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Preface 
 

We live in a time when digital information plays a key role in various fields. Whether we 
look towards communications, industry, medicine, scientific research or entertainment, 
we find digital images to be heavily employed. The high volume of stored and 
transacted digital images, together with the increasing availability of advanced digital 
image acquisition and display techniques and devices, came with a growing need for 
novel, fast and intelligent algorithms for the digital manipulation of digital images. The 
development of advanced, fast and reliable algorithms for digital image pre- and post- 
processing, digital image compression, digital image segmentation and computer vision, 
2D and 3D data visualization, image metrology and other related subjects, represents at 
this time a high priority field of research, as the current trends and the technological 
advances that we are currently seeing taking place promises to create an exponential rise 
in the impact of such topics in the years to come.  

This book presents several recent advances that are related or fall under the umbrella of 
‘digital image processing’. The purpose of this book is to provide an insight on the 
possibilities offered by digital image processing algorithms in various fields. Digital 
image processing is quite a multidisciplinary field, and therefore, the chapters in this 
book cover a wide range of topics. The presented mathematical algorithms are 
accompanied by graphical representations and illustrative examples for an enhanced 
readability. The chapters are written in a manner that allows even a reader with basic 
experience and knowledge in the digital image processing field, to properly understand 
the presented algorithms. Hopefully, scientists working in various fields will become 
aware of the high potential that such algorithms can provide, and students will become 
more interested in this field and will enhance their knowledge accordingly. 
Concurrently, the structure of the information in this book is such that fellow scientists 
will be able to use it to push the development of the presented subjects even further. 

I would like to thank the authors of the chapters for their valuable contributions, and 
the editorial team at InTech for providing full support in bringing this book to its 
current form. I sincerely hope that this book will benefit the wide audience.  

D.Eng. Stefan G. Stanciu 
Center for Microscopy – Microanalysis and Information Processing 

University “Politehnica” of Bucharest 
Romania 
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Laser Probe 3D Cameras Based on  
Digital Optical Phase Conjugation 

Zhiyang Li 
College of Physical Science and Technology, Central China Normal University 

Hubei, Wuhan, 
P. R. China 

1. Introduction  

A camera makes a picture by projecting objects onto the image plane of an optical lens, 
where the image is recorded with a film or a CCD or CMOS image sensor. The pictures thus 
generated are two-dimensional and the depth information is lost. However in many fields 
depth information is getting more and more important. In industry the shape of a 
component or a die, needs to be measured accurately for quality control, automated 
manufacturing, solid modelling, etc. In auto-navigation, three dimensional coordinates of 
changing environment need to be acquired in real-time to aid auto path planning for 
vehicles or intelligent robots. In driving assistant systems any obstacle in front a car should 
be detected within 0.01 second. Even in making 3D movies for true 3D display in the near 
future, three dimensional coordinates need to be recorded with a fame rate of at least 25f/s, 
etc. For the past few decades intensive researches have been carried out and various optical 
methods have been investigated[Chen, et al., 2000], yet they still could not fulfil every 
requirement of present-day applications on either measuring speed, or accuracy, or 
measuring range/area, or convenience, etc. For example, although interferometric methods 
provide very high measuring precision [Yamaguchi, et al., 2006; Barbosa, & Lino, 2007], they 
are sensitive to speckle noise and vibration and perform measurement over small areas. The 
structured light projection methods provide good precision and full field measurements 
[Srinivasan, et al., 1984; Guan, et al., 2003], yet the measuring width is still limited to several 
meters. Besides they often encounter shading problems. Stereovision is a convenient means 
for large field measurements without active illumination, but stereo matching often turns 
very complicated and results in high reconstruction noise [Asim, 2008].To overcome the 
drawbacks improvements and new methods appear constantly. For example, time-of-flight 
(TOF) used to be a point-to-point method [Moring, 1989]. Nowadays commercial 3D-TOF 
cameras are available [Stephan, et al., 2008]. Silicon retina sensors have also been developed 
which supports event-based stereo matching [Jürgen & Christoph, 2011]. Among all the 
efforts those employing cameras appear more desirable because they are non-contact, 
relatively cheap, easy to carry out, and provide full field measurements, etc. 

The chapter introduces a new camera—a so-called laser probe 3D camera, a camera enforced 
with hundreds and thousands of laser probes projected onto objects, whose pre-known 
positions help to determine the three dimensional coordinates of objects under 
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investigation. The most challenging task in constructing such a 3D camera is the generation 
of those huge number of laser probes, with the position of each laser probe independently 
adaptable according to the shape of an object. In section 2 we will explain how the laser 
probes could be created by means of digital optical phase conjugation, an accurate method 
for optical wavefront reconstruction we put forward a little time earlier[Zhiyang, 
2010a,2010b]. In section 3 we will demonstrate how the laser probes could be used to 
construct 3D cameras dedicated for various applications, such as micro 3D measurement, 
fast obstacle detection, 360-deg shape measurement, etc. In section 4 we will discuss more 
characteristics like measuring speed, energy consumption, resistance to external 
interferences, etc., of laser probe 3D cameras. Finally a short summery is given in section 5. 

2. Generation of laser probes via digital optical phase conjugation  
To build a laser-probe 3D camera, one needs first to find a way to project simultaneously 
hundreds and thousands of laser probes into preset positions. Looking the optical field 
formed by all the laser probes as a whole it might be regarded as a problem of optical 
wavefront reconstruction. Although various methods for optical wavefront reconstruction 
have been reported, few of them could fulfil above task. For example, an optical lens system 
can focus a light beam and move it around with a mechanical gear. But it can hardly adjust 
its focal length so quickly to produce so many laser probes far and near within the time of a 
snapshot of a camera. Traditional optical phase conjugate reflection is an efficient way for 
optical wavefront reconstruction [Yariv, & Peper, 1977; Feinberg, 1982]. However it 
reproduces, or reflects only existing optical wavefronts based on some nonlinear optical 
effects. That is to say, to generate above mentioned laser probes one should first find 
another way to create beforehand the same laser probes with high energy to trig nonlinear 
optical effect. While holography can reconstruct only static optical wavefronts since high 
resolution holographic plates have to be used.  

To perform real-time digital optical wavefront reconstruction it is promising to employ 
spatial light modulators (SLM) [Amako, et al. 1993; Matoba, et al. 2002; Kohler, et al. 2006]. 
A SLM could modulate the amplitude or phase of an optical field pixel by pixel in space. For 
liquid crystal SLMs several millions of pixels are available. And the width of each pixel 
might be fabricated as small as 10 micrometers in case of a projection type liquid crystal 
panel. However the pixel size appears still much larger than the wavelength to be employed 
in a laser probe 3D camera. According to the sensitive wavelength range of a CCD or CMOS 
image sensor it is preferable to produce laser probes with a wavelength in the range of 
0.35~1.2 micrometers, or 0.7~1.2 micrometers to avoid interference with human eyes if 
necessary. So the wavelength is about ten times smaller than the pixel pitch of a SLM. 
Therefore with bare SLMs only slowly varying optical fields could be reconstructed with 
acceptable precision. Unfortunately the resulting optical field formed by hundreds and 
thousands of laser probes may appear extremely complex.  

Recently we introduced an adiabatic waveguide taper to decompose an optical field, 
however dramatically it changes over space, into simpler form that is easier to rebuild 
[Zhiyang, 2010a]. As illustrated in Fig.1, such an adiabatic taper consists of a plurality of 
single-mode waveguides. At the narrow end of the taper the single-mode waveguides 
couple to each other. While at the wide end the single-mode waveguides become optically 
isolated from each other. When an optical field incidents on the left narrow end of the taper, 
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it would travel to the right wide end and gets decomposed into fundamental mode field of 
each isolated single-mode waveguide. Since these fundamental mode fields are separated 
from each other in space, they could be reconstructed using a pair of low resolution SLMs 
and a micro lens array (MLA) as illustrated in Fig.2.  

 
Fig. 1. Structure of an adiabatic waveguide taper. 

 
Fig. 2. Device to perform digital optical phase conjugation. 

For the device in Fig.2 we may adjust the gray scale of each pixel of SLMs so that it 
modulates the amplitude and the phase of illuminating laser beam properly [Neto, et al. 
1996; Tudela, et al. 2004] and reconstruct a conjugate field proportional to above 
decomposed fundamental mode field within each isolated single-mode waveguide at the 
right wide end. Due to reciprocity of an optical path the digitally reconstructed conjugate 
light field within each isolated single-mode waveguide would travel inversely to the left 
narrow end of the taper, combine and create an optical field proportional to the original 
incident optical field. Since the device in Fig.2 rebuilds optical fields via digital optical phase 
conjugation, it gets ride off all the aberrations inherent in conventional optical lens systems 
automatically. For example, suppose an object A2B2 is placed in front of the optical lens. It 
forms an image A1B1 with poor quality. The reconstructed conjugate image in front of the 
narrow end of the taper bears all the aberrations of A1B1. However, due to reciprocity, the 
light exited from the reconstructed conjugate image of A1B1 would follow the same path and 
return to the original starting place, restoring A2B2 with exactly the same shape. So the 
resolution of a digital optical phase conjugation device is merely limited by diffraction, 
which can be described by, 

 
2sin

dx



     (1) 

where θ is the half cone angle of the light beam arriving at a point at image plane as 
indicated in Fig.2. The half cone angle θ could be estimated from the critical angle θc of 
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incidence of the taper through the relation tan(θ)/tan(θc)=L1/L2=|A1B1|/|A2B2| = 1/βx, 
where βx being the vertical amplification ratio of the whole optical lens system. When SLMs 
with 1920×1080 pixels are employed, the width of the narrow end of an adiabatic waveguide 
taper with a refraction index of 1.5 reaches 0.458mm for λ=0.532 μm, or 0.860mm for λ=1 μm 
respectively to support Ns=1920 guided eigenmodes. When a 3×3 array of SLMs with same 
pixels are employed, the width of the narrow end of the taper increases to 1.376mm for 
λ=0.532 μm, or 2.588mm for λ=1 μm respectively to support a total of Ns=3×1920=5760 
guided eigenmodes. The height of reconstructed conjugate image A1B1 right in front of the 
narrow end of the tap may have the same size as the taper. Fig.3 plotted the lateral 
resolutions at different distances Z from the taper (left), or for different sizes of 
reconstructed image A2B2(middle and right) with θc =80º, where the resolution for λ=0.532 
μm is plotted in green colour and that for λ=1 μm in red colour. It could be seen that within 
a distance of Z=0~1000 μm, the resolution is jointly determined by wavelength and the pixel 
number Ns of the SLMs. The optical lens is taken away temporarily since there is no room 
for it when Z is less than 1mm. However when |A2B2|is larger than 40mm, the resolution 
becomes irrelevant to wavelength, but decreases linearly with the pixel number Ns of the 
SLMs and increase linearly with the size of |A2B2|. When |A2B2|=100m, the resolution is 
about 10.25mm for Ns=1920 and 3.41mm for Ns=5760 respectively.  

 
Fig. 3. Lateral resolution of a laser probe at a distance Z in the range of 0~1000μm (left); or 
with |A2B2|in the range of 1~100mm(middle); and 0.1~100m(right) for λ=0.532 μm(green 
line) and λ=1 μm (red line). 

To see more clearly how the device works, Fig.4 simulated the reconstruction of a single 
light spot via digital optical phase conjugation. The simulation used the same software and 
followed the same procedure as described in Ref.[Zhiyang, 2010a]. In the calculation 
λ=1.032μm, the number of eigenmodes equals 200 and the perfectly matched layer has a 
thickness of - 0.15i. The adiabatic waveguide taper has a refraction index of 1.5. To save time 
only the first stack of the taper, which has a height of 20 micrometers and a length of 5 
micrometers, was taken into consideration. A small point light source was placed 25 
micrometers away from the taper in the air. As could be seen from Fig.4a, the light emitted 
from the point light source propagates from left to right, enters the first stack of the taper 
and stimulates various eigenmodes within the taper. The amplitudes and phases of all the 
guided eigenmodes on the right side end of the first stack of the taper were transferred to 
their conjugate forms and used as input on the right side. As could be seen from Fig.4b the 
light returned to the left side and rebuilt a point light source with expanded size.  
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(a). Distribution for incident light, left: 2-D field; right:1-D Electrical component at Z=0 

 
(b). Distribution for rebuilt light, left: 2-D field; right:1-D Electrical component at Z=0 

Fig. 4. Reconstruction of a single light spot via digital optical phase conjugation. 

From the X-directional field distribution one can see that the rebuilt light spot has a half- 
maximum-width of about 1μm, which is very close to the predicated resolution of 0.83μm 
by Eq.1, if the initial width of the point light source is discounted. 

Fig.5 demonstrated how multiple light spots could be reconstructed simultaneously via 
digital optical phase conjugation. The simulation parameters were the same as in Fig.4. 
Three small point light sources were placed 25 micrometers away from the taper and 
separated 15 micrometers from each other along vertical direction. As could be seen from 
Fig.5a, the lights emitted from the three point light sources propagate from left to right, 
enter the first stack of the taper and stimulate various eigenmodes within the taper.  
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(a). Distribution for incident light, left: 2-D field; right:1-D Electrical component at Z=0 

 
(b). Distribution for rebuilt light, left: 2-D field; right:1-D Electrical component at Z=0 

Fig. 5. Reconstruction of three light spots via digital optical phase conjugation. 

The amplitudes and phases of all the guided eigenmodes on the right side end of the first 
stack of the taper were recorded. This can also be done in a cumulative way. That is, at one 
time place one point light source at one place and record the amplitudes and phases of 
stimulated guided eigenmodes on the right side. Then for each stimulated guided 
eigenmode sum up the amplitudes and phases recorded in successive steps. Due to the 
linearity of the system the resulting amplitudes and phases for each stimulated guided 
eigenmode appear the same as that obtained by placing all the three point light sources at 
their paces at a time. Next the conjugate forms of above recorded guided eigenmodes were 
used as input on the right side. As could be seen from Fig.5b the light returned to the left 
side and rebuilt three point light sources at the same position but with expanded size. As 
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explained in Ref. [Zhiyang, 2010a] more than 10000 light spots could be generated 
simultaneously using 8-bit SLMs. Each light spot produces a light cone, or a so called laser 
probe. 

3. Configurations of laser-probe 3D cameras 
Once large number of laser probes could be produced we may employ them to construct 3D 
cameras for various applications. Four typical configurations, each dedicated to a particular 
application, have been presented in following four subsections. Subsection 3.1 provided a 
simple configuration for micro 3D measurement, while Subsection 3.2 focused on fast 
obstacle detection in a large volume for auto-navigation and safe driving. The methods and 
theory set up in section 3.2 also apply in rest subsections. Subsection 3.3 discussed the 
combination of a laser probe 3D camera with stereovision for full field real-time 3D 
measurements. Subsection 3.4 discussed briefly strategies for accurate static 3D 
measurements, including large size and 360-deg shape measurements for industry 
inspection. The resolution for each configuration was also analyzed. 

3.1 Micro 3D measurement 

To measure three dimensional coordinates of a micro object, we may put it under a digital 
microscope and search the surface with laser probes as illustrated in Fig.6. When the tip of a 
laser probe touches the surface it produces a light spot with minimum size and the preset 
position Z0 of the tip stands for the vertical coordinate of the object. When the tip lays at a 
height of ΔZ below or above the surface, the diameter of the light spot scattered by the 
surface expand to Δd. From the geometric relation illustrated in Fig.6 it is easy to see that, 

 
0Z

ΔZ Δd
d

     (2) 

where d is the width of the narrow end of an adiabatic waveguide taper. From Eq.2 it is clear 
that the depth resolution depends on the minimum detectable size of Δd. The minimum 
detectable size on the image plane of the objective lens is limited by the pixel size of CCD or 
CMOS image sensor as W0/N0, where W0 is the width of an image sensor that contains N0 
pixels. When mapped back onto object plane, the minimum detectable size of Δd is W0/βN0,  

 
Fig. 6. Set-up for micro 3D measurement with laser probes incident from below the object. 
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where β is the amplification ratio of the objective lens. However if W0/βN0 is less than the 
optic aberration, which is approximately λ/2NA for a well designed objective lens with a 
numerical aperture NA, the minimum detectable size of Δd is limited instead by λ/2NA. 

Using Eq.2 we can estimate the resolution of ΔZ. As discussed in previous section, when SLMs 
with 1920×1080 pixels are employed, the width of the narrow end of an adiabatic waveguide 
taper with a refraction index of 1.5 reaches d=0.458mm for λ=0.532 μm. When a  3×3 array of 
SLMs with same pixels are employed, d increases to 1.376mm. Assuming that a 1/2 inch wide 
CMOS image sensor with 1920×1080 pixels is placed on the image plane of the objective lens, 
we have W0/N0 ≈ 12.7mm/1920 = 6.6μm. For typical ×4(NA=0.1), ×10(NA=0.25), 
×40(NA=0.65)  and ×100(NA=1.25) objective lenses, the optic aberrations are about 2.66, 1.06, 
0.41, and 0.21μm respectively. At a distance of Z0=1mm, according to Eq.2, the depth 
resolutions of ΔZ for above ×4,×10,×40,×100 objective lenses are 5.81, 2.32, 0.89, and 0.46μm 
for d=0.458mm, or 1.93, 0.77, 0.30, and 0.15μm for d=1.376mm respectively. 

In above discussion we have not taken into consideration the influence of the refraction 
index of the transparent object. Although it is possible to make a proper compensation for 
the influence once the refraction index is known, there is another way to avoid it by 
inserting the narrow end of an adiabatic waveguide taper above the objective lens. This 
could be done with the help of a small half–transparent-half-reflective beam splitter M as 
illustrated in Fig.7. It is of better depth resolution due to increased cone angle of laser probes 
at the cost of trouble some calibration for each objective lens. When searching for the surface 
of an object, the tips of laser probes push down slowly toward object. From monitored 
successive digital images it is easy to tell when a particular laser probe touches a particular 
place on the object. Since the laser probes propagate in the air, the influence of the internal 
refraction index of the object is eliminated.   

 
Fig. 7. Set-up for micro 3D measurement with laser probes incident from above the objective 
lens. 

By the way, besides discrete laser probes, a laser probe generating unit could also project 
structured light beams. That means a laser probe 3D camera could also work in structured 
light projection mode. It has been demonstrated that by means of structured light projection 
a lateral resolution of 1μm and a height resolution of 0.1μm could be achieved [Leonhardt, 
et at. 1994]. 

3.2 Real-time large volume 3D detection 

When investigating a large field, we need to project laser probes into far away distance. As a 
result the cone angles of the laser probes would become extremely small. A laser probe 
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might look like a strait laser stick, which makes it difficult to tell where the tip is. In such a 
case we may use two laser probe generating units and let the laser probes coming from 
different units meet at preset positions. Since the two laser probe generating units could be 
separated with a relatively large distance, the angle between two laser probes pointing to 
the same preset position may increase greatly. Therefore the coordinates of objects could be 
determined with much better accuracy even if they are located at far distances.  

Fig.8 illustrated the basic configuration of a laser probe 3D camera constructed with two 
laser probe generating units U1,2 and a conventional CMOS digital camera C. The camera C 
lies in the middle of U1,2. In Fig.8 the laser probe generating unit U1 emits a single laser 
probe as plotted in red line while U2 emits a single laser probe as plotted in green line. The 
two laser probes meet at preset point A. An auxiliary blue dashed ray is drawn, which 
originates at the optic centre of the optical lens of the camera C and passes though point A. 
It is understandable that all the object points lying along the blue dashed line will come onto 
the same pixel A’ of the CMOS image sensor. If an object lies on a plane P1 in front of point 
A, the camera captures two light spots, with the light spot produced by red laser probe lying 
at a pixel distance of -Δj1 on the right side of A’ and the light spot produced by green laser 
probe lying at a pixel distance of -Δj2 on the left side of A’ as illustrated in Fig.9a. When an 
object lies on a plane P2 behind point A, the light spots produced by the red and green laser 
probes exchange their position as illustrated in Fig.9c. When an object sits right at point A 
the camera captures a single light spot at A’ as illustrated in Fig.9b. Suppose the digital 
camera C in Fig.8 has a total of N pixels along horizontal direction, which cover a scene with 
a width of W at distance Z, the X-directional distance Δd1 (or Δd2) between a red (or green) 
laser probe and a blue dashed line in real space could be estimated from the pixel distance 
Δj1 (or Δj2) on the captured image by, 

 1,2 1,2 1,2
2ZW

Δd Δj Δj
N N

tg
   (3) 

where  is the half view angle. As illustrated in Fig.8 and Fig.9a-c, Δd1,2 is positive when the 
light spot caused by red (or green) laser probe laying at the left (or right) side of A’. For 
illustrative purpose the laser probes emitted from different units are plotted in different  

 
Fig. 8. Basic configuration of a laser probe 3D camera. 
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colours. In a real laser probe 3D camera all the laser probes may have the same wavelength. 
To distinguish them we may set the laser probes emitted from one unit slightly higher in 
vertical direction than the laser probes emitted from another unit as illustrated in Fig.9d-f. 

 
Fig. 9. Images of laser probes reflected by an object located at different distances. Left: in 
front of A; Middle: right at A; Right: behind A. 

From X-directional distance Δd1,2 it is easy to derive the Z-directional distance ΔZ of the 
object from the preset position A using the geometric relation, 

 
1,2

0

Δd D
ΔZ 2Z

  (4) 

where D is the space between two laser probe generating units U1,2, Z0 being the preset 
distance of point A. From Eq.3-4 it is not difficult to find, 

 
0

0
0 1,2

DNZ
Z Z ΔZ

DN-4Z Δjtg
    (5) 

After differentiation and some rearrangement, Eq.5 yields, 

 
2

1,2
4Z

dZ dj
DN

tg
  (6) 

where dZ and dj1,2 are small deviations, or measuring precisions of ΔZ and Δj1,2 respectively. 
In Eq.6 it is noticeable that the preset distance Z0 of a laser probe exerts little influence on the 
measuring precisions of ΔZ. Usually Δj1,2 could be measured with half pixel precision. 
Assuming D=1000mm, tg=0.5 and dj1,2=0.5, Fig.10 plotted the calculated precision dZ 
based on Eq.6 when a commercial video camera with 1920×1080 pixels, N= 1920 (in blue 
line), or a dedicated camera with 10k×10k pixels, N= 10k(in red line) is employed. As could 
be seen from Fig.10 the depth resolution changes with the square of object distance Z. At a 
distance of 100,10, 5, and 1m, the depth resolutions are 5263, 53, 13, and 0.5mm for N=1920, 
which reduce to 1000, 10, 2.5, and 0.1mm respectively for N=10k. The depth resolutions are 
acceptable in many applications considering the field is as wide as 100 m at a distance of 100 
mm. From Eq.6 it is clear that to improve the depth resolution one can increase D or N, or 
both. But the most convenient way is to decrease , that is, to make a close-up of the object. 
For example, when tg decreases from 0.5 to 0.05, the measuring precision of Z would 
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improve by 10 times. That is to say, a 0.5m wide object lying at a distance of 5m from the 
camera could be measured with a depth precision of 1.3mm (N= 1920), or 0.25mm(N=10k), 
if its image covers the whole area of the CCD or CMOS image sensor.  

 
Fig. 10. Depth resolution of a laser probe 3D camera in the range of 0~10m(left) and 
0~100m(right) with D=1000mm, tg=0.5, dj1,2=0.5, and N=1920(blue) or 10k(red). 

To acquire the three dimensional coordinates of a large scene the laser probe generating 
units should emit hundreds and thousands of laser probes. For convenience, in Fig.8 only 
one laser probe is shown for each unit. In Fig.11 six laser probes are plotted for each unit. It  

 
Fig. 11. Propagations of laser probes with preset destinations at distance Z0. 
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is easy to see that as the number of laser probes increases the situation becomes quite 
complicated. It is true that each laser probe from one unit meets with one particular laser 
probe from another unit at six preset points A1-6 respectively. However the same laser probe 
would also come across other five laser probes from another unit at points other than A1-6. 
Actually, if each laser probe generating unit produces Np laser probes, a total of Np×Np cross 
points will be made by them, and only Np points among them are at preset positions. The 
other (Np -1)×Np undesired cross points might probably cause false measurements. See the 
two cross points on plane Z1 and four cross points on plane Z2 that are marked with small 
black circles, we could not distinguish them from preset points A2-5, since they all sit on the 
blue dashed lines, sharing the same preset pixel positions on captured images. As a result it 
will be impossible to tell whether the object is located around the preset points A1-6 or near 
the plane Z1 or Z2. To avoid this ambiguity we should first find where the plane Z1 or Z2 is 
located.  

As illustrated in Fig.11, since the optic centre of the optical lens of digital camera C is placed 
at the original point (0,0), the X-Z coordinates of the optic centres of the two laser probe 
emitting units U1,2 becomes (D/2,0) and (-D/2,0) respectively. Denoting the X-Z coordinates 
of Np preset points Ai as (Xi, Z0), i=1,2,…,Np, the equations for red, blue and green lines 
could be written respectively as, 

 i p
0

D D Z
X (X ) i 1,2,...,N

2 2 Z
     (7) 

 j p
0

Z
X X j 1,2,...,N

Z
   (8) 

 k p
0

D D Z
X (X ) k 1,2,...,N

2 2 Z
      (9) 

where i, j and k are independent indexes for preset points Ai, Aj and Ak. The cross points 
where a red line, a blue line and a green line meet could be find by solving the linear 
equations Eq.7-9, which yields,  

 0
k i

D
Z Z

D X X


 
 (10a) 

 j
0

Z
X X

Z
  (10b) 

 
k i

j
X X

X
2


  (10c) 

When X=Xi=Xj=Xk, according to Eq.10a, Z=Z0. They stand for the coordinates of Np preset 
points. When Xk≠Xi, we have Z≠Z0, which gives the coordinates of cross points that cause 
ambiguity, like the cross points marked with black circles on plane Z1 or Z2 in Fig.11.  

One way to eliminate above false measurements is to arrange more laser probes with preset 
destinations at different Z0 that helps to verify whether the object is located near the preset 
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points. To avoid further confusion it is important that laser probes for different Z0 should be 
arranged on different planes as indicated in Fig.12. For laser probes arranged on the same 
plane perpendicular to Y-Z plane they share the same cut line on Y-Z plane. Since the optic 
centres of the two laser probe emitting units U1,2 and the optical lens of digital camera C all 
sit at (0, 0) on Y-Z plane, if we arrange the laser probes for a particular distance Z0 on the 
same plane perpendicular to Y-Z plane, they will come across with each other on that plane 
with no chance to come across with other laser probes arranged on other planes 
perpendicular to Y-Z plane.  

 
Fig. 12. Laser probes arranged on different planes perpendicular to Y-Z plane. 

In what follows, we will design a laser probe 3D camera for auto-navigation and driving 
assistant systems, demonstrating in detail how the laser probes could be arranged to 
provide accurate and definite depth measurement. In view of safety a 3D camera for auto-
navigation or driving assistant systems should detector obstacles in very short time and 
acquiring three dimensional coordinates within a range from 1 to 100m and a relatively 
large view angle 2. In following design we let  ≈ 26.6º, so that tg=0.5. Since the device is 
to be mounted within a car, we may chose a large separation for two laser probe generating 
units as D=1m, which provides a depth resolution as plotted in Fig.10. To avoid above false 
measurements we project laser probes with preset destinations at seven different planes at 
Z0=2,4,8,14,26,50, and 100m. In addition the X-directional spaces between adjacent preset 
destinations are all set as ΔX=Xi-Xi+1=2m, where the preset destination with lower index 
number assumes larger X coordinate. The propagations of these laser probes in the air are 
illustrated in Fig.13-14. In Fig.13 the propagations of the laser probes over a short range 
between zero to the preset destinations are drawn on the left side, while the propagations of 
the same laser probes over the entire range between 0~100m are drawn on the right side. In 
Fig.14 only the propagations of the laser probes over the entire range between 0~100m are 
shown. The optic centres of the first and second laser probe generating units U1,2 are located 
at (0.5,1) and (-0.5,0) respectively, while the camera C sits at the original point (0,0). The red 
and green lines stand for the laser probes emitted from U1 and U2 respectively. The solid 
blue lines connect the optic centre of the optical lens with the preset destinations of the laser 
probes on a given plane at Z0, which plays the same auxiliary function as the dashed blue 
lines in Fig.8.  
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Fig. 13. Propagations of laser probes with destinations at a). 2m; b). 4m; c). 8m; and d). 14m. 
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First lets check Fig.13a for Z0=2m. Since ΔX=Xi-Xi+1=2m, Eq.10a becomes, 

 0 0
1 1

Z Z Z
1 (k i) X 1 2n

 
   

 (11) 

where n=k-i is an even integer. For an odd integer of n Eq.10c does not hold true. Therefore 
Z≤Z0/5, if n≠0, which implies that all the possible undesired cross points are located much 
closer to the camera C. In addition since the field width at Z0 is W=2Z0tg=Z0, the total 
number of laser probes that could be arranged within a width of W is  

 
0

p
W Z

N 1 1
ΔX 2

     (12) 

According to Eq.12, Np=2 at Z0=2m. As the maximum value for n in Eq.11 is Np-1=1 and n 
should be even integer, we have n=0. It means that beside 2 preset points there are no other 
cross points. In Fig.13a, from the left figure we see only two cross points at preset 
destinations at 2m. We find no extra cross points in the right figure which plotted the 
propagations of the same laser probes over a large range of 0~100m. In addition we see by 
close observation that at large distances the X-directional distance between a red (or green)  
line and an adjacent blue line approaches one forth of the X-directional distance between 
two adjacent blue lines. This phenomenon could be explained as follows. 

From Z=Z0 to Z=Z0+ΔZ, the X-directional distance between a red (or green) line and an 
adjacent blue line increases from zero to Δd1,2 as described by Eq.4, meanwhile the X-  

directional distance between adjacent blue lines changes from ΔX to ΔX’. It is easy to find 
that,  

 
0 0

ΔX X'
Z Z Z




 
 (13) 

Rearrange Eq.13 as,  

 0
0

ΔX
X' (Z Z)

Z
     (14) 

Dived Eq.4 by Eq.14, we get, 

 
1,2

0

d D
X' 2 X Z Z

Z 


   
 (15) 

From Eq.15 we can see that Δd1,2/ΔX’ approaches 1/4 when ΔZ>>Z0. It could also be seen 
that Δd1,2/ΔX’ becomes -1/4 when ΔZ = - Z0/2. In combination, start from Z0/2 to infinity, 
both red and green lines are centred round blue lines with X-directional deviations no larger 
than one fourth of the X-directional distances between adjacent blue lines at the same 
distance, obtaining no chance to intersect with each other. It implies that no ambiguity 
would occur if the laser probes with preset destinations at Z0 are used to measure the depth 
of an object located within the range from Z0/2 to infinity. As shown in Fig.13a using laser 
probes with preset destinations at Z0=2m, from monitored pictures we can definitely tell 
whether there is an object and where it is within the range of 1~100m if we search round the  
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Fig. 14. Propagations of laser probes with destinations at a). 26m; b). 50m; and c). 100m. 
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preset image position A’ and confine the searching pixel range Δj less than one fourth of the 
pixel number between two adjacent preset image positions. Since Np preset points distribute 
evenly over a width of W, which cover a total of N pixels, Δj ≤ N/4Np. If N=1000, Δj ≤125. 

Next lets check Fig.13b for Z0=4m. Using Eq.12, we have Np=3. Since the maximum value 
for n in Eq.11 is Np-1=2 and n should be even integer, we have n=0, 2. It means that beside 3 
preset points there is Np-n=3-2=1 extra cross point at Z=Z0/5=0.8m, which are clearly seen 
in the left figure in Fig.13b. The number of extra cross points decreases by n because 
j=(k+i)/2=k-n/2 as required by Eq.10c is unable to adopt every number from 1 to Np. As 
discussed above using laser probes with preset destinations at Z0=4m, from captured 
pictures we can definitely tell whether there is an object and where it is within the range of 
2~100m if we confine the searching pixel range to Δj ≤ N/4Np. If N=1000, Δj ≤83.  

Similarly both the preset points and the extra cross points are observed exactly as predicated 
by Eq.12 for Z0=8,14,26,50, and 100m as illustrated in Fig.13c-d and Fig.14. With above 
arrangement a wide object at a certain distance Z might be hit by laser probes with preset 
destinations on different planes, while a narrow object might still be missed by all above 
laser probes since the X-directional spaces between adjacent laser probes are now more than 
ΔX=2m if Z>Z0, although they decrease to ΔX/2=1m at Z0/2. To detect narrow objects we 
may add another 100 gropes of laser probes with same preset destinations at Z0 but on 
different planes perpendicular to Y-Z plane, each grope shifting ΔX/100=20mm along X-
directional as illustrated in Fig.15. With all these laser probes a slender object as narrow as 
20mm, see the object O1 in Fig.15a, would be caught without exception at a single 
measurement. But if an object is not tall enough to cover several rows of laser probes, see the 
object O2 in Fig.15a, it may also escape from detection. To increase the possibility of 
detecting objects with small height we may re-arrange the positions of the laser probes by 
inserting each row of laser probes from the lower half part into every row of laser probes at 
upper half part. As a result the maximum X-directional shift between adjacent rows of laser 
probes reduces from 2-0.02=1.98m to 1m as illustrated in Fig.15b. As could be seen the same 
object O2 now gets caught by a laser probe in the fourth row.  

 
Fig. 15. Arrangements of laser probes with same destination on the X-Y plane. 
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In above design we arranged 100 group of laser probes with destinations at Z0=2,4,8,14, 
26,50, and 100m respectively. That is to say a total of 100×(1+3+5+8+14+26+51)+1=10801 
laser probes have been employed. With so many laser probes an object as narrow as 20mm 
might be detected within a single measurement, or a single frame, without ambiguity. If the 
object is located between 50 and 100m, it could be detected correctly by any laser probe 
hitting on it. If it comes closer to the camera, although it might be incorrectly reported by 
laser probes with destinations at Z0=100m, or 50m, etc, it will be correctly reported by laser 
probes with destinations at smaller Z0. Considering the facts that the measuring range of the 
laser probes overlap greatly, the X-directional space between adjacent laser probes reduces 
by a half at Z0/2 than that at Z0, and the car bearing the camera, or the object itself, is 
moving, an object as narrow as 10mm or much less has great chance to be detected, or hit by 
at least one laser probe, within one or several frames.      

3.3 Real-time large volume full field 3D measurement 

Usually a laser probe 3D camera discussed in previous subsection could acquire at 
maximum about 104 three dimensional coordinates every frame using 8-bit SLMs. If dense 
three dimensional coordinates need to be acquired in real time a laser probe 3D camera 
could be incorporated with a pair of stereovision cameras. The accurate three dimensional 
coordinates come directly from the laser probe 3D camera plus those derived from 
stereovision make a complete description of the full field. More importantly, the laser probe 
3D camera helps greatly in matching, noise depression and calibration for stereovision. As 
illustrated in Fig.16, a pair of digital cameras C1,2 for stereovision have been added to the 
device in Fig.8, which are separated by a distance of D1. D1 might adopt a value larger or  

 
Fig. 16. A laser probe 3D camera combined with a stereo vision camera. 
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smaller than D. Each laser probe puts a mark on the object. From the image captured by 
camera C the absolute location of the object could be calculated using Eq.5 and the positions 
of the same mark on the pictures captured by camera C1 and C2 could then be predicated. In 
other word, one mark on the pictures captured by camera C1 could easily be matched with 
the same mark on the pictures captured by camera C2. Without these marks the matching 
between the pictures captured by cameras C1 and C2 might be very difficult or impossible 
over many pixels, creating serious noises in 3D reconstruction. The matching of the rest 
pixels around the marks could be performed quickly with reduced searching range. The 
marks also serve as an accurate and efficient means for the calibration of cameras C1 and C2. 
In stereovision it is very important to align one camera accurately with another camera, 
which brings great trouble when changing the focal length of one camera to zoom in or out, 
since the same amount of changes must be made instantly to the focal length of another 
camera. With the help of the laser marks, one camera needs only to follow roughly the 
changes of another camera. This is because all the pictures captured by cameras are 
projections of objects on the image plane, which is determined by the location, orientation 
and the focal length of the camera. Usually camera C is fixed at the origin of coordinates as 
illustrated in Fig.16. The only unknown parameter tg in Eq.5, which is related to the focal 
length, is pre-calibrated. It could also be determined on the spot for every picture captured 
by camera C based on the fact that the same object detected by neighbouring laser probes 
with different preset destination Z0 should have nearly the same depth Z as predicated by 
Eq.5. Even for very rough objects tg could be properly determined after a least squares fit 
over the depths of many pairs of neighbouring laser probes. Next the unknown locations, 
orientations and the focal lengths of the camera C1,2 could be derived from the image 
positions of hundreds of laser probes whose absolute coordinates are pre-calculated using 
Eq.5. Then by stretching, or rotation, or a combination of them, the pictures come from 
camera C1 could easily be transformed to match with the pictures from camera C2. After 
above pre-processing, stereo matching might be performed on the overlapped region of the 
image pairs from camera C1,2.  

When laser probes are arranged as discussed in previous subsection, we say that the laser 
probe 3D camera is working in detection mode. For continuous measurements, once the 
location of all the objects are found in a frame, laser probes could be rearranged much more 
densely near the surfaces of known objects so that more three dimensional coordinates 
could be acquire within successive frames. In this case we say that the laser probe 3D 
camera is working in tracing mode. After some frames in tracing mode, a laser probe 3D 
camera should return to detection mode for one frame to check whether there are new 
objects appearing in the field. In Fig.16 the number of laser probes increased to 11 for tracing 
mode. It could be seen that as the number of laser probes increases the number of extra 
crossing points also increases as compared with that in Fig.11. Nevertheless these extra cross 
points are harmless since we already known the object lies around Z0, away from Z1 to Z3. 

The stereovision pictures recorded by cameras C1,2 bear the images of lots of laser probes. 
They are harmful for later 3D display. Although these marks could be cleaned away via post 
imaging processing, a more preferable approach is to separate the visible light from infrared 
laser probes with a beam splitter. As illustrated in Fig.17, the beam splitter BS reflects the 
infrared laser probes onto image transducer CCD1, while passing the visible light onto 
image transducer CCD2.The advantage to employ two image transducers within one camera 
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is that the electronic amplifier for each image transducer may adopt a different gain value so 
that the dark one does not get lost in the bright one. This is beneficial especially when 
working in strong day light. If both cameras C1 and C adopted the same structure as 
illustrated in Fig.17, camera C2 could be taken away because images for visible light from 
cameras C1 and C are enough to make up a stereovision. 

 
Fig. 17. A digital camera capable of recording infrared and visible light images separately. 

3.4 Static large size or 360-deg shape measurement 

In shape measurement for industry inspection the measuring accuracy is more crucial than 
measuring speed. Usually the component under investigation stays at a fixed position or 
moves slowly on a line during measurement. To improve measuring precision we can first 
divide the entire area under investigation into lot of subdivisions, say 10×10 subdivisions. 
Then measure each subdivision with much improved depth resolution due to reduced view 
angle as discussed in section 2. Dense and accurate three dimensional coordinates of the 
entire area could be obtained by patching all the measurements together [Gruen, 1988; 
Heipke, 1992]. The patching or aligning between adjacent subdivisions becomes easy and 
accurate with the help of laser probes. We can arrange adjacent subdivisions in a way so that 
they overlap slightly. As illustrated in Fig.18, when shifting from one subdivision S1 to an 
adjacent subdivision S2 we move the camera C and laser probe generating units U1,2 
separately. First we move the camera C to the new subdivision S2 and keep U1,2 unchanged, 
see Fig.18b. From the images of laser probes on the overlap region on the pictures taken 
before and after the movement of camera C, we can find exactly how much the camera C 
have moved. This could be accomplished using the fact that the laser probes on the overlap 
region stay at fixed positions. Next we move U1,2 to the new subdivision S2 with the camera  

 
Fig. 18. Steps to move laser probe generating unit U1,2 and camera C separately to adjacent 
subdivision. 
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C unchanged, see Fig.18c. From captured picture before and after the movement of U1,2 the 
exact displacement could be calculated from the displacements of the same laser probes. 
Then measurement on the new subdivision S2 could be carried out. 

For 360-deg shape measurement, we can mount the two laser probe generating units U1,2 
and the camera C on two separate circular tracks, with the object under investigation placed 
at the centre. When the measurement at a certain angle is done, the camera C and laser 
probe generating units U1,2 could be move to a new view angle separately following the 
same strategies as discussed above. With the help of laser probes on the overlapped region 
we can determine over how much angle have U1,2 and camera C each moved, which makes 
it easy to transfer the local coordinates at a certain view angle accurately to the global 
coordinates. Otherwise additional measure has to be taken to monitor the positions of U1,2 
and camera C. 

In shape measurement we can chose CCD or CMOS image sensors with large pixel number 
to achieve high vertical and lateral resolution at the cost of reduced frame rate. Usually 
shape measurements are carried out at small fixed distances, if we let D = 2Z, Eq.6 simplifies 
to, 

 1,2
W

dZ dj
N

  (16) 

Eq.16 implies that the vertical resolution is the same as the lateral resolution determined by 
the image sensor. When an image sensor with a total of 10k×10k pixels is used, we have 
N=10000. Then for a subdivision with an area of 100×100mm2, i.e., W=100mm, both vertical 
and lateral resolutions reach 5μm for dj1,2=0.5. By a least squares fit method sub-pixel 
resolution for the image position of laser probes are possible [Maalen-Johansen, 1993; 
Clarke, et al., 1993]. When 1/20 sub-pixel resolution is obtained after least squares fit, 
dj1,2=0.05, above said resolution improves to 0.5 μm and the relative error reaches 5×10-6. 

As discussed in subsection 3.2 within a single frame about 10801 points could be acquired 
using a laser probe 3D camera, each providing a three dimensional coordinate for the 
detected object. Usually this number of three dimensional coordinates is enough for 
industry inspection. The feature sizes, such as width, height, diameter, thickness, etc., could 
all be derived from measured data. If dense coordinates are needed for very complex 
shapes, they could be acquired from successive frames. For example, within 100 successive 
frames, which last 10 seconds at a frame rate of 10f/s, a total of about 100×10801≈106 three 
dimensional coordinates could be acquired. Between each frame the laser probes shift a little 
their preset positions along horizontal or vertical direction. When combined together these 
106 three dimensional coordinates provide a well description of the entire component. In 
addition, to detect possible vibrations of the object during successive frames we can fix the 
positions of a small fraction of laser probes throughout the measurements. The movements 
of the images of these fixed laser probes help to reveal and eliminate the movements of the 
objects relative to the camera.  

