SNM, which reduces the stability of the memory cell and have become a
major problem for scaling SRAM. While circuit design techniques can be used to
compensate for variability, it has been pointed out that these will be insufficient, and that
development of new technologies, including new transistor structures, will be required [M.
Yamaoka et al., 2005].

d. Write Margin

The cell is written by applying appropriate voltages to be written to the bit lines, e.g. if a ‘1’
is to be written, the voltage on the BL is set to VDD while that on the BLC is set to 0V and
then the WL is pulsed to VDD to store the new bit. Careful sizing of the transistors in a
SRAM cell is needed to ensure proper write operation. During a write operation, with the
voltage on the WL set to VDD, AXL and PL form a resistive voltage divider between the BLC
biased at 0V and VDD (Figure 8). If the voltage divider pulls VL below the trip voltage of the
inverter formed by PR and NR, a successful write operation occurs. The write margin can be
measured as the maximum BLC voltage that is able to flip the cell state while the BL voltage
is kept high. The write margin can be improved by keeping the pull-up device minimum
sized and upsizing the access transistor W/L, at the cost of cell area and the cell read margin
[Z. Guo et al., 2005].

Embedded Systems – Theory and Design Methodology

398

e. Access Time

During any read/write access, the WL voltage is raised only for a limited amount of time
specified by the cell access time. If either the read or the write operation cannot be
successfully carried out before the WL voltage is lowered, access failure occurs. A successful
write access occurs when the voltage divider is able to pull voltage at VL below the inverter
trip voltage, after which the positive feedback in the cross-coupled inverters will cause the
cell state to flip almost instantaneously. For the precharged bitline architecture that employs
voltage-sensing amplifiers, a successful read access occurs if the pre-specified voltage
difference, ΔV, between the bit-lines (required to trigger the sense amplifier) can be
developed before the WL voltage is lowered [S. Mukhopadhyay et al., 2004]. Access time is
dependent on wire delays and the memory array column height. To speed up access time,
segmentation of the memory into smaller blocks is commonly employed. With reductions in
column height, the overhead area required for sense amplifiers can however become
substantial.

4. Novel devices based SRAM design for Embedded Systems
4.1 FinFET based SRAM cell design

FinFETs have emerged as the most suitable candidate for DGFET structure as shown in
figure 11 [E. Chin, et. al., 2006]. Proper optimization of the FinFET devices is necessary for
reducing leakage and improving stability in FinFET based SRAM. The supply voltage (VD),
Fin height (Hfin) and threshold voltage (Vth) optimization can be used for reducing leakage
in FinFET SRAMs by increasing Fin-height which allows reduction in VD. [F. Sheikh, et. al.,
2004]. However, reduction in VD has a strong negative impact on the cell stability under
parametric variations. We require a device optimization technique for FinFETs to reduce
standby leakage and improve stability in an SRAM cell.

Fig. 11. Double Gate FinFET.

FinFET based SRAM cells are used to implement memories that require short access times,
low power dissipation and tolerance to environmental conditions. FinFET based SRAM cells
are most popular due to lowest static power dissipation among the various circuit
configurations and compatibility with current logic processes. In addition, FinFET cell offers
superior noise margins and switching speeds as well. Bulk MOSFET SRAM design at sub-45
nm node is challenged by increased short channel effects and sensitivity to process
variations. Earlier works [Z. Guo, et. al., 2005; P. T. Su, et. al., 2006] have shown that FinFET
based SRAM design shows improved performance compared to CMOS based design.
Functionality and tolerance to process variation are the two important considerations for

SRAM Cells for Embedded Systems

399

design of FinFET based SRAM at 32nm technology. Proper functionality is guaranteed by
designing the SRAM cell with adequate read, write, static noise margins and lower power
consumption. SRAM cells are building blocks for Random Access Memories (RAM). The
cells must be sized as small as possible to achieve high densities. However, correct read
operation of the FinFET based SRAM cell is dependent on careful sizing of M1 and M5 in
figure 12. Correct write operation is dependent on careful sizing of M4 and M6 as shown in
the figure 12. As explained [F. Sheikh, et. al., 2004], the critical operation is reading from the
cell. If M5 is made of minimum-size, then M1 must be made large enough to limit the
voltage rise on Q’ so that the M3-M4 inverter does not inadvertently switch and accidentally
write a ‘1’ into the FinFET based SRAM cell.

Fig. 12. 6T SRAM cell [F. Sheikh, et. al., 2004].

As explained [F. Sheikh, et. al., 2004], the sizing of the FinFET M5 and M6 is critical for
correct operation once sizes for M1-M2 and M3-M4 inverters are chosen. The switching
threshold for the ratioed inverter (M5-M6)-M2 must be below the switching threshold of the
M3-M4 inverter to allow the flip-flop to switch from Q=0 to Q=1 state. The sizes for the
FinFET can be determined through simulation, where M5 and M6 can be taken together to
form a single transistor with twice the length of the individual transistors. It is well-
understood that sizing affects noise margins, performance and power [Kiyoo Itoh, et. al.,
1998; K. Zhang, et. al., 2005]. Therefore, sizes for pFinFET and nFinFET must be carefully
selected to optimize the tradeoff between performance, reliability and power. We have
studied FinFET based SRAM design issues such as: read and write cell margins, Static Noise
Margin (SNM), power evaluation, performance and how they are affected by process
induced variations [F. Sheikh, et. al., 2004].

4.2 Tunnel diode based SRAM cell design

As discussed in the previous sections, there is a fundamental limit to the scaling of the
MOSFET threshold voltage, and hence the supply voltage. Scaling supply voltage limits the
ON current (ION) and the ION - IOFF ratio. This theoretical limit to threshold voltage scaling
mainly arises from MOSFETs 60 mV/decade subthreshold swing at room temperature and

Embedded Systems – Theory and Design Methodology

400

it significantly restricts low voltage operation. Therefore, it seems that quantum transistors
such as Inter-Band Tunnel Field Effect Transistors (TFETs) may be promising candidates to
replace the traditional MOSFETs because the quantum tunnelling transistor has smaller
dimension and steep subthreshold slope. Compared to MOSFET, TFETs have several
advantages:

 Ultra-low leakage current due to the higher barrier of the reverse p-i-n junction.
 The subthreshold swing is not limited by 60mV/dec at room temperature because of its

distinct working principle.
 Vt roll-off is much smaller while scaling, since threshold voltage of TFET depends on

the band bending in the small tunnel region, but not in the whole channel region.
 There is no punch-through effect because of reverse biased p-i-n structure.

One key difference between TFETs and traditional MOSFETs that should be considered in
the design of circuits is uni-directionality. TFETs exhibit the asymmetric behavior of
conductance. For instance, in MOSFETs the source and drain are inter-changeable, with the
distinction only determined by the biasing during the operation. While in TFETs, the source
and drain are determined at the time of fabrication, and the flow of current ION takes place
only when VDS > 0. For VDS < 0 a substantially less amount of current flows, referred as IOFF
or leakage current. Hence, TFETs can be thought to operate uni-directionally. This uni-
directionality or passing a logic value only in one direction has significant implication on
logic and in particularly for SRAMs design.

5. SRAM bitcell topologies
Standard 6T SRAM cell has been widely used in the implementation of high performance
microprocessors and on-chip caches. However, aggressive scaling of CMOS technology
presents a number of distinct challenges for embedded memory fabrics. For instance,
smaller feature sizes imply a greater impact of process and design variability, including
random threshold voltage (VTH) variations, originating from the fluctuation in number of
dopants and poly-gate edge roughness [Mahmoodi et al., 2005; Takeuchi et al., 2007]. The
process and design variability leads to a greater loss of parametric yield with respect to
SRAM bitcell noise margins and bitcell read currents when a large number of devices are
integrated into a single die. Predictions in [A.J.Bhavnagarwala et al., 2001] suggest the
variability will limit the voltage scaling because of degradation in the SNM and write
margin. Furthermore, increase in device mismatch that accompanies geometrical scaling
may cause data destruction at normal VDD [Calhoun et al., 2005]. Therefore, a sufficiently
large read Static Noise Margin (SNM) and Write-Ability Margin (WAM) in a bitcell are
needed to handle the tremendous loss of parametric yield.

Recently, several SRAM bitcell topologies have been proposed to achieve different
objectives such as minimum bitcell area, low static and dynamic power dissipation,
improved performance and better parametric yield in terms of static noise margins (SNM)
and write ability margin (WAM). The prime concern in SRAM bitcell design is a trade-off
among these design metrics. For example, in sub-threshold SRAMs, noise margin
(robustness) is the key design parameter and not the speed [Wang & Chandrakasan, 2004,
2005]. Some of the attracting SRAM bitcell topologies having good noise margin are as
follows.

SRAM Cells for Embedded Systems

401

5.1 8T SRAM bitcell topology

Figure 13 shows the read SNM free 8T bitcell [Chang et al., 2005, 2008; Suzuki et al., 2008;
Takeda et al., 2006; Verma & Chandrakasan, 2008], a register file type of SRAM bitcell
topology, which has separate read and write ports. These separate read and write ports are
controlled by read (RWL) and write (WWL) wordlines and used for accessing the bitcell
during read and write cycles, respectively. In 8T bitcell topology, read and write operations
of a standard 6T SRAM bitcell are de-coupled by creating an isolated read-port or read
buffer (comprised of two transistors, M7 and M8). De-coupling of read and write operations
yields a non-destructive read operation or SNM-free read stability. The interdependence
between stability and read-current is overcome, while dependence between density and
read-current remains there. An additional leakage current path is introduced by the separate
read-port which increases the leakage current as compared to standard 6T bitcell. Therefore,
an increased area overhead and leakage power make this design rather unattractive, since
leakage power is a critical SRAM design metric, particularly for highly energy constrained
applications. The read bitline leakage current problem in the 8T bitcell is similar to the
problem in the standard 6T bitcell, except that the leakage currents from the un-accessed
bitcells and from the accessed bitcell affect the same node, RBL. So, the leakage currents can
pull down RBL regardless of the accessed bitcells state. In [Verma & Chandrakasan, 2008]
the bitline leakage current from the un-accessed bitcells is managed by adding a buffer-
footer, shared by the all bitcells in that word.

Fig. 13. Schematic diagram of read SNM free SRAM bitcell topology [Chang et al., 2005].

