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Preface 
 

Genetic programming (GP) is a branch of Evolutionary Computing that aims the 
automatic discovery of programs to solve a given problem. Since its appearance, in the 
earliest nineties, GP has become one of the most promising paradigms for solving 
problems in the artificial intelligence field, producing a number of human-competitive 
results and even patentable new inventions. And, as other areas in Computer Science, 
GP continues evolving quickly, with new ideas, techniques and applications being 
constantly proposed. 

The purpose of this book is to show recent advances in the field of GP, both the 
development of new theoretical approaches and the emergence of applications that 
have successfully solved different real world problems. It consists of twelve openly 
solicited chapters, written by international researchers and leading experts in the field 
of GP.  

The book is organized in two sections. The first section (chapters 1 to 5) introduces a 
new theoretical framework (the use of quantitative genetics and phenotypic traits – 
chapter 1) to analyse the behaviour of GP algorithms. Furthermore, the section contains 
three new GP proposals: the first one is based on the use of continuous values for the 
representation of programs (chapter 2), the second is based on the use of estimation of 
distribution algorithms (chapter 3), and the third hybridizes the use of GP with 
statistical models in order to obtain and formally validate linear regression models 
(chapter 4). The section ends with a nice introduction about the implementation of GP 
algorithms on graphics processing units (chapter 5). 

The second section of the book (chapters 6 to 12) shows several successful examples of 
the application of GP to several complex real-world problems. First of these 
applications is the use of GP in the automatic design of wireless antennas (chapter 6). 
The two following chapters show two interesting examples of industrial applications: 
the forecasting of the volatility of materials (chapter 7) and the prediction of fabric 
porosity (chapter 8). In both chapters GP models outperformed the results yield by the 
state-of-the art methods. The next three chapters are related to the application of GP to 
modelling water flows, being the first of them a gentle introduction to the topic 
(chapter 9) and the following two remarkable case studies (chapters 10 and 11). The last 
chapter of the book (chapter 12) shows the application of GP to an interesting time 
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series modelling problem: the estimation of suspended sediment loads in the Mississippi 
river. 

The volume is primarily aimed at postgraduates, researchers and academics. 
Nevertheless, it is hoped that it may be useful to undergraduates who wish to learn 
about the leading techniques in GP. 

 
Sebastián Ventura 

Department of Computers Science and Numerical Analysis,  
University of Cordoba,  

Spain 
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Chapter 0

Using Quantitative Genetics and Phenotypic
Traits in Genetic Programming

Uday Kamath, Jeffrey K. Bassett and Kenneth A. De Jong

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50143

1. Introduction
When evolving executable objects, the primary focus is on the behavioral repertoire that
objects exhibit. For an evolutionary algorithm (EA) approach to be effective, a fitness function
must be devised that provides differential feedback across evolving objects and provides some
sort of fitness gradient to guide an EA in useful directions. It is fairly well understood that
needle-in-a-haystack fitness landscapes should be avoided (e.g., was the tasked accomplished
or not), but much less well understood as to the alternatives.

One approach takes its cue from animal trainers who achieve complex behaviors via some
sort of “shaping” methodology in which simpler behaviors are learned first, and then more
complex behaviors are built up from these behavior “building blocks”. Similar ideas and
approaches show up in the educational literature in the form of “scaffolding” techniques.
The main concern with such an approach in EC in general and GP in particular is the heavy
dependence on a trainer within the evolutionary loop.

As a consequence most EA/GP approaches attempt to capture this kind of information in
a single fitness function with the hope of providing the necessary bias to achieve the desired
behavior without any explicit intervention along the way. One attempt to achieve this involves
identifying important quantifiable behavior traits and including them in the EA/GP fitness
function. If one then proceeds with a standard “blackbox” optimization approach in which
behavioral fitness feedback is just a single scalar, there are in general a large number of
genotypes (executable objects) that can produce identical fitness values and small changes
in executable structures can lead to large changes in behavioral fitness. In general, what is
needed is a notion of behavioral inheritance.

We believe that there are existing tools and techniques that have been developed in the field
of quantitative genetics that can be used to get at this notion of behavioral inheritability. In
this chapter we first give a basic tutorial on the quantitative genetics approach and metrics
required to analyze evolutionary dynamics, as the first step in understanding how this can
be used for GP analysis. We then discuss some higher level issues for obtaining useful

©2012 Kamath et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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behavioral phenotypic traits to be used by the quantitative genetics tools. We give some
background of other tools used like the diversity measurements and bloat metrics to analyze
and correlate the behavior of a GP problem. Three GP benchmark problems are explained
in detail exemplifying how to design the phenotypic traits, the quantitative genetics analyses
when using these traits in various configurations and evolutionary behaviors deduced from
these analyses.

2. Related work

Prior to the introduction of quantitative genetics to the EC community, research along similar
lines was already being conducted. Most notable among these was the discovery that
parent-offspring fitness correlation is a good predictor of an algorithm’s ability to converge
on highly fit solutions [18].

Mühlenbein and Altenberg began to introduce elements of biology theory to EC at roughly the
same time. Mühlenbein’s work has focused mainly on adapting the equation for the response
to selection (also known as the breeder’s equation) for use with evolutionary algorithms [19]
Initial work involved the development several improved EAs and reproductive operators [21,
23, 24], and progressed to the development of Estimation of Distribution Algorithms (EDAs)
[20, 22].

Altenberg’s work used Price’s Theorem [27] as a foundation for his EC theory. One of his
goals was to measure the ability of certain EA reproductive operators to produce high quality
individuals, and identify what qualities were important in achieving this [1]. He referred to
this as evolvability, and the equations he developed looked similar in some regards to the
response to selection equation. In particular he provided a theoretics foundation for why the
relationship between parent and offspring fitness (i.e. heritability of fitness) was important.

Another aspect of Altenberg’s work involved going beyond a simple aggregation of the
relationships between parent and offspring fitness. He focused on the idea that the upper-tail
of the distribution was a key element. After all, creating a few offspring that are more fit than
their parents can be much more important than creating all offspring with the same fitness as
their parents. This is why his equation really became a measure of variance instead of mean,
which is what Price’s Theorem typically measures. As an indication that his theories were in
some sense fundamental to how EAs work, he was able to use them to re-derive the schema
theorem [2].

Langdon [14] developed tools based on quantitative genetics for analyzing EA performance.
He used both Price’s Theorem and Fisher’s Fundamental Theorem [26] to model GP gene
frequencies, and how they change in the population over time.

Work by Potter et al. [25] also used Price’s Theorem as a basis for EA analysis. They also
recognized the importance of variance, and developed some approaches to visualizing the
distributions during the evolutionary process [5, 6].

The work of Prügel-Bennett & Shapiro [29] [28] is based on statistical mechanics, but it has
some important similarities to the methods used in quantitative genetics. Here, populations
are also modeled as probability distributions, but the approach taken is more predictive
than diagnostic. This means that detailed information about the fitness landscape and
reproductive operators is needed in order to analyze an EA. Still, this approach has some

4 Genetic Programming – New Approaches and Successful Applications
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interesting capabilities. For example, up to six higher-order cumulants are used to describe
the distributions, allowing it to move beyond assumptions of normality, and thus providing
much more accurate descriptions of the actual distributions.

Radcliffe [30] developed a theoretical framework that, while not directly related to
quantitative genetics, has certain similarities. His formae theory is a more general extension
of the schema theorem, and can be applicable at a phenotypic level.

3. Methodology

3.1. Quantitative genetics basics

Quantitative Genetics theory [9, 31]is concerned with tracking quantitative phenotypic traits
within an evolving population in order to analyze the evolutionary process. One group that
commonly uses the approach are animal breeders for the purpose of estimating what would
be involved in accentuating certain traits (such as size, milk production or pelt color) within
their populations.

A quantitative trait is essentially any aspect of an individual that can be measured. Since much
of the theory was developed before the structure of DNA was known, traits have tended to
measure phenotypic qualities like the ones listed in the paragraph above. Traits can measure
real values, integer or boolean (threshold) properties, although real valued properties are
generally preferred [9].

This approach offers a potential advantage to EC practitioners. Most EC theory is defined
in terms of the underlying representation. As a consequence, it becomes difficult to adapt
these theories to new types of problems and representations when they are developed. This
generally means that the practitioner must modify or re-derive the theoretical equations before
they can apply these theories to a new EA that has been customized for a new problem. For
the few theories where this is not the case, a detailed understanding of the problem landscape
is typically needed instead. Again this presents problems for the practitioner. After all, if they
knew this much about their problem, they would not need an EA to solve it in the first place.
Quantitative genetics is one of the few theories that does not suffer from these problems.

Populations are modeled as probability distributions of traits by using simple statistical
measures like mean, variance and covariance. A set of equations then describe how the
distributions change from one generation to the next as a result of certain evolutionary forces
like selection and heritability.

An extended version of the theory called multivariate quantitative genetics [13] aims to
model the behaviors and interactions of multiple traits within the population simultaneously.
This approach represents multiple traits as a vector. As a result, means are also represented
as a vector, and variance calculations produce covariance matrices, as do cross-covariance
calculations. In other words, a vector and a covariance matrix are needed to describe a joint
probability distribution. Other than this change, the equations remain largely the same.

It is difficult to do any long term prediction with this theory [11]. Instead, its value lies in its
ability to perform analysis after the fact [11]. In other words, for our purposes the theory is
most useful for understanding the forces at work inside an existing algorithm during or after
it has been run, rather than predicting how an proposed algorithm might work.

5Using Quantitative Genetics and Phenotypic Traits in Genetic Programming
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Figure 1. A sample generation showing offspring and parents [3]

In previous work [3], we adapted multivariate quantitative genetics for use with evolutionary
algorithms. The goal of that work was to demonstrate how these theories can be used to
aid in customizing EA operators for new and unusual problems. Here we will review some
important aspects of that model.

To describe the equations, we will refer to Figure 1, which shows a directed graph illustrating
two successive generations during an EA run. A subset of parents (left) are selected and
produce offspring, either through crossover, mutation or cloning. Directed edges are draw
from each selected parent to all the offspring (right) that it produces. Because the quantitative
genetics models are built on the idea of a generational evolutionary process, they are most
easily applied to to generational EAs like GAs and GP.

It is important that each directed edge represent the same amount of “influence” that a parent
has on its offspring. In the figure, each edge represents an influence of 1/2. That is why two
edges are drawn between parent and offspring in instances where only cloning or mutation
are performed. A vector of quantitative traits φi is associated with each parent i and another
vector of traits φ′

j is associated with each offspring j. The two functions λ(k) and λ′(k) are
defined such that they return the index of corresponding parent and offspring, for a given
edge k.

We also use the abbreviations φ and φ′ to describe all the traits in the different populations.
The symbol φ describes all the parent traits, while φ′ describes all offspring traits. Similarly
φλ refers to all traits of the selected parents, and φ′

λ′ again refers to all the traits of the offspring,
although in the case of figure 1 there are two copies of each child.

Several covariance matrices are defined to describe the populations distributions and the
forces that cause them to change. P and O are covariance matrices that describe the
distributions of the selected parent and offspring populations respectively. D describes the
amount of trait variation that the operators are adding to the offspring, and G′ can be thought
of as quantifying the amount of variation from P that is retained in O.

6 Genetic Programming – New Approaches and Successful Applications
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P, O, D are all covariance matrices of the traits defined as P = Var(φλ), O = Var(φ�), and
D = Var(φ�

λ� − φλ). G� is a cross-covariance matrix defined as G� = Cov(φ�
λ� , φλ).

Given these matrices, we can now describe how the population distributions change from one
generation to the next using the following equation:

O = 2G� + D − P, (1)

which can be rewritten as
O = P[2G�P−1 + DP−1 − I], (2)

where I is the identity matrix. In this case, we can view everything within the brackets
as defining a transformation matrix that describes how the trait distribution of the selected
parents (P) is transformed by the operators into the distribution of the offspring population
traits (O).

The factor G�P−1 is a regression coefficient matrix, and it is very similar to the quantitative
genetics notion of narrow-sense heritability (commonly just called heritability). It describes
the average similarity between an offspring and one of it’s parents. The term DP−1, which we
refer to as perturbation, describes the amount of new phenotypic variation that the operators
are introducing into the population relative to what already exists. Perturbation can be
thought of as measuring an operator’s capacity for exploration, while heritability provides
an indication of it’s ability to exploit existing information in the population. If heritability is
low, that indicates that there is an unexpected bias in the search.

Another relationship that can be drawn from equation 2 is OP−1. This does not have
a corresponding concept in biology, although it is similar in some ways to broad-sense
heritability and repeatability. This term describes the similarity of the parent and offspring
populations, and so we refer to it as population heritability. This is another measure of
exploitation, in addition to narrow-sense heritability. We think it is the better choice because
it is measuring the larger scale behavior of the EA.

3.1.1. Scalar metric for matrices and vector operations

Biologists consider the multivariate notion of heritability as the degree of similarity between
the two probability distributions that P and G describe. These comparisons are often
performed using statistical techniques like Common Principle Component Analysis [10, 12].

For simplicity and ease of understanding, it would be ideal to find a metric that expresses
terms like heritability and perturbation as a single scalar value. We have chosen to use the
following metric,

m(G�, P) = tr(G�)/tr(P) (3)

where m is the metric function, and G� and P are M by M covariance matrices as described in
the previous section.

The result of equation 3 is, of course, our scalar version of heritability from a single parent.
Similarly, tr(D)/tr(P) would measure perturbation, and tr(O)/tr(P) gives us a measure of
the overall similarity between the selected parent population and the resulting offspring
population.

We chose to use trace because they have an intuitive geometric interpretation. The trace
functions is equal to the sum of the diagonal elements in the matrix. It’s also equal to the

7Using Quantitative Genetics and Phenotypic Traits in Genetic Programming
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sum of the eigenvalues of the matrix. In geometric representation it shows the sum total of
all the variation in the distribution. Determinants are normally used as single measure for
matrix operation. It was observed that determinants couldn’t be computed for representation
like GP, due to generation of individuals that can lead to non-positive semidefinite matrices.

3.2. Phenotypic trait design

Understanding the problem phenotypic landscape along with the search characteristics of the
individual (GP program) will be an important step in designing the quantitative phenotypic
traits. The key element is that the trait measure defines some search aspect of the individual
in the phenotypic landscape. The design of phenotypic trait measures is similar to designing
a fitness function for EA - they are problem-specific, and it is more an art and an iterative
process to come up with one or more functions that capture the behavior. We have given
some broad high level ideas below that can help the designer in more concrete way in coming
up with the phenotypic traits for a given problem. Broadly speaking, we can devise the traits
thus:

1. At the application domain specific level to see the search behavior measured as
quantitative traits.

2. By decomposing an already aggregated fitness function into individual quantitative traits.

1. Application domain specific traits:
Since most GP programs are used in agent based environments, we will generalize
application domain traits to be more for agent based individuals.
• Agent Based Individuals

Agent based individuals, can be considered to have some sensors and to execute series
of tasks in an environment. One may use several interesting properties as traits such as
recognizing the sensors available for the agents , constraints in motion, number of tasks
allowed, traps in the environment and way to avoid the traps etc can be interesting set
of properties that user might want to use as traits. These properties will vary amongst
the individuals and using them as phenotypic traits can give interesting multivariate
analyses like the correlation between properties, correlation of these properties with
fitness, etc. We can come up with more traits based on exact nature of the agents and
tasks they are performing. Some of these may be orthogonal while some may have an
overlap with each other. Having an overlap should be avoided as correlated traits can
lead to problems likenon-positive semi-definite matrices.
• Task Oriented Individuals

In many GP applications, the agent is meant to be working on various sub-tasks.
These tasks can be considered decomposable into smaller units. Normally the fitness
measures only the end goal or just the higher level tasks performed, sometimes
for example the amount of food eaten by the ant agent as the fitness in the ant
trail problem. Various behaviors that lead to (or do not lead to) the tasks when
quantified, might give good phenotypic behavior of the individuals. Some of the
tasks or units can be very important and can be weighted higher as compared to
others.

8 Genetic Programming – New Approaches and Successful Applications
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• Competitive and Co-Competitive Individuals
Many agent-based systems are competitive in nature, like the predator and prey
class of the problems. Effective traits that determine metrics leading to success
and failure of competing individuals may be more useful than agent-based traits.
For instance, in a predator-prey based agents the fitness is basically how well you
are doing against the other. If lower level details like “closeness”ï£¡ to the others,
number of moves till attacked, number of changes in directions while moving, etc.
can provide interesting metrics that can be used as traits in these domains.

• Cooperative Individuals
Another subclass of the agent based problems is the cooperative based agents.
These individuals have to be in some kind of team to accomplish the goal. The
individual behaviors can be specific decomposable ones or can be evolved during
the execution. The performance evaluation of most fitness functions in these
domains is measured by weighting individual and team performances. Various
cooperative metrics can be measured again at different levels like attempts of
cooperative moves, success and failures in the moves, ratio of total attempts to the
success or failures, etc.

• Design based Individuals
Many GP applications are used mostly in design sub class of problems like circuit
design, layout and network design and plan generation problems. Each of these use
very high level measures combined in weights like the cost saved, components used,
power distribution, etc. Again, using individualized measures and adding as many
metrics that are circuit or layout specifics may give more clarity to the search behavior.

• Regression based Individuals
Many GP applications are used in curve fitting- finding equations hidden in the data as
a category of problems. Various mathematical values ranging from values at different
interesting points on the landscape, distances from each point projected to that on
the curve, relative errors, etc can form good traits for such individuals to show the
phenotypic search behaviors.

2. Aggregated Fitness Functions
In general there is a certain class of problems where you can use a general notion
of decomposing the aggregated fitness function to individualized metrics as traits. In
bioinformatics, GP is used in wide range of protein conformation, motif search, feature
generations, etc. Most fitness functions are complex aggregated values combining many
search metrics. For example, in sequence /structure classification programs many aspects
of classification into one value, like true positives, false positives, true negatives, weighted
distance and angles etc are combined to give a single score to the individuals. Instead of
having such a single aggregated function value, we can use each of them as phenotypic
traits.

3.2.1. Issues

After discussing some design principles and methodology, issues related to choice of the traits
are discussed in this section.

• Coverage/Completeness
Ideally we would like to develop as complete a set of traits as possible. By “complete”

9Using Quantitative Genetics and Phenotypic Traits in Genetic Programming
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we mean that we would like to have a set of traits that describe the whole phenotypic
search space as well as possible. Another way of viewing this is to ask "Do the traits that
we have uniquely define an individual?" As we mentioned earlier, previous applications
of quantitative genetics to EA have used fitness alone, this provided a very limited and
incomplete view of the nature of the fitness landscape, especially individuals that are
very different can have the same fitness. Similarly an incomplete set of traits can fail to
illuminate certain important aspects of a problem.
Domains involving executable objects (like GP), and most machine learning in general, are
particularly susceptible to this problem. This is because generalization is a critical part of
the learning process. We expect our systems to be able to handle new situations that they
never faced during training. One way of addressing this issue is to create traits that are, in
a sense, general too. Traits that measure a set of behaviors that all fall into a broad category
will be able to achieve the best coverage of the search space.
It is difficult to offer advice as to how one can recognize when they face this situation.
Asking the question about uniqueness seems to offer the best general approach. It may
be wise to ask oneself this question throughout the design and implementation process.
One advantage that quantitative genetics offer though, is that it degrades gracefully in the
sense that all the equations are still completely accurate, even with an incomplete set of
traits. Ultimately one may only need a subset of traits in order to observe the important
behaviors their algorithms, just so long as they are the right subset.