4. Characteristics of laser-probe 3D cameras 
In previous section we discussed four typical configurations of laser probe 3D cameras and 
their measuring precision. In this section we will provide more analysis concerning such 
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characteristics as processing speed, power consumption, and resistance to external 
interferences and compare them with that of other measuring methods.   

4.1 Image processing speed 

The processing, or the derivation of depth information from pictures captured by a laser 
probe 3D camera is simple compared with many other methods like structured light 
projection, stereovision, etc. One need only to search on the left and right side of pre-known 
image positions of preset laser probes to see whether there is a pair of light spots reflected 
by objects. In other words one need only to check whether there are local intensity 
maximums, or whether the image intensities exceed a certain value on the left and right 
sides of Np pre-known pixels with a searching range of ±N/4Np pixels. The searching stops 
once the pair of light spots is found. Therefore on one image row, a total of Np×2N/4Np 
=N/2 pixels need to be checked at maximum. Considering pairs of light spots reflected by 
objects lie symmetrically around pre-known image positions, when one light spot is 
detected another light spot could be found easily on other side after one or two steps of 
searching. It implies that the maximum searching steps could be reduced to about N/4. 
Usually the pre-known pixels are arranged on every other row, so only about one eighth of 
the total pixels of an image need to be checked. Once a pair of light spots is detected the 
depth of the object could be calculated easily using Eq.5 with less than 10 operations. For the 
laser probe 3D camera given in the last section, at most 10801 points need to be calculated. 
Since the working frequencies of many ARM, FPGA chips have reached 500MHz~1 GHz, 
one operation could be perform within 100ns on many embedded systems. Then the total 
time to calculate 10801 points is less than 10801×10×100ns≈0.01s. It means that an obstacle in 
front of a car could be reported within a single frame.  

4.2 Laser power 

Since the laser power is focused into each laser probe rather than projected over the entire 
field, a laser probe 3D camera may be equipped with a relatively low power laser source. 
For micro 3D measurement a laser power less than 20mW might be enough, because almost 
all the laser energy might be gathered by objective lens and shed onto the image transducer 
except the adsorption by SLMs and optical lenses. However if optical manipulation of 
micro- or nano-particles is to be carried out higher energy might be necessary [MacDonald, 
2002; Grier, 2003]. For industry inspection a laser power less than 2W might be enough since 
the measurements are usually carried out within about 1m. For obstacle detection within a 
range of 1~100m, if on average 1~5mW should be assigned to each laser probe for a total of 
10801 laser probes, considering an adsorption of 90% by SLMs and optical lenses, a laser 
power of 100~500W might be necessary. To reduce energy adsorption dedicated gray scale 
SLMs should be employed. In a gray scale SLM the colour filters could be omitted, which 
results in triple decrease of energy adsorption as well as triple increase of available pixel 
number. In addition, among said 10801 laser probes, those with preset destinations at near 
distances might be assigned with much lower energy. Therefore the total energy for a laser 
probe 3D camera to measure an area of 100m×100m at a distance of 100m might be reduced 
to within 20~100W, much less than the lamp power in a LCD projector. The laser power 
could be further reduced by several times if sensitive CCD or CMOS image sensors are 
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employed. Other optical methods could hardly work with such low light power over so 
large area. For example, in structured light projection method, if an output light energy of 
20~100W is projected over the same area, the illuminating intensity is only 2~10mW per 
square meter. In contrast, at a distance of 100m, the diameter of a laser probe could be as 
small as ~10mm as discussed in section 2. It means that even with an average energy of 
1~5mW, the illuminating intensity provide by each laser probe could reach 1~5mW/25π per 
square millimetre, which is about 15708 times higher than that available in structured light 
projection method at the same distance.  

4.3 Resistance to interferences   

There are various interferences that may decrease measuring accuracy, to name a few, 
environmental light, vibration, colour, reflectivity and orientation of the object under 
investigation, etc. In subsection 3.3 we discussed how to eliminate the influence of 
environment light with a beam splitter. In subsection 3.4 we introduced a method to detect 
and eliminate the vibration of an object during successive measuring frames. Since a laser 
probe 3D camera determines the absolute location of an object by the positions rather than 
the exact intensities of reflected images of laser probes that are focused with diffraction 
limited precision, the colour, reflectivity or orientation of the object exerts limited influence 
on the measuring results, especially in fast obstacle detection.  

There is another interference source that usually receives little attention but is of vital 
importance in practice, i.e., mutual interferences between same active devices. When several 
users turn on their laser probe 3D cameras at the same time, will every camera produce 
good results like it usually does when it works alone? It is true that one camera would now 
capture the laser probes projected by other cameras. Fortunately few of the images of laser 
probes projected by other cameras would lie symmetrically round the pre-known image 
positions of the laser probes projected by itself, since the laser probes from different devices 
are projected from different places with different angles. In image processing, to depress this 
mutual interference, we can discard all the single light spots or pairs of light spots lying 
asymmetrically round the pre-known image positions. In addition, referring Fig.15, we may 
store in each camera many sets of laser probe arrangements that differ in their vertical 
pattern, or rotated with a different angle within the vertical plane. When it observed the 
existence of laser probes from other cameras by turning off its own laser probes, it may 
chose one arrangement of laser probes that coincides least with existing laser probes. 
Considering the number of laser probes projected by one camera is about 100 times less than 
the camera’s total pixel number, about ten cameras might work side by side at the same time 
without much interference to each other. In addition a laser probe 3D camera could also 
distinguish its own laser probes from that emitted by other cameras from at least 4 
successive frames with its own laser probes turning on and off repeatedly. Those light spots 
that appear and disappear properly are very likely the images produced by its own laser 
probes. Further more, for a professional laser probe 3D camera, several laser sources with 
different wavelengths may be incorporated. Accordingly narrow band changeable beam 
splitters should be used in Fig.17. When other cameras exist, it may shift to a least occupied 
wavelength. With all above strategies several tens of laser probe 3D cameras may work well 
side by side at the same time.  
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5. Conclusion 
In summery, the chapter puts forth a laser probe 3D camera that offers depth information 
lost in conventional 2D cameras. Via digital optical phase conjugation, it projects hundreds 
and thousands of laser probes precisely onto preset destinations to realize accurate and 
quick three dimensional coordinate measurement. A laser probe 3D camera could be 
designed with vertical and lateral resolutions from sub-micrometer to several micrometers 
for micro object or medium sized component measurement. It could also be configured for 
real-time 3D measurement over a large volume—for example, over a distance of 1~100m 
with a view angle larger than 50º—and detect any obstacle as narrow as 20mm or much less 
within a single frame or 0.01 second, which is of great use for auto-navigation, safe-driving, 
intelligent robot, etc. 

The laser probes in a 3D camera not only make a 3D measurement simple and quick, but 
also help a lot in accurate patching for large size or 360-deg shape measurement, monitoring 
and elimination of vibration, depression of mutual influence when many laser probe 3D 
cameras work side by side, etc. When incorporated with stereovision they make the stereo 
matching easy and accurate. More than that, they offer an efficient means for camera 
calibration so that when one camera zooms in or out, another camera may follow only 
roughly rather than exactly, alleviating the stringent equipment requirements in stereo 
movie industry.  

With its diffraction limited resolution to digitally reconstruct any optical wavefront, 
however complex it is, digital optical phase conjugation opened a way for many new 
techniques. The laser probe 3D camera discussed in the chapter is only one of the many 
possible applications. Since huge number of laser probes with varying intensity could be 
created precisely at lots of preset points, pointing more laser probes into each preset point 
using a large array of laser probe generating units and taking one such preset point as a 3D 
pixel, real-time true 3D display over a very large space with fine quality could become a 
reality. High power laser beams could also be formed, accurately focused and steered via 
digital optical phase conjugation, which may find wide applications in such fields as nuclear 
fusion, space laser communication, and so on. In micro world arrays of laser probes with 
sub-micrometer resolution could be employed for fast micro- or nano-partical assembling, 
operations on DNA, stereo information storage, etc. 
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1. Introduction  

Inverse aperture synthesis in the radar theory is a recording of the complex reflective 
pattern (complex microwave hologram) of a moving target as a complex signal. The 
trajectory of moving target limited by the radar’s antenna pattern or time of observation is 
referred to as inverse synthetic aperture, and radar using the principle of inverse aperture 
synthesis is inverse synthetic aperture radar (ISAR). The spatial distribution of the 
reflectivity function of the target referred to as a target image can be retrieved from the 
received complex signals by applying image reconstruction techniques. 

Conventional ISAR systems are coherent radars. In case the radars utilize a range-Doppler 
principle to obtain the desired image the range resolution of the radar image is directly 
related to the bandwidth of the transmitted radar signal, and the cross-range resolution is 
obtained from the Doppler frequency gradient generated by the radial displacement of the 
object relative to the radar. 

A common approach in ISAR technique is division of the arbitrary movement of the target 
into radial displacement of its mass centre and rational motion over the mass centre. Radial 
displacement is compensated considered as not informative and only rotational motion is 
used for signal processing and image reconstruction. In this case the feature extraction is 
decomposed into motion compensation and image reconstruction (Li et al., 2001). Multiple 
ISAR image reconstruction techniques have been created, which can be divided into 
parametric and nonparametric methods in accordance with the signal model description 
and the methods of a target features extraction. (Berizzi et al., 2002; Mrtorella et al., 2003; 
Berizzi et al., 2004). The range-Doppler is the simplest non parametric technique 
implemented by two-dimensional inverse Fourier transform (2-D IFT). Due to significant 
change of the effective rotation vector or large aspect angle variation during integration time 
the image becomes blurred, then motion compensation is applied, which consist in coarse 
range alignment and fine phase correction, called autofocus algorithm. It is performed via 
tracking and polynomial approximation of signal history from a dominant or well isolated 
point scatterer on the target (Chen & Andrews, 1980), referred to as dominant scatterer 
algorithm or prominent point processing, a synthesized scatterer such as the centroid of 
multiple scatterers (Wu et al., 1995), referred to as multiple scatterer algorithm. Autofocus 
technique for random translational motion compensation based on definition of an entropy 
image cost function is developed in (Xi et al., 1999). Time window technique for suitable 
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selection of the signals to be coherently processed and to provide a focused image is 
suggested in (Martorella Berizzi, 2005). A robust autofocus algorithm based on a flexible 
parametric signal model for motion estimation and feature extraction in ISAR imaging of 
moving targets via minimizing a nonlinear least squares cost function is proposed in (Li et 
al., 2001). Joint time-frequency transform for radar range-Doppler imaging and ISAR motion 
compensation via adaptive joint time-frequency technique is presented in (Chen  Qian, 
1998; Qian , Chen 1998). 

In the present chapter assuming the target to be imaged is an assembly of generic point 
scatterers an ISAR concept, comprising three-dimensional (3-D) geometry and kinematics, 
short monochromatic, linear frequency modulated (LFM) and phase code modulated (PCM) 
signals, and target imaging algorithms is thoroughly considered. Based on the functional 
analysis an original interpretation of the mathematical descriptions of ISAR signal formation 
and image reconstruction, as a direct and inverse spatial transform, respectively is 
suggested. It is proven that the Doppler frequency of a particular generic point is congruent 
with its space coordinate at the moment of imaging. In this sense the ISAR image 
reconstruction in its essence is a technique of total radial motion compensation of a moving 
target. Without resort to the signal history of a dominant point scatterer a motion 
compensation of higher algorithm based on image entropy minimization is created. 

2. ISAR complex signal of a point target (scatterer) 
2.1 Kinematic equation of a moving point target 

The Doppler frequency induced by the radial displacement of the target with respect to the 
point of observation is a major characteristic in ISAR imaging. It requires analysis of the 
kinematics and signal reflected by moving target.  Consider an ISAR placed in the origin of 
the coordinate system (Oxy) and the point A as an initial position with vector R(0) at the 
moment t = 0, and the point B as a current or final position with vector R(t) at the moment t 
(Fig. 1). 

 
Fig. 1. Kinematics of a point target. 

Assume a point target is moving at a vector velocity v, and then the kinematic vector 
equation can be expressed as 
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 ( ) (0) .t t R R v  (1) 

which in matrix form can be rewritten as 

 
( ) (0)

.
( ) (0)

x

y

vx t x
t

vy t y

    
      

      
 (2) 

where (0) (0).cosx R  , (0) (0).siny R  are the coordinates of the initial position of the 

target (point A); 2 2(0) (0) (0)R x y  is the module of the initial vector;   is the initial 

aspect angle; .cosxv v  , .sinyv v   are the coordinates of the vector velocity; v is the 

module of the vector velocity and  is the angle between vector velocity and Ox axis. 

The time dependent distance ISAR – point target can be expressed as 

 2 2( ) (0) ( . ) 2( (0). ).R t R v t t   R v , (3) 

where (0).R v  is the inner product, defined by (0). (0) (0)x yx v y v R v  or 
(0). (0). .cosR v R v ;      is the angle between position vector (0)R  and vector 

velocity v , defined by the equation 

 
(0). ( ).

arccos
(0).

x yx v y t v

R v



 . (4) 

Then Eq. (3) can be rewritten as 

 2 2( ) (0) ( . ) 2 (0)( . )cosR t R v t R v t    , (5) 

where (0)R is the distance to the target at the moment t  0, measured on OA, the initial line 
of sight (LOS). 

The radial velocity of the target at the moment t is defined by differentiation of Eq. (5), i.e. 

 
2

2 2

( ) (0). .cos
( )

(0) ( . ) 2 (0). . .cos
r

dR t v t R v
v t

dt R v t R v t






 

 
. (6) 

If t  0, the radial velocity (0) cosrv v  . In case the angle   0, then (0)rv v . At the 
moment t  T when . (0)cosv T R    the target is on the traverse, then ( ) 0rv T  , and  

(0)cosR
T

v


 , which for the kinematics in Fig. 1 requires an angle   to have a value 

/ 2  . The time variation of the radial velocity of the target causes a time dependent 
Doppler shift in the frequency of the signal reflected from the target. 

2.2 Doppler frequency of a moving point target 

Assume that the ISAR emits to the target a continuous sinusoidal waveform, i.e. 
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 0( ) exp( )s t A j t , (7) 

where 0A  is the amplitude of the emitted waveform, 
2 .

2
c

f
 


   is the angular 

frequency, f is the carrier frequency,   is the wavelength of the emitted waveform, c  3.108 

m/s is the speed of the light in vacuum. 

The signal reflected from the target can be defined as a time delayed replica of the emitted 
waveform, i.e. 

 ( ) exp( ( ))i is t A j t t   (8) 

where iA  is the amplitude of the reflected signal, 
2 ( )i

i
R t

t
c

  is the time delay of the replica 

of the emitted waveform, ( )iR t  is the radial slant range distance to the target, calculated by 

Eq. (5). Define the general phase of the reflected signal as 

 
2 ( )

( ) iR t
t t

c
    
 

. (9) 

Then the current angular frequency of the reflected signal can be determined as 

 
( )( )ˆ( ) 2 . idR td t

t
dt c dt

 
   , (10) 

 
( )( ) 4ˆ( ) . idR td t

t
dt dt

 



   , (11) 

where 
( )4

( ) . i
D

dR t
t

dt



  is the angular time dependent Doppler frequency. 

For the closing target 
( )

0idR t
dt

 , then the angular Doppler frequency is a negative, 

( ) 0D t  , and current angular frequency of the signal reflected from the target, ˆ( )t , 

increases, i.e. ˆ( ) ( )Dt t    . For a receding target
( )

0idR t
dt

 , then the angular Doppler 

frequency is a positive, ( ) 0D t  , and current frequency of the signal reflected from the 

target, ˆ( )t , decreases, i.e. ˆ( ) ( )Dt t    . 

Based on Eq. (6) the angular Doppler frequency can be expressed as 
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D

v t R v
t

R v t R v t
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. (12) 

Accordingly the absolute Doppler frequency can be defined as 
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If t  0, then 
2

(0) . .cosDF v 


 . If   0, then 
2

(0) .DF v


 . At the moment t  T, i.e 

. (0)cosv T R    the target is on the traverse, then ( ) 0DF T  .  At the particular moment t 

and 0  , 
2

( ) .DF t v


  is constant, and for / 2  , 
2

2 2

2 .
( ) .

(0) ( . )
D

v t
F t

R v t



. Hence in 

case 0  the Doppler frequency is time dependent during the aperture syntheses, coherent 
processing interval (CPI), but only one value has a meaning for ISAR imaging, the value 
defined at the moment of imaging, which will be proven in subsection 3.3. 

2.3 Numerical experiments 

2.3.1 Example 1 

Assume that the point target is moving at the velocity v =29 m/s and illuminated by a 
continuous waveform with wavelength  = 3.10-2 m (frequency 1010f  Hz). CPI time t = 712 
-722 s s, initial distance R(0) = 105 m, guiding angle   0.9., position angle  = /3. The 
calculation results of the current signal frequency and Doppler frequency are illustrated in 
Figs 2, (a), and (b). 

   
            (a) Current ISAR signal frequency                                (b) Doppler frequency 

Fig. 2. Current ISAR signal and Doppler frequency caused by time varying radial velocity. 

It is worth noting that the current signal frequency decreases during CPI due to the 
alteration of the value and sign of the Doppler frequency varying from -3 to 3 Hz. At the 
moment t = 717 s the Doppler frequency is zero. The time instance where Doppler changes 
its sign (zero Doppler differential) can be regarded as a moment of target imaging. 

Computational results of the imaginary and real part of ISAR signal reflected by a point 
target with time varying radial velocity are presented in Figs. 3, (a), and (b). It can be clearly 
seen the variation of the current frequency of the signal due to the time dependent Doppler 
frequency of the point target. The existence of wide bandwidth of Doppler variation in the 
signal allows multiple point scatterers to be potentially resolved at the moment of imaging. 
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            (a) Imaginary part of an ISAR signal                    (b) Real part of an ISAR signal. 

Fig. 3. Imaginary and real part of ISAR signal reflected by a point target. 

2.3.2 Example 2 

It is assumed that the point target moves at the velocity v =29 m/s and is illuminated with 
continuous waveform with wavelength  = 10-2 m (frequency 103.10f  Hz). CPI time  
t = 0 - 2 s, initial distance R(0) = 30 m, guiding angle  =  and position angle,  = 0. The 
calculation results of the current signal frequency and Doppler frequency are illustrated in 
Figs 4, (a), and (b). 

  
              (a) Current ISAR signal frequency                              (b) Doppler frequency 

Fig. 4. Current ISAR signal frequency and Doppler frequency with a constant radial velocity. 

It can be seen that the current signal frequency has two constant values during CPI due to 
the constant Doppler frequency with two signs, -5.8 Hz and +5.8 Hz. At the moment t = 1.04 
s the Doppler frequency alters its sign. The time instance where Doppler changes its sign 
(zero Doppler differential) can be regarded as a moment of point target imaging that means 
one point target can be resolved.  
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           (a) Imaginary part of an ISAR signal                      (b) Real part of an ISAR signal. 

Fig. 5. Imaginary and real part of ISAR signal reflected by a point target. 

Computational results of the imaginary and real part of ISAR signal reflected by a point 
target with constant radial velocity are presented in Figs. 5, (a), and b. It can be clearly seen 
the change of the phase in the imaginary part of the ISAR signal. 

3. ISAR signal formation and imaging with a sequence of monochromatic 
short pulses 
3.1 3-D ISAR geometry and kinematics 

The basic characteristic in ISAR imaging is the time dependent distance between a particular 
generic point from the target and ISAR. Consider 3-D geometry of ISAR scenario with radar 
and moving target in the coordinate system Oxyz (Fig. 6). The target is located in a regular 
grid, defined in the coordinate system 'O XYZ . The generic point scatterer g from the target 
area is specified by the index vector ( , , )i j k , i.e. ( , , )i j kg . The position vector ( )ijk pR of the 
ijk th generic point scatterer in the coordinate system Oxyz  at the moment p  is described 
by the following vector equation 

 00( ) (0)
2ijk p ijk
N

p T p     
 

R R V AR , (14) 

where 2 2( ) ( ), ( ), ( )
T

ijk ijk ijk ijkp x p y p z p   R , ( ), ( )ijk ijkx p y p , and ( )ijkz p  are the current 

coordinates of the generic point, pT denotes the pulse repetition period; 1,p N  denotes 

the index of the emitted pulse, N  denotes the full number of the emitted pulses during CPI; 

 00' 00' 00' 00'(0) (0), (0), (0), Tx y zR  is the position vector of the target geometric center, that 

locates a point 'O  at the moment 
2
N

p  , [ , , ]Tx y zV V VV  denotes the vector velocity with 

coordinates cosxV V  , cosyV V   and coszV V  ; [ , , ]Tijk ijk ijk ijkX Y ZR  denotes the 

position vector of the ijk th generic point; ( )ijkX i X  , ( )ijkY j Y   and ( )ijkZ k Z   denote 
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the discrete coordinates of the ijk th generic point in the coordinate system 'O XYZ ;  

X , Y  and Z  denote the dimensions of the grid cell; cos , cos  and 
2 2cos 1 cos cos      are the guiding cosines; V  is the module of the vector velocity. 

 
Fig. 6. Geometry of 3-D ISAR scenario. 

The elements of the transformation matrix A  in Eq. (14) are determined by the Euler 
expressions 
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12

13

21 31

22 32

23 33

cos cos sin cos sin ;
cos sin sin cos cos ;

sin sin ;
sin cos cos cos sin ; sin sin ;
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 
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 
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  
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 (15) 

The projection angles ,   and  , defining the space orientation of the 3-D grid are 

calculated by components , ,A B C  of the normal vector to the plane that specifies the 

position of the target, and coordinates of the vector velocity, i.e. 

 arctan
A
B

    
 

; 1
2 2 2 2

arccos
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The components , ,A B C  of the normal vector are determined by the components of the 

position vector  00' 00' 00' 00'(0) (0), (0), (0), Tx y zR , vector velocity of the target and vector 

position of an arbitrary reference point 0 0 0 0[ (0), (0), (0)]Tx y zR in the coordinate system 

Oxyz by expressions 

 
00' 0 00' 0

00' 0 00' 0

00' 0 00' 0

[ (0) (0)] [ (0) (0)];

[ (0) (0)] [ (0) (0)];
[ (0) (0)] [ (0) (0)].

z y

x z

y x

A V y y V z z

B V z z V x x
C V x x V y y

   

   
   

 (18) 

The projection of the vector equation (14) on Cartesian coordinates yields 
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                                                
  

, (19) 

then the distance between the generic point and ISAR can be expressed as 

 
1

2 2 2 2( ) ( ) ( ) ( )ijk ijk ijk ijkR p x p y p z p    
 (20) 

Eq. (20) is used in calculation of the time delay of the signal reflected by a particular generic 
point scatterer from the target area while signal modeling. 

3.2 Short pulse ISAR signal formation 

Consider 3-D ISAR scenario (Fig. 6) and a generic point g from the target illuminated by 
sequence of short monochromatic pulses, each of which is described by 

 ( ) .rect exp( . )
t

s t A j t
T

   
 

, (21) 

1, 0 1,
rect

0, otherwise.

t
t

T
T

   


 

where A is the amplitude of the emitted signal, 2
c 


  is the angular frequency; c  83.10  

m/s is the speed of the light in vacuum;  is the wavelength of the signal; T is the timewith 
of the emitted pulse. 

The signal reflected by the generic point scatter can be written as 

 
( )

( , ) rect exp{ [ ( )]}
t t p

s p t a j t t p
T




 g
g g g , (22) 
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( )
( ) 1, 0 1,

rect
0, otherwise.

t t p
t t p

T
T

   


g
g  

where 
2 ( )

( )
R p

t p
c

 g
g  is the time delay of the signal, g stands for the discrete vector  

coordinate that locates the generic point scatterer in the target area G, ag  stands for the 
magnitude of the 3-D discrete image function, mod pt t T  is the slow time, p denotes the 
number of the emitted pulse, pT  is the pulse repetition period,  pt t pT   is the fast time, 
presented as .t k T , where k is the number of range bin, where the ISAR signal is placed. 
The demodulated ISAR signal from the target area is  

 
. ( )

( , ) rect .exp{ ( )]}
k T t p

s p k a j t p
T





  g

g g
g G

. (23) 

The expression (23) is a weighted complex series of finite complex exponential base 
functions. It can be regarded as an asymmetric complex transform of the 3-D image function 
ag , g G , defined for a whole discrete target area G into 2-D signal plane ( , )s p k .  

3.3 Image reconstruction from a short pulse ISAR signal 

Eq. (23) can be rewritten as 

 

2 ( )
. 4

( , ) .rect .exp ( )

R p
k T

cs p k a j R p
T




     


g

g g
g G

 (24) 

Formally for each kth range cell the image function can be extracted by the inverse transform 

 
1

4ˆ ( , )exp ( )
N

p

a s p k j R p



    
g g  (25) 

where p is the number of emitted pulse, N is the full number of emitted pulses during CPI. 

Because ( , )s p k  is a 2-D signal, only a 2-D image function âg  can be extracted. Eq. (25) is a 
symmetric complex inverse spatial transform or inverse projective operation of the 2-D 
signal plane ( , )s p k into 2-D image function âg , and can be regarded as a spatial correlation  

between ( , )s p k  and 
4

exp ( )j R p



 
  

g . Moreover, Eq. (25) can be interpreted as a total  

compensation of phases, induced by radial displacement ( )R pg  of the target. Taylor 
expansion of the distance to the generic point, ( )R pg  at the moment of imaging is 

 2 3( ) ( ) ( ) ( ) ...
2! 3!p p p

a h
R p r v pT pT pT    g g

g g g , (26) 

where rg , vg , ag  and hg is the distance, radial velocity, acceleration and jerk of the generic 
point, respectively at the moment of imaging. 
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Due to range uncertainty of generic points placed in the kth range resolution cell, rg can be 
assumed constant, and (25) can be written as 

   2 3

1

4 4ˆ exp , exp [ ( ) ( ) ( ) ...]
2! 3!

N

p p p
p

a h
a j r s p k j v pT pT pT

 
 

            
 g g

g g g .      (27) 

Eq. (27) stands for a procedure of total motion compensation of every generic point from kth 
range resolution cell. The range distance rg  does not influence on the image reconstruction 
and can be removed from the equation (27), i.e. 

   2 3

1

2 1 1ˆ , exp 2 [ ( ) ( ) ( ) ...]
3

N

p p p
p

a s p k j v pT a pT h pT
 

     
 

g g g g . (28) 

For each kth range cell the term 
2

v
 g  stands for the Doppler frequency whereas terms as 

2
a

 g , 
2

h
 g …., denote the higher order derivations of the time dependent Doppler 

frequency, defined at the moment of imaging.  

If the Doppler frequency of generic points in the kth range cell is equal or tends to constant 
during CPI the equation (28) reduces to the following equation of radial motion compensation 

 
1

2ˆ ( , )exp 2 . ( )
N

p
p

a s p k j v pT


     
  

g g . (29) 

Denote 
2 ˆ. Dv p F


 g , where 
1

D
p

F
NT

   is the Doppler frequency step; p̂  is the unknown 

Doppler index at the moment of imaging; then the complex image function ˆ ˆ ˆ( , )a a p kg g  in 

discrete space coordinates can be written as 

   
1

ˆ
ˆ ˆ( , ) , exp 2

N

p

pp
a p k s p k j

N




   
 

g .  (30) 

The equation (30) stands for an IFT of  ,s p k  for each kth range resolution cell and can be 
considered as phase and/or motion compensation of first order. 

Denote 1
2

a v


 g , 2
2

a a



 g , 3
2
3

a h



 g , then (28) can be rewritten as 

      2 3
2 3 1

1

ˆ , exp [ ( ) ( ) ...] exp 2 ( )
N

p p p
p

a s p k j a pT a pT j a pT


  g  (31) 

Denote 2
2( ) ( ) ... ( )m

p m pp a pT a pT    as a phase correction and/or motion compensation 

function of higher order, then 

  
1

ˆ
ˆ ˆ( , ) ( , )exp ( ) .exp 2

N

p

pp
a p k s p k j p j

N




        
g . (32) 
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where ˆ ˆ( , )a p kg  denotes the complex azimuth image of the target, p̂  denotes the unknown 
index of the azimuth space coordinate equal to the unknown Doppler index of the generic 
point scatterer from the target at the moment of imaging. The polynomial coefficients ma , m 
 2, 3, are calculated iteratively via applying image quality criterion, which will be discussed 
in subsections 4.4. 

Eq. (32) can be interpreted as an ISAR image reconstruction procedure implemented 
through inverse Fourier transform (IFT) of a phase corrected ISAR signal into a complex 
azimuth image ˆ ˆ( , )a p kg  for each kth range cell. In this sense the ISAR signal ( , )s p k can be 
referred to as a spatial frequency spectrum whereas ˆ ˆ( , )a p kg  can be referred to as a spatial 
image function defined at the moment of imaging. Based on Eq. (32) two steps of image 
reconstruction algorithm can be outlined. 

Step 1 Compensate the phases, induced by higher order radial movement, by multiplication 
of  ,s p k  with the exponential term exp[ ( )]j p , i.e. 

 ˆ( , ) ( , )exp[ ( )]s p k s p k j p   (33) 

Step 2 Compensate the phases induced by first order radial displacement of generic points in 
the kth range cell by applying IFT (extract complex image), i.e. 

 
1

ˆ
ˆ ˆ ˆ( , ) ( , ).exp 2

N

p

pp
a p k s p k j

N




   
 

g  (34) 

Complex image extraction can be implemented by inverse fast Fourier transform (IFFT). The 
algorithm can be implemented if the phase correction function ( )p  is preliminary known.  

Otherwise only IFT can be applied. Then non compensated radial acceleration and jerk of 
the target still remain and the image becomes blurred (unfocused). In order to obtain a 
focused image motion compensation of second, third and/or higher order has to be applied, 
that means coefficients of higher order terms in ( )p  have to be determined. The definition 
and application of these terms in image reconstruction is named an autofocus procedure 
accomplished by an optimization step search algorithm (SSA) which will be discussed in 
subsection 4.4. 

4. ISAR signal formation and imaging with a sequence of LFM waveforms 
4.1 LFM waveform 

Consider 3-D ISAR scenario (Fig. 6) and a target illuminated by sequence of LFM 
waveforms, each of which is described by 

  2( ) .rect exp
t

s t A j t bt
T

         
, (35) 

where pt t pT   is the fast time and mod pt t T  is the slow time; p is the index of emitted 

pulse; pT  is the pulse repetition period; 2
c 


  is the carrier angular frequency; 83.10c   

m/s is the speed of the light;  is the wavelength of the signal; T  is the timewidth of a LFM 
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waveform; 
2 F

b
T


  is the LFM rate. The bandwidth 2 F  of the transmitted waveform 

provides the dimension of the range resolution cell, i.e. / 2R c F   . 

4.2 LFM ISAR signal model 

The deterministic component of the ISAR signal, reflected by the gth generic point scatterer 
has the form 

    2( )
( , ) rect exp ( ) ( )

t t p
s p t a j t t p b t t p

T


           
g

g g g g  (36) 

( )( ) 1,0 1rect
0,otherwise

t t pt t p
T

T

   


g
g , 

where ag  is the reflection coefficient of the gth generic point scatterer, a 3-D image function;  

( )
( )

R p
t p

c
 g

g  is the round trip time delay of the signal from gth generic point scatterer; 

( ) mod[ ( )]R p pg gR , min[ ( ) 1]t k p k T   g  is the fast time, 1, ( )k K p K   is the sample 

number of a LFM pulse; /K T T   is the full number of samples of the LFM pulse, T is 

the time duration of a LFM sample, min
min

( )
( )

t p
k p

T

 
   

g
g  is the number of the radar range 

cell where the signal, reflected by the nearest point scatterer of the target is detected, 

min
min

2 ( )
( )

R p
t p

c
 g

g  is the minimal time delay of the SAR signal reflected from the nearest 

point scatterer of the target, max min( ) ( ) ( )K p k p k p g g  is the relative time dimension of the 

target; max
max

( )
( )

t p
k p

T

 
   

g
g  is the number of the radar range bin where the signal, reflected 

by farthest point scatterer of the target is detected; max
max

2 ( )
( )

R p
t p

c
 g

g  is the maximum 

time delay of the SAR signal reflected from the farthest point scatterer of the target.  

The ISAR signal in discrete form can be written as 

   2ˆ( , ) ˆ ˆ( , ) ( , ) rect exp ( , ) ( , )
t p k

s p k s p k a j t p k b t p k
T


 

           
 g g

g G g G
 (37) 

ˆ ( , )ˆ ( , ) 1 if 0 1,rect
0  otherwise.

t p kt p k
TT

      
    

g
g  

where min
ˆ ( , ) [ ( ) 1] ( )t p k k p k T t p    g g g . 
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Demodulation of the ISAR signal return is performed by its multiplication by the complex 
conjugated emitted waveform, i.e. 

      2 2( )
ˆ( , ) rect exp ( ) ( ) .exp

t t p
s p t a j t t p b t t p j t bt

T
 



                
 g

g g g
g G

  (38) 

which yields 

   2( )
ˆ( , ) rect exp 2 ( ) ( )

t t p
s p t a j bt t p bt p

T





      g

g g g
g G

. (39) 

Denote the current angular frequency of emitted LFM pulse as ( ) 2t bt   , which in 
discrete form  can be expressed as 2 ( 1)k b k T     , where   is the carrier angular 
frequency, and b is the chirp rate, k is the LFM sample number, T is the time length of the 
sample, then Eq. (39) can be rewritten as  

 
2

( )
( ) 2 ( )

ˆ( , ) rect exp 2 ( )

R p
t R p R pcs p t a j t b

T c c




                


g
g g

g
g G

, (40) 

which in discrete form can be expressed as 

 
2ˆ ( , ) ( ) 2 ( )

ˆ( , ) rect exp 2 k

t p k R p R p
s p k a j b

T c c




               
 g g g

g
g G

. (41) 

Eq. (41) can be interpreted as a spatial transform of the 3-D image function ag  into 2-D ISAR 
signal plane ˆ( , )s p k  by the finite transformation operator, the exponential term 

 
2( ) 2 ( )

exp 2 k

R p R p
j b

c c


              

g g . (42) 

Formally the 3-D image function ag  should be extracted from 2-D ISAR signal plane by the 
inverse spatial transform but due to theoretical limitation based on the number of 
measurement parameters only a 2-D image function may be extracted, i.e.  

 
2( )

1 1

( ) 2 ( )
ˆ ˆ( , ).exp 2

K p KN

k
p k

R p R p
a s p k j b

c c





 

              
  g g

g G . (43) 

Extraction of the image function is a procedure of complete phase compensation of the 
signals reflected by all point scatterers from the object that means total compensation of 
target movement during CPI. The argument of the exponential term (43), 

2( ) 2 ( )
2 k

R p R p
b

c c


         

g g  is a complex function infinitely differentiable in a neighborhood 
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of the moment of imaging that allows 2-D Taylor expansion  on range and azimuth direction 
to be applied, i.e. the following polynomial of higher order to be defined 

 

2
2

0 1 2

2
1 2 2

( ) 2 ( )
2 .( ) .( ) ... ( )

.( ) .( ) ... ( ) ( )( ) ...

m
k p p m p

m
m p

R p R p
b a a pT a pT a pT

c c

b k T b k T b k T c pT k T


             
         

g g

 (44) 

The constant terms 0a  has noting to do with phase correction and can be neglected. The 

linear terms 1.( )pa pT  and 1.( )b k T  are redefined as 1
ˆ

( ) 2p
pp

a pT
N

  and 1

ˆ
( ) 2 ˆ

kk
b k T

K
  , 

where ˆ ˆ ˆ ˆ( ), ( )k k p p g g denote the new unknown range and cross-range space coordinates 

of the gth generic point at the instant of imaging, ˆ ( )K K K p   denotes the number of range 

cells for each emitted pulse. The sum of higher order terms is signified as 

 2 2
2 2 2( , ) .( ) ... ( ) .( ) ... ( ) ( )( ) ...m m

p m p m pp k a pT a pT b k T b k T c pT k T             (45) 

then 

 
2 ˆ( ) 2 ( ) ˆ

2 2 2 ( , )k

R p R p pp kk
b p k

c c N K
  

            

g g . (46) 

Substitute (46) in (43), then  

 
ˆ

1 1

ˆˆˆˆ ˆ ˆ( , ) ( , )exp ( , ) 2 2
N K

p k

pp kk
a p k s p k j k p

N K
 

 

  
         
g , (47) 

where ˆ 1,p N , ˆ 1, ( )k K p K  .  

Eq. (47) can be rewritten as 

  
ˆ

1 1

ˆ ˆˆˆ ˆ ˆ( , ) ( , ).exp ( , ) .exp 2 exp 2 .ˆ

N K

p k

ppkk
a p k s p k j k p j j

NK
 

 

               
 g  (48) 

Eq. (48) can be considered as an image reconstruction computational procedure, which does 
reveal the 2-D discrete complex image function ˆˆ ˆ( , )a p kg . 

4.3 LFM ISAR image reconstruction algorithm 

Based on the previous analysis the following image reconstruction steps can be defined.  

Step 1 Compensate phase terms of higher order by multiplication of complex matrix ˆ( , )s p k  
by a complex exponential function  exp ( , )j p k , i.e. 

  ˆ( , ) ( , ).exp ( , )s p k s p k j p k   (49) 
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Step 2 Range compress ( , )s p k  by discrete IFT, i.e. 

 
ˆ

1

ˆ1ˆ( , ) ( , ).exp 2ˆ ˆ

K

k

kk
s p k s p k j

K K




 
   

 
  . (50) 

Step 3 Azimuth compress ˆ( , )s p k , i.e. extract a complex image by IFT 

 
1

ˆ1ˆ ˆˆ( , ) ( , ).exp 2 .
N

p

pp
a p k s p k j

N N




   
 

g               (51) 

Step 4 Compute the module of the complex image by 

 
1

ˆ1ˆ ˆˆ( , ) ( , ).exp 2
N

p

pp
a p k s p k j

N N




   
 

g  . (52) 

The aforementioned algorithm is feasible if the phase correction function ( , )p k  is a priory 
known. Otherwise, a focused image is impossible to extract. In this case taking into account 
the linear property of computational operations in (48) the image extraction algorithm may 
start with 2-D IFT (range and cross range compression) of the demodulated ISAR signal, the 
complex matrix ˆ( , )s p k , i.e. 

 
ˆ

1 1

ˆ ˆˆˆ ˆ( , ) ( , ).exp 2 exp 2 .ˆ

N K

p k

ppkk
a p k s p k j j

NK
 

 

               
 g  (53) 

It is worth noting that 2-D IFT are interpreted as a spatial correlation of the complex 

frequency spectrum, ˆ( , )s p k with the exponential terms 
ˆ

exp 2 ˆ
kk

j
K


 
  
 

and 
ˆ

exp 2
pp

j
N

 
 
 

that 

reveal unknown range, k̂  and cross range, p̂  space coordinates of a 2-D image function 

ˆˆ( , )a p kg  in the area of all possible values ˆ 1,p N  and ˆ 1, ( )k K p K  . 

4.4 Autofocusing phase correction by image entropy minimization 

If the image obtained by only range (50) and azimuth (51) compression is blurred a higher 
order phase correction has to be applied, i.e. to perform  ˆ( , ) ( , ).exp ( )s k p s k p j p  . The 
phase correction or motion compensation of higher order is an autofocus procedure. It 
requires determination of coefficients 2a … ma , 2b … mb  and 2c of the polynomial (45). The 
computational load is reduced if ( , ) ( )p k p    for each k, i.e. (45) is limited to 

 2
2( ) .( ) ... ( )m

p m pp a pT a pT     (54) 

An iterative SSA is applied to find out optimal values of the coefficients using entropy as a cost 
function to evaluate the quality of the image. At first step 2a  is calculated, at second - 3a , etc. 
The exact value of each coefficient ma , 2,3,...m   is computed iteratively, starting from 



 
ISAR Signal Formation and Image Reconstruction as Complex Spatial Transforms 

 

43 

0ma  and increasing by 0.01ma   in case the image quality gets better. If the image quality 
does not improve or gets worse go to computation of the next coefficient 1ma   or stop the 
procedure. In practice the quadratic term has a major impact on the phase correction process. 

Let ( )s p  be a phase correction function, defined at the sth iteration, and then the phase 
correction is accomplished by 

 ˆ( , ) ( , )exp( ( ))s ss p k s p k j p   . (55) 

After current phase correction and image extraction by range and cross-range (azimuth) 
compression, calculate a power normalized image as 

 

2

,
ˆ

2

,
1 1

ˆˆ( , )
ˆˆ( , )

ˆˆ( , )

s
s N K

s
p k

a p k
I p k

a p k
 





g

g

. (56) 

Calculate entropy of the normalized ISAR image 

 
ˆ

1 1

ˆ ˆˆ ˆ( , )ln[ ( , )]
N K

s s s
p k

H I p k I p k
 

  . (57) 

The estimate of the optimal values of coefficients corresponds to the minimum of the 
entropy image cost function, i.e. 

  ˆˆ ˆarg min [ ( , )]
m

m s s
a

a H I p k . (58) 

The procedure is repeated until the global minimum value of the entropy sH  is acquired. 