5.2 9T SRAM bitcell topology

Standard 6T bitcell along with three extra transistors were employed in nine-transistor (9T)
SRAM bitcell [Liu & Kursun, 2008], to bypass read-current from the data storage nodes, as
shown in Figure 14. This arrangement yields a non-destructive read operation or SNM-free
read stability. However, it leads to 38% extra area overhead and a complex layout. Thin cell
layout structure does not fit in this design and introduces jogs in the poly.

Embedded Systems – Theory and Design Methodology

402

Fig. 14. Schematic diagram of 9T SRAM bitcell topology [Liu & Kursun, 2008].

5.3 10T SRAM bitcell topology

In the 10T bitcell [Calhoun & Chandrakasan, 2007], as shown in Figure 15, a separate read-
port comprised of 4-transistors was used, while write access mechanism and basic data
storage unit are similar to standard 6T bitcell. This bitcell also offers the same benefits as the
8T bitcell, such as a non-destructive read operation and ability to operate at ultra low
voltages. But the 8T bitcell does not address the problem of read bitline leakage current,
which degrades the ability to read data correctly. In particularly, the problem with the
isolated read-port 8T cell is analogous to that with the standard (non-isolated read-port) 6T
bitcell discussed. The only difference here is that the leakage currents from the un-accessed
bitcells sharing the same read bit-line, RBL, affect the same node as the read-current from
the accessed bitcell. As a result, the aggregated leakage current, which depends on the data
stored in all of the unaccessed bitcells, can pull-down RBL even if the accessed bitcell based
on its stored value should not do so. This problem is referred as an erroneous read. The
erroneous read problem caused by the bitline leakage current from the un-accessed bitcells
is managed by this 10T bitcell by providing two extra transistors in the read-port. These
additional transistors help to cut-off the leakage current path from RBL when RWL is low
and makes it independent of the data storage nodes content.

SRAM Cells for Embedded Systems

403

Fig. 15. Ultra-low voltage subthreshold 10T SRAM bitcell topology [Calhoun &
Chandrakasan, 2007].

6. Summary
In this chapter, we have presented an existing review of bulk SRAM design and novel
devices based embedded SRAM design. This literature survey has helped to identify various
technical gaps in this area of research for embedded SRAM design. Through our work, we
have tried to bridge these technical gaps in order to have better novel cells for low power
applications in future embedded SRAM. Various research papers, books, monographic and
articles have also been studied in the area of nanoscale device and memory circuits design.
Articles on implementation of novel devices such as FinFET and Tunnel diode based 6T-
SRAM cell for embedded system, which is having low leakage, high SNM and high speed
were also incorporated.

7. References
A. Bhavnagarwala, S. Kosonocky, C. Radens, K. Stawiasz, R. Mann, and Q. Ye, “Fluctuation

Limits & Scaling Opportunities for CMOS SRAM Cells,” Proc. International
Electron Devices Meeting, Technical Digest, Washington DC, pp. 659-662,
28.2.2005.

A. J. Bhavnagarwala, T. Xinghai, and J. D. Meindl, “The impact of intrinsic device
fluctuations on CMOS SRAM cell stability,” IEEE Journal of Solid-State Circuits,
vol. 36, pp. 658-665, 2001.

Adel S. Sedra, Kenneth C. Smith, “Microelectronic Circuits”, Fifth edition, Oxford
University Press, 2003.

Calhoun, B., Daly, D., Verma, N., Finchelstein, D., Wentzloff, D., Wang, A., Cho, S.H. &
Chandrakasan, A.,“Design considerations for ultra-low energy wireless
microsensor nodes”, Computers, IEEE Transactions on, 54, 727–740, 2005.

Embedded Systems – Theory and Design Methodology

404

Calhoun, B.H. & Chandrakasan, A.P., “A 256-kb 65-nm sub-threshold sram design for ultra-
low-voltage operation”, Solid-State Circuits, IEEE Journal of , 42, 680–688, 2007.

Chang, L., Fried, D., Hergenrother, J., Sleight, J., Dennard, R., Montoye, R., Sekaric, L.,
McNab, S., Topol, A., Adams, C., Guarini, K. & Haensch, W., “Stable sram cell
design for the 32 nm node and beyond”, VLSI Technology, 2005. Digest of
Technical Papers. 2005 Symposium on, 128–129.

Chang, L., Montoye, R., Nakamura, Y., Batson, K., Eickemeyer, R., Dennard, R., Haensch, W.
& Jamsek, D., “An 8t-sram for variability tolerance and low-voltage operation in
high-performance caches”, Solid-State Circuits, IEEE Journal of , 43, 956–963, 2008.

Chris Hyung-il Kim, Jae-Joon Kim, “A Forward Body-Biased Low-Leakage SRAM Cache
Device, Circuit and Architecture Considerations, ” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 13, pp. 349-357, no. 3, 2005.

David A. Hodges, “Analysis and Design of Digital Integrated Circuits”, Third Edition, Tata
McGraw-Hill Publishing Company Limited, 2003.

E. Chin, M. Dunga, B. Nikolic, “Design Trade-offs of a 6T FinFET SRAM Cell in the Presence
of Variations,” IEEE. Symp. VLSI Circuits, pp. 445- 449, 2006.

E. J. Nowak, T. Ludwig, I. Aller, J. Kedzierski, M. Leong, B. Rainey, M Breitwisch, V.
Gemhoefer, J. Keinert, and D. M. Fried, “Scaling beyond the 65 nm node with
FinFET-DGCMOS,” Proc. CICC Custom Integrated Circuits Conference. San Jose,
CA, pp.339-342, 2003

E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,”
IEEE Journal of Solid-State Circuits, vol. SC-22, pp. 748-754, 1987.

F. Sheikh and V. Varadarajan, “The Impact of Device-Width Quantization on Digital Circuit
Design Using FinFET Structures,” EE 241 SPRING, pp. 1-6, 2004.

Gary Yeap, “Practical Low Power Digital VLSI Design”, Kluwer Academic Publication, 1998.
H. Pilo, “SRAM Design in the Nanoscale Era,” presented at International Solid- State

Circuits Conference, pp. 366-367, 2005.
H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and J. Rabaey, “SRAM leakage suppression

by minimizing standby supply voltage,” presented at Proceedings, 5th
International Symposium on Quality Electronic Design. San Jose, CA, pp. 55-60,
2004.

H. Wakabayashi, S. Yamagami, N. Ikezawa, A. Ogura, M. Narihiro, K. Arai, Y. Ochiai, K.
Takeuchi, T. Yamamoto, and T. Mogami, “Sub-10-nm planar-bulk- CMOS devices
using lateral junction control,” presented at IEEE International Electron Devices
Meeting, Washington, DC, pp. 20.7.1-20.7.4, 2003.

J. P. Uyemura, “Introduction to VLSI Circuit and Systems”, Wiley, 2002. Principles of CMOS
VLSI Design: A System Perspective

J. Rabaey, A. Chandrakasan, and B. Nikolic, “Digital Integrated Circuits: A Designer
Perspective”, Second Edition, Prentice-Hall, 2003.

Joohee Kim Marios C. Papaefthymiou, “Constant-Load Energy Recovery Memory for
Efficient High-speed Operation” ISLPED'W, August 9 -1 1, 2004.

K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N. Vallepalli, Y. Wang, B.
Zheng, and M. Bohr, “A 3-GHz 70MB SRAM in 65nm CMOS technology with
integrated column-based dynamic power supply,” IEEE International Solid-State
Circuits Conference. San Francisco, CA, pp.474-476, 2005.

SRAM Cells for Embedded Systems

405

Kaushik Roy, Sharat Prasad, “Low power CMOS VLSI Circuit Design”, A Wiley Interscience
Publication, 2000.

Kiyoo Itoh, “Review and Prospects of low-Power Memory Circuits”, pp.313-317, 1998.
Kevin Zhang, Uddalak Bhattacharya, Zhanping Chen, “SRAM Design on 65-nm CMOS

Technology With Dynamic Sleep Transistor for Leakage Reduction,” IEEE
JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 4, APRIL 2005.

Kiyoo Itoh, “Review and Prospects of low-Power Memory Circuits”, pp.313-317, 1998.
Liu, Z. & Kursun, V., “Characterization of a novel nine-transistor sram cell”, Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, 16, 488–492, 2008.
M. Yamaoka, R. Tsuchiya, and T. Kawahara, “SRAM Circuit with Expanded Operating

Margin and Reduced Stand-by Leakage Current Using Thin-BOX FDSOI
Transistors,” presented at IEEE Asian Solid-State Circuits Conference, Hsinchu,
Taiwan, pp. 109-112, 2005.

Mahmoodi, H., Mukhopadhyay, S. & Roy, K., “Estimation of delay variations due to
random-dopant fluctuations in nanoscale cmos circuits”, Solid-State Circuits, IEEE
Journal of , 40, 1787–1796, 2005.

P. Bai, C. Auth, S. Balakrishnan, M. Bost, R. Brain, V. Chikarmane, R. Heussner, M. Hussein,
J. Hwang, D. Ingerly, R. James, J. Jeong, C. Kenyon, E. Lee, S. H. Lee, N. Lindert, M.
Liu, Z. Ma, T. Marieb, A. Murthy, R. Nagisetty, S. Natarajan, J. Neirynck, A. Ott, C.
Parker, J. Sebastian, R. Shaheed, S. Sivakumar, J. Steigerwald, S. Tyagi, C. Weber, B.
Woolery, A. Yeoh, K. Zhang, and M. Bohr, “A 65nm logic technology featuring
35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD
and 0.57 μm2 SRAM cell,” Proceeding International Electron Devices Meeting, San
Francisco, CA, pp. 657-660, 2005

P. T. Su, C. H. Jin, C. J. Dong, H. S. Yeon, P. Donggun, K. Kinam, E. Yoon, and L. J. Ho,
“Characteristics of the full CMOS SRAM cell using body tied TG MOSFETs (bulk
FinFETs),” IEEE Trans. Electron Dev., vol. 53, pp. 481-487, 2006.

S. Mukhopadhyay, H. Mahmoodi-Meimand, and K. Roy, “Modeling and estimation of
failure probability due to parameter variations in nano-scale SRAMs for yield
enhancement,” Symposium on VLSI Circuits, Digest of Technical Papers.
Honolulu, HI, 2004.

Sung-Mo Kang, Yusef Leblebici, “CMOS Digital Integrated circuits-Analysis and Design”,
Third Edition, Tata McGraw-Hill Publishing Company Limited, 2003.