• Unnecessary traits
Unnecessary traits are either those that are always constant, or those that are so closely
correlated with another trait that they essentially are measuring the same thing. These can
be more problematic because they can result in matrices that are non-positive definite. In
this particular case it would mean that the matrices have one or more eigenvalues that are
zero. While this is not actually wrong, with just a small amount of measurement error, or
round-off error, the matrices could have negative eigenvalues, which is more problematic.
We have devised the metric equation (equation 3) to minimize computational problems
related to this situation, but one should try to avoid it if possible.

• Phenotype to Genotype Linking
If one’s goal in using these tools is to identify and fix problem in an algorithm, then one
will need to make a connection between the traits, and any aspects of the representation or
reproductive operators that are affecting those traits. The more abstract the traits are, the
more difficult this becomes, and so very low-level descriptions of behaviors may be more
appropriate to achieve this.
Unfortunately, this can creates a conflict with the issue of trait completeness described
above. There we suggested that higher-level traits may be better for getting the best
landscape description possible. For example, consider a problem where we are trying
to teach an agent to track another agent without being detected. A high-level set of traits
might measure thing like: how much distance an agent keeps between itself and the target,
the length of time that it is able to maintain surveillance, and the number of times it is
detected. These traits may be ideal for covering all the skills that may be necessary for
describing the fitness landscape, but they may not be very helpful in identifying what
aspect of a representation or reproductive operators are problematic for learn well in this
domain. Such connections would be tenuous at best.

10 Genetic Programming – New Approaches and Successful Applications
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At the other end of the scale, a low-level phenotype (conceptually, at least) might be
something as simple as the input-output map that exactly describes the actions the agent
would take for any given set of inputs. Here we have a much better chance of relating such
information to the representational structure, and the effects of the reproductive operators.
Unfortunately, it becomes much more difficult to define a complete set of traits. Such a
set would have to describe the entire map, and this might mean thousands of traits. The
only viable option is to create sample sets of inputs, where each sample would define
a single trait. If one can define enough traits to get a reasonable sampling of the input
space, or identify important samples that yield particularly valuable information, then this
approach could still be useful.
Exactly how to solve this trade-off remains an open issue. Some possible solutions include
combining low-level and high-level traits, using different kinds of traits depending on ones
goals, or trying to find traits that achieve a middle ground between these two extremes.

3.3. Genetic diversity using lineage

To correlate some important evolutionary behaviors we need to measure genotypic diversity
changes in the populations. There are many ways to measure genotypic diversity
measurements like tree-edit distances, genetic lineages, entropy etc for understanding the
genotypic behavior and correlating it with phenotypic behaviors [7]. Genetic Lineage is the
metric more commonly used as it shows significant correlation to fitness [8]. In context of GP,
with individuals as trees, when an operator like crossover breeds and produces an offspring,
the offspring that has the root node of parent has the lineage of that parent. This provides a
way to measure distribution of lineage over generations and also the count of unique lineages
in the population over generations.

3.4. Bloat measure

Another important factor that we use to correlate the evolutionary behavior changes is with
bloat. Bloat, has been described in various researches but very few of them have defined it
quantitatively. In our study since we have to measure bloat quantitatively we use the metrics
as defined in the recent research [32].

bloat(g) =
(δ(g)− δ(0))/δ(0)
f (0)− f (g))/ f (0)

(4)

where δ(g) is the average number of nodes per individual in the population at generation g,
and f (g) is the average fitness of individuals in the population at generation g.

4. GP benchmark problems and analyses
In next subsections we will walk through three different GP problems, to discuss the
methodology of defining traits, performing experiments with different evolutionary operators
and understanding the evolutionary behaviors in context of the given problem. We start with
the ant trail problem and perform various experiments by changing the operators, selection
mechanisms and pressure to investigate the evolutionary behavior with respect to quantitative
genetics metrics. We then move to another agent oriented problem, lawn mower problem
showing few experiments involving breeding operators and different selection mechanisms.

11Using Quantitative Genetics and Phenotypic Traits in Genetic Programming
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Finally we use the symbolic regression problem to describe how traits can be defined and the
observations showing generality of our methodology.

All the experiments are performed using ECJ [17] with various standard default parameters
like population size of 1024, a crossover depth limit of 17,and the ramped half and half
method of generating tree (min/max of 2 and 6) for creating individuals. We will plot
average tr(D)/tr(P), tr(G)/tr(P) and tr(O)/tr(P) as quantitative genetics metrics for each
generations. We will also plot the average unique ancestors as our genetic lineage diversity
measure and bloat metrics from above for some correlations.

4.1. Experiment 1: Santa-Fe Ant trail

Artificial Ant is representative of an agent search problem and also it is considered to be highly
deceptive and difficult for genetic programming [16]. The Santa-fe ant problem has a difficult
trail and the objective is to devise a program which can successfully navigate an artificial ant
to find all pieces of food located on a grid. The total amount of food consumed is used as
single point measure of the fitness of the program. The program has three terminal operations
forward, left and right for navigation. It has three basic actions like IfFoodAhead, progn2
and progn3 for performing single action and parameter based execution in the sequence. It
has three basic actions like IfFoodAhead, progn2 and progn3 for performing single action and
parameter based execution in the sequence. IfFoodAhead is a non-terminal function that takes
two parameters and executes the first if there is food one step ahead and the second otherwise.
Progn2 takes 2 parameters while progn3 takes 3 parameters and executes them in a sequence.

1. Quantitative Traits for Santa-Fe Ant trail
As per our discussions in the phenotypic traits section, various search properties are
devised to measure quantitatively behavior of an agent like ant and used for phenotypic
traits in the calculations for equation above.

For all the formulas
m= moves, d= dimension, trail= point on trail,closest-trail= closest point on trail
δ = distance
• Sum of Distances from Last Trail: This is the manhattan distance computed for all the

moves from where it is to where it was last on the trail. This trait measures the "moving
away effect" of the agent to the trail.

m

∑
i=1

d

∑
j=1

�δi,d − δtrail,d� (5)

• Sum of Distances to Closest Point on Trail:This is the manhattan distance computed
for all the moves from where it is to point closest on the trail. This trait measures the
"closeness" of the agent to the trail.

m

∑
i=1

d

∑
j=1

�δi,d − δclosest−trail,d� (6)
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Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 11

• Sum of Distances from Last Point:This is the manhattan distance computed for all
the moves from where it is to point last point. This trait measures the "geometric
displacement effect" irrespective of trail for the agent.

m

∑
i=1

d

∑
j=1

�δi,d − δi−1,d� (7)

• Count of Null Movements:This is the count of zero movements, i.e. no change in
displacement for the agent over all its moves. This trait measures the effect of changing
code not altering the behavior of the agent.

m

∑
i=1

∀d, {i f (δi,d − δi−1,d) = 0, count = count + 1} (8)

Most of these quantitative traits show exponential distribution and hence they are
transformed to the new set of derived traits by taking the log of the originals as insisted
by various biologist [9].

2. Santa-Fe Ant trail GP Experiments
To understand the effects of the operator and selection, we will be performing one operator
at a time with the selection mechanism mentioned to see the impact.
• Subtree Crossover and Tournament Selection size 7

Since most GP problems use subtree crossover as the main breeding operator and
normally higher selection pressure with tournament size 7 are employed, we use these
to plot different metrics explained in the quantitative genetics section as shown in
Figure 2.

• Subtree Crossover and tournament Selection size 2
We change the tournament selection to have lower pressure by changing the
tournament size to 2, and observing all the metrics are shown in Figure 3.

• Subtree Crossover and Fitness Proportionate Selection
Fitness Proportionate Selection generally has lower selection pressure as compared to
tournament selection, and by changing the selection mechanism the metrics are shown
in the Figure 4.

• Homologous Crossover and Tournament Selection size 7
Homologous Crossover was designed and successfully employed to control bloat and
improve fitness in many GP problems [15]. The impact of using homologous crossover
on tournament selection size 2 using the metrics is shown in Figure 5.

3. Santa-Fe Ant trail Observations
• Tournament size 2 gives a weaker selection pressure than tournament size 7. It can

be seen that with selection 7 as compared to selection 2, there is rapid convergence
in genotypic diversity. This correlates to rapid convergence in the phenotypic trait
measurements of O and P. It can be observed that when the genotypic diversity and
corresponding phenotypic traits converge, there is rise in the perturbation tr(D)/tr(P)
curve. The point at which this happens and magnitude of change shifts in generations
with selection pressure, i.e with tournament selection size 2 it happens later around
generation 50 as compared to around generation 20 with selection 7. Also the increase is

13Using Quantitative Genetics and Phenotypic Traits in Genetic Programming
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Figure 2. Ant, Subtree crossover, tournament size 7, depth limit 17
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Figure 3. Ant, Subtree crossover, tournament size 2, depth limit 17
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Figure 4. Ant, Subtree Crossover, Fitness Proportionate Selection (FPS), depth limit 17
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Figure 5. Ant, Homologous crossover, tournament size 7, depth limit 17
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Figure 6. Average and BSF fitness for ant experiments

magnitude lesser (scale of DP, OP with selection 2 as compared to selection 7). Increased
selection pressure which may result in lack of diversity may increase perturbation in
the system. This increase may be useful in some difficult problems for finding area
in the landscape that is not reachable otherwise and may not be effective when more
of greedy local search is necessary to reach optimum. In ant trail problem, being a
difficult landscape, increased perturbation is helpful to find solution faster as shown in
the fitness curves in the Figure 6.

• It can be observed that the increase in perturbation with selection size 7, eventually
tapers down and may be attributed to rise in the bloat. As bloat increases beyond a
threshold, the effect of changes is reduced and that brings the perturbation down.

• Another important thing to note is with higher selection pressure, when there is
premature convergence, it results in statistically significant (95% confidence) difference
between the phenotypic behavior of offsprings and parents, while lower selection
pressure reduces the difference.

• FPS results in higher genotypic diversity amongst the individuals as observed in the
Figure 4, and that results in lower convergence in the population phenotypically and
as a result the perturbation effect is constant across all the generations.

• Figure 5 shows that the perturbation increases with reduction in diversity exactly like
in subtree crossover, but the perturbation continues to stay higher because of bloat
control, however the max-value of perturbation is still lower than in normal crossover.
Thus bloat which helped subtree crossover to reduce the impact of perturbation, when
controlled by homologous crossover, showed constant value. This is consistent with
theory that the bloat is a defensive mechanism against crossover [1].

• Figure 6 show the comparative plots of average and best so far (bsf) with 95%
confidence intervals as whiskers. It can be seen that tournament selection with 7 with
subtree or homologous are similar. Homologous crossover with reduced perturbations
and bloat has real advantage over subtree crossover in this experiment.
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4.2. Experiment 2: Lawn mower

The essence of this problem is to find a solution for controlling the movement of a robotic lawn
mower so that the lawn mower visits each of the squares on two-dimensional n x m toroidal
grid. The toroidal nature of the grid allows the lawnmower to wrap around to the opposite
side of the grid when it moves off one of the edges. The lawnmower has state consisting of
the squares on which the lawnmower is currently residing and the direction (up,down,left
and right) which is facing. The lawnmower has 3 actions that change its state: turning left,
moving forward and jumping to specified squares.

1. Quantitative Traits for Lawn Mower
Similar to ant problem, we came up with some quantitative traits to measure the lawn
mower behavior in the phenotypic landscape using the design principles. We keep a
memory of visited location and have a function visited(d) for validating the revisit. We also
keep memory of last orientation using omega in for measuring change in orientations in
the movements.
For all the formulas below
m= moves, d= dimension, δ = distance and Ω = orientation

• Number of Moves:This measures total number of moves performed by the agent in the
execution, which we will refer as m.

• Count of Null Movements:This is the count of zero movements, i.e. no change in
displacement for the lawn mower over all its moves. This trait measures the effect of
changing code not altering the behavior of the agent.

m

∑
i=1

∀d, {i f (δi,d − δi−1,d) = 0, count = count + 1} (9)

• Sum of Distances:This is the manhattan distance computed for all the moves. This trait
measures the "geometric displacement effect" in the movement.

m

∑
i=1

d

∑
j=1

�δi,d − δi−1,d� (10)

• Number of Orientation changes:This measures number of times the orientation of the
lawn mower is changed.

m

∑
i=1

∀d, {i f (Ωi,d �= Ωi−1,d), count = count + 1} (11)

• Count of Revisits:This measures number of times the already visited spot is visited.

m

∑
i=1

∀d, {i f (visited(d)), count = count + 1} (12)

2. Lawn Mower GP Experiments
We performed subset of experiments from our ant problem on the lawn mower to see
differences and similarity in the evolutionary behaviors.
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Figure 7. Lawn Mower Subtree crossover, tournament size 2, depth limit 17

• Subtree Crossover and Tournament Selection size 2
We perform comparative subtree crossover with lower selection pressure on our lawn
mower problem and show the quantitative genetics metrics plotted in the Figure 7.

• Subtree Crossover and Fitness Proportionate Selection
We change the selection pressure totally by going for FPS instead of tournament
selection and plot various metrics in the Figure 8.

• Homologous Crossover and Tournament Selection size 2
Impact of bloat control by using homologous crossover with tournament selection with
size 2 with various metrics are shown in the Figure 9.

3. Lawn Mower Observations
• An interesting observation about the perturbation tr(D)/tr(P) and tr(O)/tr(P) curves

can be made from Figures 8 and 9. Both curves tend to increase to a higher level with
binary tournament selection as compared to FPS. This is actually a result of the fact that
the GP crossover operators have a lower bound on the amount of variation they add to
the population [4]. Higher selection pressures will reduce the phenotypic variation in
the population more that lower selection pressures. Reproductive operators then return
the variation to the operators minimum levels. When selection pressures are higher,
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Figure 8. Lawn Mower Subtree crossover, Fitness Proportionate Selection, depth limit 17

the difference between these two amounts will be higher relative to the amount of
variation in the selection parent populations. As a result, perturbation and population
heritability will appear higher, but this is only because they had further to go to get
back to the same place (i.e. the lower bound defined by the operators).

• Homologous crossover shows fairly stable tr(D)/tr(P), tr(O)/tr(P) and tr(G)/tr(P)
curves as shown in Figure 9, where the operator on this problem acts similar to the
GA based crossover on a simple problem like sphere [3]. As the population converges
in phenotype space, crossover is able to adapt and create offspring populations with
similar distributions to those of the parent population (as can be seen by the fact that
tr(G)/tr(P) stays close to 0.5, and even more importantly that O/P stays relatively
close to 1). The fact that it is able to do this even at the end of the run is important. It
allows the population to truly converge on a very small part of the search space until
there is (almost) no variation left. This is often considered to be a weakness of crossover,
but in some ways it is really a strength. Without this ability, the algorithm cannot fully
exploit the information it gains.

• Figure 10 shows again at the end of the generations there is no significant difference
between subtree crossover and homologous crossover, while homologous crossover
with better perturbation and heritability may be at advantage.
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Figure 9. Lawn Mower Homologous crossover, tournament size 2, depth limit 17
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Figure 10. Average and BSF fitness for lawn mower experiments
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4.3. Experiment 3: Symbolic regression

Symbolic Regression problem is about finding the equation closest to the given problem, by
generating different curves and testing on the sample training points. The absolute error over
the training points is used as the fitness function. Terminal would be the variable X and the
non-terminals would be mathematical functions like log, sine, cosine, addition, multiplication
etc. We used the quintic function for our test. Quintic is given by equation

y = x5 − 2x3 + x, x =[-1,1] (13)

1. Quantitative Traits for Symbolic Regression Regression being a mathematical problem
in an euclidean space rather than a behavior based agent, we used the values of 10
random points equally distributed on the curve as the trait measurements like [-0.9,
-0.7,-0.5...0.5,0.7,0.9]. This is similar to fitness being evaluated over fixed training point,
but the difference being here we get individual values rather than aggregated measure.
These individual trait values can be important in identifying how the curve changes
between parent and offspring during the evolutionary process.
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Figure 11. Symbolic Regression, Homologous crossover, tournament size 2, depth limit 17
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2. Regression GP Experiment
We will analyze one experiment using Homologous crossover and tournament selection to
see generic behavior of GP problems given similar operators and selection pressure.
• Homologous Crossover with Tournament Selection size 2

Figure 11 shows various quantitative genetic metrics similar to previous experiments
for quintic regression problem.

3. Symbolic Regression Observations

• The results of the experiment as seen in Figure 11 is comparative to the results on the
ant problem in figure 5. We can see several trends that we saw before, for example, the
curve for D follows the same type of path, converging until a fixed level of variation is
reached, and then staying there.

• Also, the perturbation curve and the population heritability curve show the same trend
of continual increase over generations.

5. Conclusions and future work
In this chapter we have provided a detailed tutorial on quantitative genetics and some high
level design methods to define phenotypic traits needed by quantitative genetics. Using these
methods we performed various experiments changing the selection and breeding operator
in GP to analyze different evolutionary behaviors of the problem. Evolutionary forces
like exploration and exploitation were quantified using quantitative genetics tool set and
some interesting correlation with other forces like bloat, diversity, convergence and fitness
were made. Many observations and correlations made were generalized across different
benchmark GP problems.

In future we would like to perform more experiments to further understand the balance of
bloat, selection and breeding operators, as well as designing new operators for resolving
issues in a given problem domain.

Author details
Uday Kamath, Jeffrey K. Bassett and Kenneth A. De Jong
Computer Science Department, George Mason University, Fairfax, USA

6. References
[1] Altenberg, L. [1994]. The evolution of evolvability in genetic programming, in K. E.

Kinnear (ed.), Advances in Genetic Programming, MIT Press, Cambridge, MA, pp. 47–74.
[2] Altenberg, L. [1995]. The schema theorem and Price’s theorem, in L. D. Whitley & M. D.

Vose (eds), Foundations of Genetic Algorithms III, Morgan Kaufmann, San Francisco, CA,
pp. 23–49.

[3] Bassett, J. K. & De Jong, K. [2011]. Using multivariate quantitative genetics theory to
assist in ea customization, Foundations of Genetic Algorithms 7, Morgan Kaufmann, San
Francisco.

[4] Bassett, J. K., Kamath, U. & De Jong, K. A. [2012]. A new methodology for the GP theory
toolbox, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2012),
ACM.

24 Genetic Programming – New Approaches and Successful Applications



Using Quantitative Genetics and Phenotypic Traits in Genetic Programming 23

[5] Bassett, J. K., Potter, M. A. & De Jong, K. A. [2004]. Looking under the EA hood with
Price’s equation, in K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen,
D. Dasgupta, D. Floreano, J. Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spector,
A. Tettamanzi, D. Thierens & A. Tyrrell (eds), Genetic and Evolutionary Computation –
GECCO-2004, Part I, Vol. 3102 of Lecture Notes in Computer Science, Springer-Verlag,
Seattle, WA, USA, pp. 914–922.

[6] Bassett, J. K., Potter, M. A. & De Jong, K. A. [2005]. Applying Price’s equation to survival
selection, in H.-G. Beyer, U.-M. O’Reilly, D. V. Arnold, W. Banzhaf, C. Blum, E. W.
Bonabeau, E. Cantu-Paz, D. Dasgupta, K. Deb, J. A. Foster, E. D. de Jong, H. Lipson,
X. Llora, S. Mancoridis, M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J.-P. Watson &
E. Zitzler (eds), GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, Vol. 2, ACM Press, Washington DC, USA, pp. 1371–1378.
URL: http://www.cs.bham.ac.uk/ wbl/biblio/gecco2005/docs/p1371.pdf

[7] Burke, E., Gustafson, S. & Kendall, G. [2002]. A survey and analysis of diversity measures
in genetic programming, pp. 716–723.