4.5 Numerical experiment 

To verify the properties of the LFM ISAR signal model and to prove the correctness of the 
image reconstruction algorithm a numerical experiment is carried out. Assume the target, 
Mig-35, detected in 3-D coordinate system 'O XYZ  is moving rectilinearly in a coordinate 
system Oxyz . Kinematical parameters: velocity 400V   m/s; guiding angles 0.92  ; 

0.5   ; 0.42  , coordinates of the mass-center at the moment ( / 2p N ): 
3

00'(0)  36,3.10x  m; 3
00'(0) 71,3.10y  m; 3

00'(0) 5.10z  m; reference coordinates: 0(0) 10x   
m; 4

0(0) 5.10y   m; 3
0(0) 2.10z  m. LFM emitted pulse: wavelength 23.10   m; pulse 

repetition period 21.32.10pT  s, LFM pulse timewidth 610T  s; number of LFM samples 
K  300; timewidth of LFM sample 80.33.10T   s; bandwidth 81.5.10F  Hz, LFM rate 

143.10b  2s ; number of emitted pulses during CPI N  500. Dimensions of the grid cell: 
X = Y = Z = 0.5  m; reference points on grid axes , ,X Y Z , 1,64i  , 1,64j  1,10k  . 

Target intensities 0.01ijka  , out of target intensities 0.001ijka  . 

The complex spatial frequency spectrum and 2-D space image function are presented in 
Figs. 7 and 8, respectively. The entropy and final focused image of Mig-35 are illustrated in 
Figs. 9 and 10, respectively. 
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           (a) Imaginary part of the ISAR signal                   (b) Real part of the ISAR signal 

Fig. 7. Complex ISAR signal - complex spatial frequency spectrum. 

         
          (a) Module of the 2-D space image function              (b) Unfocused image of Mig-35 

Fig. 8. 2-D isometric space image function and 2-D unfocused image of Mig-35 after azimuth 
compression by second IFT. 

                     
                (a) Evolution of the image entropy                (b) Final focused image of Mig-35 

Fig. 9. Image entropy and final focused image of Mig-35 by step 47 and minimal entropy 6.2. 
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5. ISAR signal formation and imaging with a sequence of PCM waveforms 
5.1 PCM waveform 

Consider 3-D ISAR scenario (Fig. 6) and a target a sequence of phase-code modulated (PCM) 
pulse trains (bursts).  Each PCM pulse train is described by  

   0( ) exp ( )
t

s t A j t b t
T

     rect ,      (59) 

where pt t pT   is the fast time and mod pt t T  is the slow time; p is the index of the 
emitted pulse train; pT  is the burst repetition period; 0  is the initial phase of a PCM 
pulse, 1,k K  is the index of the PCM segment, /K T T   is the full number of PCM 
segments; T  is the time duration of the phase-code modulated pulse train, T is the 
timewidth the phase segment, ( ) {0,1}b t  is the binary parameter of the PCM train.  

5.2 PCM ISAR signal model 

Deterministic component of the ISAR signal return reflected by the gth generic point 
scatterer if 0 0  is defined by 

  ( )
( , ) rect exp ( ( )) ( )

t t p
s p t a j t t p b t

T
 


     

g
g g g , (60) 

( )
( ) 1, if 0 1;

rect
0, otherwise.

t t p
t t p

T
T

   


g
g  

The deterministic component of the ISAR signal return reflected from the target for every 
p th pulse train is described by   

  ( )
( , ) rect exp ( ( )) ( )

t t p
s p t a j t t p b t

T
 




      g

g g
g G

. (61) 

Eq. (61) is a weighted complex series of finite base functions, ISAR signals from all generic 
points. It can be regarded as an asymmetric complex transform of the 3-D image function 
a g G , into a 2-D signal plane ˆ( , )s k p . Computing rect[ ( ) / ]t t p T g  time delays ( )t pg  are 
arranged in ascending order. An index k̂  different from this order is introduced i.e. 

ˆ
( )kt pg . 

Denote 
ˆ ˆ

min
ˆ ( ) ( ( ) 1) ( )k kt p k p k T t p    g g g , then Eq. (60) in discrete form can be written as 

  
ˆ

ˆˆ ( ) ˆˆ( , ) rect .exp ( ) ( 1)
k

kt p
s p k a j t p b k k T

T
 



         g
g g

g G

, (62) 

ˆˆ ˆ ( )ˆ ( ) 1, if 0 1rect

0, otherwise

kk t pt p
TT


   



gg . 
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where k̂  stands for a current range number k for which 
ˆˆrect[ ( ) / ]kt p Tg  yields 1 first time. It 

is possible for many time delays, ( )t pg  the index k̂  to have one and the same value. The 
index k̂  is considered as a space discrete range coordinate of a gth generic point at the 
moment of imaging. 

5.3 PCM ISAR image reconstruction procedure 

Based on the phase demodulated ISAR signal 

  
ˆ

ˆ
min

ˆ ( ) ˆˆ( , ) rect exp ( ( ) ( )) (( 1) )
k

kt p
s p k a j k p T t p b k k T

T
 



           g
g g g

g G
. (63) 

formally the 3-D image function ag  should be extracted from 2-D ISAR signal plane by the 
inverse spatial transform but due to theoretical limitation based on the number of 
measurement parameters only a 2-D image function may by determined, i.e.  

  
ˆ

ˆ
min

ˆ1

ˆˆ ( , )exp ( ( ) ( )) (( 1) )
N k K

k

p k k

a s p k j k p T t p b k k T 


 

          g g g , (64) 

Eq. (64) can be rewritten as 

  
ˆ

ˆ
min

ˆ1

ˆˆ ˆ( , )exp[ ( 1) ] .exp ( ) ( )
N k K

k

p k k

a s p k j b k k T j k p T t p 


 

            g g g . (65) 

Taylor expansion of the phase term 
ˆ

min( ) ( )k
ijk ijkt p t p   

 can be presented as a polynomial 
function of higher order, i.e. 

 ˆ 2
min 0 1 2( ) ( ) ( ) ( ) ... ( )k m

ijk p p m pk p t p a a pT a pT a pT        g . (66) 

The linear term 1( )pa pT  is reduced to 
2 ˆ.p p
N


 and considered as a Fourier operator, p̂ is the 

discrete unknown coordinate of the gth generic point scatterer placed in the kth range cell, N 
is the number of emitted PCM trains during CPI. The constant term has nothing to do with 
the image reconstruction and is removed. The rest sum of the terms in (66) are denoted as 

 2
2( ) ( ) ... ( )m

p m pp a pT a pT    , (67) 

then (65) can expressed as 

  
ˆ

ˆ1

2ˆ ˆˆ ˆ ˆ ˆ( , ) ( , )exp ( 1) exp ( )
N k K

p k k

a p k s p k j b k k T j pp p
N




 

             
 g , (68) 

Based on the linearity of the operations (68) can be rewritten as 

  
ˆ

ˆ1

2ˆ ˆˆ ˆ ˆ ˆ( , ) ( , ).exp( ( ) .exp[ ( 1) )] exp
N k K

p k k

a p k s p k j p j b k k T j pp
N




 

                  
 g . (69) 
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Accordingly, the image extraction algorithm can be outlined as follows. 

Step 1 Phase correction by multiplication of the phase demodulated ISAR signal with an 
exponential phase correction function, i.e. 

 ˆ( , ) ( , ).exp[ ( )]s p k s p k j p  . (70)  

Step 2 Range compression is by correlating of the phase corrected ISAR signal ( , )s p k  with 
reference function, complex conjugated of the transmitted PCM signal ˆexp[ ( 1) ]j b k k T    , 
i.e. 

 
ˆ

ˆ

ˆ ˆˆ( , ) ( , )exp[ ( 1) ]
k K

k k

s p k s p k j b k k T




     ,  (71) 

where 1,p N , ˆ 1, ( )k K p . 

Step 3 Azimuth compression and complex image extraction by Fourier transform of the 
range compressed ISAR data, i.e. 

  
1

2ˆ ˆˆ ˆ ˆ( , ) ( , )exp
N

p

a p k s p k j pp
N




       
g  . (72) 

Then the module of the target image can be calculated by 

 
1,

2ˆ ˆˆ ˆ ˆ( , ) ( , )exp
p N

a p k s p k j pp
N




       
g  . (73) 

The aforementioned algorithm is feasible if the phase correction function ( , )p k  is a priory 
known. Otherwise, a focused image is impossible to extract. In this case taking into account 
the linear property of computational operations in (68) the image extraction algorithm may 
start with correlation along range coordinate (range compression) and Fourier transform 
along cross range coordinate (range compression) of the demodulated ISAR signal, the 
complex matrix ˆ( , )s p k , i.e. 

 
ˆ

ˆ1

2ˆ ˆˆ ˆ ˆ ˆ( , ) ( , ).exp[ (( 1) )] exp
N k K

p k k

a p k s p k j b k k T j pp
N




 

                 
 g . (74) 

If the image obtained by only range (71) and azimuth (72) compression is blurred a higher 
order phase correction algorithm has to be applied. It requires determination of coefficients 

2a … ma  in polynomial (67) using a phase correction SSA described in 4.4. 

5.4 Numerical experiment 

A numerical experiment is carried out to verify the properties of the PCM ISAR signal 
model and to prove the correctness of the image reconstruction algorithm. It is assumed that 
the target, helicopter is detected in a coordinate system 'O XYZ and illuminated by Barker’s 
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PCM burst and moving rectilinearly in a coordinate system Oxyz . Kinematic parameters: 
velocity module 25V   m/s; velocity guiding angles 0  , 0.5  , 0.5  ; 
coordinates of the mass-centre: 00'(0) 0x  m, 4

00'(0) 5.10y  m, 3
00' 3.10z  m. Barker’s PCM 

binary function ( )b t : ( ) 0b t   if (1,5,8,9,11,13)t T  , and ( ) 1b t   if (6,7,10,12) ;t T   
wavelength 23.10   m; burst repetition period 35.10pT   s; PCM sample timewidth 

93.3.10T   s; number of burst samples 13K  ; sample index 1,13k  ; PCM burst 
timewidth 942.9.10T  s; number of bursts emitted during CPI 500N  . Grid’s cell 
dimensions 0.5X Y Z      m. Reference points on axes , ,X Y Z  1,100i j   
and 1,40k  , respectively. Isotropic point scatterers are placed at each node of the regular 
grid. Target’s intensities 0.01ijka  , out of target’s intensities 0.001ijka  . 

The real and imaginary part of the complex Barker’s PCM ISAR signal is presented in Fig. 
10, the final image – 2-D space image function - in Fig. 11, and entropy evolution in Fig. 
12. 

   
               (a) Real part of ISAR signal                                (b) Imaginary part of ISAR signal 

Fig. 10. Complex Barker’s PCM ISAR signal as a complex spatial frequency spectrum. 

  
                  (a) Unfocused ISAR image                                      (b) Focused ISAR image 

Fig. 11. Final image – 2-D space image function (pseudo color maps). 



 
ISAR Signal Formation and Image Reconstruction as Complex Spatial Transforms 

 

49 

 
Fig. 12. Entropy evolution: min 7,43H  by optimal vale of 2 390a  . 

6. Conclusion 
In the present chapter a mathematical description and original interpretation of ISAR signal 
formation and imaging has been suggested. It has been illustrated that both of these 
operations can be interpreted as direct and inverse spatial complex transforms, respectively. 
It has been proven that the image extraction is a threefold procedure; including phase 
correction, range compression performed by IFT in case LFM waveforms and by cross-
correlation in case PCM waveforms, and azimuth compression performed by IFT in both 
cases. It has been underlined that the image reconstruction is a procedure of total motion 
compensation, i.e. compensation of all phases induced by the target motion. Only phases 
proportional to the distances from ISAR to all point scatterers on the target at the moment of 
their imaging still remain. These phases define a complex character of the ISAR image. The 
drawback of the proposed higher motion compensation algorithm is the existence of 
multiple local minimums in entropy evolution in case the target is fast maneuvering. In 
order to find out a global minimum in the entropy and optimal values of the polynomial 
coefficients the computation process has to be enlarged in wide interval of their variation. 
The subject of the future research is the exploration of the image reconstruction algorithm 
with higher order terms and cross-terms of the phase correction polynomial while the target 
exhibits complicated movement. 
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1. Introduction 

Synthetic aperture radar (SAR) is an active remote sensing tool operating in the microwave 
range of the electromagnetic spectrum. It uses the motion of the radar transmitter to 
synthesize an antenna aperture much larger than the actual antenna aperture in order to 
yield high spatial resolution radar images (Curlander & McDonough, 1991). It has been 
applied to military survey, terrain mapping, and other fields for its characteristics of 
working in all weather during day and night. 

In the last few years, high quality images of the Earth produced by SAR systems, carried on 
a variety of airborne and space borne platforms, have become increasingly available. With 
the increasing resolution of SAR images, it is of great interest to find efficient ways to store 
the high volume of SAR image data at real time or to compress SAR images with higher 
compression performances for limited bandwidth of communication channel. 

There are some special characteristics of SAR images so different from incoherent, optical 
images, to which compression algorithms are commonly applied, that sensitively affect the 
design of an image compression algorithm: First of all the speckle phenomena, which results 
from the coherent radiation and processing and  severely degrades the quality of SAR 
images. When illuminated by the SAR, each target contributes backscatter energy which, 
along with phase and power changes, is then coherently summed for all scatterers. This 
summation can be either high or low, depending on constructive or destructive interference. 
Second the very high dynamic range of SAR images also attributable to the coherent nature 
of the imaging process. Within a resolution cell of an image, the transduced image domain 
value is related to the radar cross section per unit area of the corresponding patch of 
illuminated terrain (Eichel & Ives, 1999) This specific cross section can vary over a 
considerable range. Most natural terrain, being rough relative to the wavelengths employed, 
exhibit relatively low values of this parameter, in the vicinity of -15 dBsm/m2; while flat, 
smooth surfaces such as lake exhibit even lower values. On the other hand, manmade 
objects, especially of conducting materials with large flat surfaces and right angles, can have 
specific cross sections of +60 dBsm/m2 and higher. 

These differences mean that encoding/decoding algorithms designed for optical data may 
not be optimized or even appropriate for SAR data. 
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Many efforts have been taken place in order to develop suitable compression techniques of 
the bit stream necessary for raw data and/or focused images coding (Kwok & Jhonson, 
1989, Pascazio & Schirinzi, 2003, Eichel & Ives, 1999, Dony & Haykin, 1997, Baxter, 1999). 

The most widely used compression techniques are based on Block Adaptive Quantization 
(BAQ), due to its simplicity for coding and decoding. The algorithm is based on the 
consideration that the SAR (complex) signal has commonly a Gaussian, with real and 
imaginary parts mutually independent and practically uncorrelated between adjacent 
pixels. It divides the data in blocks, and for each block computes the standard deviation  , 
in order to determine the optimum quantizer, which adapts to the changing levels of the 
signal (Kwok & Jhonson, 1989). A non-uniform quantizer (or Lloyd-Max quantizer) that 
minimizes the Mean Squared Error (MSE) for a given number of quantization levels (Goyal 
et al., 1998) is commonly used. The minimum block size is selected in order to guarantee a 
Gaussian statistic within a block; the maximum block size is limited by the fact that the 
signal power should be approximately constant in the block. 

Transform coding algorithms have been also applied on SAR intensity images (Dony & 
Haykin, 1997, Eichel & Ives, 1999, Baxter, 1999) and on SAR raw data (Pascazio & 
Schirinzi, 2003). They are based on the decomposition of the signal to be encoded in an 
orthonormal basis. Then, each decomposition coefficient is approximated by a quantized 
variable. The role of the signal decomposition is to decorrelate the signal and to make the 
subsequent quantization process easier. The coding performance depends on the choice of 
the basis. The best basis compacts the image energy into the fewest coefficients. The small 
number of significant coefficients in the transformed domain results in a sparse 
representation, that can be coded with fewer bits, due to its low entropy. An entropy 
coder can be then used as the last step in the compression scheme. In (Dony & Haykin, 
1997) a method which combines Karhunen-Loeve transform and Vector Quantisation is 
proposed, while in (Eichel & Ives, 1999) simply 2-D Fourier transformation is used, in 
(Baxter, 1999) a compression system based on the Gabor transform is adopted, in 
(Pascazio & Schirinzi, 2003) a transform coding compression method using wavelet basis 
is applied to SAR raw data. Wavelets have also been applied on SAR images by (Zeng & 
Cumming, 2001, Xingsong et al. 2004), in the first case it has been proposed a tree-
structured wavelet transform, while in the second case a compression scheme which 
combines the wavelet packet transform, the quadtree classification and universal trellis-
coded quantization has been adopted. 

With the aim of reducing the number of significant representation coefficients, and 
obtaining a sparse representation, overcomplete dictionaries, or frames, have been 
recently proposed (Goyal et al., 1998). A frame is a set of column vectors, just as a 
transform, but with a larger number of vectors than the number of elements in each 
vector. The representation of the observed data in terms of overcomplete basis in not 
unique, then a constraint have to be enforced to recover uniqueness. To achieve a sparse 
representation the introduced constraint can be the minimization of the significant 
coefficients by using an  1 norm based penalty. It can be shown that in this case the 
problem to be solved is a linear programming problem, that can be viewed as a Maximum 
a Posteriori (MAP) estimation problem with a Laplacian prior distribution assumption 
(Hyvarinen  et al., 1999). 
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A possible choice of the basis is the overcomplete Independent Component Analysis (ICA) 
basis (Hyvarinen  et al., 1999, Algra, 2000), allowing to model the data as a mixture of non 
Gaussian and “almost” statistically independent sources, so that the representation 
coefficients, due to their scarce correlation, can be efficiently coded using a scalar quantizer. 

In this paper the performance of a compression method based on an overcomplete ICA 
representation, coupled with the use of an entropy constrained scalar quantizer (Pascazio & 
Schirinzi, 2003), optimized for the Laplacian statistics of the ICA coefficients, and using a 
proper bit allocation strategy, first proposed in (Budillon et al., 2005) is analyzed in details 
and proved on different set of real data, obtained with ERS1, COSMO SkyMed and 
TerraSAR-X sensors. 

2. Overcomplete ICA 
Independent Component Analysis (ICA) (Hyvarinen  et al., 1999) has been proposed as a 
statistical generative model that allows to represent the observed data as a linear 
transformation of variables that are non Gaussian and mutually independent. 
The model is the following: 

 x As   (1) 

where  1 2, ,.... T
mx x xx  is the random vector representing the observed data, 

 1 2, ,.... T
ns s ss is the random vector of the independent components, A  is an unknown 

constant matrix, called the mixing matrix or basis matrix. 

The overcomplete ICA paradigm (Hyvarinen  et al., 1999) assumes n>m. This means we have a 
larger number of independent components and we can more easily adapt to signal statistics. 
Since the matrix A  is not invertible, even if it is known, the estimation of the independent 
components is an undetermined problem that does not admit a unique solution. Then a 
constraint on the statistical distribution of the ICA coefficients is introduced to solve the 
problem. 

It can be shown (Hyvarinen  et al., 1999) that assuming a Laplacian distribution, the optimal 
estimation of the coefficients ˆis  leads to the minimization of their 1 -norm with the 
constraint x As  

 
i

ˆ argmin   i
x As

s s


    (2) 

The choice of the Laplacian distribution is convenient with respect to the compression 
application since permits to have a sparse representation with a small number of non zero 
coefficient ˆis . 

For the estimation of the basis matrix we adopted a modification of FastICA proposed in 
(Hyvarinen  et al., 1999), that searches for “quasi-orthogonal” basis. 

3. Entropy constrained scalar quantizer and bit allocation 
In this section we analyze the performance of a scalar quantizer, optimized for Laplacian-
distributed coefficients. In particular, we consider an entropy constrained scalar quantizer, 
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defined as the quantizer minimizing the quadratic distortion for a given value of the 
entropy of the quantized coefficients (Jayant & Noll, 1984). 

It is already known that under the high-resolution quantization hypothesis, i. e. if the 
number of quantization levels is sufficiently large a uniform quantizer is optimal for a large 
class of probability distributions [9]. However, at low bit rates, a uniform quantizer is not 
optimal. Among the non-uniform quantizers, we consider the threshold quantizer (or quasi-
uniform quantizer), which assigns zero to the coefficients whose amplitude lies inside a 
proper interval [ , ]T T , and uniformly quantizes the others with a quantization step All 
the samples whose absolute value exceeds a certain saturation amplitude K are quantized 
to the highest or lowest quantization level (see Fig. 1) depending on their sign. The 
saturation factor K can thus be defined as the ratio between the quantizer saturation value 
and the standard deviation   of the coefficient. Note that this quantizer is symmetric and 
works with an even number of quantization levels. 

 
Fig. 1.  Six  levels threshold quantizer. 

If the decomposition basis is chosen so that many coefficients are close to zero and few of 
them have a large amplitude, the threshold quantizer tends to an optimal entropy 
constrained quantizer (Mallat & Falzon, 1998). The larger the number of coefficients close to 
zero, the closer the threshold quantizer is to the optimal one. 

At low bit rates, the decomposition coefficients are coarsely quantized, and many are set to 
zero. Thus it is convenient to scan the coefficients frame in a predefined order and store the 
position of zero versus non-zero quantized coefficients in a binary significance map. In the 
same scanning order, the amplitudes of the non-zero quantized coefficients are also entropy 
encoded with a Huffman or an arithmetic coding and transmitted together with the coded 
map. 
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The total number of bits necessary to encode a data frame is given by the number of bits 
necessary to encode the significance map, plus the number of bits necessary to encode the 
significant coefficients. Of course, the total bit rates decreases as the coefficients probability 
density function (pdf) becomes more peaked, so that the number of significant coefficients 
decreases and the significance map becomes more correlated (Mallat & Falzon, 1998). 

The performance of the quantizer considered depends on three parameters: the threshold 
value T, the number of the quantization levels L, and the saturation factor K. These 
parameters must be set in such a way as to minimize distortion for an assigned rate value. 
The optimization of the threshold quantizer performance with respect to parameters T, L 
and K can be performed once for a unit variance Laplacian variable. Its performance for 
Laplacian signals with variance 2  can be simply inferred by that found for an unit 
variance Laplacian signal, by simply multiplying the threshold value by  , and the 
obtained distortion by the variance 2 . 

A desired bit rate can be achieved for different values of the coder parameters. The optimal 
coder parameters ˆ ˆ ˆ, ,T L K  for an assigned bit rate can be found by minimizing the distortion, 
that for Laplacian distribution can be expressed in an analytical form, following the method 
presented in (Pascazio & Schirinzi, 2003),  for the Gaussian case. 

The minimum distortion-rate curve  ˆ ˆ ˆ ˆ( , , , )D R D R T L K  for a unit variance Laplacian 
distribution obtained using the threshold entropy constrained quantizer, is shown in Fig. 2 
(solid line), where it is compared with the curves obtained with an entropy constrained 
uniform quantizer (dotted line) (Algra, 2000). 

 
Fig. 2. Distortion-rate function for an optimally threshold quantized Laplacian signal of unit 
variance (solid line), compared with that obtained with an optimal uniform quantizer (dots). 
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We can note that the optimal threshold quantizer performs better than a uniform one at very 
low bit rates (lower than 1.8), and reduces to a uniform one for higher bit rates. This 
behavior can be conveniently exploited when a proper bit allocation is adopted, since in this 
case it can happen very often that very low rates must be assigned to certain blocks, even if 
the total bit budget is not very small. If we apply the same threshold quantizer to the entire 
frame of the coefficients, we obtain the performance shown in Fig.2. Different results can be 
obtained by using different quantizer for the different blocks in which the coefficient frame 
is decomposed. In particular, we can use different quantizers and associated coders 
optimized for the statistic of each block. A bit allocation algorithm can then be used to 
distribute bits among the blocks. 

A procedure that can be used for optimally distributing the assigned number of bits among 
the different blocks is described in (Pascazio & Schirinzi, 2003). It imposes an equal average 
distortion per block and assigns more bits to the blocks with a larger variance respect to 
those assigned to the blocks with a lower variance. The optimal number of bits for each 
block is determined by exploiting the minimum distortion curve of Fig. 2 (Pascazio & 
Schirinzi, 2003). 

4. Numerical results 
To test the performance of the proposed method we considered different SAR images 
obtained with different SAR sensors, using ERS1, COSMO SkyMed and TerraSAR-X data. 
We wanted to test the performance also on different kinds of areas that due to different 
backscatter characteristics may have different local statistical characteristics: we used three 
kinds of images that cover agricultural, suburban, and countryside areas. 

Each single-look intensity image has been subdivided in data frames in the azimuth and 
range directions, respectively. Note that the SAR image pixels are floating point valued with 
a dynamic range of about 50 dB. Moreover, the SAR  images are affected by the presence of 
speckle, typical of images generated by coherent systems, that has to be preserved to keep 
the information contained in the image. 

Each frame has been subdivided in blocks of 8x8 pixels. The overcomplete ICA basis have 
been computed using the algorithms presented in [6], and starting from a set of 8x8 training 
vectors. The set size has to be larger than m. The used value for the ratio m/n is about 0.7. 

Then, the ICA coefficients of each frame have been computed using Eq. (2). The ICA 
coefficients have, then, been quantized using the optimal threshold quantizer of Fig. 2, that, 
besides exhibiting a better performance, has the advantage of allowing any fractional bit rate 
value. For the bit budget distribution among the different coefficients vectors, the bit 
allocation procedure referred in Section III has been adopted. To sum up we followed for 
each image the scheme reported in Fig. 3 

Different quality parameters can be considered to evaluate the performance of the 
compression method. In particular, one of the most meaningful parameters is the signal-to-
noise ratio (SNR), or its reciprocal, the normalized average distortion D computed on the 
SAR images obtained after the processing of the compressed data. We have chosen to 
evaluate the normalized distortion in order to compare the obtained results with the 
distortion-rate curve reported in Fig. 2. 



 
Low Bit Rate SAR Image Compression Based on Sparse Representation 

 

57 

 

 

 

 

 

 

 

 

Fig. 3. Scheme of the proposed compression method. 
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We reported also the distortion evaluated on the ICA coefficients. 
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First a single look ERS-1 intensity image, relative to Fleevoland, in The Netherlands, was 
considered. The original image is shown in Fig. 4. 

The (equalized) intensity of a frame is shown in Fig. 5. The obtained statistical distribution 
of each ICA coefficient, as expected, has a Laplacian behaviour as shown in Fig. 6. The ICA 
basis are reported in Fig. 7.  

The average distortion obtained for different bit rates are presented in Table 1. Note that the 
bit rate values represent the average number of bits per pixel of the image frame. Being the 
dimension of the ICA basis larger than that of the observation domain, the average number 
of bits per coefficient is smaller (it is scaled by the factor m/n).  

Quantized coefficients have then been used to reconstruct the corresponding image using 
Eq. (1). The image frame obtained with an average rate per sample R=2,  is shown in Fig. 8. 

Secondly we considered a single look COSMO SkyMed of Naples surroundings, in Italy, 
shown in Fig. 9. 

The (equalized) intensity of a frame is shown in Fig. 10. The obtained statistical distribution 
of each coefficient, as expected, has a Laplacian behaviour as shown in Fig.  11. The ICA 
basis are reported in Fig. 12.  

The average distortion obtained for different bit rates are presented in Table 2.  

The image frame obtained with an average rate per sample R=2,  is shown in Fig. 13. 

Thirdly we considered a single look TerraSAR-X of Frankfurt surrounding, in Germany, 
shown in Fig. 14. 

The (equalized) intensity of a frame is shown in Fig. 15. The obtained statistical distribution 
of each coefficient, as expected, has a Laplacian behaviour as shown in Fig.  16. The ICA 
basis are reported in Fig. 17.  

The average distortion obtained for different bit rates are presented in Table 3. 

The image frame obtained with an average rate per sample R=2,  is shown in Fig. 18. 

It can be noted that in all cases the average image distortions reported in Table 1,2 and 3 are 
below the value of -11 dB obtained for rate 2 in the curve reported in Fig. 2 for an optimally 
threshold quantized Laplacian signal of unit variance. 

Moreover in all the cases there is no visual appreciable degradation in the reconstructed 
images using the quantized coefficients of the overcomplete ICA basis.   
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Fig. 4. SAR single look ERS-1 intensity image, relative to Fleevoland,  in The Netherlands. 
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Fig. 5. SAR ERS-1  frame.  

 
Fig. 6. SAR ERS-1 image ICA coefficients empirical probability distribution functions. 
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Fig. 7.  SAR ERS-1 image overcomplete ICA basis. 

 
Fig. 8. SAR ERS-1  frame obtained by quantized coefficients of the overcomplete ICA basis 
with R=2. 
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Average 
rate 

Overcomplete ICA 
Coefficients 

average 
distortion (dB) 

Image 
average 

distortion (dB) 
1 -5.4 -11.1 

1.5 -8.3 -13.2 
2. -11.6 -15.3 

 

Table 1. Rate-Distortion values for the SAR ERS-1 image. 

 

 

 

 
 

 

Fig. 9. SAR COSMO-SkyMed intensity image of Naples  surroundings, Italy. 
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Fig. 10. SAR COSMO-SkyMed frame. 

 
Fig. 11. SAR COSMO-SkyMed image ICA coefficients empirical probability distribution 
functions. 
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Fig. 12. SAR COSMO-SkyMed image overcomplete ICA basis. 

 
Fig. 13. SAR COSMO-SkyMed frame obtained by quantized coefficients of the overcomplete 
ICA basis  with R=2. 
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Average 
rate 

Overcomplete ICA 
Coefficients 

average 
distortion (dB) 

Image 
average 

distortion (dB) 
1 -4.4 -8 

1.5 -6.9 -10.3 
2. -10.8 -13.2 

Table 2. Rate-Distortion values for the SAR COSMO-SkyMed image. 

 

 
Fig. 14. TerraSAR-X intensity image of Frankfurt surrounding, Germany. 
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Fig. 15. TerraSAR-X frame.  

 
Fig. 16. TerraSAR-X image ICA coefficients empirical probability distribution functions. 
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Fig. 17. TerraSAR-X image overcomplete ICA basis. 
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Fig. 18. TerraSAR-X frame obtained by quantized coefficients of the overcomplete ICA basis  
with R=2. 

Average 
rate 

Overcomplete ICA 
Coefficients 

average 
distortion (dB) 

Image 
average 

distortion (dB) 
1 -5.7 -10.6 

1.5 -8.5 -13.4 
2. -11.4 -16.4 

Table 3. Rate-Distortion values for the TerraSAR-X image. 

5. Conclusion 
In this paper the performance of a compression method based on an overcomplete ICA 
representation, coupled with the use of an entropy constrained scalar quantizer, optimized 
for the Laplacian statistics of the ICA coefficients, and using a proper bit allocation strategy, 
has been analyzed in details and proved on different set of real data, obtained with ERS1, 
COSMO SkyMed and TerraSAR-X sensors. The best performances in terms of rate-
distortions are obtained on the TerraSAR-X data frame, since it is relative to an enough 
uniform reflectivity area, while the worse on the COSMO SkyMed image frame, where  
more details were present. In any cases the image average distortions are below the  one 
obtained with an optimally threshold quantized Laplacian signal of unit variance. The ICA 
coefficients exhibits the statistical behaviour forced by the fast ICA algorithm, in fact the 
probability empirical distributions are in all cases a good approximation of a Laplacian 
distribution. This behaviour allows to use a threshold quantizer optimized for this particular 
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statistical distribution, allowing to discard many coefficients and to use a high bit rate only 
for few significant coefficients in order to keep low bit rates. 
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1. Introduction  
Approximating digital curves using polygonal approximations is required in many image 
processing applications [Kolesnikov & Fränti, 2003, 2005; Lavallee & Szeliski, 1995; Leung, 
1990; Mokhtarian & Mackworth, 1986; Prasad, et al., 2011; Prasad & Leung, 2010a, 2010b; 
Prasad & Leung, 2010; Prasad & Leung, 2012; Prasad, et al., 2011a]. Such representation is 
used for representing noisy digital curves in a more robust manner, reducing the 
computational resources required for processing and storing them, and for computing 
various geometrical properties of digital curves. Specifically, properties like curvature 
estimation, tangent estimation, detecting inflexion points, perimeter of the curves, etc., 
which are very sensitive to the digitization noise. Polygonal approximation is also useful 
in topological representation, segmentation and contour feature extraction in the 
applications of object detection, face detection, etc.  

Most contemporary methods require some form of control parameter for selecting the most 
representative points (referred to as the dominant points) in the digital curve to be used as 
the vertices of the polygonal approximation [Arcelli & Ramella, 1993; Bhowmick & 
Bhattacharya, 2007; Carmona-Poyato, et al., 2005; Carmona-Poyato, et al., 2010; Carmona-
Poyato, et al., 2011; Chung, et al., 2008; Chung, et al., 1994; Davis, 1999; Debled-Rennesson, et 
al., 2005; Douglas & Peucker, 1973; Gritzali & Papakonstantinou, 1983; Kanungo, et al., 1995; 
Kolesnikov, 2008; Kolesnikov & Fränti, 2003, 2005, 2007; Latecki, et al., 2009; Lavallee & 
Szeliski, 1995; Leung, 1990; Lowe, 1987; Marji & Siy, 2004; Mokhtarian & Mackworth, 1986; 
Pavlidis, 1976; Perez & Vidal, 1994; Phillips & Rosenfeld, 1987; Prasad & Leung, 2010c; 
Ramer, 1972; Ray & Ray, 1992; Rosin, 1997, 2002; Salotti, 2002; Sankar & Sharma, 1978; 
Sarkar, 1993; Sato, 1992; Sklansky & Gonzalez, 1980; Tomek, 1975; Wall & Danielsson, 1984; 
Wang, et al., 2008]. The value of control parameter in all the known algorithms is chosen 
heuristically. In reality, choosing such control parameter can be very challenging because a 
suitable value of such control parameters depends upon the nature of the digital curve and 
one value may not be suitable for all the curves in an image and definitely not suitable for 
all images in a dataset or an application. In section 2, we first propose a parameter 
independent method for polygonal approximation of the digital curves. 
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In addition to the heuristics, another issue is the problem of measuring the quality of the 
polygon fitted by an algorithm. It was shown in [Carmona-Poyato, et al., 2011; Rosin, 1997] 
that most contemporary metrics to compare and benchmark such algorithms are ineffective 
for different types of digital curves. The reason for this is that the polygonal approximation 
has conflicting requirements in terms of the local and global quality of fit. In section 3, we 
show explicitly that these requirements are conflicting. Quality metrics for local and global 
characteristics are presented in section 3.5. The presented metrics can be used to measure 
the quality of not only one edge of the approximated polygons, but also for the complete 
polygon for a digital curve and for all curves in an image.  

A few contemporary methods are discussed qualitatively in section 4 and numerical 
comparisons are provided in section 5. The conclusions are presented in section 6. 

2. Parameter independent polygonal approximation method 

The proposed method uses the framework of the method proposed by Lowe [Lowe, 1987] 
and Ramer-Douglas-Peucker [Douglas & Peucker, 1973; Ramer, 1972] (referred to as L-RDP 
method for convenience). The L-RDP method of fitting a series of line segment over a digital 
curve is described here. For a digital curve  1 2 Ne P P P  , where iP  is the i th edge 
pixel in the digital curve e . The line passing through a pair of pixels ( , )a a aP x y  and 

( , )b b bP x y  is given by: 

     0a b b a b a a bx y y y x x y x y x      . (1) 

Then the deviation id  of a pixel ( , )i i iP x y e  from the line passing through the pair  1 , NP P  
is given as: 

    1 1 1 1i i N i N N Nd x y y y x x y x y x      . (2) 

Accordingly, the pixel with maximum deviation can be found. Let it be denoted as maxP . 
Then considering the pairs  1 max,P P  and  max , NP P , we find two new pixels from e  using 
the concept in the equations (1) and (2). It is evident that the maximum deviation goes on 
decreasing as we choose newer pixels of maximum deviation between a pair. This process 
can be repeated till a certain condition (depending upon the method) is satisfied by all the 
line segments. This condition shall be referred to as the optimization goal for the ease of 
reference.   

The condition used by L-RDP [Douglas & Peucker, 1973; Lowe, 1987; Ramer, 1972] is that for 
each line segment, the maximum deviation of the pixels contained in its corresponding edge 
segment is less than a certain tolerance value: 

 tolmax( )id d . (3) 

where told  is the chosen threshold.  

In general, the value of told  is chosen heuristically to be a few pixels and told  functions as 
the control parameter. Now, we present the method to choose the value of  told  
automatically using the characteristics of the line, such that the user does not need to specify 
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the value of told  [Prasad, et al., 2011a]. First we show that if a continuous line segment is 
digitized then the maximum distance between that digital line segment and the continuous 
line segment is bounded and can be computed analytically. Then, this bound can be used to 
choose the value of told  adaptively. 

We consider the effect of digitization on the slope of a line connecting two points (which 
may or may not be pixels) [Prasad, et al., 2011a]. Due to digitization in the case of images, a 
general point ( , )P x y  is approximated by a pixel ( , )P x y    as follows: 

 round( ); round( );   ,x x y y x y        (4) 

where round( )x denotes the rounding of the value of real number x  to its nearest integer. 
( , )P x y    satisfy the following: 

 ; ;    0.5 0.5, 0.5 0.5x x x y y y x y                (5) 

 

Fig. 1. Representation of the line 1 2P P  and the digitized line 1 2P P  . 

Let the slope of the line 1 2P P  (actual line) be denoted as m  and the slope of the line 1 2P P   
(digital line) be denoted as m , where 1P   and 2P   are obtained by digitization of 1P  and 

2P  using (4). See Fig. 1 for the illustration. Then m  and m  are given as: 

 2 1

2 1

y y
m

x x





 (6) 

 2 1 2 1 2 1

2 1 2 12 1
1

y y y y x x
m m

x x x xx x
                         

 (7) 

The angular difference between the numeric tangent and the digital tangent is used as the 
estimate of the error. This angular difference is given as: 
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       

        
           

            
  

 (8) 

where,    22
2 1 2 1s x x y y     and 

     2 1 2 12 1 2 1
2 2

y y y yx x x x
t

s s

      
  . Due  

to (5), the maximum value of 2 1x x    and 2 1y y    is 1. Further,  2 1x x s  and 
 2 1y y s  are both less than 1. Thus, 1t   if 2s  , which is true for any line made of 

more than 2 pixels (i.e. 3 pixels or more). Thus, infinite geometric series expansion can be 
used in (8) and   can be approximated as: 

 
     

     

1 22 1
2 1 2 12
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2 1 2 12

tan 1

1

x x
m x x y y t t

s

x x
m x x y y t t

s

                
  

           
 

 (9) 

Further we note that,   has a maximum value when 2 1 2 1 1x x y y        : 

       22
max 3

1
max sin cos cos sin cos sins s

s
              


 (10) 

where,  1tan m  . Then, the maximum deviation is given by: 

  max maxd s   .  (11) 

Based on the above analysis, in L-RDP, the suggested value of told  at every iteration is 

max maxd s   . At each step in the recursion, if the length of the line segment most fit on the 
curve (or sub-curve) is s  and the slope of the line segment is m , then using (10), we 
compute tol maxd s    and use it in (3).  

3. Global vs. local characteristics of line fit 
It is expected that while fitting a polygon on a digital curve, which is effectively fitting a 
series of line segments on the digital curve, either we have to take very small local area in 
order to achieve high precision or we have to take a larger area in order to have a reliable 
and practically usable fit. This was formally stated and explained by Strauss in the context 
of Hough transform [Strauss, 1996; Strauss, 1999], “This duality could be set out as 
follows: as the shape detection precision increases, the reliability of the detection 
decreases. This seems to be due to the binary aspect of the vote in the classical Hough 
transform.”  
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While Strauss is right in pointing out the duality between the precision (quality of local fit) 
and reliability (quality of global fit), he is incorrect in attributing it to the nature of Hough 
transform. It can be shown using simple metrics, precision and reliability measures, that 
there is a perennial conflict in the quality of fit in the local scale (precision at the level of few 
pixels) and global scale (reliability at the level of complete curve) [Prasad & Leung, 2010c]. It 
is due to this reason, most absolute measures fail in quantifying the quality of fit properly 
[Carmona-Poyato, et al., 2011; Rosin, 1997].  

Assuming that we are not bound by the limitation that the points used for representing the 
digital curve should be a subset of the digital curve, we just use least squares method to get 
the best line(s) fit for a digital curve and show that the precision and reliability measures are 
at conflict with each other. Suppose, for a digital curve with the sequence of pixels 

  ,i i iS P x y , 1 to i N , we intend to fit a line 1ax by  . Then, the coefficients of the 
line, a  and b , can be determined by casting the problem of fitting into the following matrix 
equation [Acton, 1984]: 

 X A = J , (12) 

where    T T
1 2 1 2M Mx x x y y y    

X   ,  Ta bA , the superscript T  denotes  

the transpose operation, and J  is a column matrix containing M  rows, whose every 
element is 1.  

3.1 Precision 

The precision of fitting can be modeled using the residue of the least squares method: 

 p    XA J BJ J , (13) 

where   represents the Euclidean norm,  T T
-1

B X X X X  is obtained by substituting A  
obtained using (12). The subscript p  in p  represents precision, and we shall refer to p  as 
the precision parameter for the ease of reference. The lower the value of p , the greater the  

precision. Noting that T T B B B B , (13) can simplified as    T
p    BJ J BJ J  

   4cos cosM   J J BJ J BJ , where NJ  (since J  contains N  elements, 

each equals to 1) and   is the angle between J  and  J BJ . However, since p  J BJ , 

p  can be written as: 

 cosp N  . (14) 

It is evident that by choosing lesser number of pixels, i.e., reducing N , p  can be reduced 
and hence, the precision can be increased. It should be noted that with the decrease in the 
number of pixels, X  and consequently B  change, and thus the contribution from cos  
may vary. However, if continuous pixels are considered, the overall variance in X  is 
reduced, and hence the impact of cos  is also reduced. In effect, this means that fitting the 
line in a smaller local region is more precise than a large region. 
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3.2 Reliability 

In this sub-section, we first present a quantitative measure of reliability that can be 
understood and compared with respect to the precision measure. Generally, for the 
reliability of a fit, the fit is expected to satisfy at least two conditions. First, the fit should be 
valid for a sufficiently large region (or in this case a long edge) and second, it should not be 
sensitive to occasional spurious large deviations in the edge. A combination of both these 
properties can be sought by defining a reliability parameter as follows: 

 max1r i
i

s   X A  (15) 

where  i i ix yX ,   represents the magnitude and maxs  is the maximum Euclidean 
distance between any two pair of pixels. Subscript r  in r  denotes reliability. As before, 
lower the value of r , higher the reliability.  