Takeda, K., Hagihara, Y., Aimoto, Y., Nomura, M., Nakazawa, Y., Ishii, T. & Kobatake, H.,
“A read-static-noise-margin-free sram cell for low-vdd and high-speed
applications”, IEEE Journal of Solid-State Circuits, 41, 113–121, 2006.

Takeuchi, K., Fukai, T., Tsunomura, T., Putra, A., Nishida, A., Kamohara, S. & Hiramoto, T.,
“Understanding random threshold voltage fluctuation by comparing multiple fabs
and technologies”, Electron Devices Meeting, IEDM 2007. IEEE International , 467–
470, 2007.

Tohru Miwa, Junichi Yamada, Hiroki Koike, “A 512 Kbit low-voltage NV-SRAM with the
size of a conventional SRAM”, 2001 Symposium on VLSl Circuits Digest of
Technical Papers.

Verma, N. & Chandrakasan, A.P., “A 256kb 65nm 8T Subthreshold SRAM Employing Sense-
Amplifier Redundancy. IEEE Journal of Solid-State Circuits”, 43, 141–149, 2008.

Embedded Systems – Theory and Design Methodology

406

Wang, A. & Chandrakasan, A., A 180-mv subthreshold fft processor using a minimum
energy design methodology. Solid-State Circuits, IEEE Journal,310–319, 2005.

Wang, A. & Chandrakasan, A., “A 180 mv fft processor using sub-threshold circuit
techniques”, In Proc.IEEE ISSCC Dig. Tech. Papers, 229–293, 2004.

Z. Guo, S. Balasubramanian, R. Zlatanovici, T.-J. King, and B. Nikolic', “FinFET based SRAM
design,” Proceeding, ISLPED, Proceedings of the International Symposium on Low
Power Electronics and Design. San Diego, CA, pp. 2-7, 2005.

0

Development of Energy Efficiency Aware
Applications Using Commercial Low Power

Embedded Systems

Konstantin Mikhaylov1, Jouni Tervonen1 and Dmitry Fadeev2

1Oulu Southern Institute, University of Oulu
2Saint-Petersburg State Polytechnical University

1Finland
2Russian Federation

1. Introduction

In recent years, different devices that encapsulate different types of embedded system
processors (ESPs) are becoming increasingly commonplace in everyday life. The number
of machines built around embedded systems (ESs) that are now being used in households
and industry is growing rapidly every year. Accordingly, the amount of energy required for
their operation is also increasing. The United States (U.S.) Energy Information Administration
(EIA) estimates that the share of residential electricity used by appliances and electronics in
U.S. homes has nearly doubled over the last three decades. In 2005, this accounted for an
increase of around 31% in the overall household energy consumption or 3.4 exajoule (EJ) of
energy across the entire country(USEIA, 2011).

Portable devices built around different ESs are often supplied using different primary or
secondary batteries. According to (FreedoniaGroup, 2011), the battery market in 2012 in the
U.S. alone will exceed $16.4 billion and will be over $50 billion worldwide (Munsey, 2011).
Based on the previous year’s consumption data analysis (e.g., (Munsey, 2011)), a significant
percentage of batteries will be used by different communication, computer, medical and other
devices containing ES chips. Therefore, improvement in the energy efficiency of ESs, which
would also result in reduction of energy consumption of the services provided, becomes one
of the most critical problems today, both for the research community and the industry. The
problem of energy efficiency of ESs has recently become the focus of governmental research
programs such as the European FP7 and ARTEMIS and CISE/ENG in the U.S., etc. Resolution
of this problem would have additional value due to recent CO2 reduction initiatives, as the
increase in energy efficiency for the upcoming systems would allow reduction of the energy
consumption and corresponding CO2 emissions arising during energy production (Earth,
2011).

The problem of ES energy efficiency can be divided into two major components:

• the development of an ES chip that would consume the minimum amount of energy
during its operation and during its manufacturing;

19

2 Embedded System / Book 1

• the development of applications based on existing ES chips, so that the minimum amount
of energy would be consumed during fulfilment of the specified tasks.

The first part of the problem is currently under intensive investigation by the leading ESP
manufacturers and research laboratories, which are bringing more energy efficient ESPs
to the market every year. The development of a novel ESP is quite a complicated task
and requires special skills and knowledge in various disciplines, special equipment and
substantial resources.

Unlike the development of the energy efficient ESP itself, the development of energy efficient
applications that use existing commercial ESPs is quite a common task faced by today’s
engineers and researchers. An efficient solution to this problem requires knowledge of
ESP parameters and how they influence power consumption, as well as knowing how the
power consumption affects the device’s efficiency with different power supply options. This
chapter will answer these questions and provide the readers with references that describe the
most widespread ES power supply options and their features, the effect of the different ES
parameters on the overall device power consumption and the existing methods for increasing
energy efficiency. Although the main focus of this chapter will be on low-power ESs - and
low-power microcontrollers in particular - we will also provide some hints concerning the
energy efficient use of other ESs.

Most of the general-purpose ES-based devices in use today have a structure similar to that
shown in Fig. 1. Therefore, all of the components of these devices can be attributed to three
major groups: 1) the power supply system, which provides the required power for device
operation, 2) the ES with the compulsory peripherals that execute the application program and
3) the application specific peripherals that are used by the ES. As the number of the possible
application specific peripherals is extremely large at present, we will not consider these in
this chapter and will focus mainly on the basic parameters of the ES, the ES compulsory
peripherals and the power system parameters. To provide a comprehensive approach for the
stated problem, the remainder of this chapter is organized as follows. Section 2 reviews the
details of possible power supply options that can be used for the ESs. Section 3 describes the
effect of the different ES parameters and features on its power consumption. Section 4 shows
how the parameters and features discussed in Sections 2 and 3 could be used to increase the
energy efficiency of a real ES-based device. Finally, Section 5 gives a short summary and
discusses some of the existing research problems.

2. Embedded system power supply options

Three possible options are presently available for providing ESs with the required energy for
operation:

• mains;

• primary or secondary batteries;

• energy from environment harvesting system.

Each of these options has specific features that are described in more detail in Subsections
2.1-2.3.

408 Embedded Systems – Theory and Design Methodology

Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems 3

Fig. 1. Architecture of typical embedded system-based devices

2.1 Embedded systems power supply from mains

The power supply of the ESP from mains is the most universal method and is applicable
for the devices that utilize low-power microcontrollers and high-end Application-Specific
Instruction-Set Processors (ASIPs) or Field-Programmable Gate Arrays (FPGAs). The
utilization of mains for ES power supply is usually capable of providing the attached ES with
any required amount of energy, thereby reducing the importance of energy efficiency for these
applications. Nevertheless, the energy efficiency increase for mains supplied devices allows
reduction of their exploitation costs and can produce a positive environmental impact.

One of the major considerations while using mains for ES power supply is the necessity of
converting the Alternating Current (AC) into the required Direct Current (DC) supply voltage
for the given ESP (for examples, see Table 3). This conversion causes some energy losses
that depend on the parameters of the AC/DC converter used and usually account for about
5-10% of the overall energy for high loads and high power, and increase dramatically for lower
loads (Jang & Jovanovic, 2010). The typical curves for conversion efficiency dependance on
the output current for the low power and high-power AC/DC converters available on the
market are presented on Fig. 2. This Figure also shows the conversion efficiency curves for
the low-power DC/DC converter with adjustable output voltage (Vout).

The data in Fig. 2 allow prediction that the use of extremely low-power modes for
mains-supplied devices will not often result in any significant reduction in overall device
energy consumption due to the low AC/DC conversion efficiency at low loads.

2.2 Embedded system power supply from primary and secondary batteries

The non-rechargeable (primary) and rechargeable (secondary) batteries are often used as
power supply sources for various portable devices utilizing ESs. Unlike the mains, batteries
are capable of providing the attached ESs only with a limited amount of energy, which depends
as well on the battery characteristics and the attached ES operation mode. This fact makes the
problem of energy efficiency for battery supplied ESs very real, as higher energy efficiency
allows extension of the period of time during which the device is able to fulfil its function; i.e.,

409
Development of Energy Efficiency Aware
Applications Using Commercial Low Power Embedded Systems

4 Embedded System / Book 1

Fig. 2. Typical AC/DC and DC/DC conversion efficiency curves

the device’s lifetime. The nominal characteristics of the most widely used batteries for power
supplies for ES-based devices are presented in Table 1.

As Table 1 reveals, the nominal DC voltages provided by the batteries depend on the battery
chemistry and are in the range of 1.2 to 12 Volts. Therefore, as can be noted from Table 3,
for the battery-supplied ESs, voltage conversion is often not required, although this can allow
extension of the overall operation time in some cases (see Section 4).

As can be seen in Table 1 and Fig. 3, compared to primary batteries, secondary batteries
usually (Crompton, 2000; Linden & Reddy, 2002):

• have lower overall capacity;

• have better performance on discharges at higher current drains;

• have better performance on discharges at lower temperatures;

• have flatter discharge profiles;

• have much lower charge retention and shelf life.

Therefore, based on the presented data, the conclusion can be drawn that the use of the
primary batteries is most convenient for those applications with low-power consumption,
where a long service life is required, or in the applications with low duty cycles. Secondary
batteries should be used in applications where they will operate as the energy storage buffer
that is charged by the main energy source and will provide the energy when the main energy
source is not available. Secondary batteries can also be convenient for applications where the
battery can be recharged after use to provide higher overall cost efficiency.

According to recent battery market analyses (FreedoniaGroup, 2011; INOBAT, 2009; Munsey,
2011), the most widely used batteries today are alkaline, lithium and zinc-air primary batteries
and lead-acid, rechargeable lithium-ion and nickel-metal hydride secondary batteries.

Alkaline primary batteries are currently the most widely used primary battery type
(FreedoniaGroup, 2011; Linden & Reddy, 2002; Munsey, 2011). These batteries are capable
of providing good performance at rather high current drains and low temperatures, have
long shelf lives and are readily available at moderate cost per unit (Linden & Reddy, 2002).

410 Embedded Systems – Theory and Design Methodology

Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems 5
Ba

tt
er

y
en

ve
lo

pe
C

om
m

on
ba

tt
er

y
na

m
es

Ba
tt

er
y

ch
em

is
tr

y
D

im
en

si
on

s:
di

am
et

er
x

he
ig

ht
,m

m

W
ei

gh
t,

g
N

om
in

al
vo

lt
ag

e,
V

C
os

t,
U

SD
a

Ty
pi

ca
l

ca
pa

ci
ty

,
m

A
hb

C
ha

rg
e

re
te

nt
io

n,
m

on
th

s

R
ec

ha
rg

e
cy

cl
es

9-
Vo

lt
6L

R
61

/1
60

4A
al

ka
lin

e
48

.5
x

26
.5

x
17

.5
c

45
.9

9
1.