[8] Burke, E. K., Gustafson, S., Kendall, G. & Krasnogor, N. [2003]. Is increased diversity
in genetic programming beneficial? an analysis of lineage selection, Congress on
Evolutionary Computation, IEEE Press, pp. 1398–1405.

[9] Falconer, D. S. & Mackay, T. F. C. [1981]. Introduction to quantitative genetics, Longman
New York.

[10] Flury, B. [1988]. Common Principal Components and Related Multivariate Models, Wiley
series in probability and mathematical statistics, Wiley, New York.

[11] Frank, S. A. [1995]. George price’s contributions to evolutionary genetics, Journal of
Theoretical Biology 175(3): 373–388.
URL: http://www.sciencedirect.com/science/article/B6WMD-45R8FXC-3N/2/01fea9e865de0a05
4158ee82d6237ef7

[12] Game, E. T. & Caley, M. J. [2006]. The stability of P in coral reef fishes, Evolution
60(4): 814–823.
URL: http://dx.doi.org/10.1111/j.0014-3820.2006.tb01159.x

[13] Lande, R. & Arnold, S. J. [1983]. The measurement of selection on correlated characters,
Evolution 37(6): 1210–1226.
URL: http://www.jstor.org/stable/2408842

[14] Langdon, W. B. [1998a]. Genetic Programming and Data Structures: Genetic Programming +
Data Structures = Automatic Programming!, The Kluwer international series in engineering
and computer science, Kluwer Academic Publishers, Boston.

[15] Langdon, W. B. [1998b]. Size fair and homologous tree genetic programming crossovers.
genetic programming and evolvable machines.

[16] Langdon, W. B. & Poli, R. [2002]. Foundations of Genetic Programming, Springer-Verlag.
[17] Luke, S., Panait, L., Balan, G., Paus, S., Skolicki, Z., Popovici, E., Sullivan, K., Harrison,

J., Bassett, J., Hubley, R., Chircop, A., Compton, J., Haddon, W., Donnelly, S., Jamil, B. &
O’Beirne, J. [2010]. ECJ: A java-based evolutionary computation research.
URL: http://cs.gmu.edu/ eclab/projects/ecj/

[18] Manderick, B., de Weger, M. & Spiessens, P. [1991]. The genetic algorithm and the
structure of the fitness landscape, in R. K. Belew & L. B. Booker (eds), Proc. of the Fourth
Int. Conf. on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 143–150.

[19] Mühlenbein, H. [1997]. The equation for response to selection and its use for prediction,
Evolutionary Computation 5(3): 303–346.

25Using Quantitative Genetics and Phenotypic Traits in Genetic Programming



24 Will-be-set-by-IN-TECH

[20] Mühlenbein, H., Bendisch, J. & Voigt, H.-M. [1996]. From recombination of genes to
the estimation of distributions: II. continuous parameters, in H.-M. Voigt, W. Ebeling,
I. Rechenberg & H.-P. Schwefel (eds), Parallel Problem Solving from Nature – PPSN IV,
Springer, Berlin, pp. 188–197.

[21] Mühlenbein, H. & michael Voigt, H. [1995]. Gene pool recombination in genetic
algorithms, Metaheuristics: Theory and Applications pp. 53—62.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.3488

[22] Mühlenbein, H. & Paaß, G. [1996]. From recombination of genes to the estimation
of distributions: I. Binary parameters, in H.-M. Voigt, W. Ebeling, I. Rechenberg &
H.-P. Schwefel (eds), Parallel Problem Solving from Nature – PPSN IV, Springer, Berlin,
pp. 178–187.

[23] Mühlenbein, H. & Schlierkamp-Voosen, D. [1993]. Predictive models for the breeder
genetic algorithm: I. continuous parameter optimization, Evolutionary Computation
1(1): 25–49.

[24] Mühlenbein, H. & Schlierkamp-Voosen, D. [1994]. The science of breeding and
its application to the breeder genetic algorithm (BGA), Evolutionary Computation
1(4): 335–360.

[25] Potter, M. A., Bassett, J. K. & De Jong, K. A. [2003]. Visualizing evolvability with
Price’s equation, in R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam
& T. Gedeon (eds), Proceedings of the 2003 Congress on Evolutionary Computation CEC2003,
IEEE Press, Canberra, pp. 2785–2790.

[26] Price, G. [1972]. Fisher’s ’fundamental theorem’ made clear, Annals of Human Genetics
36(2): 129–140.
URL: http://dx.doi.org/10.1111/j.1469-1809.1972.tb00764.x

[27] Price, G. R. [1970]. Selection and covariance, Nature 227: 520–521.
URL: http://adsabs.harvard.edu/abs/1970Natur.227..520P

[28] Prügel-Bennett, A. [1997]. Modelling evolving populations, Journal of Theoretical Biology
185(1): 81–95.
URL: http://www.sciencedirect.com/science/article/B6WMD-45KKVJV-7/2/3ac11d9873754b7db
89bc424fc4919ad

[29] Prügel-Bennett, A. & Shapiro, J. L. [1994]. Analysis of genetic algorithms using statistical
mechanics, Physical Review Letters 72(9): 1305–1309.
URL: http://link.aps.org/abstract/PRL/v72/p1305

[30] Radcliffe, N. J. [1991]. Forma analysis and random respectful recombination, in R. K.
Belew & L. B. Booker (eds), Proceedings of the Fourth International Conference on Genetic
Algorithms (ICGA’91), Morgan Kaufmann Publishers, San Mateo, California, pp. 222–229.

[31] Rice, S. H. [2004]. Evolutionary Theory: Mathematical and Conceptual Foundations, Sinauer
Associates, Inc.

[32] Vanneschi, L., Castelli, M. & Silva, S. [2010]. Measuring bloat, overfitting and functional
complexity in genetic programming, in B. et al.Editors (ed.), GECCO 10 Proceedings of the
10th annual conference on Genetic and evolutionary computation, ACM, pp. 877–884.

26 Genetic Programming – New Approaches and Successful Applications



Chapter 0

Continuous Schemes for Program Evolution

Cyril Fonlupt, Denis Robilliard and Virginie Marion-Poty

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50023

1. Introduction

Genetic Programming (GP) is a technique aiming at the automatic generation of programs.
It was successfully used to solve a wide variety of problems, and it can be now viewed as
a mature method as even patents for old and new discovery have been filled, see e.g. [1, 2].
GP is used in fields as different as bio-informatics [3], quantum computing [4] or robotics [5],
among others.

The most widely used scheme in GP was proposed by Koza, where programs are represented
as Lisp-like trees and evolved by a genetic algorithm. Many other paradigms were devised
these last years to automatically evolve programs. For instance, linear genetic programming
(LGP) [6] is based on an interesting feature: instead of creating program trees, LGP directly
evolves programs represented as linear sequences of imperative computer instructions. LGP
is successful enough to have given birth to a derived commercial product named discipulus.
The representation (or genotype) of programs in LGP is a bounded-length list of integers.
These integers are mapped into imperative instructions of a simple imperative language (a
subset of C for instance).

While the previous schemes are mainly based on discrete optimization, a few other
evolutionary schemes for automatic programming have been proposed that rely on some
sort of continuous representation. These include notably Ant Colony Optimization in
AntTAG [7, 8], or the use of probabilistic models like Probabilistic Incremental Program
Evolution [9] or Bayesian Automatic Programming [10].

In 1997, Storn and Price proposed a new evolutionary algorithm for continuous optimization,
called Differential Evolution (DE) [11]. Another popular continuous evolution scheme is the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) that was proposed by Hansen
and Ostermeier [12] in 1996. Differential Evolution differs from Evolution Strategies in the
way it uses information from the current population to determine the perturbation brought to
solutions (this can be seen as determining the direction of the search).

In this chapter, we propose to evolve programs with continuous representation, using these
two continuous evolution engines, Differential Evolution and CMA Evolution Strategy. A

©2012 Fonlupt et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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program is represented by a float vector that is translated to a linear sequence of imperative
instructions, a la LGP.

The chapter is organized in the following way. The first section introduces the Differential
Evolution and CMA Evolution Strategy schemes, focusing on the similarities and main
differences. We then present our continuous schemes, LDEP and CMA-LEP, respectively
based on DE and CMA-ES. We show that these schemes are easily implementable as plug-ins
for DE and CMA-ES. In Section 4, we compare the performance of these two schemes, and
also traditional GP, over a range of benchmarks.

2. Continuous evolutionary schemes

In this section we present DE and CMA-ES, that form the main components of the
evolutionary algorithms used in our experiments.

2.1. Previous works on evolving programs with DE

To our knowledge O’Neill and Brabazon were the firsts to use DE to evolve programs within
the well known framework of Grammatical Evolution (GE) [13]. In GE, a population of
variable length binary strings is decoded using a Backus Naur Form (BNF) formal grammar
definition into a syntactically correct program. The genotype-to-phenotype mapping process
allows to use almost any BNF grammars and so to evolve programs in many different
languages. GE has been applied to various problems ranging from symbolic regression
problems or robot control [14] to physical-based animal animations [15] including neural
network evolution, or financial applications [16]... In [13], Grammatical Differential Evolution
is defined by retaining the GE grammar decoding process for generating phenotypes, with
genotypes being evolved with DE. A diverse selection of benchmarks from the GP literature
were tackled with four different flavors of GE. Even if the experimental results indicated that
the grammatical differential evolution approach was outperformed by standard GP on three
of the four problems, the results were somewhat encouraging.

More recently, Veenhuis also introduced a successful application of DE for automatic
programming in [17], mapping a continuous genotype to trees, so called Tree based
Differential Evolution (TreeDE). TreeDE improved somewhat on the performance of
grammatical differential evolution, but it requires an additional low-level parameter, the tree
depth of solutions, that has to be set beforehand. Moreover evolved programs do not include
random constants.

Another recent proposal for program evolution based on DE is called Geometric Differential
Evolution, and was issued in [18]. These authors introduced a formal generalization of DE to
keep the same geometric interpretation of the search dynamic across diverse representations,
either for continuous or combinatorial spaces. This scheme is interesting, although it has some
limitations: it is not possible to model the search space of Koza style subtree crossover for
example. Anyway, experiments on four standard benchmarks against Langdon’s homologous
crossover GP were promising.

Our proposal differs from these previous works by being based on Banzhaf’s Linear GP
representation of solutions. This allows us to implement real-valued constant management
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inspired from the LGP literature, that are lacking in TreeDE. The tree-depth parameter from
TreeDE is also replaced by the maximum length of the programs to be evolved: this is a lesser
constraint on the architecture of solutions and it still has the benefit of limiting the well known
bloat problem (uncontrolled increase in solution size) that plagues standard GP.

2.2. Differential evolution

This section only introduces the main Differential Evolution (DE) concepts. The interested
reader might refer to [11] for a full presentation. DE is a population-based search algorithm
that draws inspiration from the field of evolutionary computation, even if it is not usually
viewed as a typical evolutionary algorithm.

DE is a real-valued, vector based, heuristic for minimizing possibly non-differentiable and
non linear continuous space functions. As most evolutionary schemes, DE can be viewed
as a stochastic directed search method. But instead of randomly mating two individuals
(like crossover in Genetic Algorithms), or generating random offspring from an evolved
probability distribution (like PBIL [19] or CMA-ES [20]), DE takes the difference vector of
two randomly chosen population vectors to perturb an existing vector. This perturbation is
made for every individual (vector) inside the population. A newly perturbated vector is kept
in the population only if it has a better fitness than its previous version.

2.2.1. Principles

DE is a search method working on a set or population X = (X1, X2, . . . , XN) of N solutions
that are d−dimensional float vectors, trying to optimize a fitness (or objective) function
f (Xi)i∈[1,N] : Rd → R.

DE can be roughly decomposed into an initialization phase and three very simple steps that
are iterated on:

1- initialization
2- mutation
3- crossover
4- selection
5- end if termination criterion is fulfilled else

go to step 2

At the beginning of the algorithm, the initial population is randomly initialized and evaluated
using the fitness function f . Then new potential individuals are created: a new trial solution
is created for every vector Xj, in two steps called mutation and crossover. A selection process
is triggered to determine whether or not the trial solution replaces the vector Xj in the
population.

2.2.2. Mutation

Let t indicate the number of the current iteration (or generation), for each vector Xj(t) of the
population, a variant vector Vj(t + 1) = (vj1, vj2, . . . , vjd) is generated according to Eq. 1:
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Vj(t + 1) = Xr1 (t) + F × (Xr2(t)− Xr3(t)) (1)

where:

• r1, r2 and r3 are three mutually different randomly selected indices in the population that
are also different from the current index j.

• the scaling factor F is a real constant which controls the amplification of differential
evolution and avoids the stagnation in the search process — typical values for F are in
the range [0, 2].

• The expression (Xr2 (t)− Xr3 (t)) is referred to as the difference vector.

Many variants were proposed for equation 1, including the use of more than 3 individuals.
According to [17, 21], the mutation method that is the more robust over a set of experiments
is the method DE/best/2/bin, defined by Eq. 2:

Vj(t + 1) = Xbest(t) + F × (Xr1 (t) + Xr2 (t)− Xr3 (t)− Xr4 (t)) (2)

where Xbest(t) is the best individual in the population at the current generation. This method
DE/best/2/bin is used throughout the chapter.

2.2.3. Crossover

As explained in [11], the crossover step ensures to increase or at least to maintain the diversity.
Each trial vector is partly crossed with the variant vector. The crossover scheme ensures that
at least one vector component will be crossovered.

The trial vector Uj(t + 1) = (uj1, uj2, . . . , ujd) is generated using Eq. 3:

uji(t + 1) =
{

vji(t + 1) if (rand ≤ CR) or j = rnbr(i)
xji(t) if (rand > CR) and j �= rnbr(i)

(3)

where:

• xji(t) is the jth component of vector Xi(t);

• vji(t+ 1) is the jth component of the current variant vector Vj(t+ 1) (see above Eq. 1 and 2);

• rand is a random float drawn uniformly in the range [0, 1[;

• CR is the crossover rate in the range [0, 1] which has to be determined by the user;

• rnbr(i) is a randomly chosen index drawn in the range [1, d] independently for each vector
Xi(t) which ensures that Uj(t + 1) gets at least one component from the variant vector
Vj(t + 1).

2.2.4. Selection

The selection step decides whether the trial solution Ui(t + 1) replaces the vector Xi(t) or not.
The trial solution is compared to the target vector Xi(t) using a greedy criterion. Here we
assume a minimization framework: if f (Ui(t + 1)) < f (Xi(t)), then Xi(t + 1) = Ui(t + 1)
otherwise the old value is kept: Xi(t + 1) = Xi(t) .
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2.2.5. Iteration and stop criterion

These three steps (mutation, crossover, selection) are looped over until a stop criterion is
triggered: typically a maximum number of evaluations/iterations is allowed, or a given
value of fitness is reached. Overall DE is quite simple, only needing three parameters: the
population size N, the crossover rate CR, and the scaling factor F.

2.3. Covariance matrix adaptation evolution strategy

Among continuous optimization methods, DE was often compared (in e.g. [22, 23]) to the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES), initially proposed in [12]. The
CMA Evolution Strategy is an evolutionary algorithm for difficult non-linear non-convex
optimization problems in continuous domains. It is typically applied to optimization
problems of search space dimensions between three and one hundred. CMA-ES was
designed to exhibit several invariances: (a) invariance against order preserving (i.e. strictly
monotonic) transformations of the objective function value; (b) invariance against angle
preserving transformations of the search space (e.g rotation, reflection); (c) scale invariance.
Invariances are highly desirable as they usually imply a good behavior of the search strategy
on ill-conditioned and on non-separable problems.

In this section we only introduce the main CMA-ES concepts, and refer the interested reader to
the original paper for a full presentation of this heuristic. An abundant literature has brought
several refinements to this algorithm (e.g. [24] and [25]), and has shown its strong interest as
a continuous optimization method.

2.3.1. Principles

The basic CMA-ES idea is sampling search points using a normal distribution that is centered
on an updated model of the ideal solution. This ideal solution can be seen as a weighted mean
of a best subset of current search points. The distribution is also shaped by the covariance
matrix of the best solutions sampled in the current iteration. This fundamental scheme was
refined mainly on two points:

• extracting more information from the history of the optimization run; this is done through
the so-called accumulation path whose idea is akin to the momentum of artificial neural
networks;

• allocating an increasing computational effort via an increasing population size in a classic
algorithm restart scheme.

The main steps can be summed-up as:

1. sample points are drawn according to the current distribution

2. the sample points are evaluated

3. the probability distribution is updated according to a best subset of the evaluated points

4. iterate to step 1, until the stop criterion is reached
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2.3.2. Sampling step

More formally, the basic equation for sampling the search points (step 1) is:

x(g+1)
k ← m(g) + σ(g)N(0, C(g)) (4)

where:

• g is the generation number

• k ∈ 1, ..., N is an index over the population size

• x(g+1)
k is the k-th offspring drawn at generation g + 1

• m(g) is the mean value of the search distribution at generation g

• σ(g) is the “overall” standard deviation (or step-size) at generation g

• N(0, C(g)) is a multivariate normal distribution with zero mean and covariance matrix C(g)

at generation g

2.3.3. Evaluation and selection step

Once the sample solutions are evaluated, we can select the current best μ solutions, where
μ is the traditional parameter of Evolution Strategies. Then the new mean m(g+1), the new
covariance matrix C(g+1) and the new step size control σ(g+1) can be computed in order to
prepare the next iteration, as explained in the following section.

2.3.4. Update step

The probability distribution for sampling the next generation follows a normal distribution.
The new mean m(g+1) of the search distribution is a weighted average of the μ selected best

points from the sample x(g+1)
1 , . . . , x(g+1)

N , as shown in Eq. 5:

m(g+1) =
μ

∑
i=1

wix
(g+1)
i:N (5)

where:

• μ ≤ N, μ best points are selected in the parent population of size N.

• x(g+1)
i:N , i-th best individual out of x(g+1)

1 , . . . , x(g+1)
N from Eq. 4.

• w1 ≥ . . . ≥ wμ are the weight coefficients with ∑
μ
i=1 wi = 1

Thus the calculation of the mean can also be interpreted as a recombination step (typically by
setting the weights wi = 1/μ). Notice that the best μ points are taken from the new current
generation, so there is no elitism.

Adapting the covariance matrix of the distribution is a complex step, that consists of three
sub-procedures: the rank-μ-update, the rank-one-update and accumulation. They are similar
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to a Principal Component Analysis of steps, sequentially in time and space. The goal of the
adaptation mechanism is to increase the probability of successful consecutive steps.

In addition to the covariance matrix adaptation rule, a step-size control is introduced, that
adapts the overall scale of the distribution based on information obtained by the evolution
path. If the evolution path is long and single steps are pointing more or less to the same
direction, the step-size should be increased. On the other hand, if the evolution path is short
and single steps cancel each other out, then we probably oscillate around an optimum, thus
the step-size should be decreased.

For the sake of simplicity, the details of the update of the covariance matrix C and step-size
control are beyond the scope of this chapter.