3.3 Duality 

As evident from (14) and (15), and the discussion between them, there is always a 
contradiction between precision and reliability. In order to increase the precision, we need 
to consider smaller regions for fitting, whereas for increasing the reliability, we need to 
consider larger regions for fitting (largest region being the region spanned by the 
connected edge pixels under consideration). Indeed the contradiction does not occur in 
ideal lines as shown in Fig. 2(a)-(d). It is also not an issue if the lines are in general 
smooth, so that the precision within a large region is already very high, such that 
reliability and precision are already sufficiently high and there is no practical need to 
increase the precision or reliability. Some such examples are presented in Fig. 2(e)-(g). 
This is illustrated in Fig. 3 and Table 1. However, if indeed an application calls for still 
higher precision, the reliability will have to be compromised and the duality comes into 
picture. Examples of more practical cases are shown in Fig. 2(h)-(p). In such cases, the 
duality comes into picture strongly and a balance has to be achieved in order to obtain a 
fit that is sufficiently reliable as well as precise. 

 

 
Fig. 2. Example of small images. Each image is of size 20 20  pixels. The grey pixels are the 
edge pixels, on which line has to be fit.  
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Fig. 3. Lines that have been fit on the images using least squares approach. The lines are 
shown in red asterisk. 

 

Image (a) (b) (c) (d) (e) (f) (g) (h) 

p   0.000 0.000 0.000 0.000 0.024 0.035 0.013 0.071 

r  0.000 0.000 0.000 0.000 0.022 0.031 0.008 0.066 

Image (i) (j) (k) (l) (m) (n) (o) (p) 

p   0.047 0.015 0.072 0.121 0.150 0.111 0.121 0.233 

r  0.048 0.007 0.057 0.114 0.135 0.107 0.115 0.248 

Table 1. Value of parameters p   and r  corresponding to Fig. 3. Values are shown till 3 
decimal points. 

3.4 Performance measures in the context of precision and reliability 

We use various performance measures for comparing various algorithms.  

1. Maximum deviation of any pixel on the edge from the fitted polygon ( max ):  

In the context of a general line given by (12), the maximum deviation max  is specified by  

max


 XA J A , where   denotes the infinity norm (i.e. maximum norm). Since 

   , max p  A . Thus, it can be concluded that max  is a form of precision measure. 

2. Integral square error (ISE):  

This is the sum of squares of deviation of each pixel from the approximated polygon. It is 

given by    2 2 TISE p p  A A A . Thus, effectively, ISE is also a precision measure. 

3. Dimensionality reduction (DR) ratio or compression ratio (CR):  
The compression ratio is the ratio of number of pixels in the digital curve ( N ) to the 
number of vertices of the polygonal approximation ( M ), CR N M . Though this measure 
is not related to either precision or reliability, it is an important performance metric in 
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practice. In addition to other metrics representing precision and/or reliability, a larger value 
of this is beneficial for reduction of data and computational resources. Instead of 
compression ratio, its reciprocal dimensionality reduction ratio 1DR CR M N   can be 
used as a minimization metric (i.e. the lesser, the better).  

4. Figure of merit (FOM) 
Figure of merit is given by FOM=CR ISE . This is a maximization metric, i.e., larger value of 
FOM is preferred over a lower value. However, it is well known that FOM is biased towards 
ISE [Carmona-Poyato, et al., 2010]. For example, if the break points of a digital curve 
[Masood, 2008] are considered as the dominant points, the ISE is zero and inconsequent of 
the CR, FOM is infinity. If we intend to use a minimization metric, we may consider 

1WE =1/FOM  [Marji & Siy, 2004]. It suffers with the same deficiency as FOM. 

5. Fidelity, Efficiency and Merit 
Researchers tried relative measures like fidelity, efficiency, merit to quantify the quality of 
fit [Carmona-Poyato, et al., 2011; Rosin, 1997]. In relative measures, a so-called optimal 
algorithm is considered as the reference for comparing the performance of the algorithm 
being tested. The method proposed by Perez and Vidal [Perez & Vidal, 1994] based on 
dynamic programming is generally used by the researchers as the reference algorithm. This 
is because it targets min   and min #  such that the fitting error is minimized for a certain 
number of points ( min  ) or the number of points for fitting is minimized for a given value 
of fitting error ( min # ). It is logical that there is no way of determining an optimal value 
for the fixed number of points ( min  ) or the fixed value of fitting error ( min # ), because 
such a value depends upon the nature of the digital curve for which polygonal 
approximation is sought. 

3.5 Proposed performance measures 

As seen in section 3.4, none of the existing methods cater for the global nature of the fit. 
Thus, the reliability measure is very important addition to the performance metrics of the 
polygonal approximation method. For the line segments (edges of the polygon), the 
precision and reliability measures are computed: 

 
 

p
 

 
J J XA

A
 (16) 

 max1r i
i

s   X A  (17) 

where p   and r  are the precision and reliability measures,  i i ix yX ,  and maxs  is the 
maximum Euclidean distance between any two pair of pixels [Prasad & Leung, 2010c]. 
Notation   represents the magnitude in the scalar case and the Euclidean norm in the case 
of vectors. 

1. Precision measure for an edge 
Suppose J  line segments are fitted upon a digital curve. Then we define the net precision 
measure for the digital curve as follows: 
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    Curve
mean ;  to1  j

p p j J    , (18) 

where j
p   is the precision measure of the j th line segment, defined using (16).  

2. Reliability measure for an edge 
The net reliability measure of the digital curve is defined as follows: 

   1
Curve

max
1

1
J

j j
i

j i
r J

j

j

s
 






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

X A
, (19) 

where j
iX , jA , and max

js  correspond to iX , A , and maxs  defined after (17) for the j th line 
segment.  

3. Precision measure for a dataset of images 
Suppose a dataset contains L  number of images, the number of edges in the l th image is 

lK , then, the precision measure for the dataset is: 

 
   

   
Dataset Image
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mean ; 1 to 

max ; 1 to 
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p p
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 

 

    
 

    
 

, (20) 

4. Reliability measure for a dataset of images 
In a manner similar to (20), the reliability measure for a dataset is: 

 
    
    
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Image Curve

mean ; 1 to 

max ; 1 to 

l
r r

k
r r

l L
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 

 

 

 
, (21) 

4. Contemporary polygonal approximation method in the perspective of 
duality and the upper bound 
4.1 Optimal polygonal representation of Perez and Vidal [Perez & Vidal, 1994] 

The algorithm proposed by Perez and Vidal (PV) [Perez & Vidal, 1994] is by far the most 
popular algorithm used as a benchmark for comparing the performance of polygonal fitting 
algorithms. The reason for its popularity is twofold. For a given number of points N N  , 
where N  is the number of pixels in the digital curve, it computes the optimal choice of N  
points from the digital curve such that some error metric is minimized. Since the error 
metric can be flexibly defined by a user, it is versatile in its use. Further, for the purpose of 
benchmarking, the designers of other algorithms can first perform the polygonal fitting 
using their own algorithms, obtain a value of N  as obtained by their own algorithms, use 
this value of N  in the algorithm by PV and simply compare the points obtained by their 
method against the optimal points obtained by PV. 
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Since PV can use any error metric to be minimized, it is interesting to note that we can either 
use the precision score or the reliability score as the error to be minimized. If precision score 
is used as the error function, PV attempts to fit segments such that all the line segments are 
of approximately the same length. If reliability score is used as the error function, PV 
attempts to fit segments that are combination of two types: first type are the small segment  

with small value of maxd  but with very small (close to zero) value of 1i
i

 X A ; the second 

type are long segments with comparatively larger values of 1i
i

 X A  but significantly  

larger value of maxd  such that the reliability score is also small valued.  

On the other hand, PV do not guarantee that the maximum deviation of the pixels in curve 
is within the upper limit of the error due to digitization. If the value of N  is very large, it is 
likely that PV will fit the segments such that the maximum deviation is lesser than the upper 
bound. This means that the polygonal approximation will over fit and be sensitive to the 
error due to digitization. On the other hand, if the value of N  is small, the maximum 
deviation of the fitted segments is larger than the upper bound, thus indicating under-
fitting. In essence, this means that using a fixed value of N  or solving min-   problem is 
not suitable for optimal polygonal approximation of the digital curves.   

4.2 Lowe [Lowe, 1987] and Ramer-Douglas-Peucker [Douglas & Peucker, 1973; 
Ramer, 1972] (L-RDP method) 

Lowe [Lowe, 1987] and Ramer-Douglas-Peucker [Douglas & Peucker, 1973; Ramer, 1972] is 
basically a splitting method in which the point of maximum deviation is found recursively 
till the maximum deviation of any edge pixel from the nearest line segment is less than a 
fixed value. Since this is a splitting algorithm, it begins with a very high value of maxd , 
which reduces as the edge is split further. The algorithm stops at a point where the 
maximum deviation satisfies a minimum criterion. Thus, this algorithm focuses more on 
reliability and attempts to barely satisfy a precision requirement.  

In the sense of the upper bound, this algorithm gives a mixed performance. For a few 
segments, the chosen threshold may be below the upper bound and the result is an over-
fitting for this segment. On the other hand, the chosen threshold may be above the upper 
bound for certain line segments, thus resulting in under-fitting for such segments.  

4.3 Precision and reliability based optimization (PRO) 

In this method, though the method of optimization is the same as the L-RDP method, the 
optimization goal is different than (3). Instead of (3), the optimization goal is: 

   0max ,p r    , (22) 

where, 0  is the chosen heuristic parameter. Since this method explicitly uses the precision 
and reliability measures as the optimization functions, this method is expected to perform 
well for both precision and reliability measures.  

However, this method does not take into account the upper bound of the error due to 
digitization. 
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4.4 Break point supression method of Masood [Masood, 2008] 

Masood begins with the sequence of the break points, i.e., the smallest set of line segments 
such that each pixel of the curve lies exactly on the line segments, which is considered as the 
initial set of dominant points. Then, he proceeds with recursively deleting one break point at 
a time such that removing it has a minimum impact in its immediate neighborhood and 
optimizing the locations of the dominant points for minimum precision score. Although the 
aim of optimization is to improve the global fit and thus indirectly improve the reliability, 
evidently, Masood’s method is tailored for optimizing the precision and performs poorly in 
terms of reliability.  

Since Masood begins with largest possible set of dominant points and removes the 
dominant points till a certain termination criterion is satisfied, if the termination criterion is 
not very relaxed, the maximum deviation is in general lesser than the upper bound. Thus, in 
essence, Masood’s method is sensitive to the digitization effects and gives an unnecessarily 
close fit to the digital curve. 

4.5 Dominent point detection method of Carmona-Poyato [Carmona-Poyato, et al., 2010] 

Like Masood [Masood, 2008], Carmona also begins with the sequence of break points and 
the initial set of dominant points. However, unlike Masood, Carmona recursively deletes the 
dominant points with minimum impact on the global fit of the line segments. Thus, 
inherently Carmona-Poyato focuses more on reliability than on precision. It is evident in the 
results reported in [Carmona-Poyato, et al., 2010] that this method has a tendency to be 
lenient in the maximum allowable deviation in the favor of general shape representation for 
the whole curve. 

5. Numerical examples 
We consider the following methods for comparison: 

1. L-RDP_max (from section 2) 
2. L-RDP0.5, L-RDP1.0, L-RDP1.5, and L-RDP2.0 (from sections 2 and 4.2) correspond to 

the values of told  as 0.5, 1.0, 1.5, and 2.0 pixels respectively. 
3. PRO0.2, PRO0.4, PRO0.6, PRO0.8, and PRO1.0 (from section 4.3) correspond to the 

values of 0  as 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. 
4. Masood (section 4.4, [Masood, 2008]) using the termination criterion specified in 

[Masood, 2008], i.e., max 0.9  . 
5. Carmona-Poyato (section 4.5, [Carmona-Poyato, et al., 2010]), using the termination 

condition specified in [Carmona-Poyato, et al., 2010], i.e., 0.4ir  .  

5.1 Images of Fig. 2 

First, we consider L-RDP_max. The results are in the second row of Fig. 4. We see that L-
RDP_max is able to avoid the fluctuations due to digitization and noise (in Fig. 4, see columns 
(g-p), row 2). In the meanwhile, it is able to retain good fit for snippets with important curvature 
changes, see columns (h,m,n,p), row 2 of Fig. 4. Conclusively, due to the consideration of the 
upper bound of digitization error, L-RDP_max considers the general features of the digital 
curve rather than concentrating on every single small scale feature of the curve. 
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The first observation is that L-RDP algorithms are very sensitive to the tolerance values. L-
RDP0.5 algorithm gives a performance comparable to PRO0.2 and PRO0.4, both 
qualitatively (specifically note the columns (h,i,m,n) of Fig. 4) and quantitatively (see Table 
2). A slight increase in tolerance from 0.5 to 1 changes the quality and performance 
parameters of the line fitting significantly, as evident in Fig. 4 and Table 2. The performance 
of L-RDP1 is closer to PRO0.6 and the performance of L-RDP1.5 is closer to L-RDP_max and 
PRO0.8. As the tolerance is increased further in L-RDP algorithms, the fitted line segments 
start losing information about the major curvature changes and represent the digital curves 
only crudely. Thus, though L-RDP2.0 provides significant dimensionality reduction (see DR 
in Table 2), it performs poorly for all the remaining performance parameters. 

Next, we consider the results of PRO algorithms. It can be seen in the row PRO0.2 of Fig. 4 
that it follows the digital curves very closely. As a consequence it is very sensitive to 
digitization and generates numerous small line segments to represent the curve, strongly 
evident in columns (e-i,k-p) of Fig. 4. Though definitely very reliable and precise, as evident 

from  
Datasetp   and  Datasetr  in Table 1, due to the tendency to fit the curves very closely, 

it performs poorly in dimensionality reduction (see DR values in Table 1). In the next set: 
PRO0.4-0.8, we see that these algorithms tend to follow the curvature of the digital curve, 
better than PRO0.2. We highlight the results in column (m) of Fig. 4. While PRO0.2 generated 
many line segment for the right side of the curve, PRO0.4-0.8 are more selective in fitting the 
line segments and fit the line segments focusing at the location of changes in curvature.  
Further, as the value of 0  increases from 0.4 to 0.8, the tendency to concentrate further on the 
general characteristics of the curve (rather than following every small scale feature of the  
curve) increases. This is significantly evident in the results in columns (h), (n), and (p) of Fig. 4. 
In the last PRO algorithm, PRO1.0, we see that rather than focusing on small features of the 
digital curve, these algorithms tend to follow the general characteristics of the digital curve on 
a relatively larger scale. Due to this reason, the results of PRO0.8-1.0 are closer to L-RDP_max. 
As a consequence of this characteristic, PRO0.8-1.0 and L-RDP_max have significantly better 
dimensionality reduction as compared to other PRO algorithms (see DR in Table 2). 

With lower value of  
Datasetp   than  Datasetr  in Table 2, we see that Masood targets 

improving the precision (reducing) rather than the reliability. Thus, as noted in columns (k-
m) of Fig. 4, Masood fails in representing the nature of the curves effectively. On the other 

hand, for Carmona-Poyato, the value of  Datasetr  is lower than  
Datasetp   in Table 2. 

However, due to the small length of the digital curves here and the fact that Carmona fits 
the polygonal approximation depending upon the length of the curve, in these figures with 
very small digital curves, it tends to fit the curves very closely (see columns (e,f,i,n,o) of Fig. 
4), thus demonstrating better precision as well as reliability as compared to Masood. On the 
other hand for these images, L-RDP_max gives a performance in between Masood and 
Carmona-Poyato. This indicates that L-RDP_max avoids both under-fitting and over fitting. 

5.2 Example of large closed curve 

In this section, we consider an example of digital closed curve which is significantly large 
and contains 458 pixels. The digital curve is derived by scanning the image of dog from 
Figure 14 of [Masood, 2008] at 300 dpi, followed with blurring using Adobe Photoshop with 
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a brush size of 2 pixels. Then the polygonal approximation obtained using various methods 
are presented in Fig. 5. As in section 5.1, the performance of L-RDP_max, L-RDP1.5, and 
PRO0.8 are similar. For this curve, the performance of Carmano-Poyato is also similar to L-
RDP_max. Not only the number of vertices in the polygonal approximation for these cases 
are similar, the location of the vertices are also similar. L-RDP0.5 and PRO0.2 over fit the 
curve with numerous points. The quantitative performances are listed in Table 2.  

5.3 Large datasets used in real applications 

We consider 7 datasets used in object detection algorithms for the purpose of training. These 
datasets, namely afright [McCarter & Storkey, 2003], Caltech101 [Fei-Fei, et al., 2007], Caltech 
256 [Griffin, et al.], Pascal 2007 [Everingham, et al., 2007], Pascal, 2008 [Everingham, et al., 
2008], Pascal 2009 [Everingham, et al., 2009], and Pascal 2010[Everingham, et al., 2010], 
contain a total of 97178 images, with the smallest image being only 80 pixels wide and the 

largest image being 748 pixels wide. The values of  
Datasetp  ,  Datasetr  and DR for all the 

datasets and algorithms are plotted in Fig. 6, Fig. 7, and Fig. 8 respectively. Even over such 
wide range of images, L-RDP and PRO algorithms give consistent performances, as seen in 
Fig. 6, Fig. 7, and Fig. 8. Further, all L-RDP and PRO algorithms give better performance in 
terms of precision and reliability, as seen in Fig. 6 and Fig. 7. As a final note, L-RDP_max 
gives better DR than both Masood and Carmona-Poyato, as seen in Fig. 8. 

 
Fig. 4. The polygonal approximations obtained using various methods for images in Fig. 2. 
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Dataset of the 16 images in Fig. 2 Digital curve in section 5.2 

 
Datasetp   Datasetr DR  

Datasetp   Datasetr DR 
Time 

(seconds) 
L-RDP_max 0.2751 0.2198 0.1286 0.3954 0.3189 0.1114 0.3059 

L-RDP0.5 0.1108 0.0931 0.2233 0.0897 0.0964 0.2642 0.8533 
L-RDP1 0.2295 0.1884 0.1356 0.2829 0.2397 0.1332 0.3498 

L-RDP1.5 0.2751 0.2198 0.1286 0.4133 0.3508 0.1048 0.2571 
L-RDP2 0.3650 0.2899 0.1174 0.5298 0.4341 0.0917 0.2225 
PRO0.2 0.0032 0.0030 0.3933 0.0055 0.0062 0.4672 1.6157 
PRO0.4 0.1486 0.1227 0.2008 0.1629 0.1607 0.1769 0.5004 
PRO0.6 0.1974 0.1700 0.1405 0.2748 0.2467 0.1288 0.3330 
PRO0.8 0.2563 0.2086 0.1307 0.4066 0.3483 0.1048 0.2613 
PRO1.0 0.3185 0.2471 0.1228 0.5626 0.4635 0.0873 0.2100 
Masood 0.2970 0.3144 0.1845 0.1203 0.1155 0.2249 26.1754 

Carmona-
Poyato 

0.1306 0.1110 0.2436 0.3349 0.3152 0.1157 0.6324 

Table 2. Performance metrics for the dataset of the 16 images in Fig. 2 and the digital curve 
in section 5.2. 

 

Fig. 5. Example of a large curve, shape of a dog. The length of the digital curve is N=458. 
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Fig. 6. Precision measure  
Datasetp   for various datasets obtained by different algorithms. 

 

 
 

Fig. 7. Reliability measure  Datasetr  for various datasets obtained by different algorithms. 
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Fig. 8. Average dimensionality reduction  for various datasets obtained by different 
algorithms. 

6. Conclusion 
Polygonal approximation of digital curves is an important step in many image processing 
applications. It is important that the fitted polygons are significantly smaller than the 
original curves, less sensitive to the digitization effect in the digital curves, and good 
representations of the curvature related properties of the digital curves. Thus, we need 
methods to deal with the digitization and consider both local and global properties of the fit. 

First, we show that the maximum deviation of a digital curve obtained from a line segment 
has a definite upper bound. We show that this definite upper bound can be incorporated in 
a polygonal approximation method like L-RDP for making it parameter independent. 
Various results are shown to demonstrate the effectiveness of the parameter independent L-
RDP method against digitization, dimensionality reduction, and retaining good global and 
local properties of the digital curve. In the future, we are hopeful that this error bound shall 
be incorporated in various recent and more sophisticated polygonal approximation and give 
a good performance boost to them, while making them free from heuristic choice of control 
parameters. 

Second, we show that global and local properties of the fit are in contradiction with each 
other in general. We propose precision measure for measuring the local quality of fit and 
reliability measure for measuring the global quality of fit. Using them we show that better 
local fits are achieved by considering small edges of the polygons, while better global fit is 
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achieved by making the edges of the polygon as long as possible. Further, we show that 
most contemporary measure of quality of fit are either directly related to precision or 
correspond to the local nature of fit. Since these measures are used in most contemporary 
algorithms, most of them concentrate on improving the local quality of the fit only. 
However, as demonstrated by the upper bound of the maximum deviation due to 
digitization, it may not be worth to reduce the precision below a certain level, since it is 
difficult to predict if the actual deviation is below the error bound due to digitization, some 
form of noise, or due to the nature of the curve. In our knowledge, only Carmona-Poyato 
includes reliability (though indirectly) in its algorithm [Carmona-Poyato, et al., 2010].  

We also propose line fitting algorithm that specifically optimize the curves for increasing 
both precision and reliability simultaneously.  We hope that these measures are paid 
attention to by the research community and better algorithms for polygonal fitting are 
developed, which provide good local as well as global fit. In the future, it shall be useful to 
further improve the design of the precision and reliability measures such that they are more 
representative of the quality of fit. Such improvements in design will also influence the 
quality of polygonal approximation achieved by the polygonal approximation methods. 
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1. Introduction

Due to high competition and the need to meet deadlines, modern industries with focus on
market demand high availability and reliability of their equipment. With this view, in the last
years the maintenance activity has undergone several changes which have led to an evolution
in the standpoint of organization and planning of its execution. According to Kardec & Nascif
(1998), the direct causes for this development are:

• The quick increase of the amount and the diversity of physical elements that compose
varied equipment of process plants that must be kept available;

• Most complex engineering projects;
• New methods for maintenance activity;
• New approaches about the maintenance organization and their responsibilities.

The concept of predictive maintenance has emerged as a result of these demands. Predictive
maintenance is the regular monitoring of operating condition (variables and parameters) -
the performance - from a device or process that will provide the necessary data to ensure the
maximum allowed interval between repair and better intervention planning.

Historically, the first method of artificial elevation that was used in the oil industry was the
sucker-rod pumping. Its importance is reflected in the number of installations found on
industry, being the most widely elevation method used around the world. Its popularity is
related to low cost of investments andmaintenance, flexibility of flow and depth, good energy
efficient and the possibility of operating with fluids of different compositions and viscosity in
a wide temperature range.

The main advantages of Sucker-rod Pumping are: the simplicity of operation, maintenance
and design of new installations. From normal conditions can be used until the end of
productive life of a well and the pumping capacity can bemodified, depending on the changes
of the well’s behavior. However, the main advantage of this method relates to the lower
cost/production throughout the productive life of the well.

This method is the most common way of artificial elevation (Alegre, Morooka & da Rocha,
1993; Schirmer & Toutain, 1991). It is estimated that 90% of artificial elevation in the world
use the system of mechanical pumping (Nazi & Lea, 1994; Tripp, 1989). In Brazil, 64% of the
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total production is obtained through the mechanical pumping (de Oliveira Costa, 1994). In
practice, the monitoring of the mechanical pumping system status is done by reading a card,
called dynamometric card. With this card you can know about the condition of the pump
located at the bottom of the well. The dynamometric card consists of a graph that relates the
charge and the position. This graph reflects the current conditions of pumping (Barreto et al.,
1996; Rogers et al., 1990). Thus, the card may take various formats during well’s production
and represent situations of normal operation or indicate a possible irregularity in mechanical
pumping system.

The process of identifying situations of abnormal operation of the mechanical pumping
system becomes, thus, a problem of visual information interpretation (Dickinson & Jennings,
1990). In any case, this approach may be influenced by several factors, such as the behavior of
the system itself, because of its complexity, which results in diverse forms of dynamometric
cards, beyond the knowledge and experience of the engineer responsible for the well. Besides
that, nowadays, each field petroleum engineer is responsible for over one hundred wells
equipped with mechanical pumping. In this case, the traditional process of interpretation
becomes impracticable in an acceptable time.

1.1 Objectives

This study aims to contribute to the predictive maintenance field through the development of
intelligent computing techniques (Russell, 2003) based on digital image processing, capable of
preventing damage in a particular equipment or industrial process in a predictive way.

In scientific terms, the main objective is to propose and analyze the performance of
nonparametric patterns recognition techniques in the context of fault detection and diagnosis
using boundary descriptors and metrics or statistics mathematical tools.

In technological terms, the objective of this study is to contribute to the area of fault automatic
detection and diagnosis in dynamical systems, by proposing a new architecture based on
visual similarity of signatures (images) that represent operating conditions. This, in turn,
will bring benefits that may complement the tools that nowadays operate in industrial parks.

The proposed approach is the automation of fault analysis and diagnosis in dynamic systems,
basing on the following points:

• A description model based on knowledge through system signatures, and;
• Fault recognition through metric distances or correlations.

In this study, it was used bottom hole dynamometer cards, because the surface cards
incorporate various degenerative effects caused by the spread of the charge along the whole
column of rods. These effects make surface cards represent only one well. When the bottom
cards are used, it is possible to observe that the standards of the system operation are the same
(de Almeida Barreto Filho, 1993).

Additionally, was chosen present a new approach of classification of the failures of sucker-rod
pumping. As the fault diagnosis in mechanical pumping system is a recognition process
of dynamometric cards references, various studies have been developed based on pattern
recognition techniques using neural network or expert systems and have been proposed to
improve accuracy and efficiency (Nazi & Lea, 1994) of this kind of diagnosis system (Alegre,
A & Morooka, 1993; Alegre, Morooka & da Rocha, 1993; Barreto et al., 1996; Chacln, 1969;
Dickinson & Jennings, 1990; Nazi & Lea, 1994; Rogers et al., 1990; Schirmer & Toutain,
1991; Schnitman et al., 2003; Xu et al., 2006). Thus, the approach used is based on pattern
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recognition using a distance calculus technique (Euclidean Distance) or a similarity tool
(Pearson Correlation).

1.2 Document structure

This study is divided into more five sections. In the following section, the tools used are
theoretically justified, discussing the techniques of descriptors based on edges and some
tools for calculating distance metrics and statistics. In Section 3, the oil Sucker-Rod Pumping
System is presented, being a study case for implementation of the proposal work. Then, in the
next section the methodology for detection and recognition of the failure is presented. Section
5 presents the results obtained and finally the conclusions are presented in Section 6.

2. Theoretical basis

2.1 Description of boundary descriptors

The boundary descriptors are mathematic methods that describe a object or a region of figure.
The descriptors are separated in two groups (Gonzalez et al., 2003): Descriptors based in
contour (border) and Descriptors based in region. The first, it describe the object shape basing
in its contour. Now, the region descriptors describe the object inside. The proper descriptor
ideal must show the following invariant features:

• Translation;
• Rotation;
• Scale;
• Start Point.

In the diagnose process of faults in the Sucker-rod pumping system through dynamometer
cards, the rotation feature is unnecessary, because several faults show the same contour, but
they are rotated.

2.1.1 Centroid

The contour descriptor by centroid have main focus to calculate the distance between the
card geometric center to several points that compose the card to make a distance set (D =
{D0, D1, ...,Dn}). The Equations 1 and 2 show the centroid calculus, where N are the quantity
of points that compose the card and the ordered pair, xc and yc, represents the centroid.

xc =
1
N

N

∑
i=1

xi (1)

yc =
1
N

N

∑
i=1

yi (2)

The Equation 3 shows the distance calculus between the centroid and several points.

Di =
√
(xi − xc)2 + (yi − yc)2 (3)

So, it can use the distance set like contour feature of dynamometer card.
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2.1.2 Curvature descriptor

The curvature descriptor is a simple and easy algorithm to develop and the main
purpose is calculate the distance between any point in relation to next point (clockwise or
counter-clockwise). The Equations 4, 5 and 6 show the distance calculus.

Dxi = (xi − xi + 1)2 (4)

Dyi = (yi − yi + 1)2 (5)

Dc =
√

Dxi − Dyi) (6)

2.1.3 K-curvature

The K-curvature extractor shows the object contour through of the created angle relation
between two vectors. From any initial point, pi, two points, pi+k and pi+2k, are chosen with
a spacing of k values with the purpose to eliminate contour noises. So, two vectors (v and w)
are defined. The vector v is formed by points pi and pi+k, while the vector w is formed by pi+k
and pi+2k. The Equation 7 shows the angle calculus between the vectors.

θ = cos−1 v · w
|v| · |w| (7)

So, v · w is the scalar product between vectors (Equation 8) and |v| and |w| are the norms of
vectors (Equation 9 and 10).

v · w = v1w1 + v2w2 + ...+ vnwn (8)

|v| = √
v · v (9)

|w| = √
w · w (10)

2.1.4 Fourier Descriptor

The Fourier Descriptor is compact and light algorithm. To develop this algorithm, consider
the following points: (xk, yk) that represent the object contour coordinates, where k =
0, 1, 2, ..., N − 1 and N is the points quantity of border. The Equation 11 indicates the complex
function of object contour coordinates.

z(k) = (xk) + j(yk) (11)

In spite of sequence not be important to this descriptor, in this work, x is the position of polish
rod and y is the applied system force. The Fourier descriptors (Equation 12) aremake applying
the Discrete Fourier Transform (DFT) in the Equation 11.

Fn =
1
N

N−1

∑
k=0

z(k)e−
j2πnk

N (12)
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N = 0, 1, 2, ..., N − 1 and Fn are transformation coefficient of z(k). The descriptors can be
rotation invariants when used magnitudes of transformation, |Fn|. The scale can be normalize
to divide the magnitudes of coefficient by |F1|.

2.2 Mathematical tools for calculating of similarity

2.2.1 Euclidean distance

The Euclidean distance between two points is the length of the line segment connecting them.
In Cartesian coordinates, if p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) are two points in
Euclidean space, then the distance from p to q, or from q to p is given by Equation 13.

D = d(p, q) = d(q, p) (13)

D =
√
(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 (14)

D =

√
n

∑
i=1

(pi + qi)2 (15)

2.2.2 Pearson correlation

The Pearson correlation (or “product-moment correlation coefficient", or also “r of Pearson")
measure the correlation degree and the direction between two variables of metric scale. This
coefficient is represented by r and can be between −1 and 1. So, r can be analyzed in the
following manners:

+1: It means a perfect correlation and the variables are in the same direction;
−1: It means a perfect correlation too, but, in this analysis, the variables direction is opposite.
0: In this case, the variables does not have a linear dependence.

In other words, the signal of the result correlation shows if the correlation is positive or
negative and the proportion variable shows the correlation force.

The Pearson correlation coefficient is calculated according to the next formula:

r =
∑n

i=1 (xi − x̄) (yi − ȳ)√
∑n

i=1 (xi − x̄)2 ·
√

∑n
i=1 (yi − ȳ)2

Where x1, x2, . . . , xn e y1, y2, . . . , yn are measure values both of variables. Moreover, xn can
be written:

x̄ =
1
n
·

n

∑
i=1

xi

And yn can be:

ȳ =
1
n
·

n

∑
i=1

yi

These variables (xn and yn) are arithmetics meanings, both of variables x and y.

3. Sucker-rod pumping system

The first artificial lifting method was the sucker rod pumping, that appears after the birth of
the oil industry. The importance of this method is showed in the number of installations now
operating in the world. The Figure 1 presents a Sucker Rod Pumping Unit.
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Fig. 1. Sucker Rod Pumping Unit

The great success of the sucker rod pumping system is linked to low cost in investment,
maintenance, flow and deep flexibility, good energetic efficiency and the possibility to operate
several down-hole conditions. But, the main advantage is the lowest cost/production
relationship during the field production life.

3.1 Components of the sucker rod pumping

3.1.1 Downhole pump

The Downhole Pump is a positive displacement pump - in other words, when the fluid gets
in suction, it does not return.

3.1.2 Rod string

The string rod is responsible for providing the surface energy to the downhole pump.

3.1.3 Sucker rod pumping unit

The pumping unit changes the rotation movement of the electric motor in the applied
reciprocate movement for polish rod, while the reduction box decreases the rotational speed
of the electric motor to allow the pumping speed.

3.1.4 Dynamometer card

A dynamometer card is a graph of effects originated to active charge in the pump during a
pump cycle. The Figure 2(a) presents a example of real card.
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3.2 Reference card patterns

There are two types of dynamometer cards: the surface and the down-hole card. The charges
are recorded in the surface through the dynamometers and in the down-hole through special
devices or mathematical models. The dynamometer card is one of main tools to analyze and
review the condition of the system. This card is a record of the charges along the rod string
path. It is possible to view several conditions of pumping through the dynamometer card. In

(a) A Example of Real Card (b) Cards Patterns

this subsection, some Sucker Rod Pumping System cards are presented. Each card showed
was chosen based on the main problems of oil fields and they can be found in other previous
papers.(dos Santos Côrrea, 1995)

These presented cards (Figure 2(b)) are some reference patterns for the proposed model in the
forward section.

3.2.1 Normal operation

The normal pumping pattern is associated with the follow characteristics:

• High volumetric Efficiency;
• Low interference of gas;
• Low or medium suction pressure.

3.2.2 Fluid pound

These patterns are associated with the follow characteristics:

• Low suction pressure;
• Low interference of gas;
• Blocked Pump Suction.

3.2.3 Valve leak

This patterns happen when there is a leak in the down-hole valves (Traveling or Standing
valve).
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Fig. 2. Stages of Model Proposed

4. Methodology

In this part, it will be presented the used methodology in approximately 1500 dynamometric
cards from the sucker-rod pumping system. The current methodology meet four reference
cards. Next, the data flow and applied descriptors will be presented.

4.1 Data flow

The used model of data flow is based on selection and processing faults pattern cards. Thus,
a border descriptor is generated for each pattern card. After this step, it is repeated for
analyze each field card. After the border descriptor of the field card, the Euclidean Distance
is calculated with each border descriptor of the pattern cards. The result of each distance
calculus is compared in a minimum function. The lower value is linked to the closest pattern
of the field card.

The Figure 2 presents an information flow in the proposed model.

4.2 Data acquisition

The data is obtained through the supervisory software. This software gathers the field
variables like current, force, horse head position, head pressure, down-hole pressure, among
others.

The dynamometer cards are a two dimension graph of force (ordinate axis) versus horse head
position (abscissa axis). This card consists of one hundred points.
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4.2.1 Patterns selection

The pattern cards are selected by an expert engineer. Next, the selected cards are available for
system to process. From this moment the treatment is similar to the field card as the pattern
cards.

4.2.2 Descriptors generator

After the data acquisition and patterns selection, the cards are processed using the
mathematical tool showed in the Section 2.1. Thereby, each field card can be used to calculate
the distance with a pattern card that has its own identity.

4.2.3 Calculating of similarity

Any signature can be compared with a pattern through their descriptors using some
mathematical tools for calculating distance. Thus, one similarity value (coefficient) is
generated for every calculation of distance between one signature and the different patterns.

4.2.4 Minimum classifier and fault recognition

It was necessary to use a classifier to recognize what pattern is closer to the field card. In this
study, a simple classifier was used and it is just a maximum function. This function is applied
in the generated table in Section 4.2.2. Thereafter, the Euclidean Distance calculus that has the
lower value represents the fault.

5. Results

This section is divided in three subsection. The first subsection, the general results are showed
and discussed. In the second subsection, each descriptor is tested for invariance of the features
needed to Sucker-rod pumping (Scale, Translation and Start point). After, it is showed a
modification to improve the performance of recognition. In the last, the consolidate results
are presented.

5.1 General results of euclidean distance

The Figures 3, 4, 5 and 6 are the result of pattern recognition analysis with Euclidean Distance.
The K-Curvature Descriptor and Fourier Descriptor are the best performance, but in the
analysis of Fluid Pound and Gas Lock Pattern, both not show good results.

5.2 General results of pearson correlation

The Figures 7, 8, 9 and 10 are the result of pattern recognition analysis with Pearson
Correlation. The Centroid Descriptor and Fourier Descriptor are the best performance, but
in the analysis of Fluid Pound and Gas Lock Pattern, both also do not present good results.

5.3 Tests of invariant characteristics

In this subsection, the presented results are about the robustness tests of descriptors in relation
to features that must be invariant and for fault recognize on Sucker-rod pumping system. In
all the tests, the chosen card represents a fault pattern card. The results are present in the Table
1.
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Fig. 3. Euclidean Distance - Results to Showed Cards of Leaking Standing Valve
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Descriptors Translation Scale Start Point

Centroid OK OK FAIL
K-Curvature OK OK FAIL
Curvature OK OK FAIL
Fourier OK OK FAIL

Table 1. Invariance Tests
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Fig. 11. Used Example to Teste Translation Invariance

5.3.1 Translation invariance

Translation tests, the chosen card was translated as shown in Figure 11. As expected, all
descriptors were successful in recognizing.

5.3.2 Scaling invariance

Scaling tests, the chosen card was scaled as shown in Figure 12. And also, all descriptors were
successful in recognizing.

5.3.3 Start point invariance

Start point tests, the start point was changed. The Figure 13 shows the both start points
(Original Start Point and Modified Start Point) from data acquisition. But now, as can be
seen, all descriptors were not successful.

The Fourier descriptor is able to solve this problem. Modifying the Equation 12 to 16 through
to calculate of absolute value of Fourier Transform. But, this procedure insert a new problem
to recognize of fault that are equal when rotated. It can be seen in the Figure 14 where different
faults are recognized as the same when this process is used.

Fn = abs

{
1
N

N−1

∑
k=0

z(k)e−
j2πnk

N

}
(16)
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Fig. 13. Used Example to Teste Start Point Invariance
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Fig. 14. Examples of Distinct Faults by Rotation

5.4 Proposed modification

To improve the performance of pattern recognizing to Fluid Pound and Gas Lock faults, it
is proposed a specialist system that analyze the curvature card. The better curvature that
represents a third order function is identified as Gas Lock fault. Look at the results for
Euclidean Distance in the Figure 15 and in the Figure 16.

It is possible to observe that the results as the others faults not change its values.

5.5 Consolidate results

The Table 2 presents the consolidate results. Thus, it can be observed that Fourier Descriptor
was better than others when used with Euclidean distance and it is as good as the Centroid
Descriptor when used with the Pearson Correlation.

Border Sucess (%)
Descriptors Euclidean Pearson

Centroid 45,91 84,55
K-Curvature 81,49 68,72
Curvature 45,91 62,11
Fourier 86,60 83,12

Table 2. Consolidate Results
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Fig. 15. Modified System - Results to Showed Cards of Fluid Pound
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Fig. 16. Modified System - Results to Showed Cards of Gas Lock

6. Conclusion

Nowadays, the quantity of onshore wells using Sucker-Rod Pumping System is higher and
it stickles the engineer work. In addition, the difficulty in recognizing a specific card shape
augment as the amount of noise increase mainly as a function of well depth.

This study, using the processing image, is suitable for fault diagnosis of Sucker-Rod Pumping
System and could help to interpret the down-hole condition of oil well promptly and correctly.
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The results presented a high efficiency for processed field cards and seemed to be very robust
to inherent problems in the processing images, like rotation, translation and scale. In the
future, it is desired to test other recognizing functions and to develop an capable system of
identify all faults. It will permit the prediction and the planning of the maintenance, so the
field engineer manages his equipments.
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1. Introduction   
The characterization of a radiographic imaging system response in terms of spatial and 
temporal resolution is a very important task that allows the determination of this system 
limits and capability in the investigation and visualization of very fast processes and of very 
small spatial details. Thus, the spatial and temporal resolutions limits are very important 
parameters of an imaging system that should be taken into consideration before the 
examination of any static object or dynamic process. The objectives of this chapter are the 
study and determination of radiation imaging system response in terms of spatial and 
temporal resolution limits and the application of super-resolution (SR) methods and 
algorithms to improve the resolution of captured neutron images or video sequences. The 
imaging system taken as example and being studied is a high-sensitivity neutron imaging 
system composed of an LiF+ZnS scintillator screen (0.25 mm thick), an Aluminium-coated 
mirror and a Charged Coupled Device (CCD) camera (2x10-5 lx at F1.4).  

The proposed approach and procedure for spatial resolution and system response 
determination is based on the establishment of the Modulation Transfer Function (MTF) 
using standard slanted edge method with the most appropriate algorithm selected 
according to previous studies. Temporal resolution study and characterization is a more 
complicated task that requires well understanding of video sequence capture process. In this 
chapter the limit of temporal resolution allowing minimum motion blur is studied according 
to a selected dynamic process capture and examination under different exposure conditions. 
Due to physical constraints (low L/D collimation ratio and weakness of neutron beam) and 
instrumental limitations of the used imaging system, the captured images or neutron video 
can be of low resolution. To overcome this limitation, super resolution methods and 
algorithms are applied to improve space-time resolution. The most used methods are: the 
iterative variation regularization methods, the methods based on information combing from 
low resolution frames, the methods of motion compensation and the SR filters. 

All the mentioned procedures and approaches above are still available for any similar X-ray 
or Gamma imaging systems based on the same examination principle of radiation 
transmission. These methods and procedures are used to judge the ability of such imaging 
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system to produce spatial (internal details) and temporal (dynamic) properties of any 
moving object or dynamic process under examination.  

This chapter is divided into three main parts. In the first one, the MTF determination is 
presented by proposing an accurate edge identification method and a line spread function 
under-sampling problem-resolving procedure. The proposed method and procedure were 
integrated into a MatLab code. The source code can be requested to the author of this 
chapter. In the second section, induced motion blur when a moving object is examined is 
studied as a function of video capture frame rate. This approach allows us to determine 
suitable exposure conditions and therefore the temporal resolution that enables an optimum 
image quality with minimum motion blur and noise and acceptable contrast. Finally, 
notions and elements of super resolution are presented in the last section with some 
interesting examples. The examples of resolution enhancement presented in this chapter 
concern a water flow process examined with the described neutron imaging system. 
Experimental results on real data sets confirm the electiveness of the proposed procedures 
and methodologies. All experiments were performed at the neutron radiography facility 
and laboratory of the Algerian Es-Salam research reactor. 