71
50

0-
60

0
5-

7
0

6H
R

61
/7

.2
H

5
ni

ck
el

-m
et

al
hy

dr
id

e
48

.5
x

26
.5

x
17

.5
c

41
7.

2-
9.

6
10

30
0-

40
0

0.
25

-0
.5

40
0-

50
0

D
LR

20
/1

3A
al

ka
lin

e
34

.2
x

61
.5

13
4

1.
5

2.
34

12
00

0-
17

00
0

5-
7

0
C

LR
14

/1
4A

al
ka

lin
e

26
.2

x
50

65
.8

1.
5

1.
4

60
00

-8
00

0
5-

7
0

A
A

LR
6/

24
A

al
ka

lin
e

14
.5

x
50

.5
22

.7
1.

5
0.

11
15

00
-3

00
0

5-
7

0
R

6/
15

D
ca

rb
on

-z
in

c
14

.5
x

50
.5

15
1.

5
0.

05
50

0-
11

00
5-

7
0

H
R

6/
1.

2H
2

ni
ck

el
-m

et
al

hy
dr

id
e

14
.5

x
50

.5
27

1.
2

0.
42

13
00

-3
00

0
0.

25
-0

.5
40

0-
50

0

14
50

0
lit

hi
um

-i
on

14
.5

x
50

.5
17

3
1.

16
80

0-
20

00
0.

75
-1

10
00

A
A

A
LR

03
/2

4A
al

ka
lin

e
10

.5
x

44
.5

10
.8

1.
5

0.
09

60
0-

12
00

5-
7

0
R

03
/2

4D
ca

rb
on

-z
in

c
10

.5
x

44
.5

9.
7

1.
5

0.
05

30
0-

60
0

3-
5

0
H

R
03

ni
ck

el
-m

et
al

hy
dr

id
e

10
.5

x
44

.5
12

1.
2

0.
21

30
0-

12
00

0.
25

-0
.5

40
0-

50
0

C
R

12
3A

C
R

17
34

5
lit

hi
um

17
x

34
.5

17
3

0.
87

10
00

-1
50

0
5-

10
0

16
34

0
lit

hi
um

-i
on

17
x

34
.5

17
3

1.
54

75
0-

10
00

0.
75

-1
10

00
A

27
G

P2
7A

/L
82

8
al

ka
lin

e
8

x
28

4.
4

12
0.

2
18

-2
2

5-
7

0
C

R
20

32
50

04
LC

lit
hi

um
20

x
3.

2
6.

6
3

0.
04

20
0-

22
5

5-
10

0
X

R
44

LR
44

/A
G

13
al

ka
lin

e
11

.6
x

5.
4

2
1.

5
0.

01
10

0-
15

0
5-

7
0

PR
44

/A
67

5
zi

nc
-a

ir
11

.6
x

5.
4

1.
82

1.
4

0.
29

60
0-

65
0

1-
5

0
C

R
10

25
50

33
LC

lit
hi

um
10

x
2.

5
0.

6
3

0.
1

30
5-

10
0

LR
66

A
G

4
al

ka
lin

e
6.

8
x

2.
6

0.
3

1.
5

0.
01

12
-1

8
5-

7
0

A
10

PR
70

zi
nc

-a
ir

5.
8

x
3.

6
0.

4
1.

4
1.

34
90

-1
00

1-
5

0
a

m
in

im
um

si
ng

le
un

it
pr

ic
e,

es
ti

m
at

ed
us

in
g

th
e

pr
ic

e
lis

ts
fr

om
ba

tt
er

y
di

st
ri

bu
to

rs
b

de
pe

nd
in

g
on

th
e

di
sc

ha
rg

e
pr

ofi
le

,t
he

pr
es

en
te

d
va

lu
es

ar
e

fo
r

ea
ch

ba
tt

er
y’

s
m

os
tc

om
m

on
us

ag
e

sc
en

ar
io

s
c

he
ig

ht
,m

m
x

w
id

th
,m

m
x

le
ng

th
,m

m

Ta
bl

e
1.

N
om

in
al

pa
ra

m
et

er
s

fo
r

th
e

m
os

tw
id

el
y

us
ed

pr
im

ar
y

an
d

se
co

nd
ar

y
ba

tt
er

ie
s1

1 Th
e

ta
bl

e
su

m
m

ar
iz

es
th

e
ch

ar
ac

te
ri

st
ic

s
of

th
e

ty
pi

ca
lb

at
te

ri
es

,w
hi

ch
ha

ve
be

en
ob

ta
in

ed
fr

om
di

ff
er

en
to

pe
n

so
ur

ce
s

an
d

ba
tt

er
y

sp
ec

ifi
ca

ti
on

s
fr

om
di

ff
er

en
tm

an
uf

ac
tu

re
rs

411
Development of Energy Efficiency Aware
Applications Using Commercial Low Power Embedded Systems

6 Embedded System / Book 1

The average voltage supplied by an alkaline battery over its lifetime is usually around 1.3 V,
which requires some ESPs to use two alkaline batteries as a power supply.

Lithium primary batteries have the advantage of a high specific energy (the amount of energy
per unit mass), as well as the ability to operate over a very wide temperature range. They also
have a long shelf life and are often manufactured in button or coin form. The voltage supplied
by these batteries is usually around 3 Volts, which allows powering of the attached ES-based
device with a single lithium battery. The cost is usually higher for lithium than for alkaline
batteries.

Zinc-air primary batteries have very high specific energy, which determines their use in
battery-sized critical applications with low current consumption, such as hearing aids. The
main disadvantages of zinc-air batteries are their sensitivity to environmental factors and their
short lifetime once exposed to air.

Although lead-acid batteries currently represent a significant part of the secondary battery
market, most of these are used as the automobile Starting, Lighting and Ignition (SLI)
batteries, industrial storage batteries or backup power supplies. Lead-acid batteries have very
low cost but also have relatively low specific energy compared to other secondary batteries.

The rechargeable lithium-ion batteries have high specific energy as well as long cycle and
shelf lifetimes, and unlike the other batteries, have high efficiency even at high loads (see
Fig. 3). These features make lithium-ion batteries very popular for powering portable
consumer electronic devices such as laptop computers, cell phones and camcorders. The
disadvantage of the rechargeable lithium-ion batteries is their higher cost compared to
lead-acid or nickel-metal hydride batteries.

Nickel-metal hydride secondary batteries are often used when common AA or AAA primary
batteries are replaced with rechargeable ones. Although nickel-metal hydride batteries have a
lower fully-charged voltage (1.4 V comparing to, e.g., 1.6-1.8 V for primary alkaline batteries),
they have a flatter discharge curve (see Fig. 3), which allows them to generate around
1.2 V constant voltage for most of the discharge cycle. The nickel-metal hydride batteries
have average specific energy, but also have lower charge retention compared to lithium and
lead-acid batteries.

As revealed in Fig. 3, temperature is one parameter that influences the amount of energy
obtainable from the battery. Two other critical parameters that define the amount of energy
available from the battery are the battery load and duty cycle. The charts in Fig. 4 show the
discharge curves for different loads and energy consumption profiles for the real-life common
Commercially-available Off-The-Shelf (COTS) alkaline AAA batteries with nominal capacity
of 1000 mAh. Note that the amount of the energy available from the battery decreases with the
increase in load and that for a 680 Ohm load (2.2 mA @ 1.5 Volts), the alkaline AAA battery can
provide over 1.95 Watt hours (Wh) of energy, whereas a 330 Ohm load (4.5 mA @ 1.5 Volts)
from the same battery would get less than 1.75 Wh. At higher loads, as Fig. 3 reveals, the
amount of available energy will decrease even at a higher rate. For batteries under intermittent
discharge, the longer relaxation period between load connection (OFF time on Fig. 4), as noted
in Fig. 4, also allows an increase in the amount of energy obtainable from the battery.

412 Embedded Systems – Theory and Design Methodology

Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems 7

(a) Discharge curves (b) Effect of temperature on energy density

(c) Effect of temperature on shelf lifetime (d) Performance of AA (or most close to it)
sized batteries at various current drains at room
temperature

Fig. 3. Effect of the chemistry on battery performance2

2.3 Embedded systems power supply using energy scavenging systems

The final-and a very promising-ES power supply option that became possible due to recent
technological advances, and that is currently gaining popularity, is the use of energy harvested
from the environment as an ES power supply. Numerous demonstrations have now been
reported for powering ESs utilizing the energy from such environment elements as:

• light (Hande et al., 2007; Knight et al., 2008; Morais et al., 2008; Valenzuela, 2008);

• temperature difference (Knight et al., 2008; Mathuna et al., 2008);

• vibration or movement (Knight et al., 2008; Mathuna et al., 2008; Mitcheson et al., 2008);

• water, air or gas flow (Hande et al., 2007; Mitcheson et al., 2008; Morais et al., 2008);

2 The presented charts compile the results of (Crompton, 2000; Linden & Reddy, 2002) and different open
sources

413
Development of Energy Efficiency Aware
Applications Using Commercial Low Power Embedded Systems

8 Embedded System / Book 1

(a) Battery under continuous discharge (b) Battery under intermittent discharge (Load
impedance 47 Ohm)

Fig. 4. Typical discharge curves and available energy for alkaline AAA batteries3

Source Conditions Power density Reference
Acoustic 75dB 0.003 μW/cm3 (Yildiz, 2009)

100dB 0.96 μW/cm3 (Hande et al., 2007)
Air flow 1-800 μW/cm3 (Knight et al., 2008; Yildiz, 2009)
Radio GSM 0.1 μW/cm2 (Raju, 2008)

WiFi 1 μW/cm2 (Raju, 2008; Yildiz, 2009)
Solar Outdoors up to 15000 μW/cm2 (Hande et al., 2007; Knight et al., 2008)

Indoors 100 μW/cm2 (Mathuna et al., 2008)
Thermal 5-40 μW/cm2 (Hande et al., 2007; Knight et al., 2008)
Vibration 4-800 μW/cm3 (Knight et al., 2008)
Water flow up to 500000 μW/cm3 (Knight et al., 2008)

Table 2. Available energy harvesting technologies and their efficiency (based on (Hande
et al., 2007; Knight et al., 2008; Mathuna et al., 2008; Raju, 2008; Yildiz, 2009))

• electrical or magnetic fields (Arnold, 2007; Knight et al., 2008; Mathuna et al., 2008);

• and biochemical reactions (e.g. Thomson (2008); Valenzuela (2008)).