2.4. Main differences between DE and CMA-ES

The Differential Evolution method and the CMA Evolution Strategy are often compared, since
they are both population-based continuous optimization heuristics. Unlike DE, CMA-ES is
based on strong theoretical aspects that allow it to exhibit several invariances that make it a
robust local search strategy, see [12]. Indeed it was shown to achieve superior performance
versus state-of-the art global search strategies (e.g. see [26]). On the other hand and in
comparison with most search algorithms, DE is very simple and straightforward both to
implement and to understand. This simplicity is a key factor in its popularity especially for
practitioners from other fields.

Despite or maybe thanks to its simplicity, DE also exhibits very good performance when
compared to state-of-the art search methods. Furthermore the number of control parameters
in DE remains surprisingly small for an evolutionary scheme (Cr, F and N) and a large amount
of work has been proposed to select the best equation for the construction of the variant vector.

As explained in [27], the space complexity of DE is low when compared to the most
competitive optimizers like CMA-ES. Although CMA-ES remains very competitive over
problems up to 100 variables, it is difficult to extend it to higher dimensional problems due
mainly to the cost of computing and updating the covariance matrix.

Evolving programs which are typically a mix of discrete and continuous features (e.g.
regression problems) is an interesting challenge for these heuristics, since they were not
designed for this kind of task.

3. Linear programs with continuous representation

We propose to use Differential Evolution and CMA Evolution Strategy to evolve float vectors,
which will be mapped to sequences of imperative instructions in order to form linear
programs, similar to the LGP scheme from [6]. For the sake of simplicity, these schemes are
respectively denoted:

• LDEP, for Linear Differential Evolutionary Programming, when DE is used as the
evolutionary engine;
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• CMA-LEP, for Covariance Matrix Adaption Linear Evolutionary Programming, when the
evolutionary engine is CMA-ES.

First we recall the basis of linear programs encoding, and execution, and then we explain
the mapping process from continuous representation to imperative instructions. We conclude
with some remarks on the integration of this representation and mapping with the DE and
CMA-ES engines.

3.1. Linear sequence of instructions

In LGP a program is composed of a linear sequence of imperative instructions (see [6] for more
details). Each instruction is typically 3-register instruction. That means that every instruction
includes an operation on two operand registers, one of them could be holding a constant
value, and then assigns the result to a third register:

ri =

{
rj op (rk|ck)

(rj|cj) op rk

where op is the operation symbol, ri is the destination register, rj, rk are calculation registers
(or operands) and cj, ck are constant registers (only one constant register is allowed per
instruction).

On the implementation level of standard LGP, each imperative instruction is represented by
a list of four integer values where the first value gives the operator and the three next values
represent the three register indices. For instance, an instruction like ri = rj × rk is stored
as a quadruple < ×, i, j, k >, which in turn is coded as four indices indicating respectively
the operation number in the set of possible operations, and 3 indices in the set of possible
registers (and/or constant registers). Of course, even if the programming language is basically
a 3-register instruction language, it is possible to ignore the last index in order to include
2-register instructions like ri = sin(rk).

Instructions are executed by a virtual machine using floating-point value registers to perform
the computations required by the program. The problem inputs are stored in a set of registers.
Typically the program output is read in a dedicated register (usually named r0) at the end
of the program execution. These input and output registers are read-write and can serve for
intermediate calculations. Usually, additional read-only registers store user defined constants,
and extra read-write registers can be added to allow for complex calculations. The use of
several calculation registers makes possible a number of different program paths, as explained
in [6] and in [28].

3.2. Mapping a float vector to a linear program

Here we explain how a float vector (i.e. an individual of the population), evolved by either
DE or CMA-ES, is translated to a linear program in the LGP form.

As explained in the previous section, we need 4 indices to code for the operation number and
3 registers involved. Thus we split the float vector individual into consecutive sequences of
4 floats < v1, v2, v3, v4 >, where v1 encodes the operator number, and v2, v3, v4 encode the
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destination and operand registers. In order to convert a float vi into an integer index, we
apply one of the following computations:

• Conversion of the operator index:

#operator = �(vi − �vi�)× noperators� (6)

where noperators denotes the number of possible operators.

• Conversion of the destination register index:

#register = �(vi − �vi�)× nregisters� (7)

where nregisters denotes the number of possible read-write registers.

• The conversion of an operand register depends whether it is a constant or a read-write
register. This is controlled by a user defined probability of selecting constant registers,
denoted PC in the following equation:

{
# read-write register = �( vi−�vi�−Pc

1−Pc
)× nregisters� if (vi − �vi�) > PC

# constant register = �vi�mod nconstants otherwise
(8)

where nregisters denotes the number of possible read-write registers, and nconstants denotes
the number of possible constant registers.

Example of a mapping process

Let us suppose we work with 6 read-write registers (r0 to r5), 50 constant registers, and the 4
following operators:

0 : + 1 : − 2 : × 3 : ÷
We set up the constant register probability to PC = 0.1 and we consider the following vector
composed of 8 floats, to be translated into 2 imperative instructions (< v1, v2, v3, v4 > and
< v5, v6, v7, v8 >):

v1 v2 v3 v4 v5 v6 v7 v8
0.17 2.41 1.86 3.07 0.65 1.15 1.25 4.28

Value v1 denotes one operator among the four to choose from. Applying Eq. 6, we get
#operator = �(0.17 − �0.17�)× 4� = 0, meaning that the first operator is +.

The second value v2 = 2.41 is turned into a destination register. According to Eq. 7, we obtain
#register = �(2.41 − �2.41�)× 6� = �2.46� = 2, meaning that the destination register is r2.

The next value v3 = 1.86 gives an operand register. According to Eq. 8, it is a read-write
register since (1.86 − �1.86�) = 0.86 > PC. Thus the first operand register is: #register =
�((1.86 − �1.86� − 0.1)/0.9)× 6� = �5.07� = 5, meaning read-write register r5.

The last of the four first operands is decoded as a constant register since (3.07 − �3.07�) =
0.07 ≤ PC. The index is �3.07� mod 50 = 3, meaning constant register c3.
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So the 4 first values of the genotype are translated as:

r2 = r5 + c3

The mapping process continues with the four next values, until we are left with the following
program:

r2 = r5 + c3

r0 = r1 × r1

3.3. Algorithm

To finalize the LDEP and CMA-LEP algorithms, the basic idea is to simply plug the float
vector to program translation and the virtual machine program evaluation into the DE and
CMA-ES schemes. However some technical points need to be taken into account to allow this
integration and they are detailed below.

Initialization

We have to decide about the length of the individuals (float vectors) since we usually cannot
extract this feature from the problem. This length will determine the maximum number of
instructions allowed in the evolved programs.

Moreover we need to fix a range of possible initial values to randomly generate the
components of the initial population {Xi}1≤i≤N, as typical in DE.

Constant registers are initialized at the beginning of the run, and then are only accessed in
read-only mode. This means that our set of constants remains fixed and does not evolve
during the run. The number and value range of constant registers are user defined, and the
additional parameter PC must be set to determine the probability of using a constant register
in an expression, as explained above in Eq. 8.

Main algorithm iteration

For LDEP, we tried two variants of the iteration loop described in Section 2.2: either
generational replacement of individuals as in the original Storn and Price paper [11], or steady
state replacement, which seems to be used in [17]. In the generational case, newly created
individuals are stored in a temporary set, and once the generation is completed, they replace
their respective parent if their fitness is better. In the steady state scheme, each new individual
is immediately compared with its parent and replaces it if its fitness is better, and thus it can be
used in remaining crossovers for the current generation. Using the steady state variant seems
to accelerate convergence, see Section 4.

During the iteration loop of either LDEP or CMA-LEP, the vector solutions are decoded using
equations 6, 7 and 8. The resulting linear programs are then evaluated on a set of fitness cases
(training examples). The fitness value is then returned to the evolution engine that continues
the evolution process.
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Heuristic Problem Pop. Ind. size # eval. extra params
LDEP Regressions 20 128 5E4 F = 0.5, CR = 0.1

Ant 30 50 2E5 F = 0.5, CR = 0.1
CMA-LEP Regressions 20 128 5E4 σ ∈ {1, 10}, λ ∈ {10, 100},

Ant 30 50 2E5 σ ∈ {1, 10}, λ ∈ {10, 100}
GP Regressions 1000 N.A. 5E4 Elitism, max Depth=11,

80% Xover, 10% Mut, 10% Copy
Ant 4000 N.A. 2E5 Elitism, max Depth=11,

80% Xover, 10% Mut, 10% Copy

Table 1. Main experimental parameters

4. Experiments

We use the same benchmark problems as in [17] (4 symbolic regressions and the Santa Fe
artificial ant), and we also add two regression problems that include float constants.

Before listing our experimental parameters in Table 1, we explain some of our implementation
choices:

• We run all standard GP experiments using the well-known ECJ library1.

• For GP we use a maximum generation number of 50 and set the population size in
accordance with the maximum number of evaluations. We keep the best (elite) individual
from one generation to the next.

• We use the publicly available C language version of CMA-ES2, with overall default
parameters.

• For TreeDE we take the results as they are reported in [17]:
• For regression, 1500 iterations on a population of 20 vectors were allowed, and runs

were done for every tree depth in the range {1, . . . , 10}. It thus amounts to a total of
300, 000 evaluations. Among these runs, reference [17] reported only those associated
to the tree depth that obtained the best result (which may well imply a favorable bias,
in our opinion). As we could not apply this notion of best tree depth in our heuristic,
we decided as a trade-off to allow 50, 000 evaluations for regression with both LDEP,
CMA-LEP and GP.

• For the Santa Fe Trail artificial ant problem, the same calculation gives a total of 450, 000
evaluations for TreeDE. We decided for a trade-off of 200, 000 evaluations for LDEP,
CMA-LEP and GP.

4.1. Symbolic regression problems

The aim of these 1-dimensional symbolic regression problems is to find some symbolic
mathematical expression (or program) that best approximates a target function that is known
only by a set of examples, or fitness cases, (xk , f (xk)). In our case, 20 values xk are
chosen evenly distributed in the range [−1.0,+1.0]. The evaluation of programs (or fitness

1 http://cs.gmu.edu/~eclab/projects/ecj/
2 http://www.lri.fr/~hansen/cmaes_inmatlab.html
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computation) is done according to the classic Koza’s book [1], that is computing the sum of
deviations by looping over all fitness cases:

f itness = ∑
1≤k≤N

| f (xk)− P(xk)|

where P(xk) is the value computed by the evolved program P on input xk, f is the benchmark
function and N = 20 is the number of (input, output) fitness cases. A hit solution means that
the deviation is less than 10−4 on each fitness case.

The first 4 test functions are from [17]:

f1(x) = x3 + x2 + x

f2(x) = x4 + x3 + x2 + x

f3(x) = x5 + x4 + x3 + x2 + x

f4(x) = x5 − 2x3 + x

While TreeDE benchmarks were run without constants in [17], we strongly believe that it is
interesting to use benchmark problems that are expressed as functions both with and without
float constants, in order to assess the impact of constant management by the heuristics.
Moreover in the general case, especially on real world problems, one cannot know in advance
whether or not float constants may be useful. For this reason we add two benchmarks:

f5(x) = π (a constant function)
f6(x) = x

π + x2

π2 + 2xπ

The set of operators is {+,−,×,÷} with ÷ being the protected division (i.e. a ÷ b = a/b if
b �= 0 else a ÷ b = 0 if b = 0).

For LDEP and CMA-LEP, 6 read-write registers are used for calculation (from r0 to r5), with
r0 being the output register. For each fitness case (xk , f (xk)) that is submitted to the evolved
program inside the evaluation loop, all 6 calculation registers are initialized with the same
input value xk . This standard LGP practice provides redundancy of the input value and thus
more robustness to the run.

Runs without constants

In the first set of experiments, programs are evolved without constants. This unrealistic
setting is proposed here only to allow a comparison of DE-based scheme, confronting LDEP
versus Veenhuis’s TreeDE, and excluding CMA-LEP. Results are reported in table 2, all
three heuristics exhibit close results on the f1, f2, f3, f4 problems, with GP providing the
overall most precise approximation, and LDEP needing the largest number of evaluations
(notwithstanding the possible bias in the TreeDE figures, as mentioned at the beginning of
Section 4). Note that the steady state variant of LDEP converges faster than the generational,
as shown by the average number of evaluations for perfect solutions. It seems safe to conclude
that this increased speed of convergence is the explanation for the better result of the steady
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generational LDEP steady state LDEP TreeDE

Problem Fit. % hits Eval. Fit. % hits Eval. Fit. % hits Eval.
f1 0.0 100% 4297 0.0 100% 2632 0.0 100% 1040
f2 0.0 100% 12033 0.0 100% 7672 0.0 100% 3000
f3 0.28 72.5% 21268 0.08 85% 21826 0.027 98% 8440
f4 0.20 62.5% 33233 0.13 75% 26998 0.165 68% 14600

standard GP

Problem Fit. % hits Eval.
f1 0.0 100% 1815
f2 0.0 100% 2865
f3 0.03 97% 6390
f4 0.01 80% 10845

For each heuristic, over 40 independent runs, the column Fit. gives the average of the
best fitness (taken from [17] for TreeDE), then we have the percentage of run reaching a
hit solution, then the average number of evaluations to produce the first hit solution (if
ever produced).

Table 2. Results for symbolic regression problems without constants.

state variant versus generational, in a limited number of evaluations. This steady state faster
convergence may also benefit to TreeDE.

Runs with constants

In the second set of experiments, presented in Table 3, heuristics are allowed to evolve
programs with constants, thus ruling out TreeDE from the comparison. All problems from
f1 to f6 are tested, which means that heuristics manage float constants even on the first 4
problems when they are not needed. This simulates the frequent absence of background
knowledge on a new problem and this also tests the robustness of heuristics.

• For LDEP and CMA-LEP, we add 50 constant registers, with a probability of occurrence
PC = 0.05, and initial values in the range [−1.0,+1.0].

• For GP, we define 4 redundant input terminals reading the same input value xk for each
fitness case (xk, yk), against only one ephemeral random constant (ERC) terminal, that
draws new random value instances when needed, in the range [−1.0,+1.0]. Thus the
probability to generate a constant, e.g. during program initialization or in a subtree
mutation, is much lower than the usual 50% when having only one x terminal. This is
closer to the LDEP setting and it significantly improves the GP results.

In Table 3, we again observe that the steady state variant of LDEP is better than the
generational. For its best version LDEP is comparable to GP, with a slightly higher hit ratio
and better average fitness (except on f6), with more evaluations on average. For CMA-LEP,
two values for σ ∈ {1, 10} and two values for λ ∈ {10, 100} were tried with no significant
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differences. In contrast with the other methods, CMA-LEP results are an order of magnitude
worse. Tuning the CMA-ES engine to tackle the problem as separable did not improve the
results. We think this behavior may result from the high dimensionality of the problem
(N=128), that certainly disrupts the process of modeling an ideal mean solution from a
comparatively tiny set of search points. This is combined to the lack of elitism, inherent to
the CMA-ES method, thus when it comes to generate new test points, the heuristic is left
solely with a probably imperfect model.

generational LDEP steady state LDEP
Problem Fit. %hits Eval. Fit. %hits Eval.

f1 0.0 100% 7957 0.0 100% 7355
f2 0.02 95% 16282 0.0 100% 14815
f3 0.4 52.5% 24767 0.0 100% 10527
f4 0.36 42.5% 21941 0.278 45% 26501
f5 0.13 2.5% 34820 0.06 15% 29200
f6 0.59 0% NA 0.63 0% NA

standard GP CMA-LEP
Problem Fit. %hits Eval. Fit. %hits Eval.

f1 0.002 98% 3435 0.03 20% 6500
f2 0.0 100% 4005 2.76 0% NA
f3 0.02 93% 7695 5.33 0% NA
f4 0.33 23% 24465 2.06 6% 10900
f5 0.07 0% NA 13.35 0% NA
f6 0.21 0% NA 5.12 0% NA

For each heuristic, over 40 independent runs, the column Fit. gives the average of the
best fitness, then we have the percentage of run reaching a hit solution, then the average
number of evaluations to produce the first hit solution (if ever produced or else NA if
no run produced a hit solution).

Table 3. Results for symbolic regression problems with constants.

Overall, these results confirm that DE is an interesting heuristic, even when the continuous
representation hides a combinatorial type problem, and thus the heuristic is used outside
its original field. The LDEP mix of linear programs and constant management appears
competitive with the standard GP approach.

4.2. Santa Fe ant trail

The Santa Fe ant trail is a famous problem in the GP field. The objective is to find a computer
program that is able to control an artificial ant so that it can find all 89 pieces of food located on
a discontinuous trail within a specified number of time steps. The trail is drawn on a discrete
32 × 32 toroidal grid illustrated in Figure 1. The problem is known to be rather hard, at least
for standard GP (see [29]), with many local and global optima, which may explain why the
size of the TreeDE population was increased to N = 30 in [17].

Only a few actions are allowed to the ant. It can turn left, right, move one square forward
and it may also look into the next square in the direction it is facing, in order to determine if
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Figure 1. Illustration of the Santa Fe Trail (the ant starts in the upper left corner, heading to the east,
large dots are food pellets, and small dots are empty cells on the ideal path).

it contains a piece of food or not. Turns and moves cost one time step, and a maximum time
steps threshold is set at start (typical values are either 400 or 600 time steps). If the program
finishes before the exhaustion of the time steps, it is restarted (which amounts to iterating the
whole program).

We do not need mathematical operators nor registers, only the following instructions are
available:

• MOVE: moves the ant forward one step (grid cell) in the direction the ant is facing, retrieving
an eventual food pellet in the cell of arrival;

• LEFT: turns on place 45 degrees anti-clockwise;

• RIGHT: turns on place 45 degrees clockwise;

• IF-FOOD-AHEAD: conditional statement that executes the next instruction or group of
instructions if a food pellet is located on the neighboring cell in front of the ant, else the
next instruction or group is skipped;

• PROGN2: groups the two instructions that follow in the program vector, notably allowing
IF-FOOD-AHEAD to perform several instructions if the condition is true (the PROGN2
operator does not affect per se the ant position and direction);

• PROGN3: same as the previous operator, but groups the three following instructions.

• Each MOVE, RIGHT and LEFT instruction requires one time step.
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generational LDEP steady state LDEP standard GP
# steps Fit. % hits Eval. Fit. % hits Eval. Fit. % hits Eval.
400 11.55 12.5% 101008 14.65 7.5% 46320 8.87 37% 126100
600 0.3 82.5% 88483 1.275 70% 44260 1.175 87% 63300

CMA-LEP TreeDE
# steps Fit. % hits Eval. Fit. % hits Eval.
400 37.45 0% NA 17.3 3% 24450
600 27.05 0% NA 1.14 66% 22530

The 1st column is the number of allowed time steps, then for each heuristic, over 40
independent runs, we give the average of the best fitness (taken from [17] for TreeDE),
then the percentage of run reaching a hit solution (solution that found all 89 food
pellets), then the average number of evaluations to produce the first hit solution (if
ever produced or else NA if no run produced a hit solution).

Table 4. Santa Fe Trail artificial ant problem.

Programs are again vectors of floating point values. Each instruction is represented as a single
value which is decoded in the same way as operators are in the regression problems, that is
using Eq. 6. Instruction are decoded sequentially, and the virtual machine is refined to handle
jumps over an instruction or group of instructions, so that it can deal with IF-FOOD-AHEAD
instructions. Incomplete programs may be encountered, for example if a PROGN2 is decoded
for the last value of a program vector. In this case the incomplete instruction is simply
dropped and we consider that the program has reached normal termination (and the program
is iterated if there are remaining time steps).