2. Temporal and spatial resolution limit study of a radiographic imaging 
system  
2.1 Spatial resolution limit determination 

Spatial resolution limit is a very important parameter of an imaging system that should be 
taken into consideration before the examination of any object. In this first chapter part, we 
propose the determination of a neutron imaging system’s response in terms of spatial 
resolution. The proposed procedure is based on establishment of the Modulation Transfer 
Function (MTF). The imaging system being studied is based on a high sensitivity CCD neutron 
camera (2x10-5 lx at f1.4). The neutron beam used is issued from the horizontal beam port (H.6) 
of the Algerian Es-Salam research reactor. Our contribution in this field is in the MTF 
determination by proposing an accurate edge identification method and a line spread function 
undersampling problem-resolving procedure. These methods and procedure are integrated 
into a MatLab program (code). The methods, procedures and approaches proposed in this 
work are available for any other neutron imaging system and allow the judgment of the ability 
of a neutron imaging system to produce spatial properties of any object under examination.   

The Modulation Transfer Function is a common metric used to quantify the spatial resolution 
in the system response. Traditional methods for MTF measurements were initially designed 
for devices forming consecutive images that can give erroneous MTF results, due to the fact 
that the sampling of digital devices is not properly taken into consideration. The slanted edge 
method, which is analogous to the impulse response determination for an electronic system, is 
a common technique used for the measurement of an accurate MTF because it requests a 
relatively simple experimental arrangement. In neutron imaging, this technique consists of 
imaging a thin and sharp slanted-edge onto the detector. The edge target must be made from a 
strong neutron absorbing material such as Gadolinium. The ISO 12233 standard presents the 
general methodology for MTF measurement based on this technique (Jespers et al., 1976). An 
interesting algorithms comparison work used for MTF measurement based on slanted-edge 
technique is presented in reference (Samei, et al., 2005).   
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The first goal of this chapter is to apply this methodology and to overcome some under-
sampling and slanted edge identification difficulties, to establish an accurate MTF curve to 
be used for the determination of the system response and the effective spatial resolution 
limit of the neutron imaging system being studied (Domanus, 1992). The components of this 
imaging system are placed in an aluminium light tight box (175 mm x 105 mm x 120 mm) 
positioned vertically by a holder fixed on the metallic table of the neutron radiography 
facility. The camera consists of a 250 μm thick LiF–ZnS scintillator, a front-surfaced Al/SiO2 
mirror and a high sensitivity Sony CCD camera with 2x10-5 lx (at f1.4) as the minimum 
required illumination (Figure 1). It has a bit depth of 8 bits. The camera was manufactured 
and assembled by “Neutron Optics”, France (www.NeutronOptics.com). According to the 
manufacturer specifications, this system has a maximum intrinsic spatial resolution of 200 
µm (171.5 µm calculated). All necessary experiments were performed at the neutron 
radiography facility of the Es-Salam research reactor (Kharfi, et al., 2005). To achieve this 
task, a MatLab code was developed.  

 
Fig. 1. The neutron imaging system studied. 

2.1.1 Theoretical approach and experimental procedures 

An MTF is the spatial frequency response of an imaging system. It characterizes the image 
sharpness produced by such systems. There are many methods allowing the determination 
of this function. One of them, based on analysis of a slanted-edge image of a suitable target, 
is used in this work. The methodology followed is described by the ISO 12233 standard. The 
advantages of this method are the simplicity and the minimal arrangement required during 
the experimental phase. The MTF curve is calculated from the Line Spread Function (LSF). 
LSF is computed by taking the first derivative of the Edge Spread Function (ESF). The ESF 
represent the pixel response in terms of gray levels along a line(s) perpendicular to the edge. 
Fourier transformation and subsequent normalization procedures are then applied to the 
LSF to compute the MTF (Estribau & Magnau, 2004). The MTF describes the amplitude or 
relevant contrast by which sine functions of different frequencies are moderated by an 
imaging system. It gives a measurement of the degradation when transferring data of the 
“physical” object to becoming an image. An MTF value of 1 indicates that the full amplitude 
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is transferred by the imaging system, while a MTF value of 0 indicates that no signal at all is 
transferred. In neutron imaging, an object can be represented in spatial domain by a 3D 
distribution function of neutron attenuation coefficients, a distribution of materials densities 
or any suitable distribution, and in the frequency domain by a distribution of frequencies 
that represent fine (high frequency) and coarse (low frequency) details. A good MTF must 
be sensitive to any change in the system input frequencies of the target or the examined 
object. For our case, the MTF deviation from the ideal value of 1 is due to: 1) the 
scintillator/mirror/CCD detector combination, 2) the geometrical exposure conditions, 
especially the beam divergent angle and the collimation ratio (L/D), and 3) the scattered 
neutrons. Indeed, a thorough understanding of exposure geometry and conditions, object or 
target input frequencies transferring and system response theory are very important for the 
establishment and correct analysis of the MTF obtained. 

The slanted-edge method consists of imaging an edge onto the detector, slightly tilted with 
regard to the rows (or the columns) (Reichenbach et al., 1991). A slanted oriented edge, 
therefore, allows the horizontal Spatial Frequency Response (SFR) of the system to be 
obtained. In this case, the response of each pixel line across the edge gives a different ESF, 
due to the phasing of the pixel centre locations as the edge location changes with each row 
of pixels. These ESF are under-sampled but it is possible to mathematically increase the 
sampling rate by projecting data along the edge.  

The main steps of the procedure used in this chapter to establish the MTF are the following: 

1. Neutron radiography of the target, scanning of all lines and gray levels averaging and 
adjusting according to open beam and dark current images. This produces the ESF, also 
called the edge profile function. The distances in pixels are corrected depending on the 
angle of the edge slope. The edge should be sloped for smooth averaging.  

2. Taking the first derivative from the ESF to generate the LSF.  
3. Applying a discrete Fourier transform to the LSF. This produces the MTF.  

In this chapter, a MATLAB code based on the Slanted-edge method was developed. This 
program gives users an accurate edge identification application and a procedure for 
sampling improvement and ESF construction, Line Spread Function computation and MTF 
determination and plotting with the possibility of changing input data such as region of 
interest (ROI) dimensions (m lines, n pixels) and pixel size (display monitor). The output 
data can be directly displayed or saved in Excel formats. The most important functions of 
this program are: 

1. Edge Identification: The initial task in MTF measurement is the identification of 
suitable edges for analysis. According to detection pixels grid vertical or horizontal axes, 
the edge must be oriented with a minimum tilt angle for an along scan or cross scan  
MTF determination (Figure 2). This minimum angle is required as well as sufficient length 
for suitable ESF construction (Kohm, 2004). It can be easily proven that at least two 
horizontal pixels should go through along the target edge to guarantee that sub-pixels 
will be placed on uniform grid after projection for ESF construction (Figure 2). In our case, 
the target length is 4.5 cm (~240 pixels), thus the minimum required angle is 0.47°. As the 
orientation of the angle changes, the resolution varies also, becoming either coarser or 
finer. The candidate edge must also meet contrast and noise requirements for selection (Jain, 
1989). This is because, the MTF value obtained with high contrast edge target is always   
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Fig. 2. Sampling improvement by profile line projection after edge identification (for clarity 
just first and last points are presented). 

larger than that obtained with lower contrast target for a given spatial frequency; therefore, 
when the MTF of a system is presented, the contrast of the line pair used to measure the 
MTF should be given (Williams, 2004). In our case the maximum contrast of the target image 
obtained is 37.68% calculated by Michelson formula (Michelson, 1927). Noise can also affect 
contrast transfer and overall detection capability of imaging system. Therefore, the 
measured MTF by the used slanted edge method will be biased. The use of multiple lines of 
profile (m lines) for data improving can reduce the source of error but will usually not 
eliminate it completely (Burns, 2000). For practical purpose, different tilt angles (θ) varying 
from 1° to 5° were tested allowing relatively high and low resolution ESF generation. Before 
starting using our program for edge identification and MTF establishment, a Sobel edge 
detection operator followed by thresholding and binary morphological processing (filtering) 
is used to identify edge with the proper (real) orientation (θp) for a verification purpose 
(Figure 3). A value of θp of 0.95° was found for a tested tilt angle (θ) of 1° that prove the 
good target fixing and correct geometrical exposure conditions. After this verification, the 
image of the target obtained is first read and displayed in a suitable format (.bmp) by the 
developed program. The edge locations were accurately determined for each lines of profile 
of the selected ROI. An initial estimate of the location and angle of the edge is then 
determined by performing a least squares regression of selected points along the edge. The 
approximate equation of the identified edge average straight line is given by: 
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Where: 
m = number of data (line number of the selected ROI);  
Xi = row number;  
Yi = sub-pixel edge position. 

 
Fig. 3. Result of Sobel edge detection operator followed by thresholding and binary 
morphological processing (filtering) to identify the proper edge orientation (θp~0.95°, for 
θ=1°). 

2. Sampling improvement and Edge Spread Function Construction: The ESF is the system 
response to the input of an ideal edge. As the output of the system is a sampled image, the 
fidelity of the edge spread function using a single line of image data is insufficient for MTF 
analysis. Aliasing due to under sampling in the camera, along with phase effects and the angle 
of the actual edge with respect to the sampling grid will cause variable results for a single line. 
The phase effects and edge angle may be exploited, however, to provide a high fidelity 
measurement of the ESF. Construction of the ESF is graphically represented in Figure 2. The 
edge is identified in the image as described above. A line is then constructed perpendicular to 
the edge. For a given line of image data, each point around the edge transition is projected 
onto the perpendicular line. This process is then repeated for each subsequent line of image 
data along the edge. The difference in sub-pixel location of the edge with respect to the 
sampling grid for different lines in the image results in differences in the location of the 
projected data point onto the perpendicular. This yields a high fidelity representation of the 
system response to an edge. Small changes in the edge angle used during construction of the 
super-sampled edge affect the quality of the resulting ESF. The angle is systematically adjusted 
by small increments of 0.25° around the initial estimate (5°) which is equivalent to one pixel 
shift of one edge extremity in left or right direction for an along scan. The resulting curve fit 
(equation) is used to refine the edge angle estimate for the final ESF construction. After the 
individual ESF data points have been determined, the data must be conditioned and re-
sampled to a fixed interval. In general, the angle of the edge with respect to the sampling grid 
does not produce uniformly distributed data points along the perpendicular to the edge. Also, 
with longer edges, many data points may be located in close proximity to one another. 
Suitable 3 order polynomial data fitting is used to re-sample the data to uniformly spaced 
sample points. More sophisticated fitting algorithm is presented in reference (Cleveland, 1985).  

To avoid data interference when performing projection operation, it is important that the 
selected tilt angle θ (projection angle) obeys the following condition: 

θ
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ߠ	݊ܽ  ≥ ௉ೢே೛೗௉೓ (3) 

Where: Pw is the detected pixel width, Ph is the detected pixel height and Npl is the number 
of selected profile lines.  

The slanted-edge target used is a 25 µm thick foil of Gadolinium which is a highly neutron 
absorbing material allowing the production of suitable images with the necessary contrast 
between dark and light parts (edge). The used tilt angles are: 1° for the Sobel edge detection 
test and 5° for the MTF determination. To check the dependence between tilt angle and MTF 
result, some others target tilt angles, of values less than 10°, were tested.  

The main characteristics of the neutron imaging system studied are presented in the 
following table (table.1). 
 

Detector element Sony ICX419ALL,  ½ inch interline transfer CCD 
image sensor 

Number of  pixels 752(H) x 582 (V), 512x512 used 
Unit cell size 8.6 µm  x 8.3  µm 
Minimum illumination 0.00002 lx. F1.4 
Shutter speed or frames rate  Hi: 1/50, 1/125, 1/250, 1/500, 1/1000, 1/2000 sec 
 LO: 1, 2, 4, 8 , 16, 32, 64, 128, 256 frame(s) 
Manual gain control 8-38 dB 
Dynamic range Relatively Wide  at standard imaging conditions 
Bit depth 8 bits (255 levels) 
Neutron Scintillator 250 μm LiF –ZnS, green emission (~520nm) 
Mirror Front-surfaced Al/SiO2-mirror; optical flatness 

2λ/25mm; reflectivity 94%  
Signal to noise ratio 52 dB 

Table 1. Main characteristics of the neutron imaging system studied. 

Neutron radiography image were captured at the neutron radiograph facility of Es-Salam 
research reactor under neutron beam intensity of 1.5x106 n/cm2/s and with a collimation 
ratio (L/D) of ~125. The exposure time to the neutron beam was 15 seconds. Selected camera 
gain was 18 dB. After target image capture, the developed code performs the following 
operations for MTF computation and plotting: 

1. Target image reading in suitable format: 
2. ROI selection, 240 lines x110 pixels were chosen from the image of the target. The main 

criteria for ROI selection are: 1) the width (n pixels) of the ROI must perfectly cover the 
edge area; 2) the length of the ROI (m lines) should be selected as long as possible to 
ensure the reduction of noise and low-frequency MTF estimation errors. 

3. Edge identification and estimation of the real tilt angle. Edge positions were determined 
on a line-by-line (ESFs) basis using pixel profile information. For each single blurred line 
of profile (ESF) a simple digital differentiation is applied to detect maximum slope. The 
sub-pixel edge points are determined by fitting a cubic polynomial equation to the edge 
data using four values around the maximum slope point. Then, the zero crossing location 
of the second derivative of the polynomial coefficients indicates the curve inflection point, 
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which is assumed as the sub-pixel edge location. Finally, all the ESFs sub-pixel edge 
locations are forced to be a straight line by assuming that the edge is a straight line. This is 
done by fitting a line through the sub-pixel edge locations obtained from the previous 
step and then declaring the actual edge locations to be on the line. The least-squares 
approach for finding a straight line involves determining the best approximating line 
when the squared error of the sum of squares of the differences between the edge points 
on the approximating line and the given edge point values is minimized. All these 
operations are performed automatically by the developed program 

4. Sampling improvement by determination of sub-sampling factor and ESF generation 
using data projection technique on an orthogonal line to the detected edge. Before data 
projection, the aligned edge data of every line of profile (ESF) taken from the ROI of the 
image target is interpolated with a cubic splines. Then all the ESFs are splined using the 
function spline.m of MATLAB. And finally, the averaged of splined ESFs is determined; 

5. ESF data selection between 10% and 90% around edge area in the interval between 
maximum and minimum gray levels values (Fig.6 (b)) to avoid unnecessary frequencies 
considering when applying FFT; 

6. Fitting a 3 order polynomial equation to average ESF data;  
7. Numerical differentiation of fitted ESF curve allowing the determination of LSF; 
8. Fast Fourier Transform of LSF with the application of Hamming FFT-window; 
9. MTF plotting after normalization of FFT magnitude. 

2.1.2 Example of practical application and experimental results 

In order to characterize the imaging system being studied, the proposed procedure and 
developed code were used. The effective spatial resolution was determined for a 
recommended MTF value of 0.1 (MTF10). MTF10 is a value corresponding to the average 
human eye’s separation power (resolution). Another very interesting MTF characteristic is 
MTF50 corresponding to a value of 0.5 of MTF (Nyquist Frequency) that provides the limit 
between an under-sampled and poor displayed image (very low frequencies) and an 
optimally sampled and well-displayed image (medium and high frequencies). The neutron 
image obtained of the examined edge target is shown in figure 4. Figure 5 represents the 
main window (screen shot) of the developed program used for MTF computation. The 
spatial resolution limit (Rl) of our system is calculated in mm by the following expression: 

 R୪ = ଵ[୪୮]ଶ	୑୘୊ଵ଴[ ౢ౦ౣౣ ] (4)  

 
Fig. 4. Target neutron radiograph. 
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Not covered 
surface 
(Background) 
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Fig. 5. Screen shot of the developed MatLab program (code). 

Results for the main steps of MTF determination performed by the developed program such 
as edge identification, profile line superposition and interpolation (ESFs) and data projection 
by SPLINE function are presented in figures 6(a) and 6(b).  

 
Fig. 6. (a) Example of edge identification by the developed code: after original image pixel 
decomposing into small intervals (polynomial fit steps), accurate edge location is detected in 
each horizontal line of profile across the edge and an average straight line of all detected 
locations  is determined (least-squares) allowing thus data projection to improve ESF 
sampling (SPline), (b) Superposed profile lines using SPLINE function of MatLab. 

Finally, the proposed code plots the MTF of the studied imaging system (Figure 7). The 
analysis of this MTF curve allows the characterization of spatial response of this system and 
the determination of spatial resolution limit. 

(a) (b)



 
Digital Image Processing 

 

118 

 
Fig. 7. MTF of the studied neutron imaging system. 

 
Fig. 8. MTF curves for components of a radiographic imaging system and the composite 
MTF for the entire system introduced for comparison purpose. A: MTF for the screen-film 
combination, B: MTF for a 1 mm focal spot with 90 cm between the focal spot and the object 
and 10 cm between object and film, C: MTF for 0.3 mm motion of the object during 
exposure, D: Composite MTF for the entire imaging system (Hendee & Ritlenour 2002). 

When critically examining the obtained MTF, the following remarks and conclusions can be 
drawn: 

1. The interesting and best exploited region of MTF is in the interval between the Nyquist 
frequency and the human eye’s resolution. We can see that the MTF curve obtained 
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drop rapidly in this region. This is not a good characteristic of the imaging system 
studied because it allows a fair contrast image display when compared to other imaging 
systems with MTF dropping gradually (Figure 8). The CCD camera, in such a case, 
presents optimum separation ability (resolution) and, in term of gray levels (contrast), it 
reproduces fairly the image of the target.   

2. The spatial resolution limit at MTF10 that correspond to an MTF of 0.1 is equal to 1.2 
lp1/mm. This value is equivalent to 416 µm (according to equation 6) and is a very 
significant and an effective one because it is greater than the value of the intrinsic 
spatial resolution of ~200 µm of the studied imaging system. Deviation from the 
intrinsic resolution is due to many reasons and factors that are the following: 
1. The geometric properties of the neutron radiography facility: In our case, two 

parameters are dominant: 
a. The L/D neutron collimation ration (~125): for a practical case of Objetc-to- 

detector distance (Lf) of 5 cm, the induced geometrical Unsharpness 
(Ug=Lf/(L/D) due to the beam spread when a point is projected at the same 
edge position is equal to 400µm. 

b. The scintillator thickness: for scintillator-based converter system, the first 
source of blur is spreading of emitted light within the scintillator material. The 
spreading is determined by the material’s thickness and by the design of the 
scintillator in terms of its crystal structure and its neutron absorptive and light 
emission properties. 

Despite all these constraints, the geometric blurring can be minimized by reducing 
the object-to-image detector distance as much as possible (e.g., contact), and by 
increasing the collimator inlet aperture-to-object distance (L) to a suitable level not 
affecting the neutron beam intensity considerably.  

2. The imaging technique: indeed indirect-conversion method of the used image 
detector can scatter light over several pixels, further limiting the effective 
resolution of the system, more so than indicated by pixel size alone (intrinsic 
resolution). 

3. Optical properties: the intrinsic resolution can often be degraded by other factors 
which introduce blurring of the image, such as improper focusing and light 
reflection by the mirror.  

However, one cannot isolate spatial resolution effects on neutron image quality from effects 
due to quantum mottle and electronic noise under typical digital image acquisition 
conditions.  

2.2 Temporal resolution 

2.2.1 Temporal resolution estimation 

The temporal resolution is determined by the frame rate and by the exposure-time of the 
camera. These limit the maximal speed of dynamic events that can be well captured by the 
neutron camera. Rapid dynamic events that occur faster than the frame rate of CCD cameras 
are not visible (or else captured incorrectly) in the recorded video sequences. There are two 
typical visual effects in video sequences which are caused by very fast motion (Shechtman,  

                                                 
1 lp : line pairs or cycle. 
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2005). One effect (motion blur) is caused by the exposure-time of the camera and the other 
effect (motion aliasing) is due to the temporal sub-sampling introduced by the frame rate of 
the camera. In our case of neutron imaging, only motion blur is of interest. It occurs when 
the camera integrates the light coming from the scene (scintillator) during the exposure time 
in order to generate each frame. As a result, fast moving objects produce a noted blur along 
their trajectory, often resulting in distorted or unrecognizable object shapes. The faster the 
object moves, the stronger this effect is, especially if the trajectory of the moving object is not 
linear (Shetchman et al., 2002). To quantify this motion blur and therefore to determine the 
temporal resolution limit, we proceed as follows: the neutron imaging video of a rotating 
cadmium indicator is captured for different rotational speeds (0.0017, 0.45, 1.2 and 1.65 
RPS2) and different frame rates (Figure 9). The indicator used is a thin 7.9 mm wide 
cadmium blade. It was put into rotational motion by a speed controlled electrical motor. 
Video sequences (Vid. Seq.) for different indicator rotational speeds are captured under the 
following conditions (table 2): 
 

 Frame rates (fps3) Neutron beam 
intensity 

Camera 
Gain 

Exposure time (s) 

Vid. Seq.1 12.5 1.5x106 n/cm2/s 22 dB 90’ 
Vid. Seq.2 25 1.5x106 n/cm2/s 22 dB 90’ 
Vid. Seq.3 50 1.5x106 n/cm2/s 22 dB 90’ 
Vid. Seq.4 125 1.5x106 n/cm2/s 22 dB 90’ 
Vid. Seq.5 250 1.5x106 n/cm2/s 38 dB 90’ 

Table 2. Experimental video sequences capture conditions. 

 
Fig. 9. Experimental arrangement for induced motion blurs characterisation. 

The video sequences obtained are examined with suitable image processing and analysis 
software (Image J). The used CCD neutron camera integrates light coming from the 
scintillator screen during the exposure time in order to generate each frame.  The software 

                                                 
2 RPS : rounds per second. 
3 fps: frames per second. 
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enables the calculation of the motion blur B using equation (5) for each video sequence 
obtained. The motion blur in this case is considered as the width (in pixels) of the shade 
involved behind the rotating indicator appearing in each frame. This width is measured at 
the middle of the indication on a selected frame. The data obtained allows us to determine 
the effective limits of temporal resolution for each rotational speed. 

ܤ  = ௪௜ܫ − ௪௥ܫ ቂ௅೑௅ ቀ1 − ஽ூೢೝቁ + 1ቃ (5) 

where: Iwr is the real indicator width (7.9mm), Iwi is the indicator width measured on the 
obtained image, Lf is the distance between the indicator position and the scintillator screen 
(10.5 mm), L is the distance between the collimator inlet aperture and the indicator position 
(2500.5 mm), D is the collimator inlet aperture diameter (20 mm).  

2.2.2 Experimental results 

Selected frame from captured video sequences is presented in figure 10. Preliminary 
analysis of the video sequences obtained shows that the temporal resolution is affected 
principally by motion blur and not by motion-based aliasing.   

 
Fig. 10. Selected frame showing the indicator position and motion blur width taken from 
selected video sequence captured with a frame rates of 12.5 fps and for a cadmium 
indicator’s rotation speed of 0.45 RPS. 

Motions blur variation as a function of frame rate is presented in figure 11. Graphs 1 and 2 
correspond to indication rotation speeds of 0.45 and 1.2 RPS respectively. 

On graphs 1 and 2, we can easily verify that motion blur decrease when the frame rate is 
increased up to critical values where it became constant. It was observed that the critical 
points are located at 12.5, 50, 125 and 250 fps on the frame rate axis for, respectively, 0.0017, 
0.45, 1.2 and 1.65 RPS of the cadmium indicator rotation speeds. These critical points 
correspond to the temporal resolution limits that retain motion blur at a minimum although 
with low image dynamic range. Results of temporal resolution limits for different rotational 
speeds are shown in figure 12.  
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Fig. 11. Motion blurs variation of video sequences in function of frame rates for two rotation 
speeds of the cadmium indicator. 
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Fig. 12. Temporal resolution limits as a function of indicator rotation speed. The temporal 
resolution limit allowing optimum image quality in term of motion blur, with, certainly a 
low dynamic range, presented in this figure are for specific exposure and image capture 
conditions, namely: a neutron beam intensity of 1.5x106 n/cm2/s, a camera signal gain of 22 
dB and 38 dB (last point). 

As we can see in figure 11, the temporal resolution limit is closely related to the indicator 
rotational speed. These values give an idea about the optimal frame rate that must be 
selected to avoid motion blur but not necessarily the most suitable for optimum frame 
exposure. With low frame exposure contrast and dynamic range can be seriously affected 
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especially when the neutron beam intensity is low. Finally, it’s very important to mention  
that the video sequence captured are, relatively, not rich in terms of gray levels 
digitalization and contrast because of the limited dynamic range and bit depth (8 bits) of the 
imaging system being studied. In this work, it is obvious that, the image quality is analyzed 
and judged regarding to the performance of the imaging system used for neutron video 
capture. In order to improve the video image quality it is recommended to increase the 
neutron beam intensity at the sample level to the maximum and to use a CCD camera with a 
high bit depth (+14 bits).  

3. Criteria for best video capture results and application of super resolution 
in neutron imaging 
Dynamic process imaging using a neutron beam is a very powerful and interesting 
investigative tool as far as light materials, elements and substances such hydrogen, water 
lubricants and some other relevant materials are concerned. The neutron imaging system 
that is most utilised is based on a CCD camera (charged coupled device) and scintillator 
screen. Because of the complexity and large number of operations necessary for capturing 
dynamic processes with any neutron digital imaging system (neutron camera), specific 
optimum experimental conditions and procedural accuracy are required. The sequence of 
events required to capture a single image with a full-frame CCD camera system is 
summarized in reference (SIT Technical Note, 1994). 

In neutron imaging with CCD-based neutron camera, there are several camera operating 
parameters that modify the readout stage of image acquisition and have an impact on image 
quality (Spring, K. R. et al., www.microscopyu.com/articles/digitalimaging/ccdintro.html). 
The two most important ones are the frame rate (FRM) and the gain (G). The frame rate (also 
referred to as the readout rate) of most scientific-grade CCD cameras is adjustable. The 
maximum achievable rate is a function of the processing speed of the camera electronics, 
which reflects the time required to digitize a single pixel. Applications aimed at tracking 
rapid kinetic processes require fast readout and frame rates (FRM) in order to achieve 
adequate temporal resolution. In certain situations, a video rate of 30 frames per second or 
higher is necessary. A second camera acquisition factor, which can affect image quality 
because it modifies the CCD readout process, is the electronic gain (G) of the camera system. 
The gain adjustment of a digital CCD camera system defines the number of accumulated 
photoelectrons that determine each gray level step distinguished by the readout electronics, 
and is typically applied at the analogue-to-digital conversion step.  

In this work, video sequence quality in terms of contrast, resolution and noise are studied 
and the most suitable conditions for the flow process examination are determined as a 
function of the neutron beam intensity. The second objective of this work is the application 
of a post acquisition super resolution (SR) processing procedures to improve the quality of 
the neutron video obtained. The neutron imaging system used is the same as described 
before.   

3.1 Neutron video capture conditions study 

According to previous work results, it was demonstrated that the optimum acquisition 
parameters for a water flow process capture are respectively: 12.5 fps as a capture frame rate  
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(display 29.97 fps, MPEG-1 format) and a selected value of 22dB as a signal gain for the case 
of the imaging system being used (Kharfi et al, 2011). In this work the captured video 
images have been analyzed in terms of contrast, noise and resolution according to the 
neutron beam intensity. This is to check the effect of the neutron beam intensity on the 
image quality. The quantification of contrast, noise and resolution of the neutron video 
captured is based on histogram and edge profile analysis. Indeed, understanding image 
histograms is probably the single most important element in the analysis of images or video 
sequences from a digital CCD camera.  A histogram can tell us whether or not the image has 
been properly exposed, and what adjustments will work best. Noise is the most important 
variable that can strongly affect the quality of a digital image or video. In this work, only 
gamma radiation noise (impulse noise) that appears in images as undesirable white spots is 
considered. The gamma noise can be estimated through the statistical measure called the 
"standard deviation," which quantifies the typical variation that a pixel gray-scale value will 
have from its mean and "true" value.  This concept can also be understood by looking at the 
histogram for a carefully selected bright region of interest (ROI) on a frame arbitrarily 
selected from the video sequence obtained.  

A histogram can also describe the amount of contrast. Contrast is the difference in 
brightness between light and dark areas in a frame. In this work, the maximum contrast is 
estimated according to Michelson formula given by Eq.5 (Michelson, 1927): 

 C = ୍ౣ౗౮ି୍ౣ౟౤୍ౣ౗౮ା୍ౣ౟౤ (6) 

with Imax and Imin representing the highest and lowest luminance of the analyzed image. 

In neutron imaging, it is common that not all important image quality criteria can be 
simultaneously optimized in a single image, or a video. Obtaining the best images within 
the constraints imposed by a particular process or experiment typically requires a 
compromise between the listed criteria, which often exert contradictory demands 
(Anderson, 2009). In order to study the influence of the neutron beam intensity on the 
neutron video quality, capture of time-lapse sequences of water and car engine oil flows 
inside a metallic container system is performed. Several videos are captured under different 
experimental neutron exposure conditions of the flow process. Details and conditions of 
video sequences capture are shown in table 3. The experiment setup used consists of two 
Aluminium compartments which communicate through three holes of 1mm, 1.5 mm and 2 
mm in diameters (figure 13).  

 

 Liquid Neutron beam 
intensity (n/cm2/s) 

Gain 
(dB) 

Capture frame 
rate (fps) 

Video Sequence.1 water 1.6 x 106 22 12.5 
Video Sequence.2 water 1.44 x 107 22 12.5 
Video Sequence.3 car  engine oil 1.6 x 106 22 12.5 
Video Sequence.4 car  engine oil 4.8 x 106 22 12.5 
Video Sequence.5 car  engine oil 9.6 x 106 22 12.5 
Video Sequence.6 car  engine oil 1.44 x 107 22 12.5 

Table 3. Experimental video sequences neutron exposure and capture conditions. 



Temporal and Spatial Resolution Limit Study of  
Radiation Imaging Systems: Notions and Elements of Super Resolution 

 

125 

 
Fig. 13. Experimental system used in the study and visualization of water and car engine oil 
flow process through three different diameter holes. 

3.2 Super resolution video sequence enhancement procedures and algorithms 

Super resolution (SR) is a mean of producing a high-resolution (HR) image from one or a set 
of low-resolution, blurred and noisy images. It represent the capacity to transform noisy and 
blurred images obtained by low resolution (LR) imaging system (camera) to a higher 
resolution (HR) image with greater details than those of LR image. Methods of SR are 
classified coarsely into two categories: (1) The classical multi-images super resolution 
methods, and (2) Example based super resolution (Irani et al., 1991, Capel, 2004, Farsiu et al., 
2004). Practically, classical methods allow small increases in resolution by factor smaller 
than two (Baker et al., 2002). However, example-based SR methods have been shown to 
exceed the limits of classical methods (Freeman et al., 2000, Kim et al., 2008). Other more 
sophisticated methods for image up-scaling based on learning edge models have also been 
developed and proposed (Sun et al., 2008). To achieve this HR image with classical multi-
image super resolution methods, usually, an estimation of an image which minimizes the 
difference between its projection and each of the low resolution (LR) images through 
suitable algorithms is performed based on iteration process. LR images must have different 
sub pixel shifts, so that every image contains new information. To guarantee this last 
condition, two alternatives are available: 1. Extracting a number of frames from a video that 
are captured in a very small laps of time, 2. camera is moved from frame to frame, 3. 
multiple cameras are used in different positions. SR restores HR images from degraded 
(noisy, blurred and aliased) images. The first step in SR procedure application is the 
formulation of a model that relates between HR image and LR image. The common used 
model is given by the following equation (Sroubek & Flusser, 2007, Sung et al., 2003): 
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 y୩ = D୩B୩M୩x + n୩ (7) 

Where: 
- Mk  is the Warp matrix (Translation, Rotation); 
- Bk  is the Blur matrix ; 
- Dk  is the Sub sampling matrix; 
- nk  is the noise vector ; 
- x  is the original HR image; 
- yk is the observed LR image. 

With this simple formulation, the direct solution estimate can be inaccurate. Robust SR 
methods can help to improve this solution. The solution estimate in each iteration is 
updated by a gradient iterative minimization method given by the following expression: 

 x୬ାଵ = x୬ + δ∇E(x) (8) 

where E(x) is the total squared error of resampling the high-resolution image represented by 
x and δ is a scale factor defining the step size in the direction of the gradient. 

 E(x) = ଵଶ∑ ‖y୩ − DB୩M୩x‖ଶଶ୬୩ୀଵ  (9) 

The gradient of x is can be given by: 

 ∇E(x) = ∑ B୩୬୩ୀଵ  (10)  

Robustness is introduced by replacing this last sum of images by the scaled pixel median: 

(ݔ)ܧ∇  = ݊.݉݁݀݅ܽ݊ሼܤ௞ሽ௞ୀଵ௡  (11) 

Some other combinations in addition to the median operator can also be applied to get more 
suitable and accurate results.  

The procedure of SR consists of three stages (Fig.14): 

1. registration; 
2. interpolation onto HR grid; 
3. Removing blur and noise. 

 
Fig. 14. Model for Super Resolution for observed LR. 

The most important SR image reconstruction approaches are the following:  

- Non uniform interpolation approach; 
- Frequency domain approach; 
- regularized SR reconstruction approach; 
- Projection onto convex sets approach; 

Degradation: 
- Blur; 
-Noise; 
-Under-sampling. 

Registration Interpolation
Reconstructed 

image 
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- Maximum likelihood projection onto convex sets hybrid reconstruction approach; 
- Iterative back-projection approach. 

The second objective of this work is the application and testing of SR procedure based on 
robust method on a neutron imaging video in order to improve their quality in term of 
spatial resolution by reducing the motion blur and also in term of noise. For such a purpose, 
we have adapted a Robust SR procedure described in (Zomet et al., 2001) in a MATLAB 
code to improve the quality and resolution of neutron video obtained. This method is an 
Iterated Back Projection one that computes the gradient, which is not given by the sum of all 
errors, but by the median of all errors. This brings robustness against outliners in the LR 
images. 

For practical purpose, the video frames are, first, rearranged into sets of frames (5 frames in 
each one). Then, the SR procedure mentioned above is applied on each set of frames 
separately with an interpolation factor of 2 (figure 15). For each set of frame, the motion  

 

 

 

 

 

Fig. 15. Neutron video reorganisation in sets of multi-frames, SR procedure application on 
low resolution frames, high resolution frames generation and high resolution neutron video 
reconstruction. 

……….........
Original neutron video

Neutron video 
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resolution frames

SR procedure application on low resolution multi-frames sets 
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estimation that is necessary for the application of this SR method is performed with 
Vandewalle et al (2006) algorithm. This method uses the property that a shift in the space 
domain is translated into a linear shift in the phase of the image's Fourier Transform. 
Similarly, a rotation in the space domain is visible in the amplitude of the Fourier 
Transform. Hence, the Vandewalle et al. motion estimation algorithm computes the 
images' Fourier Transforms and determines the 1-D shifts in both their amplitudes and 
phases. One advantage of this method is that it discards high-frequency components, 
where aliasing may have occurred, in order to be more robust. When all the frames sets 
are processed, the HR frames generated are used for a high resolution neutron video 
reconstruction and displaying with a standard speed of 25 fps or 30 fps (figure 14). To 
guarantee a best result with this proposed procedure, the capture frame rate of the 
examined dynamic process must be higher than the displaying one which is generally 
selected equal to 25 or 30 fps, depending on the used standard. The robust method 
applied to improve spatial resolution is based on pixel interpolation and super-sampling. 
The presented example in this chapter will not claim for completeness. The field of 
neutron imaging is experimental and seems to change with every new system built and 
CCD camera used for the examinations. 

It is very important to mention that the capture frame rate must be accuracy selected to 
guarantee the optimum exposure of each frame to the neutron beam that is necessary for the 
well perception of the dynamic process being examined regarding its speed. The spatial 
resolution limit of the imaging system must be also taken into consideration. In our case the 
selected video capturing speed (frame rate) of 12.5 fps is sufficient to ensure the optimum 
visualization of the studied dynamic process. The rearrangement of the obtained video into 
frames sets of 5 frames doesn’t affect the video quality. This is because our imaging system 
has a spatial resolution limit of ~ 400 μm and the average speed of the studied flow is about 
0.095 m/s. According to these data, the equivalent video frame rate after SR procedure 
application, which is equal to the ratio of the average speed and the spatial resolution limit 
values, is approximately equal to ~2.35 fps. This effective frame rate when multiplied by 5 
must give a value that is in the order of the selected video capture frame rate of 12.5 fps 
(5x2.35=11.75). Indeed, the selected capture frame rate and the number of frames in each set 
ensure the optimum visualization of studied flow process. 

3.3 Results and discussions 

3.3.1 Best video capture practical conditions establishment 

Selected frames from the video sequences obtained are presented in figure 16 and 17. 
Selected region of interest (ROI) of 40x30 pixels are indicated by dashed and white squares. 
These regions indicate where gray levels measurements are performed that allow the 
calculation of necessary standard deviation for the estimation of noise and the necessary 
maximum and minimum gray levels values for the determination of contrast. A summary of 
the results obtained is given in table 4 based on histogram analysis. The variation of contrast 
and noise as a function of neutron beam intensity is shown in figure 18(a) and 18(b). 

From the results obtained, we can first observe that at the maximum neutron beam intensity 
of 1.44 x 107 n/cm2/s, the video sequence obtained is the best one in terms of contrast and  



Temporal and Spatial Resolution Limit Study of  
Radiation Imaging Systems: Notions and Elements of Super Resolution 

 

129 

 

 
Fig. 16. Frames taken respectively from video sequence 1 and 2 of the water flow process for 
a frame rate of 12.5 fps, a Gain of 22 dB and a respectively neutron beam intensity of 1.6 x 
106 n/cm2/s and 1.44 x 107 n/cm2/s (from the left). 

 
Fig. 17. Frames taken respectively from video sequence 3, 4, 5 and 6 of the car engine oil 
flow process for a frame rate of 12.5 fps, a Gain of 22 dB and a respectively neutron beam 
intensity of 1.6 x 106 n/cm2/s, 4.8 x 106 n/cm2/s, 9.6 x 106 n/cm2/s and 1.44 x 107 n/cm2/s 
(from the left to the right). 

Video Sequences liquid Thermal noise (std.dev) Contrast 
Video Sequence.1 water 1.58 0.184   
Video Sequence.2 water 1.52 0.409   
Video Sequence.3 car  engine oil 1.35 0.164  
Video Sequence.4 car  engine oil 2.35 0.376  
Video Sequence.5 car  engine oil 4.05 0.426  
Video Sequence.6 car  engine oil 1.89 0.446  

Table 4. Summary of results obtained. 
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Fig. 18. (a: left). Contrast variation as a function of neutron beam intensity, (b: right). 
Random distribution of noise as a function of neutron beam intensity. 

noise. Thus, a value of a neutron beam intensity of 1.6 x 106 n/cm2/s is not enough to produce 
a well perceptible neutron image with a wide dynamic range in this case of studied flow 
process. The contrast was found proportional to the neutron beam intensity but after a value of 
~ 1x107 n/cm2/s it becomes almost constant (kharfi et al., 2011). The impulse noise that affects 
the video sequences has a random distribution as a function of the neutron beam intensity. The 
optimum exposure and acquisition parameters that allow capturing a high quality neutron 
video sequence for this case of flow process examination are the following (table 5):  

parameters Neutron beam intensity Capture Frame rate Gain 
Optimum value 1x107 n/cm2/s 12.5 fps 22 dB 

Table 5. Optimum video capture parameters. 

In this work, it was established that the best video sequences 2 (water) and  6 (oil))  were 
obtained with  a frame rate of 12.5 fps and a gain of 22 dB for a neutron beam intensity 1.44 x 
107 n/cm2/s. These exposure and capture video condition have guaranteed 256 digitized 
levels (full dynamic range). These video sequence are well exposed, the different phases of the 
flow process (continuous flow, drops) are well perceptible. These video can be well exploited 
in study the flow process phases and the drops shape as a function of hole diameter. The flow 
speed as a function of pressure and hole diameter can be also measured. Thus, the neutron 
video sequences obtained are rich in information and can be used for a wide variety of 
applications and purposes in the domain of fluid flow analysis. A future works will be focused 
on the exploitation of such video sequence information for a specific flow analysis. 

3.3.2 Practical example of video capture and Super Resolution image quality 
improvement 

According to the above results, video sequence 5 captured at a neutron beam intensity of 4.8 
x106 n/cm2/s is the highly noised one. A selected LR frames set is taken from this video 
sequence. A frame from this set is shown in figure 19 with its corresponding FFT4 and 

                                                 
4 FFT : Fourier Fast Transform. 
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histogram. The FFT is used to show the frequency support of the noisy and low resolution 
original frame and the histogram can inform us about sampling, gray levels distribution and 
noise affecting this frame. The SR algorithm and method described above is applied with an 
interpolation factor of 2 to improve the quality of this frame after a shift estimation. 

    
Fig. 19. One of the five LR frame selected from a set after arrangement of obtained neutron 
video in a number of frames sets and its corresponding FFT and histogram. 

Example of generated high resolution frame result after the SR method application is shown 
in figure 20 with the corresponding FFT and histogram. 

   
Fig. 20. Super resolved frame obtained after the application of the Robust Super resolution 
method on a set of low resolution frames arbitrary selected from the obtained neutron video 
of the flow process and its FFT and Histogram. When comparing FFT and histograms, we 
can easily verify that the sampling and resolution are improved and the noise (standard 
deviation) is significantly reduced.  



 
Digital Image Processing 

 

132 

From the HR frames obtained by SR procedure, a new high sampled and lowly noised 
neutron video is reconstructed. Although the neutron images (frames) processed through the 
proposed SR method are originally of optimum quality because a prior good selection of 
suitable video capture parameters was performed, the application of such SR method can 
reduce noise and improve the sampling of the obtained images and therefore allow the 
possibility to exploit theses images quantitatively. Because of the high sampling performance 
of the used CCD camera, not all SR methods are suitable for neuron images and video 
enhancement. The methods if well adapted and applied can contribute to improve the quality 
of neutron images and video suffering from motion blur with high efficiency.  