Regardless of the energy harvesting method used, the energy should be initially harvested
from the environment, converted to electric energy and buffered within a special storage
system, which will later supply it to the attached ES. Usually, the amount of the energy that can
be collected from the environment at any period of time is rather small (see Table 2). Therefore,
the accumulation of energy over relatively long period of time is often required before the
attached ES would be able to start operating. In real-life implementations (see Fig. 5(a)), thin
film capacitors or super-capacitors are usually used for collected energy storage. Although
supporting multiple charge/discharge cycles, these capacitors have very limited capacity
and self-discharge rapidly (Mikhaylov & Tervonen, 2010b; Valenzuela, 2008). Energy storage
over a long period of time is not possible without harvested energy being available. The

3 The charts present the real-life measurement results for commercially available off-the-shelf alkaline
AAA batteries

414 Embedded Systems – Theory and Design Methodology

Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems 9

(a) Examples of COTS energy-harvesting
hardware implementations: Cymbet-TI
eZ430-RF2500SEH(Light), Micropelt TE-Power
NODE(Temperature) and AdaptivEnergy
Joule-Thief(Vibration)

(b) Available energy from the storage capacitor
depending on the load for the real-life energy
scavenging system

Fig. 5. Real-life energy harvesting applications

devices that are supplied with energy harvested from the environment can therefore suffer
from frequent restarts due to energy unavailability and they must have very energy-efficient
applications with low duty cycles and the appropriate mechanisms for recovery after energy
exhaustion (Mikhaylov & Tervonen, 2011).

The parameters of the energy storage system used in energy scavenging devices have much
in common with the secondary batteries discussed in Section 2.2. Thus, like the secondary
batteries, the amount of energy obtainable from a harvested energy storage capacitor will
decrease with increasing load (see Fig. 5(b))(Mikhaylov & Tervonen, 2010b).

3. Effect of the embedded system processor working mode and compulsory
peripherals on the power consumption

3.1 Contemporary embedded systems

The market today offers a broad choice of commercial ESs, each having different purposes
and characteristics. Table 3 provides a brief summary of the main parameters and required
power supplied for the four main types of commercial ESPs.

Microcontrollers are the most commonly used ESPs (Emitt, 2008). Contemporary
microcontrollers usually have an architecture based on a lightweight Central Processing Unit
(CPU) with sequential command execution. The existing microcontrollers often have on chip
all of the peripherals required for operation, such as volatile (e.g., Random Access Memory
RAM) and non-volatile (e.g., Read Only Memory -ROM) memories, controllers for the digital
communication interfaces (e.g., I2C, SPI, UART), analogue-to-digital converters (ADC), timers
and clock generators. The microcontrollers have rather low cost, size and power consumption,
which defines their wide usage in the wide range of the simple single task applications. The
latest microcontroller generations, such as Texas Instruments (TI) MSP430L092 low-voltage
microcontrollers, are capable of working using as low as 0.9 V power supply. Some of the

415
Development of Energy Efficiency Aware
Applications Using Commercial Low Power Embedded Systems

10 Embedded System / Book 1

recently developed microcontrollers already include such application-specific components
as radio communication devices (e.g., TI CC2530 or CC430, Atmel ATmega128RFA1) or
operational amplifiers (e.g., TI MSP430F2274).

Embedded system
processor

Clock frequency,
MHz

Supply voltage,
V

Power consumption,
W

microcontroller 0.032-30 0.9-3.6 0.00005-0.05
microprocessor 50-4000 1-3 0.5-150
ASIP 20-1200 1-5 0.2-10
FPGA 1500-8000000a 0.9-3 0.001-5

a number of gates

Table 3. Typical parameters of the contemporary embedded system’s processors 4

Contemporary microprocessors usually do not include any compulsory peripherals, thus
implementing a standalone general purpose CPU. These microprocessors usually work at
higher clock frequencies than the microcontrollers and are often used for different multi-task
applications. The power consumption and the cost are usually higher for the processors
than for the microcontrollers. The microprocessors nowadays can have multiple cores for
implementing parallel data processing.

The Application-Specific Instruction-Set Processors (ASIPs) are the specially designed
processors aimed for specific tasks such as Digital Signal Processors (DSPs), which are
intended for efficient digital signal processing implementation, or Network Processors that
can optimize packet processing during the communication within a network. Today, ASIPs
are mostly used in applications that implement one specific task that requires significant
processing capabilities, such as audio/video or communication processing.

The Field-Programmable Gate Arrays (FPGAs) contain reconfigurable logic elements (LEs)
with interconnections that can be changed to implement the required functionality. This
allows the use of FPGAs for implementing efficient high-speed parallel data processing, which
is often required for high-speed video and signal processing. The contemporary FPGAs
are often capable of using reconfigurable LEs to implement the software processors (e.g.,
MicroBlaze for Xilinx or NIOS II for Altera). The power consumption of FPGAs depends
on the number of actually used LEs, the maximum number of which can vary from several
thousands and up to 8 million.

In Section 3.2, the different parameters that influence the power consumption of ESs and the
mechanisms underlying their effects are discussed.

3.2 Parameters influencing the power consumption for contemporary embedded system’s
processors

The energy consumed by a device at a given period of time (the power) is one of the
parameters that defines the energy efficiency of every electrical device. In this subsection,
we will focus the different parameters that influence the power consumption of ESs. For the
sake of simplicity, we will assume that the ESs are supplied by an ideal source of power, which
can be controlled by the ES.

4 Based on the analysis of the data sheets and information from the main ESP manufacturers and open
sources, data are presented for the most typical use case scenarios for each processor type.

416 Embedded Systems – Theory and Design Methodology

Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems 11

The most widely used technology for implementing the different digital circuits today is the
Complementary Metal-Oxide-Semiconductor (CMOS) technology (Benini et al., 2001; Hwang,
2006). The power consumption for a device built according to CMOS can be approximated
using Equation 1 (Chandrakasan & Brodersen, 1995; SiLabs, 2003; Starzyk & He, 2007).

P = α0→1 · C · V2 · f + Ipeak · V · tsc · f + Il · V (1)

In this equation, the first term represents the switching or dynamic capacitive power
consumption due to charging of the CMOS circuit capacitive load through P-type
Metal-Oxide-Semiconductor (PMOS) transistors, to make a voltage transition from the low
to the high voltage level. The switching power depends on the average number of
power consuming transitions made by the device over one clock period α0→1, the CMOS
device load capacitance C, the supply voltage level V and the clock frequency f . The
second term represents the short circuit power consumed due to the appearance of the
direct short current Ipeak from the supply voltage to the ground, while PMOS and N-type
Metal-Oxide-Semiconductor (NMOS) transistors are switched on simultaneously for a very
short period of time tsc during switching. The third term represents the static power
consumed due to the leakage current Il and does not depend on the clock frequency.

Of the three components that influence the circuit power consumption, the dynamic capacitive
power is usually the dominant one when the circuit is in operational mode (Starzyk & He,
2007). In practice, the power consumed by the short-circuit current is typically less than 10%
of the total dynamic power and the leakage currents cause significant consumption only if the
circuit spends most of the time in standby mode(Chandrakasan & Brodersen, 1995)5.

For a real-life ES-based device, apart from the power consumption of the ESP itself, which is
described by Equation 1, the effect of other ESP compulsory peripherals (e.g., clock generator
or used memory) need also to be considered.

3.2.1 Clock frequency

The clock frequency is one of the fundamental parameters for any synchronous circuit,
including all of the CPU-based embedded systems (microcontrollers and microprocessors).
The clock frequency is one of the parameters that - together with the processor architecture,
command set and available peripherals used - would define the performance of the CPU.

Equation 1 reveals that the dynamic power consumed by the ESP for the particular supply
voltage level should linearly increase with the increase of clock frequency. Note also that the
most efficient strategy from the perspective of the consumed power per single operation, for
the case when the third term in Equation 1 is above zero, would be to use, for any particular
voltage, the maximum clock frequency supportable at that supply voltage level. The measurements
for the real-life ESP presented in Fig. 6 confirm these statements (Dudacek & Vavricka, 2007;
Mikhaylov & Tervonen, 2010b).

Fig. 6 reveals that the maximum achievable ESP clock frequency is influenced by the level
of the supply voltage. For most ESPs, obtaining a high clock frequency is impossible while

5 As revealed in (Ekekwe & Etienne-Cummings, 2006; Roy et al., 2003) the leakage current increases as
technology scales down and can become the major contributor to the total power consumption in the
future

417
Development of Energy Efficiency Aware
Applications Using Commercial Low Power Embedded Systems

12 Embedded System / Book 1

(a) Effect of the supply voltage (b) Consumed power per single-clock cycle
instruction

Fig. 6. Effect of the clock frequency on power consumption for the TI MSP430F2274
low-power microcontroller

maintaining a minimum supply voltage. The maximum allowable clock frequency for a
particular supply voltage level can be estimated using Equation 2 (Chandrakasan et al., 1995;
Cho & Chang, 2006). In Equation 2, V is the level of supply voltage, Vth is the threshold
voltage and k and a are constants for a given technology process, which should be determined
experimentally.

f =
(V − Vth)

a

k · V
(2)

As previously noted (e.g., (Mikhaylov & Tervonen, 2010b)), a hysteresis exists for real-life
ESPs for switch-on and switch-off threshold voltages (e.g., the MSP430 microcontroller using
nominal clock frequency of 1 MHz will start operating with a supply voltage above 1.5 V and
will continue working until the supply voltage drops to below 1.38 V).

Other research (e.g., (Dighe et al., 2007)) show that, for CPU-based ESPs other than
microcontrollers, the power-frequency dependencies are similar to those presented in Fig. 6.