The Santa Fe trail being composed of 89 pieces of food, the fitness function is the remaining
food (89 minus the number of food pellets taken by the ant before it runs out of time). So, the
lower the fitness, the better the program, a hit solution being a program with fitness 0, i.e. a
program able to pick up all the food on the grid.

Results are summed-up in Table 4. Contrary to the regression experiment, the generational
variant of LDEP is now better than the steady state. We think this behavior is explained by
the hardness of the problem: more exploration is needed, and it pays no more to accelerate
convergence.

GP gives the best results for 400 time steps, but it is LDEP that provides the best average
fitness for 600 steps, at the cost of a greater number of evaluations, meaning LDEP is better
at exploiting the available amount of computing time. LDEP is also better than TreeDE on
both steps limits. For CMA-LEP, two values for σ ∈ {1, 10} and two values for λ ∈ {10, 100}
were again tried, the best setting being σ = 10 and λ = 100 (whose results are reported here).
CMA-LEP performed really poorly, and its first results were so bad that it motivated us to
try this rather high initial variance level (σ = 10), which brought a sensible but insufficient
improvement. We think that the lack of elitism is, here again, a probable cause of CMA-ES
bad behavior, on a very chaotic fitness landscape with many neutral zones (many programs
exhibit the same fitness).
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If food{ Move } else {
Progn3{

Progn3{
Progn3{ Right ;

If food{ Right } else { Left } ;
Progn2{ Left ;

If food{ Progn2{ Move ; Move } }
else { Right } } } ; // end Progn3

Move ;
Right } ; // end Progn3

If food{ Move } else { Left } ; //end Progn3
Move } }

Table 5. Example of a perfect solution for the Ant Problem found by LDEP in 400 time steps

Here again LDEP appears as a possible competitor to GP. Table 5 shows an example of a
perfect solution found by LDEP for 400 time steps.

4.3. Evolving a stack

As the LDEP continuous approach for evolving programs achieved interesting results on the
previous GP benchmarks, we decided to move forward and to test whether or not we were
able to evolve a more complex data structure: a stack. Langdon successfully showed in [30]
that GP was able to evolve not only a stack with its minimal set of operations (push, pop,
makenull), but also two other optional operations (top, empty), which are considered to be
inessential. We followed this setting, and the five operations to evolve are described in Table 6.

Operation Comment
makenull initialize stack
empty is stack empty?
top return top of stack
pop return top of stack and remove it
push(x) store x on top of stack

Table 6. The five operations to evolve

This is in our opinion a more complex problem than the previous ones, since the correctness
of each trial solution is established using only the values returned by the stack operations and
only pop, top and empty return values.

Choice of primitives

As explained in [30], the set of primitives that was chosen to solve this problem is a set that a
human programmer might use. The set basically consists in functions that are able to read and
write in an indexed memory, functions that can modify the stack pointer and functions that
can perform simple arithmetic operations. The terminal set consists in zero-arity functions
(stack pointer increment and decrement) and some constants.
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The following set was available for LDEP:

• arg1, the value to be pushed on to the stack (read-only argument)

• aux, the current value of the stack pointer

• arithmetic operators + and −
• constants 0, 1 and MAX (maximum depth of the stack, set to 10)

• indexed memory functions read and write. The write function is a two argument function
arg1 and arg2. It evaluates the two arguments and sets the indexed memory pointed by
arg1 to arg2 (i.e. stack[arg1] = arg2). It returns the original value of aux.

• functions to modify the stack pointer: inc_aux to increment the stack pointer, dec_aux to
decrement it, write_aux to set the stack pointer to its argument and returns the original
value of aux.

Algorithm and fitness function

We used a slightly modified version of our continuous scheme as the stack problem requires
the simultaneous evolution of the five operations (push, pop, makenull, top, empty). An
individual is composed of 5 vectors, one for each operation. Mutation and crossover are
only performed with vectors of the same type (i.e. vectors evolving the push operation for
example).

Programs are coded in prefix notation, that means that an operation like (arg1 + MAX) was
coded as + arg1 MAX. We did not impose any restrictions on each program’s size except that
each vector has a maximum length of 100 (this is several times more than sufficient to code
any of the five operations needed to manipulate the stack).

In his original work, Langdon chose to use a population of size 1, 000 individuals with 101
generations. In the DE case, it is known from experience that using large populations is
usually inadequate. So, we fixed a population of 10 individuals with 10, 000 generations for
LDEP, amounting to about the same number of evaluations.

We used the same fitness function that was defined by Langdon. It consists in 4 test sequences,
each one being composed of 40 stack operations. As explained in the previous section, the
makenull and push operations do not return any value, they can only be tested indirectly
by seeing if the other operations perform correctly.

Results

In Langdon’s experiments, 4 runs out of 60 produced successful individuals (i.e. a fully
operational stack). We obtained the same success ratio with LDEP: 4 out of the first 60 runs
yielded perfect solutions. Extending the number of runs, LDEP evolved 6 perfect solutions
out of 100 runs, providing a convincing proof of feasibility. Regarding CMA-LEP, results are
less convincing, since only one run out of 100 was able to successfully evolve a stack.

An example of successful solution is given in table 7 with the raw evolved code and a
simplified version where redundant code is removed.
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Operation Evolved operation Simplified operation
push write(1 ,write(dec_aux ,arg1 )) stack[aux] = arg1

aux = aux - 1
pop write(aux ,((aux + (dec_aux + inc_aux )) aux = aux + 1

+ read(inc_aux ))) tmp = stack[aux];
stack[aux] = tmp + aux;
return tmp

top read(aux) return sp[aux]
empty aux if (aux > 0) return true

else return false
makenull write((MAX - (0 + write_aux(1 ))),MAX ) aux = 1

Table 7. Example of an evolved push-down stack

5. Conclusions

This chapter explores evolutionary continuous optimization engines applied to automatic
programming. We work with Differential Evolution (LDEP) and CMA-Evolution Strategy
(CMA-LEP), and we translate the continuous representation of individuals into linear
imperative programs. Unlike the TreeDE heuristic, our schemes include the use of float
constants (e.g. in symbolic regression problems).

Comparisons with GP confirm that LDEP is a promising optimization engine for automatic
programming. In the most realistic case of regression problems, when using constants, steady
state LDEP slightly outperforms standard GP on 5 over 6 problems. On the artificial ant
problem, the leading heuristic depends on the number of steps: for the 400 steps version
GP is the clear winner, while for 600 steps generational LDEP yields the best average fitness.
LDEP improves on the TreeDE results for both versions of the ant problem, without needing
a fine-tuning of the solutions tree-depth.

For both regression and artificial ant, CMA-LEP performs poorly with the same representation
of solutions than LDEP. This can be deemed not really surprising since the problems we
tackle are clearly outside the domain targeted by the CMA-ES heuristic that drives evolution.
Nonetheless it is also the case for DE, which still produces interesting solutions, thus this
points to a fundamental difference in behavior between these two heuristics. We suspect
that CMA-ES lack of elitism may be an explanation. It also points to a possible inherent
robustness of the DE method, on fitness landscapes that are possibly more chaotic than the
usual continuous benchmarks.

The promising results of LDEP on the artificial ant and on the stack problems are a great
incentive to deepen the exploration of this heuristic. Many interesting questions remain open.
In the beginnings of GP, experiments showed that the probability of crossover had to be set
differently for internal and terminal nodes: is it possible to improve LDEP in similar ways?
It is to be noticed that in our experiments the individual vector components take their values
in the range (−∞,+∞), since it is required by the standard CMA-ES algorithm. It could be
interesting to experiment DE-based algorithms with a reduced range of vector component
values, for example [−1.0, 1.0], that would require to modify the mapping of constant indices.
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1. Introduction

Evolutionary algorithms (EAs) mimic natural evolution to solve optimization problems.
Because EAs do not require detailed assumptions, they can be applied to many real-world
problems. In EAs, solution candidates are evolved using genetic operators such as crossover
and mutation which are analogs to natural evolution. In recent years, EAs have been
considered from the viewpoint of distribution estimation, with estimation of distribution
algorithms (EDAs) attracting much attention ([14]). Although genetic operators in EAs are
inspired by natural evolution, EAs can also be considered as algorithms that sample solution
candidates from distributions of promising solutions. Since these distributions are generally
unknown, approximation schemes are applied to perform the sampling. Genetic algorithms
(GAs) and genetic programmings (GPs) approximate the sampling by randomly changing the
promising solutions via genetic operators (mutation and crossover). In contrast, EDAs assume
that the distributions of promising solutions can be expressed by parametric models, and they
perform model learning and sampling from the learnt models repeatedly. Although GA-type
sampling (mutation or crossover) is easy to perform, it has the disadvantage that GA-type
sampling is valid only for the case where two structurally similar individuals have similar
fitness values (e.g. the one-max problem). GA and GP have shown poor search performance in
deceptive problems ([6]) where the condition above is not satisfied. However, EDAs have been
reported to show much better search performance for some problems that GA and GP do not
handle well. As in GAs, EDAs usually employ fixed length linear arrays to represent solution
candidates (these EDAs are referred to as GA-EDAs in the present chapter). This decade,
EDAs have been extended so as to handle programs and functions having tree structures (we
refer to these as GP-EDAs in the present chapter). Since tree structures have different node
number, the model learning is much more difficult than that of GA-EDAs. From the viewpoint
of modeling types, GP-EDAs can be broadly classified into two groups: probabilistic
proto-type tree (PPT) based methods and probabilistic context-free grammar (PCFG) based
methods. PPT-based methods employ techniques devised in GA-EDAs by transforming
variable length tree structures into fixed length linear arrays. PCFG-based methods employ

©2012 Hasegawa, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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PCFG to model tree structures. PCFG-based methods are more advantageous than PPT-based
methods in the sense that PCFG-based methods can estimate position-independent building
blocks.

The conventional PCFG adopts the context freedom assumption that the probabilities of
production rules do not depend on their contexts, namely parent or sibling nodes. Although
the context freedom assumption makes parameter estimation easier, it cannot in principle
consider interaction among nodes. In general, programs and functions have dependencies
among nodes, and as a consequence, the conventional PCFG is not suitable as a baseline
model of GP-EDAs. In the field of natural language processing (NLP), many approaches have
been proposed in order to weaken the content freedom assumption of PCFG. For instance,
the vertical Markovization annotates symbols with their ancestor symbols and has been
adopted as a baseline grammar of vectorial stochastic grammar based GP (vectorial SG-GP)
or grammar transformation in an EDA (GT-EDA) ([4]) (see Section 2). Matsuzaki et al. ([17])
proposed the PCFG with latent annotations (PCFG-LA), which assumes that all annotations
are latent and the annotations are estimated from learning data. Because the latent annotation
models are much richer than fixed annotation models, it is expected that GP-EDAs using
PCFG-LA may more precisely grasp the interactions among nodes than other fixed annotation
based GP-EDAs. In GA-EDAs, EDAs with Bayesian networks or Markov networks exhibited
better search performance than simpler models such as a univariate model. In a similar way,
it is generally expected that GP-EDAs using PCFG-LA are more powerful than GP-EDAs
with PCFG with heuristics-based annotations because the model flexibility of PCFG-LA is
much richer. We have proposed a GP-EDA named programming with annotated grammar
estimation (PAGE) which adopts PCFG-LA as a baseline grammar ([9, 12]). In Section 4 of the
present chapter, we explain the details of PAGE, including the parameter update formula.

As explained above, EDAs model promising solutions with parametric distributions. For the
case in multimodal problems, it is not sufficient to express promising solutions with only
one model, because dependencies for each optimal solution are different in general. When
considering tree structures, this problem arises even in unimodal optimization problems due
to diversity of tree expression. These problems can be tackled by considering global contexts
in each individual, which represents which optima (e.g. multiple solutions in multimodal
problems) it derives from. Consequently, we have proposed the PCFG-LA mixture model
(PCFG-LAMM) which extends PCFG-LA into a mixture model, and have also proposed a new
GP-EDA named unsupervised PAGE (UPAGE) which employs PCFG-LAMM as a baseline
grammar ([11]). By using PCFG-LAMM, not only local dependencies but also global contexts
behind individuals can be taken into account.

The main objectives of proposed algorithms may be summarized as follows:

1. PAGE employs PCFG-LA to consider local dependencies among nodes.

2. UPAGE employs PCFG-LAMM to take into account global contexts behind individuals in
addition to the local dependencies.

This chapter is structured as follows: Following a section on related work, we briefly
introduce the basics of PCFG. We explain PAGE in Section. 4, where details of PCFG-LA,
forward–backward probabilities and a parameter update formula are provided. In Section 5,
we propose UPAGE, which is a mixture model extension of PAGE. We describe PCFG-LAMM
and also derive a parameter update formula for UPAGE. We compare the performance of
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UPAGE and PAGE using three benchmark tests selected for experiments. We discuss the
results obtained in these experiments in Section 6. Finally, we conclude the present chapter in
Section 7.

2. Related work

Many GP-EDAs have been proposed, and these methods can be broadly classified into two
groups: (i) PPT based methods and (ii) grammar model based methods.

Methods of type (i) employ techniques developed in GA-EDAs. This type of algorithm
converts tree structures into the fixed-length chromosomes used in GA and applies
probabilistic models of GA-EDAs. Probabilistic incremental program evolution (PIPE) ([25])
is a univariate model, which can be considered to be a combination of population-based
incremental learning (PBIL) ([3]) and GP. Because tree structures have explicit edges between
parent and children nodes, estimation of distribution programming (EDP) ([37, 38]) considers
the parent–children relationships in the tree structures. Extended compact GP (ECGP) ([26])
is an extension of the extended compact GA (ECGA) ([7]) to GP and ECGP can take into
account the interactions among nodes. ECGP infers the group of marginal distribution
using the minimum description length (MDL) principle. BOA programming (BOAP) ([15])
uses Bayesian networks for grasping dependencies among nodes and is a GP extension
of the Bayesian optimization algorithm (BOA) ([20]). Program optimization with linkage
estimation (POLE) ([8, 10]) estimates the interactions among nodes by estimating the Bayesian
network. POLE uses a special chromosome called an expanded parse tree ([36]) to convert
GP programs into linear arrays, and several extended algorithms of POLE have been
proposed ([27, 39]). Meta-optimizing semantic evolutionary search (MOSES) ([16]) extends
the hierarchical Bayesian optimization algorithm (hBOA) ([19]) to program evolution.

Methods of type (ii) are based on Whigham’s grammar-guided genetic programming (GGGP)
([33]). GGGP expresses individuals using derivation trees (see Section 3), which is in contrast
with the conventional GP. Whigham indicated the connection between PCFG and GP ([35]),
and actually, the probability table learning in GGGP can be viewed as an EDA with local
search. Stochastic grammar based GP (SG-GP) ([23]) applied the concept of PBIL to GGGP.
The authors of SG-GP also proposed vectorial SG-GP, which considers depth in its grammar
(simple SG-GP is then called scalar SG-GP). Program evolution with explicit learning (PEEL)
([28]) takes into account the positions (arguments) and depths of symbols. Unlike SG-GP
and PEEL, which employ predefined grammars, grammar model based program evolution
(GMPE) ([29]) learns not only parameters but also the grammar itself from promising
solutions. GMPE starts from specialized production rules which exclusively generate learning
data and merges non-terminals to yield more general production rules using the MDL
principle. Grammar transformation in an EDA (GT-EDA) ([4]) extracts good subroutines
using the MDL principle. GT-EDA starts from general rules and expands non-terminals
to yield more specialized production rules. Although the concept of GT-EDA is similar to
that of GMPE, the learning procedure is opposite to GMPE [specialized to general (GMPE)
versus general to specialized (GT-EDA)]. Tanev proposed GP based on a probabilistic context
sensitive grammar ([31, 32]). He used sibling nodes and a parent node as context information,
and production rule probabilities are expressed by conditional probabilities of these context
information. Bayesian automatic programming (BAP) ([24]) uses a Bayesian network to
consider relations among production rules in PCFG.
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There are other GP-EDAs not belonging to either of the groups presented above. N-gram GP
([21]) is based on the linear GP ([18]), which is the assembly language of a register-based
CPU, and learns the sub-sequences using an N-gram model. The N-gram model is very
popular in NLP which considers N consecutive sub-sequences for calculating the probabilities
of symbols. AntTAG ([1]) also shares similar concepts with GP-EDAs, although AntTAG does
not employ a statistical inference method for probability learning; instead, AntTAG employs
the ant colony optimization method (ACO), where the pheromone matrix in ACO can be
interpreted as a probability distribution.

3. Basics of PCFG

In this section, we explain basic concepts of PCFG.

The context-free grammar (CFG) G is defined by four variables G = {N , T ,R,B}, where the
meanings of these variables are listed below.

• N : Finite set of non-terminal symbols

• T : Finite set of terminal symbols

• R: Finite set of production rules

• B: Start symbol

It is important to note that the terms “non-terminal” and “terminal” in CFG are different
from those in GP (for example in symbolic regression problems, not only variables x, y but
also sin,+ are treated as terminals in CFG). In CFG, sentences are generated by applying
production rules to non-terminal symbols, which are generally given by

A → α (A ∈ N , α ∈ (N ∪ T )∗). (1)

In Equation 1, (N ∪ T )∗ represents a set of possible elements composed of (N ∪ T ). By
applying production rules to the start symbol B, grammar G generates sentences. A language
generated by grammar G is represented by L(G). If W ∈ L(G), then W ∈ T ∗.

By applying production rules, non-terminal A is replaced by another symbol. For instance,
application of the production rule represented by Equation 1 to α1 Aα2(α1, α2 ∈ (N ∪T )∗, A ∈
N ) yields α1αα2. In this case, it is said that “α1 Aα2 derived α1αα2”, and this process is
represented as follows:

α1 Aα2 ⇒
G

α1αα2.

Furthermore, if we have the following consecutive applications

α1 ⇒
G

α2 · · · ⇒
G

αn(αi ∈ (N ∪ T )∗),

αn is derived from α1 and is described by α1
∗⇒
G

αn . This derivation process can be represented

by a tree structure, which is known as a derivation tree. Derivation trees of grammar G are
defined as follows.

1. Node is an element of (N ∪ T )

2. Root is B
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3. Branch node is an element of N
4. If children of A ∈ N are α1α2 · · · αk (αi ∈ (N ∪ T )) from left, production rule A →

α1α2 · · · αk is an element of R
We next explain CFG with an example. We now consider a univariate function f (x) composed
of sin, cos, exp, log and arithmetic operators (+, −, × and ÷). A grammar Greg can be

B = {�expr�},

N = {�expr� , �op2� , �op1� , �var� , �const�},

T = {+,−,×,÷, sin, cos, exp, log, x, C}.

We define the following production rules.

# Production rule

0 �expr� → �op2� �expr� �expr�
1 �expr� → �op1� �expr�
2 �expr� → �var�
3 �expr� → �const�
4 �op2� → +
5 �op2� → −
6 �op2� → ×
7 �op2� → ÷
8 �op1� → sin
9 �op1� → cos

10 �op1� → exp
11 �op1� → log
12 �var� → x
13 �const� → C (constant)

Greg derives univariate functions by applying the production rules. Suppose we have the
following derivation:

�expr� → �op2� �expr� �expr�
→ + �expr� �expr�
→ + �op2� �expr� �expr� �expr�
→ ++ �expr� �expr� �expr�
→ ++ �op1� �expr� �expr� �expr�
→ ++ log �expr� �expr� �expr�
→ ++ log �var� �expr� �expr�
→ ++ log x �expr� �expr�
→ ++ log x �var� �expr�
→ ++ log x x �expr�
→ ++ log x x �const�
→ ++ log x x C.
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Figure 1. (a) Derivation tree for log x + x + C and (b) its corresponding S-expression in GP.