4. Conclusions 
Ultimately, the MTF is one component in characterizing the overall image quality 
performance of an imaging system. A robust method for estimating the MTF of high 
sensitivity neutron imaging CCD camera is presented. Longitudinal scan MTF results for the 
neutron imaging system are provided. Although the ISO 12233 slanted edge methodology 
was originally designed mostly for digital still camera MTF evaluation, it can successfully be 
applied to our neutron imaging system characterization. The weak dependence on tilt angle 
for values of less than 10° (the standard recommendation is 5°) allows the alignment 
constraints to be relaxed. The use of a standardized target and a specifically developed 
program allows MTF data to be easily and quickly obtained from a single target image. The 
ISO slanted-edge technique is seen to be a valuable alternative for fast and efficient MTF 
measurements, allowing the determination of spatial response and effective spatial 
resolution of the neutron imaging system being studied.  

The approach followed and the experimental procedures for temporal resolution limit 
determination were found to be very suitable and allowed the production of very accurate 
data. Although, our neutron camera can operate under high frames rates, the temporal 
resolution is limited and cannot exceed some values which are conditioned by the intensity 
of the neutron source, the performance of the imaging system and the speed of the dynamic 
process under examination. The study of temporal resolution limits for the case of higher 
indicator’s rotational speeds (1.2 and 1.65 RPS) demonstrates that, in order to get the best 
visualization conditions, the frame rate must be increased. Practical tests reveal that this last 
operation may cause contrast degradation and brightness loss in the frames of the neutron 
video produced. This, because of the limited dynamic range - due to the limited neutron 
beam intensity- and the small bit depth of the imaging system used.  

Results of flow processes studied by imaging with our neutron imaging system demonstrate 
that different capture conditions situations often produce completely different neuron video 
results in terms of noise and contrast. A small number of CCD performance factors and 
camera operating parameters such as frame rate and signal gain dominate the major aspects 
of digital image quality in neutron imaging; and their effects overlap to a great extent. The 
neutron beam intensity was also demonstrated as an important exposure parameter that can 
modify completely the quality of neutron image in terms of contrast and dynamic range. A 
flux of ~ 1x107 b/cm2/s was found enough to produce a high contrast image with a 
maximum dynamic range. For our case of flow process, frame rates of 12.5 fps with a signal 
gain of 22 dB were found as optimum video capture conditions. The super resolution 
method tested in this work proves that it is possible to improve the quality of the neutron 
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video sequence with a post processing procedures. Here it is very important to mention that 
the post processing procedures must be well selected to avoid unnecessary processing.  
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1. Introduction

Visual observation has an important role in dermatology as the skin is the most visible
organ. This makes dermatology a good candidate for utilizing digital imaging and automatic
diagnostic tools. This chapter illustrates the use of 2D imaging in dermatology by presenting
a method for automatization of common allergy testing. The so called "prick test" is the most
common diagnostic test for different allergies. It involves measuring the skin response to
percutaneously introduced allergens.

If there is a skin reaction against the allergen the blood flow is increased in the area and awheal
is formed. In physical terms, the color of the skin is changed, and a vertical displacement
emerges. In this chapter we will concentrate on the color change (erythema) as we are only
using 2D without the vertical displacement information.

Several approaches have been proposed to the skin erythema detection. The emphasis is often
on detecting signs of melanoma and there exists a lot of literature on melanoma segmentation
(Celebi et al., 2009; Gomez et al., 2008; 2007), but only a few studies of measurement of allergic
reactions from 2D pictures (Nischik & Forster, 1997; Roullot et al., 2005). There are also some
studies which have been performed with 3D imaging (Santos et al., 2008) or other specialized
imaging hardware (Wöhrl et al., 2006).

We utilize the inexpensive commonplace 2D digital photography. The key challenges in this
approach are the transformation of the color image into a maximal-contrast single-variable
(grayscale) image and the interpretation of the wheal dimensions from this transformed
image. This chapter is organized so that section 2 discusses the effect of the imaging
hardware and camera settings on the medical and scientific imaging. After that we present
our algorithm for segmenting the wheal area in Section 3, which is based on our earlier paper
(Huttunen et al., 2011). Finally, Section 4 discusses the results.

2. Imaging

The easy availability and high quality of digital cameras made them attractive for medical and
other scientific use. Purpose-built scientific digital cameras carry typically a tenfold price tag,
and the pace of development is very fast in the mainstream digital cameras.

While the actual performance of the inexpensive cameras is usually very good, their
image processing chain is not well documented. Scientific cameras are supplied with
photometric specifications, and they do not perform any unspecified processing to the image.
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Photography-oriented equipment very seldom gives any photometric specifications, and the
cameras may perform a lot of unspecified image processing.

The low cost of ordinary digital cameras opens up a large number of new opportunities in
medicine. In order to avoid some common pitfalls associated with their use, one should be
aware of the typical image processing in the camera. The actual processing varies from one
camera to another, and the image processingmethods are not published by themanufacturers,
but the following sections outline the fundamental limitations and give an overview of the
signal processing in a typical digital camera.

The discussion below will concentrate on digital cameras with interchangeable optics
(typically SLR, Single Lens Reflex cameras) if not indicated otherwise. The use of compact
cameras is usually not recommended in medical or scientific work; SLR cameras provide
much better imaging properties and are still affordable.

2.1 Signal path

Finding a simple and accurate definition for a digital camera is difficult, as the use of a camera
may range from art to measurement. In the following discussion the digital camera is viewed
as a measurement device measuring the spectral intensity distribution of light arriving from different
spatial angles towards the camera. Thus, in an ideal camera the spectrum of light arriving from
each angle to the film plane is recorded.

Evidently, the definition above gives an infinite amount of information and is in contradiction
with both the real world situation and physics. In order to understand the practical
limitations, we may have a look at the signal path in a digital camera and the limitations
imposed by each step in the path (see figure 1).

Fig. 1. Signal path in a digital camera and sources of loss of information associated with each
step.

The first and a very fundamental reason for loss of information lies in the quantum nature of
light. As the light collected by the optical system consists of a number of photons, there is
always some statistical noise ("shot noise"). Shot noise is usually the dominant noise source in
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photography. The signal-to-noise ratio limited by the shot noise is inversely proportional to
the square root of the intensity of the light falling onto the detector.

2.1.1 Objective lens

The purpose of the optical system is to direct photons arriving from a certain direction onto
the detector plane. There are two physical limitations related to the optical system; limited
depth-of-field and diffraction limit. If the optical system is to collect more light, its light
collecting area (usually a circular aperture) has to be larger. Inevitably, large aperture makes
a shorter depth-of-view, i.e., only objects at a certain limited distance range are in focus (see
section 2.3.2). On the other hand, if the aperture is small, the image becomes diffraction limited
due to the wave nature of light. In practice, even moderately low cost digital camera systems
are often diffraction limited in their behaviour.

The diffraction limit for an optical system is given by the Rayleigh’s criterion:

d = 1.22
λ f
D

, (1)

where d is the smallest resolvable detail on the image plane, λ wavelength, D the size of the
entrance pupil (aperture), and f the focal length of the objective. For a typical digital camera
with a typical objective f/D is in the range of 2..20. The wavelength of green light is roughly
500 nm, and the pixel size of a SLR digital camera is typically approximately 5 micrometers,
and hence the resolution becomes easily diffraction limited when f/D > 8.

The discussion above is somewhat simplified in two respects. First, the Rayleigh’s criterion is
somewhat arbitrary, it actually refers to the distance between the center and the first minimum
of the Airy disk (a diffraction pattern arising from an aperture), and has its roots in astronomy.
Two sharp spots of light can be resolved even when they are closer than the Rayleigh’s
criterion, so the criterion is more a rule of thumb than an exact measure (Hecht, 1987). Second,
in practice the objective may not be diffraction limited at or close to its largest aperture setting.

The optical system may also lose some light due to absorption and reflection losses. While
the absolute amount of light lost this way is usually rather small, these losses may be seen as
uneven illumination across the field (usually less light in the corners) or loss of contrast when
there are very brightly illuminated areas in the image.

2.1.2 Color filters

Virtually all consumer digital still cameras are color cameras. As the light-sensitive pixels in
the image detector cannot detect the color of the incoming light, a color filter is required1. The
color filter represents a major loss of light, as the photons of mismatching energies ("wrong
color") are absorbed.

The color filters are laid out so that neighboring pixels have different filters in front of them.
There are numerous different filter patterns, both the layout and the actual colors of the filters

1 There is one notable exception to this rule; Sigma Corporation Foveon X3 sensors have three
photosensitive sensors overlaid on top of each other, which in principle eliminates the filter and losses
associated to it. Also, many digital video cameras employ a color-separation beamsplitter which directs
different wavelengths to three separate image sensors.
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vary. Probably the most common of these patterns is the Bayer pattern where a 2x2-pixel
block has one red, one blue, and one green filter (see Figure 2). The choice of the filter
pattern and color is a compromise between spatial resolution, light collecting efficiency, and
color reproduction. There are even some cameras which have four color filters (RGBE, E for
emerald) to increase the color sensitivity.

It should be noted that whatever the filter pattern, the color reconstruction (demosaic) filter
is not a trivial one. If the maximum resolution is desired, the filter needs to identify edges by
combining information from several pixels. This requires non-linear processing and is prone
to creating artefacts.

(a) Original image (b) Image filtered by the Bayer
filter

(c) Intensity values on the
pixels on the camera element

Fig. 2. Color reproduction in a Bayer filter.

It is important to note that color cameras are essentially very crude three-channel filter
spectrometers; the full spectrum of visible light is reduced to three values. The spectral
properties of the color filters are usually not disclosed, and in this way the color information
given by a digital camera can usually be interpreted only in a relative manner.

Color is not a physical property of light, it is a property of the human visual system. There are
three different types of color sensitive cone cells in the human retina. One cell type is sensitive
to longer wavelength (red), the other to medium wavelengths (green), and the third type to
short wavelengths (blue). The RGB system for color pictures is adopted with the idea that
each of the primary colors corresponds to one type of cone cells.2

If the transmission properties of the color filters in a digital camera differ from those of the
retinal cone cells, the color space as seen by the digital camera is not the same as seen by the
human eye. There may be metameric colors (colors which look the same to a human observer
but have different spectral distribution) which a camera may be able to distinguish, and vice
versa. There is no simple way to describe these relations without knowing the actual filter
characteristics of the color filters in the camera, and even then the practical implications are
not necessarily evident.

2 While a RGB image sensor can cover the full range of colors seen by the human eye, the same does
not apply to reproducing the color. Mixing light of any three colors can never produce the full range
(gamut) of colors which the human eye can see.
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2.1.3 Image detector

After going through the color filters, the light is detected by a CCD (Charge-Coupled Device)
or a CMOS (Complementary Metal Oxide Semiconductor) array camera. The difference
between the two technologies is rather subtle, in both devices a photon hitting a detector
cell has some probability of generating a charge carrier which is trapped in the pixel. This
probability depends on the sensor and the wavelength of the incident photon and is called the
quantum efficiency (QE).

The actual quantum efficiencies of real-world cameras are trade secrets, but Farrell et al. (2006)
suggests that the quantum efficiency of a digital SLR pixels is around 0.65, but as the fill factor
(proportion of active pixel area to the total sensor area) is only around 50 %, the total QE is
approximately 1/3.

The pixel size limits the spatial resolution of the image. However, this is not usually the most
limiting factor, as the physical and practical limits of the optics already limit the resolution.
Also, making small pixels may reduce the fill factor and increase the relative read-out noise.
The choice of pixel size is a compromise between dynamic performance and resolution of the
sensor (Farrell et al., 2006). In practice, there are very few situations in medical imaging where
a larger number of pixels would be beneficial.

Once the light has been captured by a sensor pixel, it is read out, amplified and quantized
by an AD (analog-to-digital) converter. The pixel itself has some temperature-dependent
thermally induced noise. Usually this noise is significant only with long exposure times (such
as in astrophotography). The pixel readout noise is a source for constant noise which is not
dependent on the illumination. Thus, it is usually significant only with low illumination levels
(deep dark areas or very low light).

Also, the conversion gain from stored charge carriers to a voltage signal varies from one pixel
to another. There may even be hot (always at full output) or dead (always at zero) pixels due
to manufacturing defects in the sensor array. Hot pixels may be such that they show only at
very long exposure times.

2.1.4 AD conversion

While the number of bits in the AD converter seems to be a an important marketing feature
for some digital cameras, the quantization noise of the AD converter is typically far below the
other noise sources (readout in the dark area, shot noise in the highlight areas). The maximum
dynamic intensity range offered by a 14-bit AD converter is 1 : 214 = 1 : 16384, whereas the
typical maximum dynamic range of the sensor limited by other factors is roughly 1:2000.

Practically all digital cameras offer the possibility to change the sensitivity (ISO number) of the
camera. However, this choice does not change the sensitivity of the photosensitive elements.
Instead, it either changes the amplification of the analog signal between the camera element
and the AD converter or is purely a digital multiplication. As these operations do not change
the fundamental noise sources (shot noise, thermal noise, readout noise), it is better to increase
the illumination instead of increasing the sensitivity setting.

In this signal chain from the spatial distribution of light to bits from the sensor it is
important to note that many of the limitations are fundamental physical limitations (shot
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noise, depth-of-view, diffraction limit). The camera technology is very good even at today’s
level, and the room for improvement is rather limited.

2.2 Digital camera signal processing

Before the image from the sensor is available as an image file, it undergoes several digital
processing steps. There are at least three different goals in this processing:

1. Correcting image defects

2. Improving the visual appearance of the image

3. Making the image technically easier to use

No image processing can increase the amount of information in the image. Some of the image
processing steps may be useful in scientific imaging, but others may make the image less
useful in further image processing. At this point the purpose-built scientific cameras are
usually more faithful to the actual scene. The image processing steps and algorithms in each
individual camera type are proprietary, but there are some general steps which are almost
unavoidable:

• Pixel-to-pixel non-uniformity (fixed noise) compensation

• Dead pixel elimination

• Demosaicing (color reproduction)

After these processing steps the result is a RGB image in a linear color space. This is usually
the most useful image form for further image processing. Many digital cameras provide such
an image under the name "RAW". However, the raw image format is manufacturer-specific,
usually does not have any demosaicing applied, and may or may not compensate for dead
pixels. The RAW formats are seldom officially published, but there are utilities such as dcraw
(Coffin, 2011) which can be used to convert the images to some format easier to handle with
image processing software.

One attempt to standardize the varying RAW file formats is the DNG ("digital negative")
format by Adobe (Adobe Systems Incorporated, 2009). The DNG specification gives an
overview of different aspects of RAW images. Despite this attempt, using the RAW images
may be slightly challenging in practice.

In everyday photography, the images are usually processed in-camera with at least the
following steps:

• Noise reduction

• Illumination correction (white balance)

• Sharpening

• Color space conversion to a non-linear one

• Compression

The purpose of this processing is to make the image look visually pleasing and occupy small
space. Unfortunately, these steps reduce the information available in the image. The goal of
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color space conversion and compression is to reduce the number of bits without removing
visually important information. For example, the very commonly used JPEG (ECMA, 2009)
image compression reduces the chrominance (color) information more than the luminance
(brightness) information, as the human visual system is more sensitive to luminance changes.

The camera image processing may be aware of certain optical properties of the objective lens,
e.g., chromatic aberration, geometric aberrations, vignetting (loss of light at the corners), and
may perform corrective operations.

For machine vision applications, there are two possibilities when choosing the file format. If a
single camera type is used, then using RAWfiles of that camera preserves asmuch information
as possible. If there is no control over the camera type, then setting the camera to produce
JPEG files with as little processing (sharpening, noise reduction, compression) as possible
gives a reasonably standardized result.

It should be noted that even the RAW images from the camera may be compressed images.
An analysis of dcraw’s source code reveals, for example, that some RAW files have the
AD outputs further quantized. Whether or not such operations actually reduce any useful
information from the image is unknown, as their effect may remain below the noise level.

The example images used in this chapter have been compressed in-camera with a moderate
JPEG. This approach is not optimal, and some of the noise visible in Figure 6 is likely to
be compression artefacts. Note that all color space transformations tend to emphasize the
compression noise, because JPEG is designed for good visual appearance in the RGB color
space.

One additional concern is storing the images for long-term use. JPEG images can most
probably be read a long time in the future as it is the most common photographic image
file format at the moment. The less common RAW formats may be difficult to interpret
in the decades to come, as none of the formats has gained significantly larger popularity
than the others. In medical applications the images may be stored in the DICOM (NEMA,
2011) format. This does not change the work flow in the digital camera in any way, and the
DICOM format offers a number of different lossy and lossless data encoding schemes, whose
suitability depend a great deal on the imaging application itself. However, the use of DICOM
does not necessarily mean the images will be completely future-proof, as the standard and its
use evolve.

2.3 Photographic setup

Designing a suitable photographic setup is very important in scientific or medical
photography. The arrangement of the photographic setup has usually much more impact
on the usability of the image than differences between different cameras.

The purpose of photographic imaging in dermatology is to measure the spectral reflectance of
skin at different points in the area of interest. The accuracy of this process depends on a large
number of parameters related to the illumination, setup geometry, optics, camera settings, and
the camera itself.

A diagram of the photographic setup used in our project is shown in figure 3. The forearm
of the patient is supported so that it does not move during the test. The support is built to
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Fig. 3. The photographic setup for the skin prick test.

eliminate unnecessary muscular strain, as the test takes a half an hour to complete. The light
falls from the direction of the camera to eliminate shadows. While the basic structure of the
test setup is well-suited to the application, the illumination can be improved. Especially, the
spectral properties of the light source were suboptimal, as there was little short wavelength
(blue) radiation in the illumination.

2.3.1 Illumination

Illumination has an extremely important role. There are three main aspects to be taken into
account in designing the lighting:

1. amount of light

2. spectral properties of the illumination

3. geometric properties of the illumination

In practice, the requirement for a correct amount of light translates to the requirement of
having enough light. Insufficient illumination decreases the amount of information in the
photograph either as a loss of resolution or as an increase of noise. (In some rather rare cases
one should also pay attention to the effect of the light or thermal radiation onto the tissue
illuminated.)

The way colors are formed in a digital camera actually means that the camera measures the
product of the spectrum of the illumination, spectral reflection of the target, and spectral
transmission of the camera color filters. This process naturally loses most of the spectral
reflection information of the target, and accurate measurement of color-related quantities is
difficult in digital photography.

Table 1 summarizes the typical spectral properties of some illuminants. The variation within
each technology is usually significant, and if reliable color reproduction is required, the light
source has to be chosen and calibrated carefully. It should also be noted that changing the
camera type changes the camera filter absorption spectrum and thus the color reproduction.

In most cases the color of the illuminant can be sufficiently compensated for by the white
balance compensation. The light reflected off a white or neutral gray target should result
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Lamp type Spectral properties
Incandescent lamp Smooth spectrum, low intensity in the blue

(short wavelength) region (tungsten halogen
lamps have more blue emission)

Fluorescent tube Usually a spectrum consisting of a large
number of separate narrow peaks

Photographic flash Several rather narrow peaks
Monochromatic LED A single peak with a typical peak width of 20

nm
White LED Either a single narrow blue peak and a wide

yellow peak ("white LED") or three narrow
separate peaks (combination of R, G, and B
LEDs). The color may depend on the radiation
angle.

Table 1. Typical spectral properties of different light sources

in a RGB value with equal amount of each of the components. If this is not the case, the
components have to be adjusted by a multiplication:⎛

⎝Rcorr
Gcorr
Bcorr

⎞
⎠ = k

⎛
⎝1/Rgray 0 0

0 1/Ggray 0
0 0 1/Bgray

⎞
⎠

⎛
⎝R

G
B

⎞
⎠ , (2)

where X is the uncorrected value for color X, Xgray the uncorrected value for the gray surface
illuminated with the same illuminant, Xcorr the corrected value, and k a normalizing factor. If
the automatic white balance setting offered by the camera is used, the camera algorithms try to
find the optimal correction coefficients. This process is based on typical photographic scenes,
and it may result in unexpected correction results in scientific photography. It should be noted
that the white balance correction is often quite significant especially in the blue channel.

Most cameras try to convert the information from the image sensor to the commonly used
sRGB color space. This conversion usually involves using a 3x3matrix multiplication from the
camera RGB to the sRGB color space. The conversion may be beneficial for human viewing,
but after it has been performed, the white balance equations above do not hold true. For an
in-depth discussion of white balance, see Viggiano (2004).

Film-based medical photography used to have some applications with monochrome film and
an external filter to enhance the contrast of specific features. In general, this method cannot
be substituted with digital color photography and digital post processing, as the transmission
properties of the filters do not match those of the color filters of the camera. The solution is to
use a filter in front of the color camera, filter the light source, or use a (quasi-)monochromatic
light source.

The geometric properties of the illumination have a lot of impact on the contrast of the image.
The illumination may create shadows or specular reflections (bright spots) which are usually
undesired, but in some cases theymay be useful in detecting feature outlines or surface normal
directions. In general, a point-like light sources give more contrast and more shadows and
specular reflections than area sources.
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There is very little in the camera or in the image processing that can be done to compensate
for a bad illumination geometry. However, if shininess or specular reflections are the only
problems in otherwise good photographic setup, a polarizing filter may help, as it blocks the
light reflected at certain angles.

2.3.2 Camera settings

There are essentially four independent settings in the camera which can be adjusted:

1. focal length

2. focus

3. aperture

4. exposure time

The focal length together with the image sensor size determine the field of view. In a given
photographic setup the position of the camera is usually fixed, so that an objective with a
suitable focal length needs to be used. In general, objectives with fixed focal length exhibit
better optical performance than zoom objectives. The optimal distance between the target
and the camera depends on the application, but usually very short focal lengths (wide field
of view) are to be avoided, if possible. Figure 4 illustrates the effect of focal length on the
perspective of the image.

(a) Focal length: 105 mm, f/7.1 (b) Focal length: 35 mm, f/7.1 (c) Focal length: 35 mm, f/1.8

Fig. 4. Effect of focal length and aperture changes. The perspective distortion is much smaller
at a longer focal length, and the depth of field is shorter with larger aperture (small
f -number). The target and the imaging angle are the same in all images.

The digital cameras offer a selection between automatic or manual focus setting. If the
imaging setup is fixed, the manual focus setting is preferred, as the autofocus algorithms are
tuned to everyday photography, and the scenes in medical or scientific imaging are different.

The aperture (or entrance pupil) of the optics describes the size of the light collecting area of
the objective. A large aperture collects more light and is thus useful in low-light situations.
However, the depth of field (useful focus range) is very short at a large aperture (see figure 4).
Also, at the large end of the aperture range the image resolution may suffer due to practical
limitations. On the other hand, very small apertures have more diffraction, and this may
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slightly deteriorate the image resolution, as well. The optimal choice of the aperture depends
on the application, and finding it may require some experimenting.

It should be noted that comparing the actual light collecting aperture of different cameras is
not straightforward. The aperture size is usually given as the f -number (or f/#), so that the
actual aperture size in physical units is the focal length divided by the f -number. Thus, a
large f -number indicates a small aperture, and the f -number itself is not meaningful unless
the focal length is known. Even in digital cameras with interchangeable lenses the aperture
area may vary in the range of 1:4 with the same field of view and aperture number.

The exposure time is perhaps the simplest adjustment. The longer the exposure time, the more
photons reach the imaging element. Usually the shortest exposure times available in digital
cameras are below one millisecond, and the longest times in the order of dozens of seconds.
In practice, the short end of the exposure range is not very useful in medical photography, as
there very seldom is enough light. On the other hand, exposure times above 1/60 s are prone
to movements in the image. The amount of movement depends very much on the actual
application, sometimes much longer exposure times are useful.

In some cases the dynamic range of the scene surpasses that of the digital camera. The
dynamic range of a digital camera is typically approximately 1:2000. If this is not sufficient
for some reason, it is possible to take several shots of the same scene with different exposure
times. This technique is called bracketing, and the imaging method carries the acronym HDR
(High Dynamic Range). The Achilles’ heel of HDR is the time difference between different
shots, which usually makes it impossible to apply to moving objects.

3. Wheal shape and size recognition

The skin prick test is widely used in allergy testing. As the test results in local skin reactions
(wheals) around a well-defined test site, it lends itself well to computer-based interpretation.

3.1 Medical background

The skin prick test is a well-known and well-established method for quantitative
measurement of allergic reactions (Oppenheimer et al., 2011). An allergen is introduced
percutaneously; a drop of allergen solution is dropped onto the skin, and the skin is then
punctured by a small blade designed for this purpose. If there is an allergic reaction, a wheal
will emerge.

3.1.1 Skin reactions

If an allergen is introduced percutaneously, and there are IgE antibodies to that allergen, an
inflammatory reaction will arise. Two different types of cells are involved in the process,
basophils and mast cells. These cells release chemicals associated with inflammation, such
as cytokines and histamines. These chemicals then mediate processes such as vasodilatation
(expansion of the blood vessels) and increased permeability of the blood vessel walls.

The result of these processes is redness and heating due to increased blood flow and swelling
due to leakage of fluid into the surrounding tissues. In the case of the prick test the reaction is
localized around the prick site and produce an approximately circular wheal. In practice, the
shape of the wheal may vary a lot depending on the structure of the surrounding tissue.
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Fig. 5. Manual allergy measurement.

The prick test has some shortcomings. The magnitude of the skin response varies from one
patient to another. For example, with young patients the size of the wheal becomes larger
as the patient grows (Meinert et al., 1994). Also, the correlation between the actual allergic
reactions and the skin reactions is not always very good, and there are several practical factors
which may change the results (Haahtela et al., 2010).

3.1.2 Prick testing in practice

In practice, the prick test is used to test several allergens at the same time. To facilitate this, a
suitable even skin area is required, the most common such area being the inner forearm. The
number of allergens tested at the same time varies, but typically the inner forearm can carry
20 pricks.

The results are read some 15 to 20minutes after the prick. The time is sufficient for the reaction
to emerge but not long enough to let the symptoms fade. There is some evidence that if the
time is too long, the reliability of the test may suffer (Seibert et al., 2011). However, the actual
development of the inflammation reaction as a function of time is not generally known, as
there have not been any suitable tools for measuring it. One of the aims of our research is to
introduce these tools, as a series of photographs reveals the development of the wheal as a
function of time.

There are different readoutmethods in use worldwide. Inmany cases the results are evaluated
pseudo quantitatively by visual inspection only. Seibert et al. (2011) argue that the most
reliable way of testing is to measure the size of the wheal, as the visual estimation has been
shown to be highly variable.

When the wheal size is measured, there are several different ways of doing it. Traditionally,
the practitioner uses a ruler to manually measure the size of the wheal. The test procedure
assumes an elliptic shape, with possible elongated branches (called pseudopodia) disregarded
and the result of the measurement is the mean of the major and minor axes of the imaginary
ellipse (Santos et al., 2008). There is also a good correlation between the length of the long axis
and the area of the wheal, but the mean method should yield even better results.
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The practice of measuring the wheal vary. The practitioner may use a transparent ruler and
slightly press the wheal to see the outline, or she may try to use the color change only. An
illustration of the measurement is in Figure 5, where the application of pressure can be seen.
Our computerized interpretation method uses the color change only, and the wheal is always
interpreted as an ellipse.

One of the challenges in skin prick testing is the difference of reactions between different
individuals. A common way to account for this is to use histamine as one of the test allergens.
It is not an allergen, but it always causes an inflammatory reaction, which can be used as a
reference of the individual reaction. Saline solution can also be introduced as a zero control
which should not cause any reaction. We used both a zero reference and histamine reference
in our study.

3.2 Wheal extraction by grayscale transformation

The problem of finding the area within a wheal in a photograph carries some challenges. The
color of the skin varies from one person to another, and the skin does not have an even color.
The wheal edges are not sharp, so a threshold has to be defined. Naturally, the first step
in finding out the wheal area is to convert the RGB image into a single-variable (grayscale)
image. Preferably, the method should be adaptive, as the range of skin colors and illumination
variations is large.

Among the earlier studies in the field, Roullot et al. (2005) considers seven well known color
spaces and compares the separability of the reaction from the background using a training
database. As a result, they discover that the optimal dimension among the color spaces is the
a∗-component of the L∗a∗b∗ color space. Using the extracted a∗-component, they use simple
thresholding for segmenting the wheal.

Nischik et al. (Nischik & Forster, 1997) also discover the L∗a∗b∗ color space most suitable for
the wheal segmentation and use the standard deviations of the L∗ and a∗ components as the
features for classification. The classifier is trained to separate between foreground (the wheal)
and the background (healthy skin) using manually generated training data. The classifier
output determines directly the boundary between the two regions.

Recent work by Celebi et al. consider finding optimal color transformation for extracting the
foreground (Celebi et al., 2009). Although the paper concentrates on melanoma segmentation,
the principle is applicable for other skin diseases, as well. The paper searches for optimal
linear combination of the RGB-components, such that the output maximizes the separability
of the foreground and background. The foreground and background are determined in each
iteration using Otsu thresholding. Thus, the algorithm iterates all projections defined on a
finite grid, and tests their performance by measuring the Fisher ratio of the foreground and
background (which are determined using Otsu thresholding).

The method of Celebi et al. (2009) is an unsupervised method, which attempts to find the best
projection without any user manual assistance. However, in our work we study the case, in
which the user points the approximate center of the wheal. From the practical point of view
this is acceptable, because it requires less work than the manual measurement. However,
we plan to automate the detection of the wheal location in the future. Note also that in the
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Fig. 6. The projection of the wheal in RGB color space. The original RGB image is shown in
Figure (a), and (b) shows the hue component, (c) the a∗ component of the L∗a∗b∗ color space
and (d) is the projection proposed in Celebi et al. (2009). Optimal Fisher discriminant
projection is shown in Figure (e), and the results of its kernelized version are shown in figures
(f) and (g) using RBF kernel with bandwidth σ selected using Silverman rule of thumb and
with fixed σ = 0.5. The training sets are obtained from areas shown in (h), where the blue
center is the foreground sample region and the green circle is the background sample region.

temporal direction, clicking the last image in the time series is enough for determining the
wheal location in all pictures, if temporal motion compensation is used.

The key problem when searching the borders of the wheal is the poor contrast between the
wheal and skin. An example of a wheal is illustrated in Figure 6 (a). Although the wheal
borders are barely visible, the shape becomes highlighted when mapped into grayscale in a
suitable manner. Well known mappings for skin color processing include the hue component
of the HSV color space (Figure 6 (b)) and the a∗ component of the L∗a∗b∗ color space
(Figure 6 (c)). In all projections, we have smoothed the RGB image by convolution with a
disc shaped window of radius 5. However, these are more or less arbitrary, and variability in
skin color and allergic reaction strength may decrease their applicability. Instead, training
based projections may improve the separation further, and make it more invariant for all
patients. An unsupervised method for finding a well-separating projection in terms of the
Fisher criterion was proposed by Celebi et al. (Celebi et al., 2009), whose result is shown in
Figure 6 (d). In this case the coefficients are 1, -0.1 and -0.3 for red, green and blue channels,
respectively.

Optimality of the grayscale projection can be studied assuming that we know the approximate
location of the wheal. This way we can construct training sets consisting of the wheal area and
the surrounding healthy skin, denoted by S1 and S0, respectively. With the training sets we
can seek for optimal separation in the RGB space in a supervised fashion.

The training set is acquired as follows. When the user has pointed the approximate location
of the center of the wheal, a set of RGB values is obtained from the neighborhood. In our
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experiments, the training set of the wheal (S1) is obtained inside the circular neighborhood
with the radius of 10 pixels. The training set of the healthy skin (S0) is acquired from pixels
that are far away from the center. We have used all pixels located at a radius between 45 and
50 pixels from the center, as illustrated in Figure 6 (h).

The natural tool for optimally projecting the three-dimensions to grayscale is the Fisher
Discriminant, Fisher (1936). Fisher discriminant finds the projection dimension w that
maximizes the separability of the classes in terms of the ratio of the between-class-variance
and within-class-variance; i.e., the so called Fisher ratio:

J(w) =
wTSBw
wTSW w

, (3)

where SW ∈ R3×3 and SB ∈ R3×3 are the within-class and between-class scatter matrices,
respectively. It can be shown that the optimal direction w is given by

w = S−1
W (μ1 −μ0), (4)

where μ1 ∈ R3 and μ0 ∈ R3 are the sample means of S1 and S0.
An example of the result of the Fisher discriminant projection is shown in Figure 6 (e).

The FD is a special case of the so called Kernel Fisher Discriminant (KFD) (Mika et al., 1999;
Schölkopf & Smola, 2001), which is a kernelized version of the standard FD. As all kernel
methods, the KFD implicitly maps the original data into a high-dimensional feature space
and finds the optimally separating manifold there. Using the implicit mapping via the
kernel trick, the explicit mapping can be avoided, which allows calculating the FD even in
an infinite-dimensional space.

The kernel trick enables better separation between the two classes, which is important because
the foreground and the background are typically not linearly separable in the original RGB
space. For example, it might be that the foreground is in the middle of two background color
regions in the RGB space. One consequence of this is the fact that most authors prefer the
L∗a∗b∗ color space, because the classes are better linearly separable there. However, the kernel
trick makes the color space transformation less significant due to the transformation into a
higher dimensional space, where the classes will be better separable almost regardless of the
original color space.

Denote the foreground samples by Υ1 = {xF1 , x
F
2 , . . . , x

F
NF
}, and the background samples by

Υ0 = {xB1 , x
B
2 , . . . , x

B
NB

}, where each sample is a 3-dimensional vector in the RGB space: xF,Bk =

(rF,Bk , gF,Bk , bF,Bk )T .

3.3 The Fisher discriminant projection

After the samples from the two classes have been collected, the optimally separating linear
transformation is given by projection onto the vector w defined by the Fisher discriminant as
follows,

w = (C1 + C0)
−1(μ1 −μ0),
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where C1 ∈ R3×3 and C0 ∈ R3×3 are the sample covariance matrices and μ1 ∈ R3 and
μ0 ∈ R3 the sample means of the foreground and background samples, respectively.

3.4 The kernel Fisher discriminant projection

The Fisher discriminant projection is a special case of the kernel Fisher discriminant projection,
occurring when the implicit mapping function is Φ(x) = x. The use of more complicated
mapping functions allows more complicated separations for the classes. For arbitrary
mapping the Kernel Fisher Discriminant extends the FD by mapping the data into a higher
dimensional feature spaceH.

In practice the KFD can be calculated implicitly by substituting all dot products with a kernel
function κ(·, ·). It can be shown, that all positive definite kernel functions correspond to a
dot product after transforming the data to a feature spaceH with mapping Φ(·) (Schölkopf &
Smola, 2001). The feature spaceH can be very high dimensional, and the use of the projection
vector w directly may be impractical or impossible. Instead, the famous Representer theorem
guarantees that the solution can be represented as a linear combination of themapped samples
(Schölkopf & Smola, 2001). Thus, the Fisher ratio in the feature space is based on the weights
of the samples α instead of the weights of the dimensions:

J(α) =
αTQTSΦ

B Qα

αTQTSΦ
W Qα

, (5)

where α ∈ RN = (α1, α2, . . . , αN)T is the weight vector for the mapped training samples in
the matrix Q = [Φ(x1), ...,Φ(xN)], and SΦ

B and SΦ
W are the between-class and within-class

scatter matrices in the feature spaceH, respectively.

Similar solution as the one for the Fisher discriminant in Eq. (4) can be found also for
this case (Schölkopf & Smola, 2001). However the inversion becomes more difficult, since
the dimension of the weight vector α is now the number of the collected training samples.
Therefore, we need a regularization term λI, where λ is a small positive scalar and I is the
N × N identity matrix. Using regularization also improves the robustness of the projection
and makes it less likely to overfit, as the solution becomes less sensitive to within-class scatter.
In our notation this yields the solution

α = (QTSΦ
W Q + λI)−1QT(μΦ

1 −μΦ
0 ), (6)

where μΦ
1 ∈ H and μΦ

0 ∈ H are the sample means of the mapped wheal and skin samples,
respectively.

It is straightforward to show, that Eq. (6) can be expressed in terms of dot products and thus
the kernel trick (Mika et al., 1999; Schölkopf & Smola, 2001). Also the actual projection of a
test sample x ∈ R3 can be expressed through the kernel as

y = αTQTΦ(x) =
N

∑
i=1

αiκ(xi, x). (7)
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To reveal the kernel nature of (6), a part of it is further investigated, giving

QTSΦ
W Q = ∑

i=0,1
∑

x∈Si

QT(Φ(x)−μΦ
i )(QT(Φ(x)−μΦ

i ))T . (8)

Now it is rather clear that (6) can be represented using only dot-products of the mapped
samples. Since also the projection of a test sample x to grayscale is expressible as αTQTΦ(x),
the explicit use of mapping function Φ(x) can be substituted with its dot-products, which
in hand are replaceable with Mercer kernels (Mika et al., 1999). This kernel-trick removes
the curse of dimensionality, ultimately allowing implicit mapping to an infinite-dimensional
space. More precise introduction, although with different notation, to KFD by Mika et al. is in
Mika et al. (1999) and in Schölkopf & Smola (2001).

There are various alternatives for the kernel function κ(·, ·), among which the most widely
used are the polynomial kernels and the Radial Basis Function (RBF) kernel. We experimented
with various kernels, and found out that the polynomial kernels do not increase the separation
significantly when compared with the linear kernel, which is equivalent to the traditional FD.
In other words, all low-order polynomial kernels produce a projection very similar to the first
order kernel, shown in Figure 6 (e). However, the separation seems to improve with the RBF
kernel

κ(u, v) = exp
(
−||u − v||2

2σ2

)
. (9)

There are two parameters in the KFD projection with RBF kernel: The regularization
parameter λ and the kernel width σ2. Since there exists a lot of training data in our case,
it seems to be less sensitive to the regularization parameter λ than the width σ2. In our
experiments we set the value of λ = 10−5, and if the condition number of the matrix in Eq.
(6) indicates that the matrix is close to singular, the value of λ is increased ten-fold until the
inversion succeeds.

Figures 6 (f-g) illustrate the effect of the bandwidth parameter σ2. Figure 6 (f) uses the
bandwidth selected using the so called Silverman’s rule of thumb (Silverman, 1986), widely
used in kernel density estimation and defined by σ̂rot = 1.06σ̂x N− 1

5 , where σ̂x is the sample
standard deviation of the data and N is the data length. In the example in Figure 6 (f) the
rule of thumb gives σrot = 1.37. Figure 6 (g) on the other hand illustrates the result with fixed
σ = 0.5.

It seems that the rule of thumb tends to give too large values for our problem. This can be seen
from the visually improved separation which is obtained using a smaller bandwidth, σ = 0.5,
whose result is shown in Figure 6 (g).

3.5 Segmentation of the grayscale image

As the final step of the wheal area segmentation, one has to threshold the grayscale projected
image in order to obtain a binary segmentation. The simple approach is to use thresholding.
The problem of selecting a proper threshold has been extensively studied, and, e.g., Sezgin
et al. (Sezgin & Sankur, 2004) compares 40 selected methods for a set of test images. One of
their conclusions is that the best performing method is different depending on the nature
of the input grayscale image (e.g., text, natural scenes, etc.). Since one of our goals is to
compare different grayscale projections for the wheal detection purpose, we restrict ourselves
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Background

Foreground

Image plane

Fig. 7. The graph representation of a 3× 3 image plane.

to using only one automatic threshold selection method; the most widely used Otsu method
(Otsu, 1979). Without this restriction, we would be comparing all combinations of grayscale
projection and thresholding techniques summing up to hundreds of combinations.

As an alternative to grayscale thresholding, we consider a newer approach, the powerful
graph cut based segmentation. The idea of using graphs for solving hard optimization
problems was originally discovered by Greig et al. (Greig et al., 1989), and extended to
multilabel problems by Boykov et al. (Boykov et al., 2001). A fast implementation was
proposed by Boykov et al. (Boykov & Kolmogorov, 2004), and their free implementation is
widely used, and is the basis for our method, as well.

Graph cuts are a method for efficient minimization of certain energy functionals of the type

E[ f ] = ∑
p∈P

Dp(Ip) + ∑
p,q∈N

Vp,q(Ip, Iq), (10)

where Dp( fp) reflects the distance from the image to be modeled (segmented in our case),
and Vp,q(Ip, Iq) is the cost assigned to labeling neighboring points differently. In a sense,
using graph cuts is regularized thresholding, where neighboring points are encouraged to have
the same label. In practice, the difference to thresholding is that the resulting labeling has
fewer holes. In our case, the graph cut approach for segmentation treats the KFDA-projected
grayscale image as a weighted graph, whose nodes represents the pixels and edges the
connections between the neighboring pixels. An illustration of this is shown in Figure 7, which
represents a 3× 3 image, whose nine pixels are considered as nodes of the graph. Each pixel
is connected to its closest neighbors, and additionally to two special nodes; foreground node
and background node.

The graph cut method attempts to split the graph into two disconnected parts, such that
the foreground and background nodes are in different partitions. The splitting is done with
minimal cost, i.e., such that the sum of weights of cut nodes is as small as possible. As a
result, the foreground area consists of pixels connected to the foreground node after splitting
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the graph. Note, that in our case an alternative graph formulation could take advantage of the
known foreground and background locations: the background node could be connected only
to the borders of the image (which is known to be background) and the foreground node only
to the center of the image.

In order to obtain a reasonable segmentation result, the weights are determined according
to the following rules. Edges connecting neighboring pixels have a weight inversely
proportional to the difference of the grayscale values. This way homogeneous areas (with
grayscales close to each other) have large weights and heterogeneous areas (large pixel
difference) have small weights. In our case the weight of the edge between pixels p and q
with grayscale intensities Ip and Iq is determined by the rule

Vp,q(Ip, Iq) = 10 · exp
(
−|Ip − Iq|

100

)
. (11)

This function satisfies the requirement that far away grayscale values have a small
weight while close grayscales obtain a large weight. The exact exponential form and the
normalization coefficients of the function were obtained through experimentation, although
various other choices were almost equally effective.