3.2.2 Supply voltage

As already noted in Subsection 3.2.1, the maximum possible clock frequency for the CPUs
depends on the available supply voltage level. A further analysis of Equation 1 reveals that
the supply voltage has a strong effect on the power components of both the dynamic and
static systems. The charts showing the effect of the supply voltage on the overall power
consumed by the system and the required power per single clock instruction execution for
a real-life device are presented in Fig. 7. Equation 1 allows prediction that the most power
efficient of any particular clock frequency would be one obtained using the minimum possible
supply voltage. Equation 1 also reveals that, from the point of view of power consumption
per operation, the most efficient strategy would be to use the maximum clock frequency at the
minimum possible supply voltage level. Taking into account the clock frequency hysteresis for
switch-on and switch-off voltage, further power efficiency can be obtained by first switching

418 Embedded Systems – Theory and Design Methodology

Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems 13

(a) Effect of the clock frequency (b) Consumed power per single-clock cycle
instruction

Fig. 7. Effect of the supply voltage on power consumption for the TI MSP430F2274
low-power microcontroller

(a) Effect of clock frequency and supply voltage on
the power consumption

(b) Effect of clock frequency and supply voltage on
the power consumption per instruction

Fig. 8. Effect of clock frequency and supply voltage on the power consumption for the TI
MSP430F2274 low-power microcontroller

the required clock frequency using a higher supply voltage level and later reducing the supply
voltage up to a level slightly above the switch-off threshold (Mikhaylov & Tervonen, 2010b).

To summarize the effect of clock frequency and supply voltage for a real system, Fig. 8
presents the 3-D charts showing the overall consumed power and single-clock instruction
power efficiency for the TI MSP430 microcontroller for different working modes. As expected,
Fig. 8 reveals that the most efficient strategy from the perspective of power consumption per
instruction would be to use the maximum supported clock frequency at a minimum possible
supply voltage level. Similar results can be seen from other work (e.g.,(Luo et al., 2003)) and
multiple desktop processor tests could be also obtained for the other types of ESPs and even
FPGAs (Thatte & Blaine, 2002).

419
Development of Energy Efficiency Aware
Applications Using Commercial Low Power Embedded Systems

14 Embedded System / Book 1

Nowadays, the dynamic tuning of the supply voltage level (dynamic voltage scaling) and
clock frequency (dynamic frequency scaling) depending on the required system performance
are the most widely used and the most effective techniques for improving ESP energy
efficiency. Nonetheless, the practical implementation of voltage scaling has some pitfalls, the
main one being that the efficiency of the DC/DC voltage converter, which will implement the
voltage scaling, is usually on the order of 90-95% and will significantly decrease for the low
load case, as also happens for the AC/DC converters discussed in 2.1.

3.2.3 CPU utilization

The CPU utilization, or time-loading factor, is the parameter that is often used for different
general-purpose processors to measure their real time performance. The CPU utilization can
be defined as the percentage of non-idle processing relative to the overall processing time
(Laplante, 2004). Indeed, depending on the application, ESPs are required to fulfil a specified
number of instructions at a specified period of time. After that, the ESP can switch to other
tasks, execute no-ops, or move to a low-power mode (if it has the appropriate "waking-up"
system).

Sections 3.2.1-3.2.2 have already shown that the most power efficient strategy for
contemporary ESPs would be to use higher clock frequencies than to use lower clock
frequencies at a particular supply voltage level and to use lower supply voltages, rather than
higher ones. These statements indicate that, from the perspective of power efficiency, it would
be optimal to have the CPU operating at a minimum possible supply voltage that would support
the clock frequency, which would allow fulfilment of the required number of instructions within the
specified period of time.

The problem of CPU utilization effects on processor power consumption has been described
details e.g. in (Li et al., 2009; Uhrig & Ungerer, 2005), where appropriate real-life applications
and measurements results are discussed.

3.3 Effect of the embedded system processor’s compulsory peripherals on power
consumption

The power consumption of a contemporary embedded system-based device is defined not
only by the consumption of the actual ESP, but also by the cumulative power consumption
of the all peripherals that are used by the application. Apart from the actual ESP,
the end-device will typically include a clock generation system, RAM, ROM, different
input/output interfaces and some other peripherals (see Fig.1). As shown in Section 3.1,
certain ES types can have some of the peripherals already integrated with the CPU. The actual
set of peripherals used will clearly be defined by each particular application requirement;
therefore, the most critical ones will be discussed in a Sections 3.3.1-3.3.5.

3.3.1 The clock generator

The clock generator is intended to provide the ESP and other peripherals with the required
clock signal reference. Most present-day ESPs have the possibility either to use the external
clock generator or to generate the clock signal using an internal clock crystal. Most
contemporary ESPs have inbuilt clock management systems, which can generate the required
number of internal clock signals by multiplying or dividing the input one. Note, however, that

420 Embedded Systems – Theory and Design Methodology

Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems 15

higher power consumption occurs with the generation of a high clock frequency than with
lower clock frequencies. Further clock conversions in ESPs would cause additional power
consumption. Therefore, as has been shown previously (e.g., (Schmid et al., 2010; SiLabs,
2003)), from the point of view of power consumption, using the external low-frequency clock
crystal is often much more convenient than using a high-frequency internal crystal and later
dividing the frequency.

3.3.2 Random access memory

RAM is the memory type that is usually used for storing temporary data with critical access
latency. The advantage of the RAM is that the data stored in it can be accessed both for
reading and writing as single bytes (or small data blocks for recent chips) having the fixed
access time regardless of the accessed location (Chen, 2004). As previously noted (e.g.,
(Mikhaylov & Tervonen, 2010a; Ou et al., 2011)), the RAM is usually the most efficient memory
type from the point of view of power consumption. The disadvantage of RAM is that it is
usually a volatile type of memory, meaning that the stored information is lost once the power
supply is removed. Nonetheless, as has been shown previously (e.g., (Halderman et al., 2008;
Mikhaylov & Tervonen, 2011)), the information in RAM remains undamaged for some time
(5-60 seconds, depending on the RAM type and its working mode). This can be used to reduce
the overall system power consumption through periodic power on/off switching of RAM
memory when it is not being used.

The power consumption of RAM, similarly to the power consumption of the other already
discussed CMOS systems (see Section 3.2), is influenced by the level of the supply voltage
and the clock frequency (Cho & Chang, 2004; Fan et al., 2003). Quite often, the levels of
supply voltage and clock frequency that minimize the power consumption for the RAM differ
from the ones minimizing the consumption of the CPU, which requires resolution of the joint
optimization problem for combined system (Cho & Chang, 2004; Fan et al., 2003).

3.3.3 Read-only and electrically erasable programmable read-only memory

ROM memory is a type of memory that is used for permanent data storage. The data in ROM
either cannot be modified at all (e.g., masked ROM), or requires significant effort and time
for data changing (e.g., electrically erasable programmable read-only memory (EEPROM) or
Flash ROM). The advantage of ROM is that it is a non-volatile type of memory and retains
the stored data even if no power supplied. The common disadvantages of ROM compared
to RAM are the higher data access time and power consumption (Chen, 2004; Mikhaylov &
Tervonen, 2011; Ou et al., 2011). Another common feature of ROM and especially EEPROM,
which is currently mostly often used in the ES, is that writing to the memory should be done
by so-called pages; i.e., data blocks with the sizes in the range of 64 and 512 bytes depending
on the memory chip architecture. Therefore, changing the data in EEPROM first requires
erasing the entire page containing the data to be changed. After that, the new values for
the bytes within the erased page can be written either byte-wise or in burst mode. Rather
often, especially for the EEPROM integrated into microcontrollers, the cleaning and writing
to EEPROM requires a higher supply voltage level than the one required for normal CPU
operation. This complicated rewrite process causes the Flash memory to have very significant
power consumption during data rewritings, which can be several orders of magnitude higher
than while writing to RAM. The number of rewrite cycles for contemporary EEPROMs can
reach 10.000 to 10.000.000, but it is by no means infinite.

421
Development of Energy Efficiency Aware
Applications Using Commercial Low Power Embedded Systems

16 Embedded System / Book 1

Although ROM is now often used for storing the executable application program codes for
different ESPs, as shown previously (e.g., (Mikhaylov & Tervonen, 2010b)), the running of
ESP programs stored in RAM allows a reduction of the overall power consumption by 5% to
10%.

3.3.4 Input/output interfaces

The input/output (I/O) interfaces are the essential ESP peripherals that allow ESPs to interact
with the external world. Since the I/O interfaces are implemented using the same CMOS
blocks as the rest of ESP, the conclusions made within Section 3.2 are also applicable for
the I/O interfaces (Dake & Svensson, 1994). In addition to the actual power consumption
of the I/O interfaces, the wire propagation effects, such as attenuation, distortion, noise
and interferences, must also be considered. Therefore, the conclusion can be made that
implementation of power efficient communication over a particular I/O interface should use
the lowest possible level of the supply voltage together with highest data rate that allows
provision of reliable communication with the required throughput.

Quite often, the developed ES-based application does not use all of the available ESP’s digital
pins. To reduce the overall system power consumption, these pins should be configured as
outputs. Whether initialized as high or low, the output voltage will not subject the enabled
digital input circuitry to a leakage-current-inducing voltage in the middle range (Peatman,
2008).

3.3.5 Other peripherals

Depending on the application, the ESPs can require a wide range of other peripherals. The
two basic rules for power effective peripheral usage are:

• the peripherals should be provided with the minimum level of supply voltage that allow
their reliable operation;

• the peripherals should be powered off when not in use.

As previously shown (e.g., (Curd, 2007)), the use of embedded blocks for special function
implementing in FPGAs dramatically reduces the dynamic power consumption when
compared to implementing these functions in general purpose FPGA logic. This is also valid
for other types of ESPs.

4. Energy efficiency-aware low-power embedded systems utilization

The two previous sections discussed the different power supply options that can be used
for existing ESs (Section 2) and the parameters influencing the power consumption for the
standalone ES (Section 3). These discussions confirm that the real energy efficiency maximization
for an ES-based application requires a joint consideration of the power supply system and the ES
itself. The current section will show how ES parameters influence the power consumption
of a real-life device supplied using different power supply sources. It will also discuss the
efficiency of the methods that can be used to improve the system’s overall power efficiency.

4.1 Energy efficiency for mains-supplied low-power embedded systems

Fig. 9 shows the power consumption for a low-power microcontroller-based device supplied
from mains via an AC/DC converter, with (Fig.9(a)) and without (Fig. 9(b)) a voltage

422 Embedded Systems – Theory and Design Methodology

Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems 17

(a) With voltage scaling (b) Without voltage scaling

Fig. 9. Power efficiency for a MSP430-based system supplied from mains via an AC/DC
converter6

scaling system. Comparing the results in Fig. 9 with the standalone microcontroller power
consumption (see Fig. 8) shows that the situation changed dramatically. For the standalone
microcontroller, the most efficient strategy from the point of system power consumption per
instruction was to operate at the maximum clock frequency supported, using the minimum supply
voltage level (see Section 3.2.2), while for the mains-supplied system, the most effective strategy
is to use the minimum supply voltage level that supported the maximum possible clock frequency. At
first glance, these results seem contradictory, but they can be easily explained if the conversion
efficiency curves for the real-life AC/DC and DC/DC converters, which are presented in Figs.
2 and 9(b), are also taken into account. As shown in Fig. 9(a), the use of voltage scaling for the
low-power ES does not significantly increase the overall power efficiency due to the very low
AC/DC conversion efficiency for the microcontroller low-power modes.