In this case, the derived function is

f (x) = log x + x + C,

and its derivation process is represented by the derivation tree in Figure 1(a).

Although functions and programs are represented with standard tree representations
(S-expression) in the conventional GP (Figure 1(b)), derivation trees can express the same
functions and programs. Consequently, derivation trees can be used in program evolution,
and GGGP ([33, 34]) adopted derivation trees for its chromosome.

We next proceed to PCFG, which extends CFG by adding probabilities to each production
rule. For example, the likelihood (probability) of the derivation tree in Fig. 1(a) is

P(W, T) = π(�expr�)β(�expr� → �op2� �expr� �expr�)2β(�op2� → +)2

× β(�expr� → �op1� �expr�)β(�op1� → log)

× β(�expr� → �const�)β(�expr� → �var�)2β(�const� → C)β(�var� → x)2,

where W ∈ T ∗ is a sentence (i.e. W corresponds to log x + x + C in Greg), T is a derivation
tree, π(�expr�) is the probability of �expr� and β(A → α) is the probability of a production
rule A → α. Furthermore, the probability P(W) of sentence W is given by calculating the
marginal probability in terms of T ∈ Φ(W):

P(W) = ∑
T∈Φ(W)

P(W, T), (2)

where Φ(W) is the set of all possible derivation trees which derive W. In NLP, inference
of the production rule parameters β(A → α) is carried out with learning data W =
{W1, W2, · · · }, which is a set of sentences. The learning data does not have information
about derivation processes. Because there are many possible derivations Φ(W) for large
sentences, directly calculating P(W) with marginalization in terms of Φ(W) (Equation 2) is
computationally intractable. Consequently, a computationally efficient method called the
inside–outside algorithm is used to estimate the parameters. The inside–outside algorithm
takes advantage of dynamic programming to reduce the computational cost. However, in
contrast to the case of NLP, the derivation trees are observed in GP-EDAs, and the parameter
estimation of production rules in GP-EDAs with PCFG is very easy. However, when using
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expexp

z z

Figure 2. (a) Complete tree with annotations and (b) its observed tree.

more complicated grammars such as PCFG-LA, more advanced estimation methods (i.e. the
expectation maximization (EM) algorithm ([5])) have to be used even when derivation trees
are given.

4. PAGE

Our proposed algorithm PAGE is based on PCFG-LA. In PCFG-LA, latent annotations are
estimated from promising solutions using the EM algorithm, and PCFG-LA takes advantage
of forward–backward probabilities for computationally efficient estimation. In this section,
we describe the details of PCFG-LA, forward-backward probabilities and a parameter update
formula derived from the EM algorithm.

4.1. PCFG-LA

Although the PCFG-LA used in PAGE has been developed specifically for the present
application, it is essentially identical to the conventional PCFG-LA. In this section, we describe
the specialized version of PCFG-LA. For further details on PCFG-LA, the reader may refer to
Ref. ([17]).

PCFG-LA assumes that every non-terminal is labeled with annotations. In the complete
form, non-terminals are represented by A[x], where A is the non-terminal symbol, x(∈ H)
is an annotation (which is latent), and H is a set of annotations (in this paper, we take
H = {0, 1, 2, 3, · · · , h − 1}, where h is the annotation size). Fig. 2 shows an example of a tree
with annotations (a), and the corresponding observed tree (b). The likelihood of an annotated
tree (complete data) is given by

P(Ti, Xi;β,π) = ∏
x∈H

π(S [x])δ(x;Ti,Xi) ∏
r∈R[H]

β(r)c(r;Ti,Xi), (3)

where Ti denotes the ith derivation tree; Xi is the set of latent annotations of Ti represented by
Xi = {x1

i , x2
i , · · · } (xj

i is the jth annotation of Ti); π(S [x]) is the probability of S [x] at the root
position; β(r) is the probability of the annotated production rule r ∈ R[H]; δ(x; Ti, Xi) is 1 if
the annotation at the root node is x in the complete tree Ti, Xi and is 0 otherwise; c(S [x] →
α; Ti, Xi) is the number of occurrences of rule S [x] → α in the complete tree Ti, Xi; h is the
annotation size that is specified in advance as a parameter; β = {β(S [x] → α)|S [x] → α ∈
R[H]}; and π = {π(S [x])|x ∈ H}. The set of annotated rules R[H] is given in Equation 8.
We summarized variables in Appendix B.
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(a) Forward prob. (b) Backward prob.

Figure 3. (a) Forward and (b) backward probabilities. The superscripts denote the indices of
non-terminals (i in S i[y], for example).

The likelihood of an observed tree can be calculated by summing over annotations:

P(Ti;β,π) = ∑
Xi

P(Ti, Xi;β,π). (4)

PCFG-LA estimates β and π using the EM algorithm. Before explaining the estimation
procedure, we should note the form of production rules. In PAGE, production rules are
not Chomsky normal form (CNF), as is assumed in the original PCFG-LA, because of the
understandability of GP programs. Any function which can be handled with traditional GP
can be represented by

S → gS ...S , (5)

which is a subset of Greibach normal form (GNF). Here S ∈ N and g ∈ T (N and T are the
sets of non-terminal and terminal symbols in CFG; see Section 3). A terminal symbol g in CFG
is a function node (+,−, sin, cos ∈ F) or a terminal (v, w ∈ T) in GP (F and T denote set of GP
functions and terminals, respectively). Annotated production rules are

S [x] → gS [z1] ...S [zamax ], (6)

where x, zm ∈ H and amax is the arity of g in GP. If g has amax arity, the number of parameters
for the production rule S → g S ...S with annotations is hamax+1, which increases exponentially
as the arity number increases. In order to reduce the number of parameters, we assume that
all the right-hand side non-terminal symbols have the same annotation, that is

S [x] → g S [y]S [y]...S [y]. (7)

With this assumption, the number of parameters can be reduced to h2, which is tractable. Let
R[H] be the set of annotated rules expressed by Equation 8. R[H] is defined by

R[H] = {S [x] → gS [y]S [y]...S [y]|x, y,∈ H, g ∈ T }. (8)

4.2. Forward–backward probability

We explain forward and backward probabilities for PCFG-LA in this section. PCFG-LA ([17])
adopted forward and backward probabilities to apply the EM algorithm ([5]). The backward
probability bi

T(x;β,π) represents the probability that the tree beneath the ith non-terminal
S [x] is generated (β and π are parameters, Fig. 3 (b)), and the forward probability f i

T(y;β,π)
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Figure 4. Example of a derivation tree and values of the specific functions. The superscripts denote the
indices of non-terminals.

represents the probability that the tree above the ith non-terminal S [y] is generated (Fig. 3
(a)). Forward and backward probabilities can be recursively calculated as follows:

bi
T(x;β,π) = ∑

y∈H
β(S [x] → gi

T S [y]...S [y]) ∏
j∈ch(i,T)

bj
T(y;β,π), (9)

f i
T(y;β,π) = ∑

x∈H
f pa(i,T)
T (x;β,π)β(S [x] → gpa(i,T)

T S [y]...S [y])

× ∏
j∈ch(pa(i,T),T),j �=i

bj
T(y;β,π) (i �= 1), (10)

f i
T(y;β,π) = π(S [y]) (i = 1), (11)

where ch(i, T) is a function that returns the set of non-terminal children indices of the ith
non-terminal in T, pa(i, T) returns the parent index of the ith non-terminal in T, and gi

T is a
terminal symbol in CFG and is connected to the ith non-terminal symbol in T. For example,
for the tree shown in Fig. 4, ch(3, T) = {5, 6}, pa(5, T) = 3, and g2

T = sin.

Using the forward–backward probabilities, P(T;β,π) can be expressed by the following two
equations:

P(T;β,π) = ∑
x∈H

π(S [x])b1
T(x;β,π), (12)

P(T;β,π) = ∑
x,y∈H

{
β(S [x] → gS [y]...S [y]) f i

T(x;β,π)

× ∏
j∈ch(i,T)

bj
T(y;β,π)

}
. (i ∈ cover(g, T)) (13)

Here, cover(g, Ti) represents a function that returns a set of non-terminal indices at which the
production rule generating g without annotations is rooted in Ti. For example, if g = + and
T is the tree represented in Fig. 4, then cover(+, T) = {1, 3}.

4.3. Parameter update formula

We describe the parameter estimation in PCFG-LA. Because PCFG-LA contains latent
variables X, the parameter estimation is carried out with the EM algorithm. Let β and π
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be current parameters β and π be nextstep parameters. The Q function to optimize in the EM
algorithm can be expressed as follows:

Q(β,π|β,π) =
N

∑
i=1

∑
Xi

P(Xi|Ti;β,π) log P(Ti, Xi;β,π), (14)

where N is the number of learning data (promising solutions in EDA). A set of learning
data is represented by D ≡ {T1, T2, · · · , TN}. Using the forward–backward probabilities and
maximizing Q(β,π|β,π) under constraints ∑

α
β(S [x] → α) = 1 and ∑

x
π(S [x]) = 1, we

obtain the following update formula:

π(S [x]) ∝ π(S [x])
N

∑
i=1

b1
Ti
(x;β,π)

P(Ti;β,π)
, (15)

β(S [x] → gS [y]...S [y]) ∝ β(S [x] → g S [y]...S [y])

×
N

∑
i=1

[
1

P(Ti;β,π) ∑
j∈cover(g,Ti)

{
f j
Ti
(x;β,π) ∏

k∈ch(j,Ti)

bk
Ti
(y;β,π)

}]
. (16)

The EM algorithm maximizes the log-likelihood given by

L(β,π;D) =
N

∑
i=1

log P(Ti;β,π). (17)

By iteratively performing Equations 15–16, the log-likelihood monotonically increases and we
obtain locally maximum likelihood estimation parameters. For the case of the EM algorithm,
the annotation size h has to be given in advance. Because the EM algorithm is a point
estimation method, this algorithm cannot estimate the optimum annotation size. For the
case of models that do not include latent variables, a model selection method such as Akaike
information criteria (AIC) or Bayesian information criteria (BIC) is often used. However, these
methods take advantage of the asymptotic normality of estimators, which is not satisfied in
models that include latent variables. In Ref. ([12]), we derived variational Bayesian (VB) ([2])
based inference for PCFG-LA, which can estimate the optimal annotation size. Because the
derivation of the VB-based algorithm is much more complicated than that of the EM algorithm
and because such explanation is outside the scope of this chapter, we do not explain the details
of the VB-based algorithm. For details of VB-based PAGE, please read Ref. ([12]).

The procedures of PAGE are listed below.

1. Generate initial population
Initial population P0 is generated by randomly creating M individuals.

2. Select promising solutions
N individuals Dg are selected from a population of gth generation Pg. In our
implementation, we use the truncation selection.

3. Parameter estimation
Using a parameter update formula (Equations 15–16), converged parameters (β∗,π∗) are
estimated with learning data Dg.
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Figure 5. Illustrative description of PCFG-LAMM used in UPAGE.

4. Generation of new individuals
EDA generates new individuals by sampling from the predictive posterior distributions,
namely

P(T, X|Dg) = P(T, X;β∗,π∗).
Since the EM algorithm is a point estimation method, new individuals can be generated
with probabilistic logic sampling which is computationally efficient. The details of
the sampling procedures are summarized below (note, when at the maximum depth
limitation, select terminal nodes unconditionally).

(a) A root node is selected following probability distribution π∗ = {π∗(S [x])|x ∈ H}.
(b) If there are non-terminal symbols S [x] (x ∈ H) in a derivation tree, select a production

rule according to the probability distribution

β∗(S [x]) = {β∗(S [x] → α)|S [x] → α ∈ R[H]}.

Repeat (b) until there are no non-terminal symbols left in the derivation tree.

5. Unsupervised PAGE

In this section, we introduce UPAGE ([11]) which is a mixture model extension of PAGE.
UPAGE uses PCFG-LAMM as a baseline grammar, and we explain details of PCFG-LAMM
and a parameter update formula in this section.

5.1. PCFG-LAMM

Although PCFG-LA is suitable for estimating local dependencies among nodes, it cannot
consider global contexts behind individuals. Suppose there are two optimal solutions
represented by F1(x) and F2(x). In this case, a population includes solution candidates for
F1(x) and F2(x) at the same time. Since building blocks for two optimal solutions are different,
model and parameter learning with one model results in slow convergence due to the mixed
learning data. Furthermore in GP, there are multiple optimal structures even if the problems to
be solved are not multimodal. For instance, if an optimum includes a substructure represented
by sin(2x), sin(2x) as well as 2 sin(x) cos(x) which are mathematically equivalent can be
building blocks, where their tree representations are different. When modeling such a mixed
population, it is very difficult for PCFG-LA to estimate these multiple structures separately

59Programming with Annotated Grammar Estimation



12 Will-be-set-by-IN-TECH

as in the multimodal case. We have proposed a PCFG-LAMM which is a mixture model
extension of PCFG-LA and have also proposed UPAGE based on PCFG-LAMM.

PCFG-LAMM assumes that the probability distributions are a mixture of more than two
PCFG-LA models. In PCFG-LAMM, each solution is considered to be sampled from either
of the PCFG-LA models (Figure 5). We introduce a latent variable zk

i , where zk
i is 1 when the

ith derivation tree is generated from the kth model and 0 otherwise (Zi = {z1
i , z2

i , · · · , zμ
i }).

We summarized variables in Appendix B. As a consequence, PCFG-LAMM handles Xi and Zi
as latent variables. The likelihood of complete data is given by

P(Ti, Xi, Zi;β,π,ζ) =
μ

∏
k=1

{
ζkP(Ti, Xi;β

k,πk)
}zk

i

=
μ

∏
k=1

{
ζk ∏

x∈H
πk(S [x])δ(x;Ti,Xi) ∏

r∈R[H]

βk(r)c(r;Ti,Xi)
}zk

i

, (18)

where ζk is the mixture ratio of the kth model (ζ = {ζ1, ζ2, · · · , ζμ} where ∑k ζk = 1).
βk(r) and πk(S [x]) denote the probabilities of production rule r and root S [x] of the kth
model, respectively. By calculating the marginal of Equation 18 with respect to Xi and Zi,
the likelihood of observed tree Ti is calculated as

P(Ti;β,π,ζ) =
μ

∑
k=1

{
ζkP(Ti;β

k,πk)
}

=
μ

∑
k=1

{
ζk ∑

x∈H
πk(S [x])b1

Ti
(x;βk,πk)

}
. (19)

5.2. Parameter update formula

As in PCFG-LA, the parameter inference of PCFG-LAMM is carried out via the EM algorithm
because PCFG-LAMM contains latent variables Xi and Zi. Let β, π and ζ be current
parameters β, π and ζ be nextstep parameters. The Q function of the EM algorithm is given
by

Q(β,π, ζ|β,π, ζ) =
N

∑
i=1

∑
Xi

∑
Zi

P(Xi, Zi|Ti;β,π, ζ) log P(Ti, Xi, Zi;β,π, ζ). (20)

By maximizing Q(β,π, ζ|β,π,ζ) under constraints (∑
k

ζk = 1, ∑
α

βk(S [x] → α) = 1 and

∑
x

πk(S [x]) = 1), a parameter update formula can be obtained as follows (see Appendix B):

β
k
(S [x] → gS [y] · · · S [y]) ∝

N

∑
i=1

{
βk(S [x] → gS [y] · · · S [y])

P(Ti;β,π,ζ)
ζk

× ∑
�∈cover(g,Ti)

f �Ti
(x;βk,πk) ∏

j∈ch(�,Ti)

bj
Ti
(y;βk,πk)

}
, (21)

πk ∝
N

∑
i=1

{
πk(S [x])

P(Ti;β,π, ζ)
ζkb1

Ti
(x;βk,πk)

}
, (22)
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ζ
k ∝

N

∑
i=1

{
ζkP(Ti;βk,πk)

P(Ti;β,π, ζ)

}
. (23)

The parameter inference starts from some initial values and converges to a local optimum
using Equations 21–23. A log-likelihood is given by

L(β,π, ζ;D) =
N

∑
i=1

log P(Ti;β,π, ζ). (24)

The procedures of UPAGE are listed below.

1. Generate initial population
Initial population P0 is generated by randomly creating M individuals. In our
implementation, the ratio between production rules of function nodes (e.g. S [x] →
+ S [y] S [y]) and those of terminal nodes (e.g. S [x] → + S [y]S [y]) are set to 4 : 1.

2. Select promising solutions
N individuals Dg are selected from a population of gth generation Pg. In our
implementation, we used the truncation selection.

3. Parameter estimation
Using a parameter update formula (Equations 21–23), converged parameters (β∗,π∗, ζ∗)
are estimated with learning data Dg.

4. Generation of new individuals
EDA generates new individuals by sampling from the predictive posterior distributions,
namely

P(T, X, Z|Dg) = P(T, X, Z;β∗,π∗, ζ∗).
Since the EM algorithm is a point estimation method, new individuals can be generated
with probabilistic logic sampling, which is computationally cheap. The details of
the sampling procedures are summarized below (note, when at the maximum depth
limitation, select a terminal node unconditionally).

(a) Select a model following probability distribution ζ∗ = {ζ1∗, ζ2∗, · · · , ζ
μ
∗ }.

(b) Let the selected model index be �. A root node is selected following probability
distribution π�∗ = {π�∗(S [x])|x ∈ H}.

(c) If there are non-terminal symbols S [x] (x ∈ H) in a derivation tree, select a production
rule following the probability distribution

β�∗(S [x]) = {β�∗(S [x] → α)|S [x] → α ∈ R[H]}.

Repeat (c) until there are no non-terminal symbols left in the derivation tree.

5.3. Computer experiments

In order to show the effectiveness of UPAGE, we analyze UPAGE from the viewpoint of
the number of fitness evaluations. We applied UPAGE to three benchmark problems: the
royal tree problem (Section 5.3.1), the bipolar royal tree problem (Section 5.3.2) and the
deceptive MAX (DMAX) problem (Section 5.3.3). Because we want to study the effectiveness
of the mixture model versus PCFG-LA, we specifically compared UPAGE with PAGE. In each
benchmark test, we employed the parameter settings shown in Table 1, where UPAGE and
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PAGE and UPAGE
Meaning Royal Bipolar DMAX

Tree Royal Tree

M Population size 1000 3000 3000
Ps Selection rate 0.1 0.1 0.1
Pe Elite rate 0.01 0.01 0.01

UPAGE
Meaning Royal Bipolar DMAX

Tree Royal Tree

h Annotation size 11 22 22
μ The number of mixtures 2 2 2

PAGE
Meaning Royal Bipolar DMAX

Tree Royal Tree

h Annotation size 16 32 32

Table 1. Main parameter settings of UPAGE and PAGE.

PAGE used the same population size, elite rate and selection rate. For the method-specific
parameters of PAGE and UPAGE, we determined h and μ so that the number of parameters
to be estimated is almost the same in UPAGE and PAGE. In the three benchmark problems,
we carried out UPAGE and PAGE 30 times to compare the number of fitness evaluations and
also performed the Welch t-test (two-tailed) to determine the statistical significance.

5.3.1. Royal tree problem

We apply UPAGE to the royal tree problem ([22]), which has only one optimal solution. The
royal tree problem is a popular benchmark problem in GP. The royal tree problem is suitable
for analyzing GP because the optimal structure of the royal tree is composed of smaller
substructures (building blocks), and hence it well reflects the behavior of GP.