The edges connecting the pixels to foreground and background nodes are determined by the
grayscale value. The idea is that the brighter the pixel, the stronger the connection to the
foreground node and vice versa. In our case the foreground edge weight for pixel p with
intensity Ip ∈ {0, 1, . . . , 255} was determined by the rule

Df (Ip) =
γ

255− Ip + 1
, (12)

and the background edge weight by the rule

Db(Ip) =
1− γ

Ip + 1
. (13)

The idea is that the foreground connection would be strong, when the pixel value Ip is large
(close to 255) and the background connection would be strong, when the pixel value Ip is
small (close to 0).

The parameter γ ∈ [0, 1] balances the edge weights and can be used for adjusting the
foreground area size. There are closed form solutions for the parameter to obtain a desired
the probability of a foreground pixel. However, an easier method is to use binary search over
γ ∈ [0, 1] to get a desired ratio of background and foreground sizes. In our case we selected
the desired ratio to be equal to that of the Otsu thresholding result.

As the final step, we remove all but the largest object from the segmentation result. This is
because sometimes there remain small foreground areas that are due to noise.

3.6 Using a shape model for wheal area detection

The transition from the background (the healthy skin) to the foreground (the wheal) can
be quite smooth, and the KFD-projected image may contain several individual foreground
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Fig. 8. Left: The grayscale projection data of the wheal in Figure 6 using KFD projection with
RBF kernel and σ = 1. Right: The final result after nonlinear LS fit.

regions although the image has only one wheal. This is mostly due to the noise in the data,
whose effect is greatly emphasized by the grayscale projection.

In order to increase the robustness of the segmentation, we fit a shape model for the
appearance of the wheal. Since the manual measurement assumes that the wheals are ellipses,
an elliptic shape model seems reasonable. Thus, the problem is to find an ellipse that divides
the image into two maximally inhomogeneous areas.

Since there are an infinite amount of ellipses, we have to limit the search space somehow. This
can be done by fitting a model to the grayscale projection and considering only the isosurfaces
of the model. Based on Figure 6, the Gaussian surface seems an appropriate model for the
spatial grayscale distribution in this case. Moreover, it suits our assumption of elliptic wheals,
because the isosurfaces of the two-dimensional Gaussian are ellipses.

More specifically, the Gaussian model is defined by

f (x; c, x0,Σ) = c · exp
(
−(x − x0)TΣ(x − x0)

)
, (14)

where c ∈ R+ defines the scale of the Gaussian, x = (x, y)T denotes the image coordinates
where the the model is fitted, x0 = (x0, y0)T denotes the location of the peak of the Gaussian
and Σ ∈ R2×2 is a symmetric coefficient matrix.

The least squares (LS) fit to the grayscale image data is defined by

min
c,Σ,x0

N

∑
k=0

(zk − f (xk; c, x0,Σ))
2, (15)

where zk denotes the grayscale value at image position xk. Note that the data has to be
preprocessed by subtracting the minimum of zk, k = 0, . . . , N, in order to avoid a constant
offset term in the model.

Fitting the Gaussian is a nontrivial problem, although lot of literature on the topic exists (e.g.,
Brändle et al. (2000)). However, the easiest approach is to use software packages such as
Matlab Optimization toolbox to find the optimal parameters.
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Fig. 9. Left: The KFDR as a function of the ellipse size. Center: The maximally separating
ellipse overlaid on top of the corresponding KFD projection. Right: The maximally
separating ellipse overlaid on top of original RGB data.

However, in order to ease the task, we first seek for an initial guess for the coefficients by
taking the logarithm of the data and the model of Eq. (15):

min
c,Σ,x0

N

∑
k=0

(ln(zk)− ln( f (xk; c, x0,Σ)))
2 = min

c,Σ,x0

N

∑
k=0

(ln(zk) + ln c + (x − x0)TΣ(x − x0))2. (16)

This makes the problem linear, and the result can be found in a closed form. However, taking
the logarithm increases the importance of the smaller values, and the method essentially fits
themodel to the noise surrounding the wheal, not the wheal itself. Thus, the resulting solution
is used only as the initial guess for the nonlinear LS problem without the logarithm. The
nonlinear LS problem is then solved using Matlab Optimization toolbox.

Figure 8 shows the original grayscale data on the left, the result of logarithmic fitting in the
center and the result of nonlinear iterative fitting on the right.

The isosurfaces of the Gaussian fit can be used as candidates for elliptic segmentation. As
noted earlier, all the isosurfaces are cross-sections of a paraboloid and thus ellipses. Moreover,
due to fitting, they most likely have the correct orientation and correct ratio of major and
minor axis lengths. Thus, our next goal is to seek for the best elliptic isosurface among them
all.

The definition of a good ellipse among the candidates needs some measure of separation
between the segmented areas. Recent work by Harchaoui et al. (Harchaoui et al., 2008)
considers using the Kernel Fisher Discriminant Ratio (KFDR) for testing the homogeneity
between two sets, which coincides well with our use of KFD for grayscale projection in Section
3.2.

In other words, we test all ellipses that are cross sections of the fitted Gaussian and attempt to
maximize the KFDR of Eq. (5) with respect to training sets defined by the ellipse. The situation
is similar to the grayscale projection, but now we are not looking for a good classifier for the
RGB data, but only assessing howwell the data could be classified. Unlike Section 3.2, the choice
of the training samples is now based on the boundaries of the ellipse to be tested.

In a sense, the KFDR homogeneity test attempts to design a classifier to separate the "inside"
class and the "outside" class, and the KFDR is a natural measure how well this can be done.
Note that this is not equivalent to calculating the variances directly from the projections of
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Fig. 10. An example of segmentation result. The red boundary is the result of manual
segmentation, while blue and green boundaries represent the result of our method with and
without the elliptic shape model, respectively. (Wheals 2, 14, 15, etc. have not been
segmented, as there is no detectable allergic reaction at these sites.)

Figure 6, because the projection is calculated separately for the training sets determined by
each ellipse candidate.

Sometimes the KFDR separability criterion results in very small ellipses, because a small
foreground training set tends to be well separable. As an extreme example, an ellipse
containing only a single pixel has extremely good separability assuming no other pixel has
exactly the same RGB value. Thus, we decided to modify the criterion by multiplying it
with the cardinality of the smaller training set. Alternatively, we could set a minimum size
restriction for the ellipse.

An example of the separability test is shown in Figure 9. The figure shows the KFDR between
the "inside" class and the "outside" class for ellipses with different radius. It can be seen that
the maximal separation is obtained at radius 42, and the corresponding ellipse is illustrated in
Figure 9, as well.

3.7 Experiments

The results from the described method are compared to manual wheal segmentations (made
by a non-medical expert). The similarity measure used by Celebi et al. (Celebi et al., 2009)
compares the areas of the segmentations. For our purposes, this is not an appropriate criterion,
since ultimately we are interested in the major and minor axes of the wheal. The error in areas
increases quadratically with respect to the axes, which is not desirable. Instead, we used the
following error criterion between the computer segmentation A and the manual ground truth
B:

E(A, B) =
√
Area(OR(A, B))−√

Area(AND(A, B))√
Area(B)

, (17)

where OR(A, B) consists of pixels segmented as foreground in A or B, and AND(A, B) of
foreground pixels in both A and B. Moreover, Area(A) is the number of foreground pixels
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in A. The favourable property of Eq. (17) is that it increases linearly with respect to the error
in major and minor axes. For example, it can be shown that the error measure for concentric
circles with radii r + a and r − a are equal if the true radius is r. This is not the case with the
error of (Celebi et al., 2009).

Examples of segmentation results are illustrated in Figure 10. The figure shows the result
of manual segmentation (red) compared with the result of the proposed method with (blue)
and without (green) the shape model. Table 2 represents the average errors with different
grayscale transformations. The test data consists of seven wheals including those shown in
Figure 10. The five first columns represent different KFD projections designed using training
data, while in the last two columns the projection is designed in an unsupervised or ad hoc
manner.

From the results, one can see that the L∗a∗b∗ color space produces the smallest errors. This is in
coherence with the results of earlier studies (Nischik & Forster, 1997; Roullot et al., 2005), who
have also discovered the importance of the a∗ component in skin color analysis. However,
the difference between color spaces is not that significant, especially when using a Gaussian
kernel for the KFD. For example, in the case of Gaussian kernel with bandwidth σ = 1, all
errors are close to each other, and visual inspection of the results reveals that there are no
gross errors. The lesser importance of the initial color space when using the Gaussian KFD
kernel is natural, because the three-dimensional data is mapped to an infinite dimensional
space, where the colors are most likely separable regardless of the initial color space.

Another interesting observation is the worse than expected performance of the elliptic shape
model. In many cases its use increases the error. However, this is partly due to the fact that
the manually segmented wheals are not ellipses, so the elliptic model can not reach zero error
even in theory. The best cases are the ones where the true wheal is ellipse-shaped with no
elongated pseudopodia, e.g., the 2nd and 3rd wheals from the right in Figure 10. In all other
cases the wheal shape is more irregular, and the shape model results in the largest inscribed
ellipse. However, there is some randomness in the results due to the small N. We plan to

Gaussian Gaussian Gaussian Linear 2. order Celebi Ad
(σ = 0.5) (σ = 1) (σ = σrot) kernel kernel method hoc

With RGB 0.3668 0.2393 0.1912 0.2567 0.2723 1.3710 1.0297
Otsu L∗a∗b∗ 0.2505 0.1861 0.2811 0.2382 0.2925 1.0788 0.9835
Thresh HSV 0.2177 0.2176 0.5129 0.2733 0.2563 1.5259 0.7424

With RGB 0.3660 0.2406 0.1915 0.2545 0.2714 1.3759 1.0307
Graph L∗a∗b∗ 0.2508 0.1855 0.2813 0.2364 0.2926 1.0810 0.9844
Cuts HSV 0.2176 0.2169 0.5129 0.2714 0.2570 1.5260 0.7422

With RGB 0.4769 0.2479 0.2289 0.4821 0.2143 1.3588 0.4291
Shape L∗a∗b∗ 0.2325 0.2388 0.2335 0.1894 0.2240 1.1731 1.4467
Model HSV 0.2472 0.2300 0.7174 0.4852 0.3815 1.3465 0.8816

Table 2. The comparison of automated wheal measurement methods in terms of the error of
Eq. (17). Each row defines an initial color space, each column corresponds to a grayscale
transformation. The last column corresponds to a manually designed transformation based
on what looks good. In the RGB case, the Ad Hoc transformation is the difference G − B, in
the L∗a∗b∗ case it is the a∗ component, and in the HSV case the H component.
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study the performance with larger N and compare them with the manual results of a trained
physician.

4. Conclusions

This research projects shows one possibility to automatize a simple dermatological
examination. While the results obtained are not perfect, they are very promising.
Automatization gives several benefits in the case of the prick test, as it eliminates the
inter-observer variance and offers a way to study the immune reaction as a function of time.

The method shown above is semi-automatic in the sense that the user has to input a point
close to the center of the wheal. This is not a major obstacle in practice, as the prick test
can be performed so that the centers are known. Another possibility is to use some easily
recognizable markings on the skin so that the centers can be found automatically.

Finding the size of a wheal is a surprisingly complicated task. The wheal edges are not sharp,
and the contrast between the wheal and its surroundings is very low. The skin color is not
constant, it varies significantly not only between individuals but also between different areas
of the skin of an individual.

Our algorithm for determining the wheal size has several steps. First, the image is
transformed into a grayscale image by using the KFD (Kernel Fisher Discriminant) projection.
Although the linear kernel with the L∗a∗b∗ color space resulted in best results in this study,
we anticipate that the flexibility of the Gaussian kernel would be useful with larger amount
of patients (e.g., with different skin colors).

At this point there are two different methods for finding out the wheal size and shape. The
first method segments the wheals using either straightforward thresholding or the Graph
Cut method to determine which pixels in the image belong to the wheal. It seems that the
performance of the segmentation approaches is equally good. The second method finds the
ellipse which has the highest KFDR (Kernel Fisher Discriminant Ratio) between the pixels
inside and outside of the ellipse.

It is not clear which of the methods is best in practice. The Graph Cut method gives irregular
wheals, and the results are close to those obtained with manual segmentation. On the other
hand, the medical practice uses one or two diameters of the wheal, and it in unclear whether
or not any protruding features of the wheal should be included. Choosing between these two
methods will require a large number of images, as the differences are not very large.

The images used in developing the algorithms were not of the highest quality. They
were taken with a relatively old digital camera, and we earned during the process that
there were significant compression artefacts in the images, which is clearly visible in the
grayscale images. The use of a more modern camera without compression should reduce both
compression artefacts and image noise significantly and thus improve segmentation results.
This, also, is a topic for further research.

One should also note that the above methods generalize to other multichannel segmentation
methods than RGB segmentation. Using alternative wavelengths might help the
segmentation, and any combination of input images is possible. Another alternative is
to generate artificial input channels, e.g., by filtering the RGB channels using different
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preprocessing methods. As the results show, there is a difference in results when using
different color spaces as the input. Thus, one might anticipate that adding artificial channels
produced by different filters may also be of help in the segmentation.
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1. Introduction 

A Computer-Aided Diagnosis (CAD) system is a set of automatic or semi-automatic tools 
developed to assist radiologists in the detection and/or classification of abnormalities 
presented in diagnostic images of different modalities. Although on the early phase of 
research and development CAD systems were criticized by some computer scientists; 
regardless of this criticism, nowadays’ experimental evidence indicates that success rates of 
radiologists increase significantly when they are helped by these systems: In 
mammography, researchers have reported results from prospective studies on a large 
number of screenees, regarding the effect of CAD on the detection rate of breast cancer. 
Although there is a large variation in the results, it is important to note that all of these 
studies indicated an increase in the detection rates of breast cancer with the use of CAD; as a 
consequence of this, using CAD contributes to decrease cancer-related deceases due to the 
early detection of cancer signs.  

The idea of developing computer systems to assist physicians in the detection of diseases 
has been a challenging matter during the last years, specifically on reducing the number of 
missed diagnosis and the time taken to reach a diagnosis among the different diagnostic 
image modalities. Moreover, the recent development of full-field digital imaging and 
picture archiving and communication systems (PACS) have been a catalyst in the increase of 
such computer systems in developed countries. 

Because of the emphasis on screening programs in almost every country, the number of 
mammograms to be analyzed by the radiologists is enormous but, only a small portion of 
them are related to breast cancer (Oliver et al., 2010). In addition, a mammographic image is 
characterized by a high spatial resolution which is adequate enough to detect subtle fine-
scale signs such as microcalcifications. Consequently, the analysis of mammographic images 
is a complex and cumbersome task which requires highly specialized radiologists.  

During the last years, the number of papers related to CAD has been augmented due to the 
increased interest on improving disease diagnosis using different image modalities. As far 
as the evidence indicates, it appears reasonable to use CAD for screening examinations, 
provided that large fractions of them give normal results and therefore the task of diagnosis 
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becomes both cumbersome and time-consuming. In addition, the current performance of 
commercial CAD systems have shown that there is a substantial gain in detection rates as 
well as an important increase in recall rate, not to mention the overall performance of such 
systems for the detection of disease signs (e.g., 98% sensitivity at 0.25 false positives per 
mammographic image, for one of the latest commercial CAD systems) (Doi, 2007).  

As far as the literature shows, there seems to be only one attempt to integrate CAD systems 
into a multi-organ and multi-disease one incorporating all the diagnostic knowledge 
(Kobatake, 2007). On the other hand, the current status of single-purpose, single-organ CAD 
systems shows some good examples of commercial and functionally CAD systems for 
practical and clinical use. In mammography, chest radiography and thoracic CT, a number of 
commercial systems are available. The former systems include the detection and differential 
diagnosis of masses and microcalcifications. Furthermore, in chest radiography and thoracic 
CT, CAD schemes include the detection and differential diagnosis of lung nodules, interstitial 
lung diseases, and the detection of cardiomegaly, pneumothorax and interval changes (Doi, 
2007). Researchers have reported an important reduction in the mean age of patients at the 
time of detection when CAD was used along with the increase in the detection rates of breast 
cancer (Cupples et al., 2005), similar results were achieved on the detection rates of lung 
cancer, colon diseases, intracranial aneurysms, among others (Doi, 2007).   

Microcalcification detection has been extensively studied. Yu and Guan, 2000, developed a 
technique for the detection of clustered microcalcifications. The first part of the algorithm 
addresses the extraction of features based on wavelet decomposition and gray-level 
statistics, followed by a neural-network classifier. The detection of individual objects 
depends on shape factors, gray-level features, and a second neural network as a 
classification scheme. The algorithm was tested using a set of 40 mammograms and the 
sensitivity reported was 90% at 0.5 false positive per image. 

Christoyianni et al., 2002, proposed a neural classification scheme for different kinds of 
regions of suspicion (ROS) on digitized mammograms; in this approach the Mini-MIAS 
database was used to perform the feature extraction and classification stages. The feature 
extraction stage was based on independent component analysis calculation in order to find a 
set of regions that generates the mammograms observed. The recognition accuracy for the 
detection of abnormalities was 88.23% and 79.31% in distinguishing between benign and 
malignant regions. El-Naqa et al., 2002, used support vector machines to detect 
microcalcification clusters. The algorithm was tested using 76 mammograms, containing 
1120 microcalcifications, and it outperformed several well-known methods for 
microcalcification detection with a sensitivity of 94% at one false positive. 

Vilarrasa, 2006, proposed a variety of visual processing and classification schemes to detect 
and classify mammary tissue. This group of algorithms employs standard segmentation 
procedures such as Tukey outlier test, region growing and segmentation via watershed 
transformation; additionally, a neural classifier is proposed to distinguish between healthy 
and calcified mammary tissue. The results were not good enough (were not reported due to 
its poorness), nevertheless, a morphologic filter was used to increase the success rates of the 
classifier; finally, the system reached 84% sensitivity, 64% specificity and 77.2% accuracy.   

Verma et al., 2009, used a novel soft cluster neural network technique for the classification of 
suspicious areas in digital mammograms; the main idea of the soft clusters is to increase the 
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generalization ability of the neural network; this network used a set of six features and was 
trained and tested using the DDSM benchmark database and the results showed an 
accuracy between 79% and 94%. Wei et al., 2009, proposed a microcalcification classification 
scheme assisted by content-based mammogram retrieval. The algorithm was tested using 
200 different mammographic images from 104 cases. This approach used an adaptive 
support vector machine (Ada-SVM) as classifier which outperformed the classification 
accuracies given by other classifiers due to the incorporation of proximity information; the 
reported classification accuracy was 0.82 in terms of the area under the ROC curve.  

Tsai et al., 2010, proposed an approach in which suspicious microcalcified regions are 
separated from normal tissue by wavelet layers and Renyi’s information theory. 
Subsequently, several statistical shape-based descriptors are extracted; principal component 
analysis (PCA) is used to reduce the dimensionality of the feature space and the data 
classification is performed by a standard MLP neural network. The maximum performance 
achieved by this approach was 97.1 at 0.08 false positives.  

2. Visual cortex mechanisms: Neurobiological considerations and potential 
for CAD 
Up to this moment, microcalcification detection has been largely studied along with the 
development of computer vision algorithms. There are many computational approaches 
which have driven the problem at reasonable cost-effectiveness. Nonetheless, as a matter of 
fact, neurobiologically-inspired approaches have been rather neglected due to the poor 
establishment of the relation between cogent neurobiological principles and their potential 
to visual computer systems development.  

Primates’ visual cortex is capable to interpret dynamical scenes in clutter, in spite of using 
several serial visual processes as the attention shifting and saccadic eye movements suggest. 
As pure parallel processing of visual inputs becomes obscure and cumbersome for the 
visual cortex machinery, it deals with such task by selecting circumscribed regions of visual 
information to be processed preferentially and by changing the processing focus over the 
time course. Up to this moment, there are several approaches for the dynamic routing of 
visual stimuli and information flow through the visual cortex, which accounts for 
competitive interactions and dynamical modifications of the neural activity into the ventral 
and dorsal pathways, and the consequent biasing of these interactions in favor of certain 
objects of the space into scene-dependent (bottom-up) and/or task-dependent (top-down) 
strategies (Itti & Koch, 2000). The interactions among these two visual processes have been 
addressed by many researchers (Fix et al., 2010; Navalpakkam & Itti, 2005; Navalpakkam & 
Itti, 2002; Walther & Koch, 2006; Serre et al., 2006). 

Objects in the visual field must compete for processing within more than 30 different visual 
cortical areas. As the ability to screen out objects during visual search tasks is contextual and 
primates often detect a single target in an array of non-targets, detections –for all the effects– 
depend largely on the correlation between targets and non-targets. According to this biased 
competition model, the targets and non-targets of a scene compete for processing spaces 
during visual search. There may be biases towards sudden appearances of new objects in 
the visual field and towards objects that are larger, brighter, faster moving, etc (Desimone & 
Duncan, 1995).  
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Many computational models of human visual search have embraced the idea of a saliency 
map to accomplish preattentive selection. This representation contains the overall neural 
activity elicited by the objects and non-objects of the space, which compete for processing 
spaces in the visual search according to primary visual features such as intensity, 
orientations, colors and motion. The conformation of feature maps is a consequence of 
highly structured receptive fields of cells in lateral geniculate nucleus (LGN) and, notably, 
V1. Certain well-established neurobiological evidence points out the existence of this 
neuronal map and, on the other hand, some other evidence rejects the idea of a 
topographical representation standing for the overall saliency of visual stimuli and, 
therefore, points out the selectivity as a consequence of interactions among feature maps, 
each codifying the saliency of objects in a specific feature (Itti & Koch, 2000).  

Modeling of visual attention mechanisms seems to have reasonably high promise, and its 
application to microcalcification detection will be the main topic and purpose of this chapter. 
In this approach we perform pre-processing and post-processing stages using several 
computer vision algorithms. This allows us to identify the potential of the neurobiologically-
inspired visual mechanisms model as part of a CAD scheme. We also give some relevant 
comparisons in relation to our previous approach (Ramirez-Villegas et al., 2010). 

3. The proposed algorithm 
The algorithm proposed in this book chapter is illustrated by Figure 1. The overall procedure 
is divided in six stages: (1) Mammographic images were taken from the Mini-MIAS Database 
of Mammograms (see sub-section 3.1. for a detailed description of the data); (2) The region of 
interest (ROI) cropping is accomplished by using the available information on the description 
section of the database; specifically we took into account the location and the approximate 
radius of the circle enclosing the abnormalities (microcalcifications); (3) Adaptive histogram 
equalization and the so-called top-hat algorithm were performed as pre-processing steps in 
order to enhance the microcalcifications’ traces; (4) A pre-attentive bottom-up visual model 
was implemented in order to preliminarily distinguish between calcified and non-calcified 
tissue; (5) Tukey outlier test-based segmentation was used to perform the final segmentation of 
sub-regions via the simulated gaze allocation outcomes obtained in the former step; (6) Finally, 
a Self-Organizing Map (SOM) neural network was implemented in order to adjust 
topologically the microcalcifications and to provide a final visual output. 

 
Fig. 1. Overview of the proposed approach. 
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3.1 Mammographic database 

In this work, a total of 23 mammographic images containing microcalcified tissue were 
taken from The Mini-MIAS Database of Mammograms (Suckling, 1994), which is widely 
used by researchers to carry out and evaluate their research work before other researchers in 
the area of CAD of breast cancer. We have used this database in our previous research 
(Ramirez-Villegas et al., 2010; Ramirez-Villegas & Ramirez-Moreno, 2011). The database 
provides appropriate details of the pathologies and general characteristics of the 
mammograms: The MIAS database reference number, character of background tissue (as it 
can be fatty, fatty-glandular and dense-glandular), class of abnormality (as it can be 
calcification, well-defined/circumscribed masses, spiculated masses, ill-defined masses, 
architectural distortion, asymmetry or normal), severity of abnormality (as it can be benign 
or malignant), the (x,y) image-coordinates of centre of abnormality and the approximate 
radius (in pixels) of a circle enclosing the abnormality. The resolution of the original images 
was 200 micron pixel edge so that every image’s size was 1024 x 1024 pixels. The images are 
centered in the matrix.   

All ROIs (calcified tissue samples) were selected using the reference given in the description 
of the database. 

3.2 Mammograms enhancement 

Enhancement algorithms have been employed for the improvement of contrast features and 
the suppression of noise (Papadopoulos, 2008). They are commonly used to increase the 
radiologist’s detection effectiveness or as pre-processing stages of CAD schemes. In the 
preprocessing module, the significant features of the mammogram are enhanced, recovering 
most of the hidden characteristics and improving the image quality. According to recent 
findings (Papadopoulos, 2008), the contribution of the preprocessing module in the 
detection of ability of the CAD system is definite.  Consequently, the final outcome of the 
CAD scheme depends largely on the pre-processing steps.  

The pre-processing stage of the current approach is divided in two parts: (1) Contrast 
enhancement and, (2) microcalcification enhancement by the so-called top-hat algorithm. 
The usefulness of these methods is reported in the literature along with their potential to 
enhance signs present in mammographic images.  

3.2.1 Adaptive Histogram Equalization (AHE) 

In our previous work (Ramirez-Villegas et al., 2010; Ramirez-Villegas & Ramirez-Moreno, 
2011), we implemented the Adaptive Histogram Equalization (AHE) as preprocessing stage. 
According to our findings, this technique can be applied to enhance the high frequency 
components of the image, i.e., microcalcifications, due to the computations applied to 
central and contextual region pixels. In order to avoid the noise amplification a contrast 
limited-equalization can be performed, especially in homogeneous areas. This method 
exhibits improvements over the Local-Area Histogram Equalization (LAHE), which 
presents high computational load and noise magnification due to standard histogram 
equalization computed for each pixel taking into account its neighborhood (contextual 
region).  
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In order to decrease the computational load, equalization can be computed only for some 
pixels (and its context regions), as the image is divided into a mosaic; thereby, the modified 
pixel is the central pixel, and the others are obtained using a standard interpolation method. 
In this way, each contextual region will affect, with its equalization, another spatial zone 
which doubles its length. 

The final value of each pixel will be obtained applying the pixel mapping given by 

      1 1 1( ) ( ) ( ) ( ) ( )L i C E N i E N i C E N i E N i                , (1) 

where N  is the mapping of the left superior area, N  is the mapping of the left inferior 
area, and so on; and 
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3.2.2 Top-hat algorithm 

As a matter of fact, background removal and microcalcification enhancing are considered as 
necessary procedures in many CAD applications, given the initial visibility and detectability 
of such mammographic signs. Morphological operations can be employed to enhance 
mammographic images at reasonable computational load-effectiveness. A large class of 
filters can be represented by mathematical morphology implementing two simple 
operations: Erosion and dilatation. When the signal of gray levels and the background of an 
image are constant, a standard image thresholding procedure can be performed to detect 
objects. Nonetheless, the top-hat algorithm becomes a very good choice when the signal of 
gray levels of the background is highly sparse, as it is the mammary tissue in a 
mammographic image. 

The top-hat algorithm consists of a standard pixel-to-pixel subtraction of the original image 
from its opened version. The image opening is defined as the erosion of the image followed 
by its dilatation. Erosion is the morphologic operation in which a pixel, located at the center 
of the structuring element, is substituted by the minimum value of the pixels of the 
neighborhood. Hence, this operation reduces small regions with higher gray levels than 
those of the structuring element. On the other hand, dilatation is the opposite morphologic 
operation to erosion; in this case, the pixel located at the center of the structuring element is 
substituted by the maximum value of the pixels of the structuring element. Consequently, 
this operation enlarges the regions of the image with high gray levels which did not 
disappear as a result of the erosion step. 

The top-hat algorithm can be formulated as follows: 

        ' , , , ,A x y A x y A x y B x y     , (2) 

where: 

          , , , , ,A x y B x y A x y B x y B x y     , (3) 
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is the opening of the image  ,A x y by a structuring element  ,B x y , where   and 
 denote erosion and dilatation, respectively.  

As images are functions mapping a Euclidean space E into  ,   , where  is the set 
of real numbers, the grayscale erosion and dilatation of  ,A x y by  ,B x y  are given, 
respectively, by: 

      
', '

, , arg min ', ' ( ' , ' )
x y E

A x y B x y A x y B x x y y


       , (4) 

      
', '

, , arg max ', ' ( ', ')
x y E

A x y B x y A x y B x x y y


       , (5) 

3.3 Background suppression (revised method) 

The enhancement stage must be sensitive enough to emphasize small low-contrast objects, 
while it must have the required specificity to suppress the background. Usually the 
background corresponds to some smoothed fractions of the image provided by the tissue 
characteristics and image acquisition process; in consequence, these areas are softened 
regions of image which give no-relevant information about pathologies in many cases. In 
our last work (Ramirez-Villegas et al., 2010), the suppression is performed using difference 
of Gaussians filters according to Eq. (6). 

 ( , ) ( , ) ( , ) ( , )rI x y I x y DoG x y I x y   , (6) 

where ( , )I x y  is the input image, and the additional term of convolution is the filter 
function. In this way, the convolution term corresponds to a smoothed version of the input 
image. DoG (Difference of Gaussians) is a linear filter implemented in several artificial 
vision tasks, which works by subtracting two Gaussian blurs of the image corresponding to 
different functions widths.  
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      

      
, (7) 

The enhancing process with the DoG works in both the spatial and frequency domain. The 
performance of the filter is conditioned by parameters n and in one case, nA peaks 
estimation. In Eq. (7), Standard deviation n is related with lateral inhibition of the filter, 
while the term which follows nA peaks normalizes the sum of mask elements to unity in the 
image processing. Typically these parameters are determined in a heuristic way, according 
to the desired performance and microcalcifications and image general characteristics. 
Nevertheless, as a reference method for this research, there are some mathematical 
expressions (Ochoa, 1996) used to determine the DoG parameters according to 
microcalcifications’ average width and Marr’s ratio (Marr, 1982). For reference, an example 
of the DoG processing is in Figure 2. 

As background suppression using DoG filters is a well-known method, it will give us some 
feedback in order to compare the performance of the current approach and, consequently, to 
express where it stands relative to the existing literature. 
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Fig. 2. Example of background suppression by DoG: (a) Input ROI; (b) Enhanced ROI. 

3.4 Bottom-up processing in visual cortex 

The selection of a part of the available sensory information before a detailed processing stage 
by intermediate and high visual centers is an ability of the visual system of primates. Koch and 
Ullman (Koch & Ullman, 1985) introduced the idea of a saliency map to accomplish pre-
attentive selection. Saliency map can be defined as a two-dimensional representation that 
represents topographically the saliency of objects in the visual field. The competitive behavior 
of the neurons in this map gives rise to a single winning location, which corresponds to the 
most salient object. Subsequently, the next conspicuous locations are attended in order of 
decreasing saliency, given the prior inhibition to already attended locations. 

 
Fig. 3. Overview of the visual cortex-like bottom-up processing step. 
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Microcalcifications are low-contrast conspicuous locations in a background of distractors 
(surrounding mammary tissue and noisy regions). The competitive behavior of the neurons 
in the early stages of visual processing guarantees that there would be a biased competition 
in favor of certain objects of the space based on certain characteristics which make them 
‘unique’. But, how do unique features attract attention? Experimental evidence shows that 
neural structures in Lateral Geniculate Nucleus (LGN) and primary visual cortex (V1) are 
responsive to features which are common to all objects of the visual field, e.g., intensity, 
orientation, color opponency, motion, stereo disparity, among others. In this work, we 
assume that visual input is represented in the form of iconic, topographic feature maps. In 
order to construct such representations, we use center-surround computations in every 
feature at different spatial scales and within-feature spatial competition (Itti & Koch, 2000). 
All the information contained in these maps is combined to obtain a single representation, 
i.e., the saliency map. 

This part of our approach computes saliency using two features studied by Itti et al., 1998, 
for the formerly visual attention model proposed model of Koch & Ullman, 1985: Intensity 
and orientation. These features are organized into 30 maps (6 for intensity, 24 for 
orientation; a detailed explanation of this is given further). These maps are combined using 
across-scale sums in order to obtain the conspicuity maps, which provide input for a unique 
saliency map (central representation). Figure 3 illustrates the overview of this processing 
step. 

This model is limited to selective attention given by the properties of the visual stimuli and 
consequently it does not involve any volition-dependent process (top-down visual 
processing). Low-level visual features are directly extracted from the input image over 
different resolution scales using pyramid-like linear filters, i.e., the so-called Gaussian 
pyramids. This approach consists of successive filtering processes and compression of the 
input images (Burt & Adelson, 1983). This process is illustrated by the following equations: 

      
2 2

1
2 2

2 2, , ,l l
m n

g i j w m n g i m j n
 

    , (8) 

where 0 ll N   and , ,i j  0 li C  , 0 lj R  . lN is the number of levels of the pyramid 
and, lC  and lR  are the dimensions of the image at the lth level. Finally, w is defined 
according to Eq. (9) and Eq. (10). 

      ˆ ˆ,w m n w m w n , (9) 

where ŵ  is a normal and symmetric function: 

  
, 2, 22

ˆ , 1, 1
, 0
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w x b x
a x
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, (10) 

Typically the value of a is 0.4 and the value of b is 0.25, in consequence, the values of  ŵ x  
are given by Eq. (11). 
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Note that there is a 5x5 pattern of weights w to generate each pyramid array.  

In this step, a total of nine spatial scales  0 1 8, ,...,   are created using the Gaussian 
pyramid scheme. This approach yields horizontal and vertical image reduction factors from 
1:1 (scale zero) to 1:256 (scale eight) in eight octaves.  

Subsequently, each feature is calculated using the center-surround scheme, which is highly 
related to the visual receptive fields. Such center-surround differences are calculated 
between coarse and fine resolution scales in every feature: The receptive center corresponds 
to a pixel at resolution level  2 3 4, ,c in the pyramid, and the surround is the 
corresponding pixel at resolution level s c   , with  3 4,  . As a result of the 
combination between the receptive center and surround resolution levels, we obtain a total 
of six feature maps.  

Intensity contrast is extracted by standard band-pass filtering to calculate center surround 
differences between the established resolution levels: 

      ,I c s I c I s  , (12) 

where  I c  is the center intensity signal,  I s is the surround intensity signal and the 
symbol “ ” is termed across-scale subtraction, i.e., the point-by-point subtraction of images 
of different resolutions by interpolation to the finer scale. 

Orientation is extracted using standard Gabor pyramids  ,O   , where 
 0 45 90 135º , º , º , º   (Greenspan et al., 1994). Thereby, orientation contrast is defined as: 

      , , , ,O c s O c O s    , (13) 

where  ,O c   and  ,O s   are the center and surround orientation signals, respectively. 

The local orientation maps  ,O c   and  ,O s   are computed by convolving the levels of 
the intensity pyramid with standard Gabor filters (note that this procedure can be 
performed either in the frequency or spatial domain): 

          2 2
, * *E OO I O I O              , (14) 

where  is the resolution level, and EO  and OO : 
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
  


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, (16) 
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are even and odd Gabor filters, respectively, with aspect ratio  , standard deviation  , 
wavelength  , phase  ,  and rotated coordinates by  : 

    ' cos sinx x y   , (17) 

    ' sin cosy x y    , (18) 

Once we obtain the 30 feature maps (6 for intensity and 24 for orientation), feature maps of 
the same type are linearly combined and, consequently, we obtain two conspicuity maps 
(one for each feature): 

  
4 4

2 3
,

c

c s c
I N I c s



  
      , (19) 
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,
c

c s c
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



  

 
      

 
 , (20) 

The purpose of the function  ·N  is to normalize each conspicuity map. The simplest 
procedure to achieve such normalization is to adjust the dynamic range of the maps. 
However, it is possible to obtain a normalized map into an iterative or trained way (Itti & 
Koch, 2000). 

All conspicuity maps are linearly combined into one saliency map according to Eq. (21). 

    1
2

S N I N O    , (21) 

Finally, as the objects in the space compete for processing spaces during visual processing, 
the locations in the saliency map representation compete for the highest saliency value into 
a winner-take-all (WTA) strategy. This means that the next location to be attended 
 ,w wx y is the most salient one in the saliency map; subsequently, the saliency map is 
inhibited by means of the so-called inhibition of return mechanism, allowing the model to 
simulate a visual scan path over the whole content of the image. 

WTA models have been largely implemented for making decisions from a 
neurobiologically-inspired perspective (Koch & Ullman, 1985; Itti et al. 1998; Walther & 
Koch, 2006). It should be noted that in a neuronally plausible implementation, the saliency 
map could be modeled as a layer of leaky integrate-and-fire neurons, as a backwards WTA 
selection mechanism (Walther & Koch, 2006) or as a layer of neurons with logistic profiles 
implemented in the form of mean field equations (Ramirez-Moreno & Ramirez-Villegas, 
2011). In the case of the leaky integrate-and-fire neurons, when a threshold potential is 
reached, a prototypical spike is generated and the capacitive charge of the neuron is shunted 
to zero (note that neurons here are RC circuit-based models). Therefore, the synaptic 
interactions among the units ensure that only the most active location of the saliency map 
remains and the potential elicited by other locations are suppressed. Similarly, using the 
mean field approach in a network of neural populations, the WTA approach emerges 
directly from the competitive behavior of the units, thereby, inhibitory and local excitatory 
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connections among the neurons of the same layer produce the most active location to rise 
above the other ones (Ramirez-Moreno & Ramirez-Villegas, 2011).  

As the main aim of the current approach is not to reproduce the brain dynamics in a one-to-
one implementation, we select the most active location in the saliency map in order to define 
the position where the model should attend; hence, we define the most salient location as 
follows: 

  arg max ,wFOA S x y    , (22) 

where wFOA defines the winning location    , ,w wx y x y  and ,x y , 0 0', 'x N y M     
in the saliency map of dimensions '* 'N M .  

Under this strategy, the focus of attention (FOA) is shifted to the location of the winner 
neuron. Further, local inhibition must be applied in an area in the location of the FOA, in 
order to allow the system to determine a new winning location and then produce a new 
attentional shift. In order to reproduce such inhibition of return mechanism, when selecting 
the most active location in the map, a small excitation is activated in the surrounds of the 
FOA (Koch & Ullman, 1985), consequently, the shape of the FOA can be approximated to a 
disk whose radius is fixed according to the microcalcifications’ average width (in this work, 
we compared the performance obtained using radiuses of 2, 3 and 5 pixels); subsequently, 
such location is inhibited by setting its activity to zero.  

3.5 Serial segmentation procedure 

Frequently the processing in the collected images is varying in quality (satisfactory quality 
and poor quality); hence, this establishes some individuality of the grey level contrast 
(Ramirez-Villegas et al., 2010) provided by the tissue characteristics and image acquisition 
process. Furthermore, regions of images such as mammograms are suitable to several 
segmentation algorithms. The image segmentation procedure must be specific enough to 
avoid false positives in the enhancing process. 

In statistical analysis, when outliers are present, the estimates of the data are distorted. 
Consequently, these estimates are not suitable to make inferences about the data. In this 
case, these erroneous values should be eliminated for subsequent analysis purposes.  

The Tukey outlier test (Hoaglin et al., 1983) assumes that there is no specific distribution of 
the data series. This method is based on the supposition that any distribution has a group of 
typical values surrounded by atypical data (i.e., outliers) that exaggerate the histogram 
length. The larger the sample size, the higher the probability of getting at least one outlier. 
The Tukey outlier test is based in, at least, two assumptions: (1) that the central part of the 
distribution contains most of the information of the genuine reference values; and (2) that 
outliers may be detected as values lying outside limits, taking into account the statistical 
properties of this central part. 

In our work, we implemented this outlier detector as a serial segmentation algorithm using 
the FOAs determined by the saliency-based bottom-up approach described in Section 3.4. 
Each serially attended location (i.e., the circumscribed regions used to simulate attentional 
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shifting) is a subset    ' , ,S x y S x y ; the Tukey outlier test will set aside the observation 
 ' ,o oS x y if one of the following conditions is fulfilled: 

  ' ,o oS x y L , (23) 

where 

  1 3 11 5.L q q q     , (24) 

or 

  ' ,o oS x y U , (25) 

where 

  1 3 11 5.U q q q     , (26) 

where 1q  and 3q  denote the first and third quartiles of the sample, respectively. Once the 
arguments of the above expressions are obtained, pixels above U  and below L  are 
considered as outliers of the distribution. As microcalcifications at this stage of the approach 
appear as highly bright regions with atypical gray level values (outliers in the distribution of 
the resulting processed image), the segmentation threshold to segment them is equal to U . 

From a neural networks perspective, the segmentation procedure proposed in this work can 
be seen as a hard-limit transfer function node, where: 

    1
0

' ,
' ,

S x y U
H S x y

otherwise

      
, (27) 

Under this scheme, the typical gray values of the distribution are discarded (set to zero) and 
the others are transferred to the next processing step (SOM neural network).  

3.6 Self-organizing map (SOM) neural network 

The final stage of the approach reported in this chapter, is the implementation of a SOM 
neural network in order to topologically adjust the microcalcifications and show the final 
outcome for diagnosis purposes. Figure 4 illustrates the architecture of the neural network 
with the saliency map as input. 

Self-Organizing Maps (SOM) have been largely implemented for a plethora of tasks, in a 
very similar way to those which other neural networks have been used to, e.g., pattern 
recognition, vision systems, signal processing, among others. In SOM-like neural networks, 
neighboring cells compete through mutual lateral interactions, and develop adaptively into 
specific detectors of different signal patterns (Kohonen, 1990).  Each point of the input data 
shaping the structure of an N-dimensional space determines the spatial location of the 
weight of a cell in the network. Consequently, the network would be capable of giving a 
categorization of the input space. 
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Fig. 4. Scheme of the neural network implemented in this work. 

Let    , ,T
i i i sX x y S x y   be a two-dimensional input vector in the segmented saliency 

map. The weight vector of the node j  in the SOM layer is therefore denoted by 
 1 2, ,, ,j j j sw w w S x y    . We define an analytical measure of match between X and w . 