Nonetheless, as Fig. 2 reveals, the efficiency of AC/DC and DC/DC converters under the
higher loads increases to more than 90% and becomes consistent, which allows efficient use of
the dynamic voltage and frequency scaling techniques for improving the power consumption
of high-power ESPs supplied from mains (as shown previously by e.g., (Cho & Chang, 2006;
Simunic et al., 2001)).

4.2 Energy efficiency for battery-supplied low power embedded systems

To illustrate the effect of the ESP parameters on a battery-supplied system, we investigated the
operation of the same low-power microcontroller-based system discussed in Subsection 4.1,
but now supplying power from two alkaline batteries. The charts summarizing the results are
presented in Fig. 10 for AAA batteries and in Fig. 11 for AG3 button batteries. The presented
charts has been built using the battery capacity models (Equation 3, with the parameters from
Table 4), which are based on the real-life battery capacity measurements (see, e.g., Fig. 4).
The presented charts illustrate the system efficiency (measured as the number of single clock
instructions computed over the system lifetime) for the system built around a low-power ESP,

6 The presented charts have been obtained through simulations based on the real AC/DC and DC/DC
converters characteristics.

423
Development of Energy Efficiency Aware
Applications Using Commercial Low Power Embedded Systems

18 Embedded System / Book 1

with (Figs. 10(a) and 11(a)) and without (Figs. 10(b) and 11(b)) the voltage scaling mechanism.
For the sake of simplicity, in the used model, we assume that the ESP is working with 100%
CPU utilization and that it switches off when the voltage acquired from the battery supply
falls below the minimum supply voltage required to support the ESP operation at a defined
clock frequency (see Section 3.2.1).

E = C1 · (Pavg)
C2 (3)

The charts for the battery-supplied ESP-and likewise for the standalone ESP-show that an
optimal working mode exists that allows maximizing of the system efficiency within the
used metrics. Figs. 10(b) and 11(b) show that the number of operations executed by the
battery-supplied ESP over its lifetime strongly depend on the clock frequency used; e.g., for
AAA batteries for clock frequencies 2.5 times higher and lower than the optimal one, the
number of possible operations decreases 2 times. Nonetheless, the optimal working mode
for the system supplied from the battery is slightly different from the one for the standalone
system. For the standalone system, as shown in Fig. 8, use of a 3 MHz clock frequency with
1.5 V supply voltage level was optimal, while for battery supplied system, use of a 4.4 MHz
clock frequency with 1.8 V supply was optimal. The main reasons for this observation are: the
lower efficiency of DC/DC conversion of the voltage controlling system for lower loads (see
Fig. 2), and the different amounts of energy available from the battery for various loads (see
Figs. 4, 10(b) and 11(b)).

As Figs. 10(a) and 11(a) reveal, the voltage scaling possibility allows an increase in the number
of executable operations by the ESP by more than 2.5 times compared to the system without
voltage control. The optimum working mode for the battery supplied ESP with the voltage
control possibility appears to be the same as for the standalone system (3 MHz at 1.5 V supply)
and differs from the battery supplied system without voltage conversion. Nonetheless, the use
of voltage conversion circuits would have one significant drawback for the devices working
at low duty cycle: the typical DC/DC voltage converter chips have a standby current on
the order of dozens μA, while the standby current of contemporary microcontrollers in the
low-power mode is below 1 μA. Therefore, the use of a voltage controlling system for a
low duty cycle system can dramatically increase the sleep-mode power consumption, thereby
reducing the overall system lifetime.

As can be noted comparing Figs. 10(b) and 11(b), the small sized AG3 alkaline batteries have
a much lower capacity and lower performance while using higher load. These figures also
reveal that the optimal clock frequency for both batteries is slightly different: the optimal
clock frequency for an AAA battery appears to be slightly higher than for the button style.

Threshold,V AAA battery AG3 button battery
C1 C2 R2 a C1 C2 R2 a

0.75 1.063681 -0.08033 >0.95 0.004009 -0.36878 >0.98
0.9 0.995933 -0.08998 >0.95 0.003345 -0.39978 >0.98
1 0.996802 -0.07764 >0.99 0.001494 -0.53116 >0.98
1.2 0.888353 -0.06021 >0.98 0.000104 -0.92647 >0.98
1.4 0.15627 -0.21778 >0.97 0.000153 -0.89025 >0.99

a The coefficient of determination for model

Table 4. Parameters of the used battery discharge models

424 Embedded Systems – Theory and Design Methodology

Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems 19

(a) With voltage scaling (b) Without voltage scaling

Fig. 10. Energy efficiency for a MSP430-based system supplied from AAA alkaline batteries

(a) With voltage scaling (b) Without voltage scaling

Fig. 11. Energy efficiency for a MSP430-based system supplied from AG3 alkaline batteries

In the current section, we have focused on the Alkaline batteries, as they are most commonly
used today. It has been shown, that for the batteries of the same chemistry but different
form-factor the ESPs optimal parameters are slightly different. For the batteries that use other
chemistries, as suggested by the data in Fig. 3, the optimal energy work mode parameters
will differ significantly (see e.g., (Raskovic & Giessel, 2009)). The system lifetime for the other
types of ESPs supplied from batteries would follow the same general trends.

4.3 Energy efficiency for low-power embedded systems supplied by energy harvesting

Fig. 12 illustrates the effects of the ESP parameters on the operation of the system supplied
using an energy harvesting system. The charts show results of practical measurements for a
real system utilizing the MSP430F2274 microcontroller board and a light-energy harvesting
system using a thin-film rechargeable EnerChips energy storage system (Texas, 2010). The

425
Development of Energy Efficiency Aware
Applications Using Commercial Low Power Embedded Systems

20 Embedded System / Book 1

(a) Full buffer capacitor charge (b) Minimum buffer capacitor charge

Fig. 12. Energy efficiency for a MSP430-based system supplied from an energy harvesting
system with a thin-film rechargeable EnerChips storage system

presented charts illustrate the system operation for the cases when the storage system has been
initially fully charged (Fig. 12(a)) and when the storage system had only minimum amount
of energy 7(Fig. 12(b)). During the measurements, the system was located indoors under the
light with intensity of around 275 Lux. For evaluating the energy efficiency for the system
supplied using energy harvested from the environment, we have used the same metrics as
described for the battery supplied system; namely, the number of single clock instructions
which the ESP is able to execute until energy storage system is discharged.

Figs. 12(a) and 12(b) reveal that the optimal work mode parameters for the ESP for an energy
harvesting supplied system are different for various energy storage system initial states. Fig.
12(a) shows that a well-defined clock frequency exists for the fully charged storage system,
which allows the execution of the maximum number of instructions to be achieved. For a
system with minimum storage system initial charge, the optimum clock frequency that will
maximize the number of ESP operations is shifted to higher clock frequencies.

Due to the already discussed high standby current for the DC/DC converters, the use of
the voltage control circuits within the system supplied by energy harvesting appeared to be
ineffective.

Table 2 shows that the amount of energy that the small sized energy harvesting systems can
collect from environment is rather small. This means that energy scavenging applications
using high-power or high-duty cycle ESPs will need to have rather volumetric supply systems.
Therefore, this power supply options is now mostly often used with low-power ESPs in
Wireless Sensor Networks (WSN), toys and consumer electronics applications.

5. Conclusions and further research

In this chapter, we have discussed the different aspects of the energy efficient operation of
the commercial low-power embedded systems. The possible supply sources that can be

7 The energy storage system is connected to the load only once the amount of available energy exceeds
the threshold - see (Texas, 2010)

426 Embedded Systems – Theory and Design Methodology

Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems 21

used in ES-based applications, the ES parameters that influence the energy consumption
and the mechanisms underlying their effect have been discussed in detail. Finally, real-life
examples were used to show that real energy efficiency for ES-based applications is possible
only when the characteristics of the used supply system and the embedded system itself are
considered as a whole. The results presented in the chapter have been obtained by the authors
through multiple years of practical research and development experience within the field of
low power embedded systems applications, and they could be valuable for both engineers
and researchers working in this field.

The problem of energy efficiency is a versatile one, and many open questions still remain. For
the energy efficiency optimization, one needs to have full information on the source of power
characteristics, the characteristics of the embedded system itself and the user application
requirements. This requires a standardized way to store this type of information and
mechanisms that would allow identification of the source of power and peripherals attached
to the embedded system and that would obtain the information required for operation
optimization. Once all of the required information was available, this would advance the
possibility of developing the algorithms needed to allow the embedded system to adapt
its operation to the available resources and to the application requirements. The other
open problem currently limiting the possibility of developing automated power optimization
algorithms is that most of the currently existing embedded systems do not implement any
mechanism for measuring their power consumption.

6. References

Arnold, D. (2007). Review of microscale magnetic power generation, IEEE Transactions on
Magnetics Vol. 43(No. 11): 3940 – 3951.

Benini, L., Micheli, G. D. & Macii, E. (2001). Designing low-power circuits: practical recipes,
IEEE Circuits and Systems Magazine Vol. 1(No. 1): 6 – 25.

Chandrakasan, A. & Brodersen, R. (1995). Minimizing power consumption in digital CMOS
circuits, Proceedings of the IEEE Vol. 83(No. 4): 498 – 523.

Chandrakasan, A., Potkonjak, M., Mehra, R., Rabaey, J. & Brodersen, R. (1995). Optimizing
power using transformations, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems Vol. 14: 12 – 31.

Chen, W. (2004). The Electrical Engineering Handbook, Academic press.
Cho, Y. & Chang, N. (2004). Memory-aware energy-optimal frequency assignment for

dynamic supply voltage scaling, Proceedings of ISLPED ’04, pp. 387–392.
Cho, Y. & Chang, N. (2006). Energy-aware clock-frequency assignment in microprocessors and

memory devices for dynamic voltage scaling, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems Vol. 26(No. 6): 1030 – 1040.