The royal tree problem defines the state perfect tree at each level. The perfect tree at a given
level is composed of the perfect tree that is one level smaller than the given level. Thus, the
perfect tree of level c is composed of the perfect tree of level b. In perfect trees, alphabets of
functions descend by one from a root to leaves in a tree. A function a has a terminal x. The
fitness function of the royal tree problem is given by

Score(Xi) = wbi ∑
j
(waij × Score(Xij)), (25)

where Xi is the ith node in tree structures, and Xij denotes the jth child of Xi. The fitness value
of the royal tree problem is calculated recursively from a root node. In Equation 25, wbi and
waij are weights which are defined as follows:

• waij

• Full Bonus = 2
If a subtree rooted at Xij has a correct root and is a perfect tree.
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Average number of fitness evaluations Standard deviation

UPAGE 6171 28
PAGE 6237 18

P-value of t-test (Welch, two-tailed)

0.74

Table 2. The number of fitness evaluations, standard deviation and P-value of t-test in the royal tree
problem.

• Partial Bonus = 1
If a subtree rooted at Xij has a correct root but is not a perfect tree.

• Penalty = 1/3
If Xij is not a correct root.

• wbi

• Complete Bonus = 2
If a subtree rooted at Xi is a perfect tree.

• Otherwise = 1

In the present chapter, we employ the following GP functions and terminals:

F = {a, b, c, d},

T = {x}.

Here, F and T denote function and terminal sets, respectively, of GP. For details of the royal
tree problem, please see Ref. ([22]).

Table 2 shows the average number of fitness evaluations (along with their standard deviation)
and the P-value of a t-test (Welch, two-tailed). As can been seen with Table 2, there is no
noticeable difference between UPAGE and PAGE in the average number of fitness evaluations,
which is confirmed by the P-value of t-test. The royal tree problem is not multimodal, and
hence the optimal solution has only one tree expression. Consequently, we do not have to
consider global contexts behind optimal solutions, which is an advantage of UPAGE over
PAGE.

5.3.2. Bipolar royal tree problem

We next apply UPAGE to the bipolar royal tree problem. In the field of GA-EDAs, a mixture
model based method UEBNA was proposed, and it was reported that UEBNA is especially
effective in multimodal problems such as two-max problem. Consequently, we apply UPAGE
to a bipolar problem having two optimal solutions, which is a multimodal extension of the
royal tree problem. In order to make the royal tree problem multimodal, we set T = {x, y}
and Score(x) = Score(y) = 1. With this setting, the royal tree problem has two optimal
solutions of x (Fig. 7(a)) and y (Fig. 7(b)). PAGE and UPAGE stop when either of the two
optimal solutions is obtained.

Table 3 shows the average number of fitness evaluations along with their standard deviation.
We see that UPAGE can obtain an optimal solution with a smaller number of fitness
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Figure 6. Example of fitness calculation in the bipolar royal tree problem. (a) Derivation tree and (b)
S-expression.

Figure 7. (a) Optimum structure of x and (b) that of y in the bipolar royal tree problem. These two
structures have the same fitness value.

evaluations than PAGE. Table 3 gives the P-value of a t-test (Welch, two-tailed), which allows
us to say that the difference between UPAGE and PAGE is statistically significant.

Because the bipolar royal tree problem has two optimal solutions (x and y), PAGE learns the
production rule probabilities with learning data containing solution candidates of both x and
y optima. Let us consider the annotation size required to express optimal solutions of the
bipolar royal tree problem of depth 5. For the case of PAGE, the minimum annotation size to
be able to learn the two optimal solutions separately is 10. In contrast, UPAGE can express
the two optimal solutions with mixture size 2 and annotation size 5, which results in a smaller
number of parameters. This consideration shows that a mixture model is more suitable for
this class of problems.

Figure 8 shows the increase in the log-likelihood for the bipolar royal tree problem, in
particular, the transitions at generation 0 and generation 5. As can been seen from the figure,
the log-likelihood converges after about 10 iterations. The log-likelihood improvement at
generation 5 is larger than that at generation 0 because the tree structures have converged
toward the end of the search.

5.3.3. DMAX Problem

We apply UPAGE to the DMAX problem ([8, 10]), which has deceptiveness when it is solved
with GP. The main objective of the DMAX problem is identical to that of the original MAX
problem: to find the functions that return the largest real value under the limitation of a
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Average number of fitness evaluations Standard deviation

UPAGE 25839 4737
PAGE 31878 4333

P-value of t-test (Welch, two-tailed)

4.49 × 10−6

Table 3. The number of fitness evaluations, standard deviation and P-value of t-test in the bipolar royal
tree problem.

Figure 8. Transitions of loglikelihood of UPAGE in the bipolar royal tree problem.

maximum tree depth. However, the symbols used in the DMAX problem are different from
those used in the MAX problem. The DMAX problem has three parameters, and the difficulty
of the problem can be tuned using these three parameters. For the problem of interest in the
present chapter, we selected m = 3 and r = 2, whose deceptiveness is of medium degree. In
this setting, the GP terminals and functions are

F = {+3,×3},

T = {0.95,−1},

where +3 and ×3 are 3 arity addition and multiplication operators, respectively. The optimal
solution in the present setting is given by

(−1 × 3)26(0.95 × 3) � 7.24 × 1012. (26)

Table 4 shows the average number of fitness evaluations along with their standard deviation
for the DMAX problem. We can see that UPAGE obtained the optimal solution with a smaller
number of fitness evaluations compared to PAGE. Table 4 gives the P-value of a t-test (Welch
and two-tailed) and allows us to say that the difference in the averages of UPAGE and PAGE
is statistically significant.

In the bipolar royal tree problem, expressions of the two optimal solutions (x or y) are
different, and thus building blocks of the optima are also different. In contrast, the DMAX
problem has mathematically only one optimal solution, which are represented by Equation 26.
Although the DMAX problem is a unimodal problem, the DMAX problem has different
expressions for the optimal solution due to commutative operators such as +3 and ×3. From
this experiment, we see that UPAGE is superior to PAGE for this class of benchmark problems.
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Average number of fitness evaluations Standard deviation

UPAGE 36729 3794
PAGE 38709 2233

P-value of t-test (Welch, two-tailed)

1.94 × 10−2

Table 4. The number of fitness evaluations, standard deviation and P-value of t-test in the DMAX
problem.

Figure 9. The average number of fitness evaluations (smaller is better) in royal tree problem, bipolar
royal tree problem and DMAX problem relative to those of PAGE (i.e. the PAGE results are normalized
to 1).

Common parameters in PAGE and UPAGE
Meaning Bipolar Royal Tree

M Population size 6000
Ps Selection rate 0.3
Pe Elite rate 0.1

UPAGE
Meaning Bipolar Royal Tree

h Annotation size 16
μ The number of mixtures 4

PAGE
Meaning Bipolar Royal Tree

h Annotation size 32

Table 5. Parameter settings for a multimodal problem.

5.4. Multimodal problem

In the preceding section, we evaluated the performance of UPAGE from the viewpoint of the
average number of fitness evaluations. In this section, we show the effectiveness of UPAGE
in terms of its capability for obtaining multiple solutions of a multimodal problem. Because
there are two optimal solutions in the bipolar royal tree problem (see Fig. 7(a) and (b)), we
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Successful runs / Total runs

UPAGE 10/15
PAGE 0/15

Table 6. The number of runs which could obtain both optimal solutions. We carried out 15 runs in total.

show that UPAGE can obtain both optimal solutions in a single run. Parameter settings are
shown in Table 5.

Table 6 shows the number of successful runs in which both optimal solutions are obtained in a
single run. As can been seen in Table 6, UPAGE succeeded in obtaining both optimal solutions
in 10 out of 15 runs, whereas PAGE could not obtain them at all.

Table 7 shows production rule probabilities of UPAGE in a successful run. Although the
mixture size is μ = 4, we have only presented probabilities of Model = 0 and Model = 3, which
are related to optimal solutions of y (Fig. 7(b)) and x (Fig. 7(a)), respectively (i.e. Model = 1
and Model = 2 are not shown). Because we see in Model = 0 that the probabilities generating
y are very high, we consider that the optimal solution of y was generated by Model = 0. On
the other hand, it is estimated that the optimal solution of x was generated by Model = 3.
From this probability table, we can confirm that UPAGE successfully estimated the mixed
population separately, because Model = 3 and 0 can generate optimal solutions of x and y
with relatively high probability. It is very difficult for PAGE to estimate multiple solutions
because PCFG-LA is not a mixture model and it is almost impossible to learn the distributions
separately. As was shown in Section 5.3, UPAGE is superior to PAGE in terms of the number
of fitness evaluations. From Table 7, it is considered that this superiority is due to UPAGE’s
capability of learning distributions in a separate way.

6. Discussion

In the present chapter, we have introduced PAGE and UPAGE. PAGE is based on PCFG-LA,
which takes into account latent annotations to weaken the context freedom assumption. By
considering latent annotations, dependencies among nodes can be considered. We reported
in Ref. ([12]) that PAGE is more powerful for several benchmark tests than other GP-EDAs,
including GMPE and POLE.

Although PCFG-LA is suitable for estimating dependencies among local nodes, it cannot
consider global contexts (contexts of entire tree structures) behind individuals. In many
real-world problems, not only local dependencies but also global contexts have to be taken
into account. In order to consider the global contexts, we have proposed UPAGE by extending
PCFG-LA into a mixture model (PCFG-LAMM). In the bipolar royal tree problem, there are
two optimal structures of x and y and the global contexts represent which optima (x or y) each
tree structure comes from. From Table 7, the mixture model of UPAGE successfully worked
and UPAGE could estimate mixed population separately. We have also shown that a mixture
model is effective not only in multimodal problems but also in some unimodal problems,
namely in the DMAX problem. Although the optimal solution of the DMAX problem is
represented by mathematically one expression, the tree expressions are not unique, due to
commutative operators (×3 and +3). Consequently, the mixture model is also effective in
the DMAX problem (see Section 5.3.3), and this situation where there exists the expression
diversity often arises in real world problems. When obtaining multiple optimal solutions
in a single run, UPAGE succeeded in cases for which PAGE obtained only one of the
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Model = 0 Pr

ζ0 0.11
S [1] 1.00
S [0] → aS [10] 0.20
S [0] → aS [2] 0.18
S [0] → aS [5] 0.28
S [1] → d S [4] S [4]S [4] S [4] 1.00
S [10] → x 0.14
S [10] → y 0.86
S [11] → x 0.14
S [11] → y 0.86
S [12] → a S [10] 0.17
S [12] → a S [2] 0.18
S [12] → a S [5] 0.32
S [13] → x 0.21
S [13] → y 0.79
S [14] → b S [7]S [7] 0.10
S [14] → c S [10] S [10] S [10] 0.15
S [15] → x 0.12
S [15] → y 0.88
S [2] → x 0.25
S [2] → y 0.75
S [3] → aS [10] 0.21
S [3] → aS [15] 0.18
S [3] → aS [2] 0.17
S [3] → aS [5] 0.22
S [4] → c S [8]S [8] S [8] 1.00
S [5] → y 0.97
S [6] → y 1.00
S [7] → x 0.52
S [7] → y 0.48
S [8] → b S [0]S [0] 0.50
S [8] → b S [12]S [12] 0.17
S [8] → b S [3]S [3] 0.31
S [9] → x 0.14
S [9] → y 0.86

Model = 3 Pr

ζ3 0.52
S [11] 1.00
S [0] → aS [13] 0.16
S [0] → aS [2] 0.29
S [0] → aS [5] 0.32
S [1] → b S [0]S [0] 0.13
S [1] → b S [14]S [14] 0.19
S [1] → b S [3]S [3] 0.15
S [1] → b S [7]S [7] 0.17
S [1] → b S [8]S [8] 0.32
S [10] → c S [1] S [1]S [1] 1.00
S [11] → d S [10] S [10] S [10] S [10] 1.00
S [12] → a S [4] 0.13
S [12] → c S [13] S [13] S [13] 0.34
S [12] → x 0.13
S [13] → x 0.72
S [13] → y 0.28
S [14] → a S [15] 0.16
S [14] → a S [4] 0.10
S [14] → a S [5] 0.45
S [14] → a S [6] 0.13
S [15] → x 0.89
S [15] → y 0.11
S [2] → x 0.99
S [3] → aS [13] 0.11
S [3] → aS [15] 0.14
S [3] → aS [2] 0.20
S [3] → aS [5] 0.44
S [4] → x 0.68
S [4] → y 0.32
S [5] → x 0.92
S [6] → x 0.93
S [7] → aS [13] 0.23
S [7] → aS [2] 0.31
S [7] → aS [4] 0.10
S [7] → aS [5] 0.29
S [8] → aS [2] 0.17
S [8] → aS [4] 0.18
S [8] → aS [5] 0.41
S [8] → aS [6] 0.16
S [9] → aS [13] 0.19
S [9] → aS [4] 0.19
S [9] → aS [5] 0.38

Table 7. Estimated parameters by UPAGE in a successful run. Although the number of mixtures is
μ = 4, we only show Model = 0 and Model = 3 related to optimal solutions of y and x, respectively. Due
to limited space, we do not show parameters of production rules which are smaller than 0.1.
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Method Estimation of Position independent Consideration of
interaction among nodes model global contexts

Scalar SG-GP No Yes No
Vectorial SG-GP Partially No No

GT-EDA Yes No No
GMPE Yes Yes No
PAGE Yes Yes No

UPAGE Yes Yes Yes

Table 8. Classification of GP-EDAs and their capabilities.

optima. This result shows that UPAGE is more effective than PAGE not only quantitatively
but also qualitatively. We also note that UPAGE is more powerful than PAGE in terms of
computational time. In our computer experiments, we set the number of parameters in
UPAGE and PAGE to be approximately the same. Figure 10 shows the relative computational
time per generation of UPAGE and PAGE (the computational time of PAGE is normalized to 1)
and we see that UPAGE required only sixty percent of the time required by PAGE. Although
we have shown in Section 5.3.1 that UPAGE and PAGE required approximately the same
number of fitness evaluations to obtain the optimal solution in the royal tree problem, UPAGE
is more effective even for the royal tree problem if the actual computational time is considered.

Figure 10. The computational time per generation of UPAGE and PAGE (smaller is better). The time of
PAGE is normalized to 1.

Table 8 summarizes functionalities of several GP-EDAs. SG-GP employs the conventional
PCFG and hence it cannot estimate dependencies among nodes. Although GT-EDA, GMPE
and PAGE adopt different types of grammar models, they belong to the same class in the sense
that these three methods can take into account dependencies among nodes, which is enabled
by a use of specialized production rules depending on contexts. However, these methods
cannot consider global contexts, and consequently, they are not suitable for estimating
problems having complex distributions. In contrast, in addition to local dependencies among
nodes, UPAGE can consider global contexts of tree structures. The model of UPAGE is the
most flexible among these GP-EDAs, and this flexibility is reflected by the search performance.

In the present implementation of UPAGE, we had to set the mixture size μ and the annotation
size h in advance because UPAGE employed the EM algorithm. However, it is desirable to
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estimate μ and h, as well as β, π and ζ during search. In the case of PAGE, we proposed
PAGE-VB in Ref. ([12]), which adopted VB to estimate the annotation size h. In a similar
fashion, it is possible to apply VB to UPAGE to enable the inference of μ and h.

We have shown the effectiveness of PAGE and UPAGE with benchmark problems not having
intron structures. However, in real-world applications, problems generally include intron
structures, which make the model and parameter inference much more difficult. For such
problems, we consider that intron removal algorithms ([13, 30]) are effective, and application
of such algorithms to GP-EDAs is left as a topic of future study.

7. Conclusion
We have introduced a probabilistic program evolution algorithm named PAGE and its
extension UPAGE. PAGE takes advantage of latent annotations that enables consideration of
dependencies among nodes, and UPAGE incorporates a mixture model for taking into account
global contexts. By applying UPAGE to computational experiments, we have confirmed that
a mixture model is highly effective for obtaining solutions in terms of the number of fitness
evaluations. At the same time, UPAGE is more advantageous than PAGE in the sense that
UPAGE can obtain multiple solutions for multimodal problems. We hope that it will be
possible to apply PAGE and UPAGE to a wide class of real-world problems, which is an
intended future area of study.

Author details
Yoshihiko Hasegawa
The University of Tokyo, Japan

Appendix A: Parameter list
We summarized parameters used in PAGE and UPAGE in the following table.

Target model Parameter Meaning

PAGE and UPAGE δ(x; T, X) Frequency of a root S [x] in a complete tree (0 or 1)
c(r; T, X) Frequency of a production rule r in a complete tree

h Annotation size
H Set of annotation H = {0, 1, · · · h − 1}
Ti Observed derivation tree
xj

i jth latent annotation in Ti
R[H] Set of production rules
N Set of non-terminals in CFG
T Set of terminals in CFG
F Set of function nodes in GP
T Set of terminal nodes in GP

PAGE π(S [x]) Probability of a root S [t]
β(r) Probability of a production rule r

UPAGE ζk Mixture ratio of kth model.
πk(S [x]) Probability of a root S [t] in kth model.

βk(r) Probability of a production rule r in kth model
zk

i zk
k = 1, if ith individual belongs to kth model

μ Mixture size
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Appendix B: Derivation of a parameter update formula for UPAGE

We here explain details of the parameter update formula for UPAGE (see Section 4.1). By
separating Q(β,π, ζ|β,π,ζ) into terms containing β, π and ζ, a parameter update formula
for β, π and ζ can be calculated separately.

We here derive β. Maximization of Q(β,π, ζ|β,π, ζ) under a constraint ∑α β
k
(S [x] → α) = 1

can be performed by the method of Lagrange multipliers:

∂L

∂β
k
(S [x] → α)

= 0, (27)

with

L = Q(β,π, ζ|β,π, ζ) + ∑
k,x

ξk,x

(
1 − ∑

α
β

k
(S [x] → α)

)
, (28)

where ξk,x denote Lagrange multipliers. By calculating Equation 27, we obtain the following
update formula:

β
k
(S [x] → gS [y] · · · S [y]) ∝

N

∑
i=1

∑
Xi

∑
Zi

{
P(Xi, Zi|Ti;β,π,ζ)zk

i

×c(S [x] → gS [y] · · · S [y]; Ti, Xi)} . (29)

Because Equation 29 includes summation in terms of Xi, direct calculation is intractable
due to exponential increase of computational cost. Consequently, we use forward–backward
probabilities. Let ck(S [x] → gS [y] · · · S [y]; Ti) be

ck(S [x] → gS [y] · · · S [y]; Ti)

= ∑
Xi

∑
Zi

P(Xi, Zi|Ti;β,π,ζ)zk
i c(S [x] → g S [y] · · · S [y]; Ti, Xi).

By differentiating the likelihood of complete data (Equation 18) with respect to βk(S [x] →
g S [y] · · · S [y]), we have

ck(S [x] → gS [y] · · · S [y]; Ti)

=
βk(S [x] → gS [y] · · · S [y])

P(Ti;β,π,ζ) ∑
Xi

∑
Zi

∂P(Ti, Xi, Zi;β,π, ζ)
∂βk(S [x] → gS [y] · · · S [y]) .

The last term is calculated as

∑
Xi

∑
Zi

∂P(Ti, Xi, Zi;β,π,ζ)
∂βk(S [x] → gS [y] · · · S [y]) = ζk ∑

Xi

∂P(Ti, Xi;βk,πk)

∂βk(S [x] → g S [y] · · · S [y])
= ζk ∑

�∈cover(g,Ti)

f �Ti
(x;βk,πk) ∏

j∈ch(�,Ti)

bj
Ti
(y;βk,πk).