The simplest way to define the match may be the inner product T
i jX w ; however, the 

Euclidean distance gives better and more convenient matching criterion (Kohonen, 1990). 
The Euclidean distance between the input patterns and the vector of weights is defined as: 

    2
1 2, ,ji j i j i j iE w X w x w y      , (28) 

The minimum Euclidean distance defines the winner neuron at the current iteration. Hence, 
there is a single neuron chosen such that: 

  
,

arg minc ji
j i

E E , (29) 

Lateral interactions among the units are enforced by defining a neighborhood set 'n , 
around the winner unit. At each learning step the cells within the neighborhood are 
updated. Depending on the neighborhood function, the cells outside 'n are left intact or 
almost intact. Such function technically defines the adaptation strength among the 
neurons of the map. For a closer proximity to the winner node, stronger adaptation 
strength is elicited by the other nodes. In our work we used an elliptical Gaussian 
function, which according to our experimentation gave robust solution to the topologic 
adjustment task: 
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, (30) 

The parameters of the function (the Gaussian widths) define the size of the neighborhood. 
Typically, it changes according to a monotonically decreasing function throughout the 
whole training procedure. In the current implementation such function for either Gaussian 
width is given by: 

   0
0

,
,

,

t
T

n f
n n

n

t


 


 
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 
, (31) 

where t represents the current training cycle and T the total number of train cycles. The 
initial 0,n and final ,n f  neighborhood sizes can be estimated according to the map size 
(the neurons’ distribution), the segmented saliency map size or in a heuristic way. It should 
be noted that a wide initial neighborhood first induces a rough global order in the jw values 
after which narrowing the neighborhood improves the spatial resolution of the map. 

Finally, the updating process of the weights is given by the following equation: 

          1 ·j j i jw t w t t f X w t       , (32) 

where  t is the so-called adaptation gain  0 1t  , which is related to the rate at which 
the network learns the topology of the input space. Typically, this parameter is also 
described by a monotonically decreasing function. In our work, it has the following form: 

    0 0f
t

t
T

         
 

, (33) 

here, the initial 0  and final f  learning rates must be small values and 0f  . 

For illustrative purposes, a topology adjustment example by a SOM network is given by 
Figure 5. In this example, the input space is a square-shaped random distribution of points,  

 
Fig. 5. SOM neural network (two-dimensional circular array) in a squared input space: (a) 
Initial weights (iteration 0); (b) weights after several training cycles (iteration 100). 
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while the network (initially) is a circle-shaped array of interconnected units. Note that the 
weight vectors tend to approximate the density function of the input vectors after a few 
training cycles (the blue edges indicate that the neurons are neighbors in the grid). 

4. Results 
As aforementioned, we tested our approach using The Mini-MIAS Database of 
Mammograms (Suckling, 1994), which is widely used by researchers to carry out and 
evaluate their research work before other researchers in the area of CAD of breast cancer. 
From this database, a total of 23 mammographic images made part of our study (those 
containing microcalcifications). The background and tissue character in the images enabled 
us to test the algorithm with certain variability of conditions. ROIs were extracted according 
to the specifications of the database in the form of squared regions enclosing the 
microcalcification clusters. In some cases calcifications were widely distributed throughout 
the mammogram rather than concentrated at single sites; in these cases various ROIs of the 
images containing microcalcifications were extracted. Subsequently, all the processing steps 
were performed according to Figure 1.  

In this section we present the main outcomes of the proposed methodology. In Section 4.1 
we give some relevant examples to illustrate how the proposed CAD application operates 
during mammogram inspection. Similarly, in Section 4.2 we present comparative Free-
Response Operating Characteristic (FROC) curves to test the outcome of our methodology 
varying the radius of the FOAs in the saliency-based bottom-up model. We also conduct 
relevant comparisons between the proposed algorithm and the DoG approach and 
additionally, other comparisons are made between the performance obtained in the 
detection of benign microcalcification signs and the detection of malign microcalcification 
signs.  

4.1 Experimental results 

The analysed ROIs containing the microcalcifications in the mammograms vary in radius 
from 8 to 93 pixels, and the performance of the SOM neural network was achieved in 500 
training cycles, in which location of the possibly pathological regions are given as an output.  

In Figure 6 and Figure 7, examples of microcalcification detection are presented.  Note that 
after the preprocessing stages (the image histogram equalization and the top-hat algorithm), 
the saliency-based bottom-up approach reveals the locations of the image which the visual 
system should attend to. In this case, the visual processing model biases the competition 
among the different locations of the image in favour of certain objects of the space. The 
attended conspicuous objects in this case are the microcalcifications present in the 
mammograms. As the degree of conspicuity of the microcalcifications on the preprecessed 
images varies, the saliency map activity is somewhat heterogeneous. This illustrates that the 
neural responses elicited by the objects and the competitive interactions among certain 
locations in the maps induce one target to rise above the others at a given time instant. In 
addition, our model incorporates the iterative normalization strategy described by Itti & 
Koch, 2000, which consists on iteratively convolving the feature maps by a 2D DoG filter, 
adding the result to the original image and setting the negative results to zero after each 
iteration. We tested the model with a reduced number of iterations (a maximum of 3 
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iterations) and a small inhibition factor (between 0 and 1) in order to avoid undesired over-
competitive behaviour among the neurons of the map.  

 
Fig. 6. Example illustrating the processing steps of the proposed approach: (a) Equalized 
ROI; (b) output of the top-hat algorithm; (c) saliency map; (d) segmented image; (e) 
topologic adjustment of microcalfications by SOM neural network. 

Figure 6(d) and Figure 7(d) illustrate the results of the serial segmentation. Note that the 
specificity of the bottom-up processing increases with the pattern discrimination obtained 
after the serial calculation of the Tukey outlier test. For these examples the radius of the 
FOA was 2 pixels. The white locations in Figure 6(d) and Figure 7(d) were those for which 
the statistical procedure detected at least one outlier. Furthermore, like in many other 
relevant situations, according to our results, it is hard to find an algorithm that can handle 
all the possible scenarios and all mammographic images’ conditions. In addition, regardless 
of the distribution of the FOA, in absence of outliers (microcalcifications), the Tukey 
statistical test provided a low rate of false detections (specificity). We performed extensive 
experiments to evaluate the serial segmentation algorithm by limiting the maximum 
number of attended locations by the saliency-based bottom-up model; the algorithm’s 
outcome limiting the number of attended locations did not present large variations as if the 
attention shifting occurred across the whole saliency map. 

Figure 6(e) and Figure 7(e) show the topologic adjustment of microcalcifications performed 
by the SOM neural network. This performance was obtained by training the network over 
500 cycles, in which the locations of the possibly pathological regions were given. Although 
the topological adjustment made by the SOM network is accurate and suitable for the 
application, some microcalcifications were not associated because the number of neurons in 
the input space was limited due to computational load constraints. Further research will be 
needed to evaluate other schemes in the topologic adjustment task. 
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Fig. 7. Example illustrating the processing steps of the proposed approach: (a) Equalized 
ROI; (b) output of the top-hat algorithm; (c) saliency map; (d) segmented image; (e) 
topologic adjustment of microcalfications by SOM neural network. 

 
Fig. 8. Example of the operation of the visual saliency model with the mammographic ROI 
in Figure 6. Note that once the visual machinery model combines the information of the 
topographic conspicuity maps into the saliency map, the most salient locations of the scene 
are attended into a serial strategy (the black arrows indicate the spatial shifts of the FOA). 
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Additionally, Figure 8 illustrates the FOA shifting for the first six attended locations in the 
saliency map in the example of Figure 6. In this case, the FOA is represented by a disk of 
radius 2 pixels. In general, although it depends on the ROI size, the processed ROI required 
approximately from 16 to 300 shifts (with overlapping) to cover all the possible saliency map 
locations. Since larger ROIs took somewhat longer to be analyzed by the algorithm, in the 
slowest case the processing steps took approximately one minute to be performed. 
Furthermore, since mammographic regions could be considered as highly cluttered scenes, 
the current state of this model reproduces many classical results in psychophysics. 

4.2 Performance evaluation 

The performance of the proposed system is shown by FROC curves in Figure 9 and Figure 
10. A FROC or Free-response Receiver Operating Characteristic curve is the plot of the 
lesion localization vs. the non-lesion localization, as the threshold to report a finding is 
varied; FROC curves are mainly implemented to objectively evaluate and analyse image 
processing algorithms, such as imaging CAD algorithms. Increasing the sensitivity of the 
algorithm can lead to false positives when reaching the detection of subtle signs. The 
experimental results of this algorithm were directed to how the proposed algorithm can 
improve the diagnosis of pathological signs (in this case, microcalcifications). When a 
microcalcification (or microcalcification cluster) is detected at the approximate position 
given in the database specifications, we count a true positive (TP). Otherwise, if a 
microcalcification (or microcalcification cluster) is detected outside the approximate radius 
indicated in the database, we count a false positive (FP). Furthermore, the malignancy of the 
pathologies in diagnostic images in different modalities should be one of the main topics in 
CAD evaluations, as it provides information about how specific are the techniques or 
approaches in detection of pathologies; thereby they can be characterized by powerful 
descriptors such as the size of the signs, character of the background tissue, characterization 
of the abnormality (e. g. single or clustered microcalcifications) and the approximated radius 
of the pathology in each image.  

Figure 9 illustrates the FROC curves for different FOA radiuses. Note that as the FOA 
becomes narrower, the overall performance of the proposed neurobiologically-inspired 
algorithm increases. This is an expected effect that emerges from the visual system’s 
features: As the circumscribed region to which attention is directed reduces, the sensitivity 
of the system increases. Furthermore, this is a convenient strategy when the scenes are too 
cluttered and consequently, difficult to analyse. The maximum performance reached by the 
proposed algorithm was approximately 92.0% at one false positive and 100.0% at 1.5 false 
positives implementing a 2-pixel FOA radius. Note that at this stage, the visual cortex model 
described in this work is limited to the bottom-up control of attention. Furthermore, we 
have followed this strategy as our main concern is the localization of the stimuli to be 
attended, not their identification. 

From the FROC curves in Figure 10 and specifically the true positive ratios and the average 
number of false positives per image, it should be noticed that the pre-attentive bottom-up 
model outperforms the DoG-based approach. In general, DoG kernels exhibit a medium 
specificity, which allows the use of a single filter to enhance all the microcalcifications under 
certain conditions. This means that in order to make the system more robust and make 
microcalcifications of all sizes detectable, a bank of filters would be needed. Although the  



 
Digital Image Processing 

 

180 

 
Fig. 9. FROC curves illustrating the performance of the proposed approach for different 
FOAs’ radiuses (in pixels). 

 
Fig. 10. FROC curves illustrating the performance of (a) the proposed approach; and (b) the 
DoG approach reported by Ramirez-Villegas et al., 2010, for the malign and benign cases. 

performance of the DoG filters could be somewhat limited, DoG filters attenuate (to some 
extent) adequately the low frequencies, which is highly desirable in some of the processing 
stages. On the other hand, the proposed approach adapts better to all mammographic 
conditions given the multi-resolution processing strategy of the visual attention model and 
the center surround interactions; this makes the model selective enough to enhance the 
conspicuous locations and suppress low frequency components as well as some high ones in 
a band pass-like strategy.  

5. Discussion, conclusions and perspectives 
5.1 Visual cortex mechanisms 

Many computational principles regarding bottom-up and top-down visual processing have 
emerged from experimental and modeling studies. Different features contribute to 
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perceptual saliency and their weighing can be influenced by top-down modulation (Deco & 
Rolls, 2004; Peters et al., 2005; Serre et al., 2006). There is experimental evidence concerning 
strong interactions among different visual modalities such as color and orientation for 
certain visual locations; these interactions are subjected to top-down modulation and 
training. On the other hand, the most important issue regarding the bottom-up processing is 
the contrast among features instead of the absolute intensity of each feature. However, the 
primary visual neurons are not only tuned to some kind of local spatial contrast, but also to 
neural responses elicited tightly by context, in a structure that extends the range of the 
classical receptive field.  

It is likely that the relative weight of the features which contribute to the most general 
representation is modulated by higher cortical centers. In this way, the attention process 
selects the necessary information to discriminate between the distractors and the target as 
both bottom-up and top-down processes are carried out to analyze the same scene: Here the 
top-down process is related to previously acquired knowledge that biases the neural 
processing competition among the objects, therefore the recognition is performed by 
selecting the next eye movement that maximizes the information gain. The computational 
challenge, then, lies in the integration of bottom-up and top-down cues, such as to provide 
coherent control signals for the focus of attention, and in the interplay between attentional 
orientating and scene or object recognition (Itti & Koch, 2001). As the current approach is 
familiar only to bottom-up processes, it presents high resemblance and compatibility to 
integrate top-down processes. Integrating such processes would raise the overall 
performance of the mammography CAD system. 

5.2 Could this approach be extended to mass detection? Through multi-sign detection 

Another important issue is the possibility of multi-sign detection, i.e., the detection of 
multiple signs on the same image modality. Current image processing techniques make 
the primitive breast abnormalities detection easier (Verma, 2008), nevertheless, the 
detection of these abnormalities leads to many false detections which depend on the 
robustness of the vision system (Vilarrasa, 2006; Ramirez-Villegas et al., 2010). On the 
other hand, the modular architectures of most of such existing systems lead to the 
necessity of creating separate algorithms for detecting different kinds of cancer signs, e.g., 
microcalcifications and masses. As these two types of abnormalities are in several ways 
remarkably different, many researchers have addressed these two diagnostic tasks 
separately; consequently, the difficulty on detecting cancer rises in direct proportion with 
the number of implemented algorithms for such tasks (in this case, at least two different 
processing pathways). Nevertheless, visual attention modeling could be an important step 
towards the development of a fully-comprehensive CAD system for mammographic 
image analysis. Up to the knowledge of the authors of this chapter, the potential of such 
models in the analysis of mammographic images have not been yet issued, nor identified. 
Theoretically, given the features of the visual processes intended to be modeled, any 
visual cortex-like model would be capable of helping (to some extent) in the analysis of 
any diagnostic image. 

Figure 11 illustrates an example of how the saliency-based bottom-up model operates for a 
mammographic image containing a mass. 
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Fig. 11. Saliency-based bottom-up approach in the detection of masses: (a) Equalized image; 
(b) Saliency map; (c) First attended location by the WTA approach. 

5.3 Perspectives: Through multi-organ and multi-disease CAD 

There are many computational approaches which have addressed the problem of diagnosis 
at reasonable cost-effectiveness relation; however, they commonly are single-purpose 
systems, i.e., their target is the detection of only one disease and one organ. Such schemes 
are referred to as abnormality-dependent approaches. These approaches work well in the case of 
a single-purpose CAD; nonetheless, it is not preferable to apply such approaches to a multi-
disease CAD, given the disproportionately large amount of algorithms that would be 
necessary to detect every single disease (at least one per disease). The future integration of 
CAD systems into multi-disease and multi-organ ones ensures its usage in diagnosing a 
large amount of target diseases with a fully comprehensive and integral architecture. 
Conversely, the diversity of acquisition conditions and the features of different kinds of 
diagnostic images pose additional challenges on well-known CAD processing steps such as 
segmentation, registration and classification, not to mention that the characteristics of 
abnormal regions on these images depend largely on the type of disease. Therefore, it is 
desirable to integrate the diagnostic knowledge of various types of diseases into a universal 
dictionary of features for diagnosis. 

Some research efforts have been made in improving multi-organ and multi-disease CAD. As 
a matter of fact, there is a rising interest on integrating such systems into multi-purpose 
ones. One aspect of this is that cancer, for instance, can spread to other organs in the body. 
Therefore, if a single-disease CAD can detect cancer, it would be of quite limited use for 
predicting metastasis and complications related to such cancer detection; moreover, it also 
would be of little use in order to detect cancer in other organs when such metastasis has 
occurred. 

Conventional single-disease CAD approaches have addressed as many diseases as the 
number of involved computer vision algorithms to detect them. As a matter of fact, the wide 
range of conditions and characteristics of images is the most cumbersome issue that 
abnormality-dependent approaches have to face. Conversely, from the viewpoint of 
computational efficiency, it is not desirable to have as many diagnosis algorithms as the 
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number of target diseases. It has become obvious that a more straightforward strategy will 
be needed to overcome the problem of integrating and understanding all the diagnostic 
knowledge by processing images and extracting candidate regions having structures and/or 
characteristics that are not normal. Furthermore, the integration and processing of such 
wide variety of multi-modal medical images need to be assembled and implemented as part 
of PACS in order to be used in clinical situations.   

For instance, in clinical situations, it is important that the sensitivity of the system to be 
maintained as high as possible, which is achievable using a complex and strongly wired 
computational model (such as cortex-like models), and not with an unnecessarily increased 
number of different and complementary CAD schemes. Furthermore, although a fully-
comprehensive CAD scheme can be seen as a highly robust and integral software, 
processing images from so many modalities is time consuming and therefore, it is likely that 
diagnosis would not be performed in real time; rather than that, image analysis would be 
performed offline. As a first goal towards the development of a multi-organ and multi-
disease CAD, the integration of multi-modal medical images and intelligent assistance in 
diagnosis of multi-dimensional images has been of great interest (Kobatake, 2007). This task 
poses additional challenges from the viewpoint of the computational efficiency and the 
trade-off between the processing efficacy at large datasets and the time taken to reach the 
diagnosis to support the decision of the physician. Moreover, the analysis of structures is 
another important issue to consider for the diagnosis of multiple diseases. For example, the 
thoracic structure contains at least nine different areas of high diagnostic interest (including 
lung area, trachea and pulmonary vessels) related to at least eight pathology-related signs 
(large lesions, pulmonary nodules attached to vessels, isolated pulmonary nodules, among 
others). Therefore, the integrated multi-disease and multi-organ CAD system, in this 
particular case, would extend the standard lung-cancer detection CAD system, irrespective 
of the methods used to detect the disease signs. 

Finally, beyond the quite simple technical predictions of the authors of this book chapter, 
comprehensive CAD systems and the potential of cortex-like mechanisms modeling to 
overcome detection problems and to raise the sensitivity on disease sings detection will 
contribute dramatically to the development and improvement of the current capabilities of 
CAD systems. 
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1. Introduction 
The scientific discipline of microscopy aims to make possible the visualization of objects that 
cannot be observed by the unassisted human vision system, allowing researchers to enhance 
their understanding on the morphology and processes which characterize such objects. All 
microscopy techniques by themselves represent crucial tools for scientists working in 
various fields of research, and furthermore, when combined with image processing and 
computer vision algorithms the level of information and the speed at which it can be 
extracted from microscopy images can be greatly increased. 

Confocal Scanning Laser Microscopy (CSLM) is generally considered to be one of the most 
important microscopy techniques at this time because of the optical sectioning possibilities 
offered. It is widely accepted that the confocal microscope was invented by Marvin Minsky, 
who filed a patent in 1957 (Minsky, 1957). However, at that time such a system was very 
difficult, if not impossible, to implement, due to the unavailability of the required laser 
sources, sensitive photomultipliers or computer image storage possibilities. The first CSLM 
system, functioning by using mechanical object scanning, was developed in Oxford in 1975, 
and a review of this work was later published (Sheppard, 1990). As mentioned above, the 
architecture of a CSLM system provides the possibility to acquire images representing 
optical sections on a sample’s volume. In order to achieve this, in a CSLM system an 
excitation source (laser) emits coherent light which is scanned across the sample surface. In 
reflection mode the light reaching the sample is reflected backwards to the objective, 
towards a detector. In fluorescence mode the same optical path is used, with the difference 
being that the reflected light is discarded and the detector collects only the light rays 
corresponding to the fluorescence emission from the sample. While in conventional 
microscopy, the detector is subjected to light which is reflected by out of focus planes, 
resulting in out-of-focus blur being contained in the final image, the architecture of a CSLM 
system avoids this situation. In order to acquire images corresponding to a certain optical 
section, a confocal aperture (usually known as pinhole) is situated in front of the detector. 
More precisely, the pinhole is placed in a plane conjugate to the intermediate image plane 
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and, thus, to the object plane of the microscope. As a result, only light reflected from the 
focal plane reaches the detector, out-of-focus light being blocked by the pinhole (Fig. 1). The 
dimension of the pinhole is variable and together with the wavelength which is being used 
and the numerical aperture of the objective, determines the thickness of the focal plane 
(Shepard et. al., 1997; Wilson, 2002). 

 
Fig. 1. Principle of Confocal Scanning Laser Microscopy. 

The architecture of a CSLM offers specific advantages such as increased resolution and 
better contrast than conventional microscopy. Meantime, by providing access to images 
corresponding to optical sections it offers as well significant advantages for people working 
in fields such as biology, medicine, material science or microelectronics mainly because the 
CSLM image stacks can be used for 3D reconstructions of the material surfaces (surface 
topological studies) or of the internal structure of semi-transparent specimens (sub-surface 
bulk studies) (Rigaut et al., 1991; Sugawara et al. 2005; Liu et al. 1997; Rodriguez et al, 2003; 
Pironon, 1998). The limits of a CSLM system’s performance are essentially determined by 
the working depth of the high numerical aperture (NA) objective lens which is used in a 
particular investigation session but also by the properties of other components such as the 
laser source, the photomultiplier sensitivity or others. 

One of the causes that lead to problematic scenarios which can occur during the CSLM 
investigations sessions is light intensity attenuation. This problem is mainly caused by light 
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scattering and adsorption, light-aberrations or photo bleaching in the case of fluorescence 
labeled samples. Also, due to the fact that staining thick samples by fluorophores evenly is a 
difficult task, the intensity attenuation with depth is commonly encountered in CSLM 
investigations on such samples. The intensity attenuation can be caused also by chromatic or 
spherical aberrations which may occur due to various properties of the optical elements 
present in a CSLM system. These aberrations can lead to a distortion of focus, which can 
further on lead to decrease in the excitation intensity. The attenuation of light can increase 
with the depth of the imaged focal planes also because of physical phenomena such as 
scattering and absorption, more precisely due to the fact that the light rays are significantly 
scattered and absorbed by the atoms and molecules contained in the medium encountered 
by the light on the path to the targeted focal plane (and on the return path as well). When a 
dense medium that significantly scatters and absorbs light is present above the region of 
focus, the image that corresponds to the focal plane will have a lower contrast than the 
images that are collected from the upper planes. As a consequence, the images within the 
image stacks captured using confocal optical microscopy will have different intensities 
depending on the depth at which they have been collected.  

Besides absorption and scattering, another phenomenon which can lead to light attenuation 
and thus affect the CSLM image acquisition is the reflection of the incident laser beam 
towards a different direction rather than the direction of the objective. When the laser beam 
encounters a plain surface, it will reflect backwards, in the direction of the objective. When 
the laser beam encounters an inclined surface instead of reflecting backwards towards the 
objective, it will reflect in a direction normal to the plane of that surface as illustrated in Fig 
2. The light that reaches the detector in the case of the interaction between the laser beam 
and regions with morphology of this type will have a low intensity. An example on such a 
scenario can be found in (Stanciu et al. 2010), where CSLM images collected on Photonic 
Quantum Ring Laser devices that have a deficient aspect due to this situation are presented.  

 
Fig. 2. Scenario in laser scanning microscopy when in certain regions the laser beam is not 
reflected backwards, towards the objective, due to the sample’s geometry. 

The intensity attenuation and structural blurring in the image stacks can be the cause of 
serious problems in the analysis of CSLM images. Problematic situations occur also when 
trying to use computer vision algorithms designed for tasks such as object & scene 
recognition or object tracking along with image stacks collected by CSLM. These types of 
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techniques can provide awkward results when the contrast parameters, which are directly 
dependant to the light intensity, have very different values throughout the series. For 
example the results that may be achieved by using various thresholding algorithms 
directly depend on the separability and stationarity of the intensity distributions 
corresponding to the two classes in the 1D intensity space. In the case of light intensity 
attenuation, the intensity distributions are non-stationary and non-stationarity reduces 
the effective separability between the classes, which is likely to lead to segmentation 
errors (Semechko et al, 2011). In (Sun et al., 2004) is shown that intensity compensation 
can also enhance the visualization of CSLM data when 3D reconstruction techniques are 
employed for volume rendering. 

In this chapter we overview several recently reported digital image processing techniques 
that can be used to compensate the effects of light attenuation in CSLM imaging. The 
techniques that we present in this chapter can be regarded as histogram modeling methods. 
In order compensate light attenuation, Capek et al. (2006) considered the specification for 
each frame in the stack of a standard histogram. The standard histogram was computed 
according to a normalization procedure proposed by Nyul et al. (2000) which consists on 
matching landmarks in histograms. Stanciu et al. (2010), propose in the same purpose a 
method based on exact histogram specification. In their method to each of the images in the 
CSLM stack is exactly specified the histogram of a reference frame. The reference frame is 
elected by using an estimator which takes into account aspects such as brightness, contrast 
and sharpness. Semechko et al (2011), propose an intensity attenuation correction method 
which combines the ones of Capek et al. (2006) and Stanciu et al. (2010). In this method, the 
authors use as reference the standard histogram proposed in Capek (2006), specify it in its 
exact shape to the other images of the stack by using the algorithm of Coltuc (2006) and 
finally nonlinear diffusion filtering is used aiming to suppress noise and homogenize locally 
over-enhanced image regions. Each of these methods will be presented in detail in the 
following sections.  

2. Intensity attenuation based on histogram normalization & histogram 
warping 
In Capek et al., (2006) a method for the compensation of intensity attenuation based on the 
warping of the histograms of the individual images in the CSLM stack to a standard 
histogram is introduced. The standard histogram is constructed such that warping the 
histograms of the individual images onto it will both preserve the high contrast of the 
optimally captured sections while in the same time will improve the contrast and the 
brightness of the low quality images in the stack. The high quality images are most likely to 
correspond to the topmost layers in the specimen, while the low quality images are most 
likely to correspond to the deep ones. The computation of the standard histogram is 
inspired by a procedure for histogram normalization proposed by Nyul et al. (2000) which 
consists in directly matching landmarks in histograms. Unlike the original approach by 
Nyul et al.(2000), the method proposed by Capek et al. (2006) searches for the longest 
distance between two adjacent landmarks in one histogram. The considered landmarks 
correspond to the minimum intensity, maximum intensity and the n-th percentiles of the 
image histogram, for n= {10, 20,…, 90}. This approach is chosen by the authors as maximal 
distances between landmarks are likely to preserve maximum image contrast. These 
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maximal distances (M0, M1, M2, . . . , M10) are searched in the histograms of all images in the 
stack and once found are counted up and stretched to cover a grayscale of 256 levels. The 
breaks between the rescaled maximal distances (L0, L1, L2, . . . , L10) represent the new 
landmarks of the standard scale (Fig. 3). The landmarks of the standard scale are matched to 
the landmarks of individual image histograms in order to compute the new intensities of the 
image pixels and further on the image intensities between the landmarks (L0, L1, L2, . . . , L10) 
are piece-wise linearly interpolated, as illustrated in Fig. 4. In other words, the normalized 
histogram is determined by taking for each pair of landmarks the maximal distance and by 
stretching these distances to cover the graylevel range. Finally, the normalized histogram is 
specified to each image in the stack by histogram warping. Histogram warping, originally 
proposed by Cox (1995), is closely related to histogram specification. Instead of 
transforming a given image to match a given histogram, for histogram warping one should 
transform two given images in order to achieve the same somehow “intermediate” 
histogram. In fact, the histogram warping problem consists in deriving the intermediate 
histogram which can be exactly specified to both images. The complete details of the 
algorithm presented above can be found in the original publication (Capek et. al, 2006). 

 
Fig. 3. Mapping of the maximal distances to a standard 256 levels grayscale. 

 
Fig. 4. Piece-wise linear interpolation of new intensity values based on landmark matching. 
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In Fig. 5 we present a subset of a a stack of images collected by CSLM on a sol–gel matrice 
sample doped with a photosensitizer, in original aspect and in the aspect resulted after 
processing by using the algorithm described in this section. The number in the top left 
corner depicts the numerical order of optical sections in the full series. The distance between 
sections in the subset is of 1 μm. The image series were collected by using a Leica TCS SP 
CLSM system, working in reflection workmode (HeNe 633nm). A HC PL FLUOTAR 20.0x 
objective was used, having a numerical aperture of 0.50. 

    

    
Fig. 5. Subset from CSLM stack collected on sol-gel matrice sample a) in original aspect;  
b) in an aspect resulted after histogram warping to a normalized histogram 

3. Intensity attenuation based on reference frame detection & exact 
histogram specification 
The drawback of the method presented above is a certain over-enhancement which may 
occur, as in the case of the basic histogram equalization method presented in (Stanciu and 
Friedman, 2009). If the contrast is increased too match, false contours may appear along 
with an enhancement of the noise. In order to eliminate these drawbacks, Stanciu et al. 
(2010) have introduced a different technique based on histogram modeling aiming to 
compensate the light attenuation in the case of CSLM images. In the proposed method 
instead of a uniform or a normalized histogram, the histogram of the best visual quality 
image of the stack is specified to the other images in the stack. This image of best visual 
quality was entitled the ‘reference frame’. The reference frame was elected from among the 
images that make up the stack based on a procedure that offers automated selection. In 
order to specify the histogram of the reference frame to the others, the exact histogram 
specification algorithm introduced by Coltuc et al., (2006) was used instead of the classical 
histogram specification algorithms. It should be stressed that the approach of Coltuc et al., 
(2006) provides exact results, while the classical histogram specification as well as the 
histogram warping method proposed by Cox et al. (1995) provide only approximate results.  
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As mentioned above, the proposed method relies on specifying the histogram that 
corresponds to the image of the best visual quality in the series onto the rest of the images in 
the stack. The reference frame can be selected by visual inspection, with a human operator 
examining the entire image stack and choosing the best quality frame. Obviously, such an 
approach is both subjective and time consuming. Therefore, the authors have proposed a 
procedure that offers the automated detection of the reference frame. In order to automate 
the reference frame detection, a quality assessment metric is defined, and the reference 
frame is selected as the one with the best score with respect to the considered metric. The 
metric that the authors have proposed is based on the evaluation of three attributes which 
are generally considered as responsible for the quality of a graylevel images. These are: 
brightness, contrast and contour sharpness. 

A good measure of image brightness is the average graylevel of the image. Considering the 
discrete image f:[0,M-1] x [0,N-1]->[0,L-1] and H={h(0), h(1),… h(L-1)} its histogram. The 
average graylevel, μf, can be defined as follows: 

  (1) 

As the standard deviation measures how widely spread the values in a data set are, it can be 
regarded as a measure of contrast. If many data points are close to the mean, then the 
standard deviation is small. By the contrary, if many data points are far from the mean, then 
the standard deviation is large. Finally, if all data values are equal, then the standard 
deviation is zero. Obviously the variance is a measure of the contrast, too. The standard 
deviation has the advantage that, unlike variance, it is expressed in the same units as the 
data. An unbiased estimate of the standard deviation can be defined as follows:  

  (2) 

The third factor that we have taken into consideration when designing the reference image 
estimator is related to the sharpness of the edges contained in the image. An image is 
generally considered to be of good quality if the objects contained in it can be discerned very 
clearly. Edges characterize boundaries and represent therefore a problem of fundamental 
importance in image processing. Edges can be regarded as discontinuities between image 
regions of rather uniform graylevel or color. Since detecting edges means detecting 
discontinuities, one can use derivative operators as the gradient or Laplacian. Derivative 
operators are commonly used as well for focus assessment in microscopy imaging (Osibote 
et al., 2010) and can be employed in image fusion methods (Stanciu, 2011). We have 
employed the Sobel edge detector (Gonzales and Woods, 2002) in the design of the 
automatic reference frame estimator. The Sobel operator uses a pair of 3x3 convolution 
masks Sx & Sy, with Sx estimating the gradient in the x-direction (columns), while Sy 
estimating the gradient in the y-direction (rows): 
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 ,  (3) 

With gx & gy being the gradients in x and y direction computed by convolution with Sx, and 
Sy, respectively, the magnitude of the gradient can be defined as:  

  (4) 

As an estimate on the sharpness of contours (edges) contained in image f, the mean intensity 
of its gradient image g, namely μg is used.  

The three measures discussed above, μf, σf, and μg are normalized in order to take values in 
[0,1]. Thus, μf and μg are divided by L-1, the graylevel range, and σf is divided by (L-1)2/12, 
i.e., by the standard deviation of a uniform random variable defined on [0,L-1]. Finally, the 
quality measure for automated detection of the reference frame, qf is computed as the simple 
product: 

  (5) 

After computing qf for all the images in the stack, the image that outputs the highest 
response to qf is selected as reference frame. Further on, its histogram is specified to the 
other images by using the exact histogram specification algorithm of Coltuc et al. (2006). 
This algorithm is presented in the next part.  

Considering H={h(0), h(1),… h(L-1)} the histogram to be specified, the exact histogram 
specification proceeds as follows: 

1. The image pixels are ordered in increasing order by using a special strict ordering 
relation;  

2. The ordered string is split from left to right in groups of h(j) pixels; 
3. For all the pixels in a group j the jth gray level is assigned, where j=0,…,L-1.  

The definition of the strict order relation is the essential stage of histogram specification. 
Since image informational content should be preserved, the induced ordering must be 
consistent with the normal ordering. This means that, if a pixel graylevel is greater than 
another one with the normal ordering on integers set, it should be greater with the new 
ordering as well. The new ordering should refine the normal ordering on the set of integers, 
i.e., equal pixels according to the normal order will be differentiated by the induced 
ordering. Meantime, in order to avoid noise, the induced ordering should correspond, in a 
certain way, to the human perception of brightness. 

Coltuc et al. (2006) have transferred the problem of ordering on a scalar image to a K-
dimensional space by associating a vector to each pixel. The image pixels are ordered by 
lexicographically ordering the vectors and inducing the same ordering among them. The 
approach considers a bank of K filters, Φ={φ1, φ2,…, φK} whose supports Wi, i=1,…,K, are 
symmetric and obey an inclusion relation: . The support of φ1, W1, is one 
pixel size. The size of each Wi is kept to a minimum. Each filter extracts some local 
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information about graylevels around the current pixel f(x,y). Furthermore, to each pixel f(x,y) 
is associated the K-tuple Φ(f)(x,y)={φ1(f)(x,y), φ2(f)(x,y),…, φK(f)(x,y)}. Finally, the new 
ordering between image pixels is defined by ordering in lexicographic order on the 
corresponding K-tuple set. A higher value for K is equivalent to a finer ordering. If K is large 
enough, for natural images a strict ordering is induced. Furthermore, it clearly appears that 
the inclusion among the filter supports orders the amount of information extracted by each 
filter. Thus, when i is small, the information extracted is strongly connected to the current 
pixel. As index i increases, support Wi increases as well and the weight of the current pixel 
decreases in the filter response. This is a reason for ranking pixels using the lexicographic 
order starting with the first index. In case of using moving average filters, it appears that an 
almost strict ordering is obtained for a rather small value of K, i.e., K=6. Other linear or 
nonlinear filters can be used as well (Gaussian filters, median, etc.). Wan and Shi (2007) 
applied the same idea of ordering, but on the coefficients of the non-decimated wavelet 
decomposition of the image. A discussion on exact histogram specification can be found also 
in Bevilacqua and Azzari (2007) while a solution for exact global histogram specification 
optimized for structural similarity is proposed by Avanki (2009).  

In Fig. 6 we present a subset from the stack of images collected by CSLM on a sol–gel 
matrice sample doped with a photosensitizer (presented in Fig. 5, as well), in original aspect 
and in the aspect resulted after processing by using the algorithm described in this section. 

    

    
Fig. 6. Subset from CSLM stack collected on sol-gel matrice sample a) in original aspect;  
b) in an aspect resulted after exact specification of the reference frame’s histogram 

In Fig. 7, an example of how the histogram of an image is modified upon exact histogram 
specification and histogram warping is presented. The initial histograms of the 2nd, 9th, 14th, 
20th images in the stack; the specified histogram, which is actually the histogram of the 9th 
image in the stack; and the modality in which histogram warping influences the histogram 
shape in the case of a particular example (i.e., frame 20) are illustrated. Both the warping 
model histogram and the histogram resulted after histogram warping are presented. The 
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histogram resulted after exact histogram specification, by using the algorithm of Coltuc et al. 
(2006), is exactly the same histogram as the specified one, in our case the histogram of the 
9th image in the stack. It can be observed very clearly the difference between the results 
obtained by the three different techniques. The complete details of the method presented in 
this section can be found in the original publication (Stanciu et al, 2010). 

  

  
Fig. 7. a) Initial histograms of the 2nd,9th,14th,20th frames corresponding to the sol gel matrice 
sample; b) specified histogram; c) histogram warping model; d) resulted histogram after 
warping.  

4. Intensity attenuation by exact specification of a normalized histogram and 
nonlinear diffusion filtering  
The third method that we overview is the one of Semechko et al, (2011), who propose a 
method that performs intensity attenuation correction that combines aspects from the 
methods of Capek et. al. (2006) and Stanciu et. al. (2010) with nonlinear diffusion filtering. 
The authors choose to use nonlinear diffusion filtering aiming to suppress noise and  
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homogenize locally over-enhanced image regions. The method overviewed in this section 
consists in three main steps: calculation of the reference histogram, the exact specification of 
the reference histogram to all the images taking part of the CLSM stack and diffusion 
filtering. 

The reference histogram is computed by using the method proposed by Capek et al. (2006), 
taking into account the intensity information of the entire CLSM stack. As detailed in section 
2, the first step in computing the normalized histogram involves remapping of intensities of 
individual CLSM frames so that they cover the same intensity range. The authors regard the 
resulted reference histogram as a global representation of intensity distribution of the entire 
volumetric image, without being targeted towards any specific cross section. As the authors 
experiment on biofilm samples, they consider this approach more appropriate than the one 
presented in Stanciu et al. (2010), because the proportions of biofilm and fluid may be 
different in the top and bottom CLSM cross sections that they experiment with. This 
situation can result in different aspect of the images in the stack depending on the fluid ratio 
corresponding to a particular optical section. 

In the next step, the reference histogram is specified in its exact form to the images that 
make up the CLSM stack. The algorithm used for the exact histogram specification is the one 
used also by Stanciu et al. (2010), presented in section 3 of this chapter. The authors justify 
their choice as regardless of the difference in intensity representation of the materials in 
lower and upper CLSM cross sections, the pixels that are likely to represent the biofilm will 
be mapped to higher intensities and pixels corresponding to fluid will be mapped to lower 
intensities, thus preserving separability of intensity-based representation and enforcing 
stationarity (Semechko et al, 2011).  

In the last step of this method, a diffusion filter is applied to the processed CLSM images in 
order to suppress any local overenhancement that may occur after the exact specification of 
the reference frame. In the same time, the diffusion filter can attenuate the noise the CSLM 
images may contain. The authors justify their choice to use diffusion filtering after the 
intensity attenuation stage and not before, as in the second case it will cause unequal noise 
filtering throughout the CLSM stack and will potentially blur structural boundaries in the 
cross sections most affected by intensity attenuation. With the diffusion being modulated by 
the magnitude of the intensity gradient (which is related to contrast and hence, to intensity 
attenuation) between the neighboring voxels, the amount of diffusion will be greater in the 
bottom cross sections than in the upper cross sections. The authors claim that the gradient 
magnitude at the biofilm and fluid interface is also likely to be smaller in comparison to the 
upper cross sections, due to the reduced contrast in the lower cross sections. This approach 
is meant to avoid changes of structural appearance, which could occur if the gradient 
magnitude is smaller than the contrast threshold parameter in the diffusion equation used in 
the nonlinear diffusion filter.  

Considering Ω as the image domain and I(x,0): Ω → the original image. The filtered image, 
I(x,t), was obtained as a transient solution of the diffusion equation :  

 ߲௧ܫ =  (6)   (ܫ∇(ܫ∇)ܦ)ݒ݅݀

In case of inhomogeneous isotropic diffusion, (ܫ∇)ܦ is a spatially dependent scalar quantity 
commonly referred to as diffusivity. The authors of this method chose to compute 
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diffusivity using Tukey’s biweight ( Black et al, 1998). The complete details of the algorithm 
presented in this section can be found in the original publication (Semechko et al, 2011) 

5. Conclusions 
In this chapter three recent methods for the compensation of intensity attenuation in CSLM 
imaging have been overviewed. The method based on histogram warping requires no 
interaction with the user and can be performed automatically, but the resulted image stack 
can be subject to contrast over enhancement. The method based on histogram specification 
that we have previously reported, can be performed either automatically, providing an 
algorithm that has the ability to automatically select the reference image is employed, or 
manually, assuming a human operator can nominate the image of best quality in the stack. 
A very important feature offered by the exact histogram specification and equalization is 
that all the images in the processed sequence have normalized histograms. This can lead to 
very effective results in the case of segmentation tasks, as the algorithms for thresholding 
and segmentation are based on mixtures of Gaussian probability density functions and 
optimal coding schemes are expected to be obtained if the image within the processed stack 
will have similar histograms. In the case when all images in the stack are considerably 
affected by the light attenuation, the methods based on histogram warping will provide 
better results than the method relying on histogram specification. However, these two 
methods may provide a result which can be radically different in aspect than the initial 
aspect of the images due to the possible over-enhancement. In the case of the method based 
on the exact specification of the reference frame’s histogram, the histogram of one of the 
images in the stack (noted throughout the chapter as the reference image) is specified onto 
the other images in order to preserve an aspect close to original one. The reference image 
can be determined automatically taking into consideration the brightness, the standard 
deviation and the sharpness of the contours (edges) contained in the image. The proposed 
algorithm can provide the premises for the fast processing of the image sequence. However, 
when choosing to use this method one must limit to image stacks which contain images that 
represent optical sections of the same object; otherwise the contrast of the resulted images 
will be influenced not only by the light attenuation but also by the morphological structure 
of the objects contained in the image. In this case it would be useless specifying the 
histogram of an image that represents one object of a certain shape onto another image 
depicting an object with a completely different shape. The results in that case would be quite 
unpredictable. The proposed method based on the exact specification of the reference 
frame’s histogram improves the contrast of the image in the case when images of good 
contrast are present in the stack, and in the same time preserves the initial aspect of the 
images. When the image content is not uniform throughout the stack the methods based on 
histogram warping may be regarded as better alternatives.  

The techniques presented in this chapter do not restorate any high frequency degradation 
and, in the same time, cannot compensate the drawbacks that are related to the pinhole size 
that was used during image acquisition. These methods are simply meant to enhance the 
visual appearance of collected images that have a deficient aspect due to intensity 
attenuation, and to assist in segmentation tasks. Besides enhancement, histogram 
specification yields image normalization in respect to the average gray level, energy, 
entropy, etc. 
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