Crompton, T. (2000). Battery Reference Book, Newnes.
Curd, D. (2007). Power consumption in 65 nm FPGAs.

URL: http://www.xilinx.com/support/documentation/white%5Fpapers/wp246.pdf
Dake, L. & Svensson, C. (1994). Power consumption estimation in CMOS VLSI chips, IEEE

Journal of Solid-State Circuits Vol. 29(No. 6): 663 – 670.
Dighe, S., Vangal, S., Aseron, R., Kumar, S., Jacob, T., Bowman, K., Howard, J., Tschanz, J.,

Erraguntla, V., Borkar, N., De, V. & Borkar, S. (2007). Within-die variation-aware
dynamic-voltage-frequency-scaling with optimal core allocation and thread hopping

427
Development of Energy Efficiency Aware
Applications Using Commercial Low Power Embedded Systems

22 Embedded System / Book 1

for the 80-core TeraFLOPS processor, IEEE Journal of Solid-State Circuits Vol. 46(No.
1): 184 – 193.

Dudacek, K. & Vavricka, V. (2007). Experimental evaluation of the MSP430 microcontroller
power requirements, Proceedings of EUROCON’07, pp. 400–404.

Earth (2011). INFSO-ICT-247733 EARTH: Deliverable D2.1: Economic and ecological impact
of ICT.
URL: https://bscw.ict-earth.eu/pub/bscw.cgi/d38532/EARTH%5FWP2%5FD2.1%5Fv2.pdf

Ekekwe, N. & Etienne-Cummings, R. (2006). Power dissipation sources and possible control
techniques in ultra deep submicron CMOS technologies, Elsevier Microelectronics
Journal Vol. 37: 851 – 860.

Emitt (2008). Microcontroller market and technology analysis report - 2008.
URL: http://www.emittsolutions.com/images/microcontroller%5Fmarket%5Fanalysis%
5F2008.pdf

Fan, X., Ellis, C. & Lebeck, A. (2003). Interactions of power-aware memory systems and
processor voltage scaling, Proceedings of PACS’03, pp. 1–12.

FreedoniaGroup (2011). Study 2449: Batteries.
URL: http://www.freedoniagroup.com/brochure/24xx/2449smwe.pdf

Halderman, J., Schoen, S., Heninger, N., Clarkson, W., Paul, W., Calandrino, J., Feldman,
A., Appelbaum, J. & Felten, E. (2008). Lest we remember: Cold boot attacks on
encryption keys, Proceedings of USENIX Security ’08, pp. 1–16.

Hande, A., T.Polk, Walker, W. & Bhatia, D. (2007). Indoor solar energy harvesting for sensor
network router nodes, Future beyond Science Vol. 31(No. 6): 420 – 432.

Hwang, E. (2006). Digital Logic and Microprocessor Design with VHDL, Thomson.
INOBAT (2009). Absatzzahlen 2008.

URL: http://www.inobat.ch/fileadmin/user%5Fupload/pdf%5F09/Absatz%5FStatistik%
5F2008.pdf

Jang, Y. & Jovanovic, M. (2010). Light-load efficiency optimization method, IEEE Transactions
on Power Electronics Vol. 25(No. 1): 67 – 74.

Knight, C., Davidson, J. & Behrens, S. (2008). Energy options for wireless sensor nodes, Sensors
Vol. 8: 8037 – 8066.

Laplante, P. (2004). Real-time systems design and analysis, Wiley-IEEE.
Li, L., RuiXiong, T., Bo, Y. & ZhiGuo, G. (2009). A model of web server’s performance-power

relationship, Proceedings of ICCSN’09, pp. 260–264.
Linden, D. & Reddy, T. (2002). Handbook of batteries, McGraw-Hill.
Luo, J., Peh, L. & Jha, N. (2003). Simultaneous dynamic voltage scaling of processors

and communication links in real-time distributed embedded systems, Proceedings of
DATE’03, pp. 1150–1151.

Mathuna, C., O’Donnell, T., Martinez-Catala, R., Rohan, J. & B.O’Flynn (2008). Energy
scavenging for long-term deployable wireless sensor networks, Future beyond Science
Vol. 75(No. 3): 613 – 623.

Mikhaylov, K. & Tervonen, J. (2010a). Improvement of energy consumption for over-the-air
reprogramming in wireless sensor networks, Proceedings of ISWPC’10, pp. 86–92.

Mikhaylov, K. & Tervonen, J. (2010b). Optimization of microcontroller hardware parameters
for wireless sensor network node power consumption and lifetime improvement,
Proceedings of ICUMT’10, pp. 1150–1156.

428 Embedded Systems – Theory and Design Methodology

Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems 23

Mikhaylov, K. & Tervonen, J. (2011). Energy efficient data restoring after power-downs for
wireless sensor networks nodes with energy scavenging, Proceedings of NTMS’11,
pp. 1–5.

Mitcheson, P., Yeatman, E., Rao, G., Holmes, A. & Green, T. (2008). Energy harvesting from
human and machine motion for wireless electronic devices, Proceedings of the IEEE
Vol. 96(No. 9): 1457 – 1486.

Morais, R., Matos, S., Fernandes, M., Valentea, A., Soares, S., Ferreira, P. & Reis, M. (2008).
Sun, wind and water flow as energy supply for small stationary data acquisition
platforms, Computers and Electronics in Agriculture Vol. 6(No. 2): 120 – 132.

Munsey, B. (2011). New developments in battery design and trends.
URL: http://www.houseofbatteries.com/documents/New%20Chemistries%20April%202010
%20V2.pdf

Ou, Y., & Harder, T. (2011). Trading memory for performance and energy, Proceedings of
DASFAA’11, pp. 1–5.

Peatman, J. (2008). Coin-Cell-Powered Embedded Design, Qwik&Low Books.
Raju, M. (2008). Energy harvesting.

URL: http://www.ti.com/corp/docs/landing/cc430/graphics/slyy018%5F20081031.pdf
Raskovic, D. & Giessel, D. (2009). Dynamic voltage and frequency scaling for on-demand

performance and availability of biomedical embedded systems, IEEE Transactions on
Information Technology in Biomedicine Vol.13(No. 6): 903 – 909.

Roy, K., Mukhopadhyay, S. & Mahmoodi-Meimand, H. (2003). Leakage current mechanisms
and leakage reduction techniques in deep-submicrometer CMOS circuits, Proceedings
of the IEEE Vol. 91(2): 305 – 327.

Schmid, T., Friedman, J., Charbiwala, Z., Cho, Y. & Srivastava, M. (2010). Low-power
high-accuracy timing systems for efficient duty cycling, Proceedings of ISLPED ’08,
pp. 75–80.

SiLabs (2003). AN116: Power management techniques and calculation.
URL: http://www.silabs.com/Support%20Documents/TechnicalDocs/an116.pdf

Simunic, T., Benini, L., Acquaviva, A., Glynn, P. & De Micheli, G. (2001). Dynamic
voltage scaling and power management for portable systems, Proceedings of DAC’01,
pp. 524–529.

Starzyk, J. & He, H. (2007). A novel low-power logic circuit design scheme, IEEE Transactions
on Circuits and Systems Vol. 54(No. 2): 176 – 180.

Texas (2010). eZ430-RF2500-SEH solar energy harvesting development tool (SLAU273C).
URL: http://www.ti.com/lit/ug/slau273c/slau273c.pdf

Thatte, S. & Blaine, J. (2002). Power consumption in advanced FPGAs, Xcell Journal .
URL: http://cdserv1.wbut.ac.in/81-312-0257-7/Xilinx/files/Xcell%20Journal%20Articles/
xcell%5Fpdfs/xc%5Fsynplicity44.pdf

Thomson, E. (2008). Preventing forest fires with tree power, MIT Tech Talk Vol. 53(No. 3): 4 – 4.
URL: http://web.mit.edu/newsoffice/2008/techtalk53-3.pdf

Uhrig, S. & Ungerer, T. (2005). Energy management for embedded multithreaded processors
with integrated EDF scheduling, Proceedings of ARCS’05, pp. 1–17.

USEIA (2011). RECS 2009.
URL: http://www.eia.gov/consumption/residential/reports/electronics.cfm

429
Development of Energy Efficiency Aware
Applications Using Commercial Low Power Embedded Systems

24 Embedded System / Book 1

Valenzuela, A. (2008). Energy harvesting for no-power embedded systems.
URL: http://focus.ti.com/graphics/mcu/ulp/energy%5Fharvesting%5Fembedded%5Fsystems
%5Fusing%5Fmsp430.pdf

Yildiz, F. (2009). Potential ambient energy-harvesting sources and techniques, The Journal of
Technology Studies Vol. 35(No. 1): 40 – 48.

430 Embedded Systems – Theory and Design Methodology

	00 preface
	00a Part 1
	01 Ways for Implementing Highly-PredictableEmbedded Systems Using Time-TriggeredCo-Operative (TTC) Architectures
	02 Safely Embedded Software for State Machines inAutomotive Applications
	03 Vulnerability Analysis and Risk Assessmentfor SoCs Used in Safety-CriticalEmbedded Systems
	04 Simulation and Synthesis Techniquesfor Soft Error-Resilient Microprocessors
	05 Real-Time Operating Systems and ProgrammingLanguages for Embedded Systems
	05a Part 2
	06 Architecting Embedded Softwarefor Context-Aware Systems
	07 FSMD-Based Hardware Accelerators for FPGAs
	08 Context Aware Model-Checkingfor Embedded Software
	09 A Visual Software Development Environment thatConsiders Tests of Physical Units
	10 A Methodology for Scheduling Analysis Based onUML Development Models
	11 Formal Foundations for the Generation ofHeterogeneous Executable Specifications inSystemC from UML/MARTE Models
	12 Concurrent Specification of EmbeddedSystems: An Insight into the Flexibility vsCorrectness Trade-Off
	13 SW Annotation Techniques and RTOSModelling for Native Simulation ofHeterogeneous Embedded Systems
	14 The Innovative Design of Low Cost EmbeddedController for Complex Control Systems
	15 Choosing Appropriate Programming Languageto Implement Software for Real-Time Resource-Constrained Embedded Systems
	15a Part 3
	16 High-Level Synthesis for Embedded Systems
	17 A Hierarchical C2RTL Framework for HardwareConfigurable Embedded Systems
	18 SRAM Cells for Embedded Systems
	19 Development of Energy Efficiency AwareApplications Using Commercial Low PowerEmbedded Systems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