By this procedure, the update formula for β is expressed with Equation 21, and the update
formula for π is calculated in a similar way (and much easier). The update formula for ζ is
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given by

ζ
k

∝
N

∑
i=1

∑
Xi

∑
Zi

P(Xi, Zi|Ti;β,π,ζ)zk
i

=
N

∑
i=1

1
P(Ti;β,π, ζ) ∑

Xi

∑
Zi

{
zk

i P(Ti, Xi, Zi;β,π, ζ)
}

=
N

∑
i=1

1
P(Ti;β,π, ζ) ∑

Xi

{
ζkP(Ti, Xi;β

k,πk)
}

=
N

∑
i=1

ζkP(Ti;βk,πk)

P(Ti;β,π,ζ)
.
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1. Introduction 

Symbolic regression is a technique which characterizes, through mathematical functions, 
response variables with basis on input variables. Their main features include: need for no (or 
just a few) assumptions about the mathematical model; the coverage of multidimensional 
data, frequently unbalanced with big or small samples. In order to find the plausible 
Symbolic Regression Models (SRM), we used the genetic programming (GP) technique [1]. 

Genetic programming (GP) is a specialization of genetic algorithms (GA), an evolutionary 
algorithm-based methodology inspired by biological evolution, to find predictive functions. 
Each GP individual is evaluated by performing its function in order to determine how its 
output fits to the desired output [2,3]. 

However, depending on the problem, one may notice that the estimates of the SRM found 
from the GP may present errors [4], affecting the precision of the predictive function. To 
deal with this problem, some studies [5,6] substitute the predictive functions, which are 
deterministic mathematical models, by linear regression statistical models (LRM) to 
compose the genetic individual models. 

LRM, as well as the traditional mathematical models, can be used to model a problem and 
make estimates. Their great advantage is the possibility of controlling the estimate errors. 
Nevertheless, the studies available in the literature [5,6] have considered only information 
criteria, such as the sum of least squares [7] and AIC [8], as evaluation indexes with respect 
to the dataset and comparison of the solution candidate models. Despite the models 
obtained through this technique generate good indexes, sometimes the final models may not 
be representative, since the model structure assumptions were not verified, bringing some 
incorrect estimates [9]. 
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So, in this study we propose the use of statistical inference and residual analysis to evaluate 
the final model, obtained through GP, where we check the assumptions about the structure 
of the model. In order to evaluate the proposed approach, we carried out some experiments 
with the prediction of performance of applications in embedded systems. 

This chapter is organized as follows. In Section 2, we briefly introduce the theoretical basis 
of the regression analysis. In Section 3, we detail the main points of the proposed approach. 
In Section 4, we introduce the application of the proposed approach through a case study. 
Section 5 shows the experimental results of the case study. Finally, in Section 6, we raise the 
conclusions obtained with this work. 

2. Linear regression background 
Like most of the statistical analysis techniques, the objective of the linear regression analysis 
is to summarize, through a mathematical model called Linear Regression Model (LRM), the 
relations among variables in a simple and useful way [10]. In some problems, they can also 
be used to specify how one of the variables, in this case called response variable or 
dependent variable, varies as a function of the change in the values of the other variables of 
the relation, called predictive variables, regressive variables or systematic variables. 

The predictive variables can be quantitative or qualitative. The quantitative variables are 
those which can be measured through a quantitative scale (i.e., they have a measurement 
unit). On the other hand, the qualitative variables are divided in classes. The individual 
classes of a classification are called levels or classes of a factor. In the classification of data in 
terms of factors and levels, the important characteristic that is observed is the extent of the 
variables of a factor which can influence the variable of interest [11]. These factors are often 
represented by dummy variables [12]. 

Let D be a factor with five levels. The jth dummy variable Uj for the factor D, with j=1,...,5, 
has the ith value uij, for i =1,...,n, given by 

 1,
0, .

th
i

ij
if D j category of Du
otherwise

 == 


 (1)  

For instance, let there be a variable, which supports a certain characteristic x, as a two-level 
factor D. Taking a sample, shown in Table 1, with 5 different configurations, we can 
represent the factor D with the dummy variables of Table 2. 
 

Support to characteristic x
1 Yes 
2 No 
3 Yes 
4 No 
5 No 

Table 1. Sample with size 5, with several pipeline support configurations. 
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u1 u2
1 1 0 
2 0 1 
3 1 0 
4 0 1 
5 0 1 

Table 2. Representation of the sample of Table 1, through dummy variables. 

We can see in Table 2 that the configurations with support to the characteristic x had values 
u1=1 and u2=0, and that the configurations without support had values u1=0 and u2=1. 

LRMs may also consider the combination of two or more factors. When the LRM has more 
than one factor, the effect of the combination of two or more factors is called interaction effect. 
Interactions occur when the effect of a factor varies according to the level of another factor 
[10]. In contrast, the effect of a simple factor, that is, without interaction, is called main effect. 
The interaction concept is given as follows: if the change in the mean of the response variable 
between two levels of a factor A is the same for different levels of a factor B, then we can say 
that there is no interaction; but if the change is different for different levels of B, then we say 
that there is interaction. Interactions report the effect that factors have over the risk of the 
model, and which are not reported in the analysis of correlation between the factors. 

So, considering the relations between the dependent variables and the predictive variables, 
the statistical linear regression model will be comprised of two functions, one for the mean 
and another for the variance, defined by the following equations, respectively:  

 0 1( | )E Y X x xβ β= = +  (2) 

 
2( | )Var Y X x σ= =  (3) 

where the parameters in the mean function are the intercept β0, which is the value of the 
mean E(Y|X=x) when x is equal to zero, and the slope β1, which is the rate of change in 
E(Y|X=x) for a change of values of X, as we can see in Figure 1. Varying these parameters, it 
is possible to obtain all the line equations. In most applications, these parameters are 
unknown and must be estimated with basis on the problem data. So, we assume that the 
variance function is constant, with a positive value σ2 which is normally unknown. 

Differently from the mathematical models, which are deterministic, linear regression models 
consider the errors between the observed values and these estimated by the line equation. 
So, due to the variance σ2>0, the values observed for the ith response yi are typically different 
from the expected values E(Y|X=xi). In order to consider the error between the observed and 
the expected data, we have the concept of statistical error, or ei, for the case i implicitly 
defined by the equation: 

 ( | )i i iy E Y X x e= = +  (4) 
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Figure 1. Graphic of the line equation E(Y|X=x)=β0 + β1x. 

or explicitly by: 

 ( | )i i ie y E Y X x= − =  (5) 

The ei errors depend on the unknown parameters of the mean function and are random 
variables, corresponding to the vertical distance between the point yi and the function of the 
mean E(Y|X=xi). 

We make two important assumptions about the nature of the errors. First, we assume that 
E(ei|xi)=0. The second assumption is that the errors must be independent, which means that 
the value of the error for one case does not generate information about the value of the error 
for another case. In general, we assume that the errors are normally distributed (statistical 
Gaussian distribution), with mean zero and variance σ2, which is unknown. 

Assuming n pairs of observations (x1, y1), (x2, y2), ..., (xn, yn), the estimates 0β̂  and 1β̂  of β0 
and β1, respectively, must result in a line that best fits to the points. Many statistical methods 
are suggested to obtain estimates of the parameters of a model. Among these models, we 
can highlight the Least Squares and Maximum Likelihood methods. The first one stands out 
for being the most used estimator [13]. So, the Least Squares methods is intended to 
minimize the sum of the squares of the residuals ei, which will be defined next, where the 
estimators are given by the equations: 

 

1 1

1
1
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2 1

1
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ˆ
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 (6) 

 0 1
ˆ ˆy xβ β= −  (7) 
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where x  and y  are given by: 

 1

n

i
i

x
x

n
==


 (8) 

 1

n

i
i

y
y

n
==


 (9) 

With the estimators, the regression line (or model) is given by: 

 0 1
ˆ ˆŷ xβ β= +  (10)  

where each pair of observations meets the relation: 

 0 1
ˆ ˆ , 1,2,..,i i iy x e for i nβ β= + + =  (11)  

From the above equation, we can then define the residual as: 

 ˆ ˆi i ir e y y= = −  (12)  

where êi is the error in the fitness of the model for the ith observation of yi. 

The residuals êi are used to obtain an estimate of the variance σ2 through the sum of the 
squares of êi: 

 

2

2 1
ˆ

ˆ
2

n

i
i

e

n
σ ==

−


 (13) 

According to [14], the traditional project flow for modeling through LRMs can be divided 
into three stages: (i) formulation of models; (ii) fitness and (iii) inference. 

LRMs are a very useful tool, since they are very flexible in stage (i), are simply computable 
in (ii) and have reasonable criteria in (iii). These stages are performed in this sequence. In 
the analysis of complex data, after the inference stage, we may go back to stage (i) and 
choose other models with basis on more detailed information obtained from (iii). 

The first stage, formulation of models, covers the choice of options for the distribution of 
probabilities of the response variable (random component), predictive variables and the 
function that links these two components. The response variable used in this work consists 
in the estimate of the performance of the communication structure of the platform. The 
predictive variables are the configuration parameters of the buses contained in the space of 
the communication project. For this study, we analyzed several linking functions, and 
empirically chose the identity function, because it represents the direct mapping between 
bus configurations and their respective estimated performances. 
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The fitness stage consists in the process of estimation of the linear parameters of the 
generalized linear models. Several methods can be used to estimate the LRM parameters, 
such as the Least Squares and Maximum Likelihood methods. 

Finally, the inference stage has the main objective of checking the adequateness of the model 
and performing a detailed study about the unconformities between the observations and the 
estimates given by the model. These unconformities, when significant, may imply in the 
choice of another linear model, or in the acceptance of aberrant data. Anyway, the whole 
methodology will have to be repeated. The analyst, in this stage, must check the precision 
and the interdependence of the performance estimates, build trust regions and tests about 
the parameters of interest, statistically analyze the residuals and make predictions. 

3. Description of the proposed approach 

The GP algorithm herein used follows the same guidelines of the traditional GP approaches: 
representation of solutions as genetic individuals; selection of the training set; generation of 
the starting population of genetic individuals that are solution candidates; fitness of the 
solution candidates to the training set; selection of parents; evolution, through selection, 
crossover and mutation operators [2]. Besides these activities, this work includes two new 
stages, which consist in the evaluation of the final model, as shown in the flow of Figure 1. 

 
Figure 2. Flow of the proposed PG approach with LRM. 
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When the processing of the GP algorithms ends, due to some stop criterion, (e.g. the 
maximum number of generations is reached), the fittest genetic individual to the data is 
selected to be formally evaluated through statistical inference, with the application of the 
test of assumptions. Depending on the result of the evaluation, the GP algorithm can either 
start a new iteration, generating a new starting population, or present the LRM as a final 
solution. 

If no candidate is approved in the formal evaluation, at the end of the iterations (limited to a 
maximum number as the second stop criterion), the best candidate among all the iterations 
may be reevaluated through residual diagnosing. In this other evaluation method, the 
assumptions about the model may be less formal, becoming, this way, a more subjective 
kind of analysis. 

Each one of the activities presented in the Flow of Figure 1 will be detailed in the next 
subsections. 

3.1. Representation of solutions as genetic individuals 

GP normally uses trees as data structures [15] because the solutions are, commonly, 
mathematical expressions, and then it is necessary to keep their syntactic structure (trees are 
largely used to represent syntactic structures, defined according to some formal grammar 
[16]). 

As seen in the previous subsection, linear regression models are statistical models 
comprised of two elements: a response variable and the independent variables. So, these 
models are structured, in the proposed approach, also as trees, called expression trees, where 
the internal nodes are either linking operators (represented by the arithmetic operator of 
addition) or iteration operators (represented by the arithmetic operator of multiplication) 
acting between the predictive variables, which are located in the leaves of the tree, as shown 
in Figure 3. 

 
Figure 3. Example of LRM modeled as a genetic individual. 

It can be seen, in the top of Figure 3, an LRM, and right below, the respective model in the 
form of a tree, which is the structure of a genetic individual. In this individual, we have, in 
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the roots of the tree and of the sub-tree in the left, the linking operator, and in the leaves we 
have the predictive variables X1, X2 and X3. 

Formally, an LRM modeled as a genetic individual can be defined as a tree containing a 
finite set of one or more nodes, where: 

i. there is a special node called root. 
ii. the rest of the nodes form: 

1. two distinct sets where 
2. each one of these sets is also a tree which, in this case, is also called sub-tree. The 

sub-trees may be either left or right. 
iii. the roots of the tree, and of the adjacent sub-trees, is either a linking or an iteration 

operator.  
iv. the leaves are independent variables. 

Once we define the data structure that will be used to represent the LRMs as genetic 
individuals, the next task, as defined in the flow of Figure 2, is the selection of the points of 
the project space that will be used to form the training set for the GP algorithm. The 
following subsection gives more details about the technique chosen to select points. 

3.2. Selection of the training set 

The selection of the elements that will compose the training set can be done in many ways, 
but techniques like random sampling do not guarantee a distributed sample, and variance-
based sampling does not allow to collect the whole dataset of the sample, and then the 
selected set may not be enough to obtain a linear regression model which enables accurate 
estimates. So, in this work, we use the Design of Experiment technique [17] for the selection 
of points that will compose the training space. 

Design of experiments, also known in statistics as Controlled Experiment, refers to the 
process of planning, designing and analyzing an experiment so that valid and objective 
conclusions can be extracted effectively and efficiently. In general, these techniques are used 
to collect the maximum of relevant information with the minimum consumption of time and 
resources, and to obtain optimal solutions, even when it is impossible to have a functional 
mathematical (deterministic) model [17-20] 

The design of experiment technique adopted in this work is known as Audze-Eglais Uniform 
Latin Hypercube [21,22]. The Audze-Eglais method is based on the following analogy to 
Physics: 

Assume a system composed of points of mass unit which exert repulsive forces among each other, 
causing the system to have potential energy. When the points are freed, from a starting state, 
they move. These points will achieve equilibrium when the potential energy of the repulsive 
forces of the masses is minimal. If the magnitude of the repulsive forces is inversely proportional 
to the square of the distance between the points, then the minimization of equation below will 
produce a system of distributed points, as uniform as possible. 
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 2
1 1

1P P

p q p pq

U
L= = +

=    (14) 

where U is the potential energy and is the distance between the points p and q, and p≠q. 

The points of the project space are comprised of the parameters of the system to be modeled, 
and each point is a combination of the values that these parameters can receive. The Audze-
Eglais method can be applied to these project spaces, provided that we consider the 
intervals (the distances) between the values of each parameter of the system, and that these 
values are taken together, in order to minimize the objective function. 

The minimization of the above equation can be performed through some optimization 
technique or by verification of every possible combination. The use of the second approach 
may be unviable, since the search for each possible combination in project spaces with many 
points has a high computational cost. So, in this study, we used the GPRSKit [23] tool, which 
uses genetic programming techniques to minimize the equation, and outputs the points of 
the project space identified in the optimization of the equation. 

Once defined the training set, the next task is the generation of a starting population of 
genetic individuals, which are LRMs candidate to solution, so the genetic algorithm can 
evolve them. 

3.3. Generation of the starting population of genetic individuals 

There must be a starting population so that the evolution algorithm can act, through the 
application of the selection, crossover and evolution operators. For this, aiming at the 
variability of individuals and consequent improvement on the precision of results, we 
adopted the Ramped Half-and-Half [24] technique. 

This technique selects, initially, a random value to be the maximum depth of the tree to be 
generated. Next, the method for generation of the new tree is selected. Ramped Half-and-Half 
uses two generation methods, where each one generates half of the population. They are 
described below: 

• Growing: this method creates new trees of several sizes and shapes, regarding the 
depth limit previously defined. Figure 4(a) shows an example of a tree created with the 
application of this method. In it, we see that the leaves have different depths. 

• Complete: a tree created with this method has its leaves with the same depth, which is 
also selected at random, but respects the depth limit initially selected. Figure 4(b) shows 
a tree created with this method. Notice that all leaves have the same depths. 

3.4. Description of the utility function (Fitness) 

The fitness of a candidate LRM is evaluated with basis on the quality of the estimates that it 
generates compared to the data obtained from the problem data. The quality of an LRM can 
be quantified through its fitness and its complexity, measured, in this study, by the Akaike 
Information Criterion (AIC) [8], since it is one of the most used criteria [10]. 
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Figure 4. Examples of trees generated from (a) complete generation method and (b) generation by 
growing. 

The AIC can be given by the following equation: 

 2. 2.ln( )AIC tc L= −  (15) 

where tc is the number of terms of the model and L is the likeliness, which is the pooled 
density of all the observations. Considering an independent variable with normal 
distribution with mean 0 1 ixβ β+ and variance σ2, the likeliness can be given by: 

 

2
0 1

1
2

( )
1.

2 2
0 1 2

1( , , )
( 2 )

n

i i
i

y x

n
L e

β β

σβ β σ
σ π

=
− −

−


=  (16) 

3.5. Evolution 

In this stage we apply, to the solution candidate genetic individuals, the selection, mutation 
and evolution operations. The first operation is responsible for the selection of individuals 
that will compose the set of parents. In this set, the genetic crossover function will act, so that 
the genetic content of each individual will be transferred to another one, generating new 
solution candidates. The objective is to group the best characteristics in certain individuals, 
forming better solutions. The mutation function will select some of the individuals to have 
their genetic content randomly changed, to cause genetic variability in the populations, 
avoiding the convergence of the algorithm to a local maximum. 

The selection, crossover and mutation operations are described next. 

3.5.1. Parents selection 

The method for selection of parents must simulate the natural selection mechanism that acts 
on the biological species: the most qualified parents, those which better fits to the problem 
data, generate a large number of children, while the less qualified can also have descendents, 
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so avoiding premature genetic convergence. Consequently, we focus on individuals highly 
fitted, without completely discarding those individuals with very low degree of fitness. 

In order to build a set of parent LRMs, we use the tournament selection method [25]. In this 
approach, a predetermined number of solution candidate LRMs are randomly chosen to 
compete against each other. With this selection technique, the best LRMs of the population 
will only have advantage over the worst, i.e., they will only win the tournament if they are 
chosen. Tournament parameters, like tournament size and generations number, are 
dependent on the problem domain. In this work, they are described in case study section.  

The proposed approach for GP also uses the technique of selection by elitism [26]. In this 
approach, only the individual having the best fitness function value is selected. With this, 
we guarantee that the results of the GP approach will always have a progressive increase at 
each generation. 

3.5.2. Crossover and mutation 

In order to find the LRM that best fits to the data obtained with communication graphs, the 
crossover and mutation operators are applied to the genetic individuals, the LRM trees, as 
shown in Figure 5. The crossover and mutation operators, in genetic programming, are 
similar to those present in conventional genetic algorithms. 

 
Figure 5. Expression trees representing LRMs under the operations of (a) crossover and (b) mutation. 
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In the first operator, represented in Figure 5 (a), the candidates are selected for reproduction 
according to their fitness (fittest candidates have higher probabilities of being selected) and, 
next, exchange their genetic content (sub-trees), randomly chosen, between each other. 
Figure 5(b) illustrates the crossover of the parents y=β0+ β1.X1 +β2.X2 + β3.X3 and y=β0+ β1.X1 
+β2.X4 + β3.X5, generating the children y=β0+ β1.X1 +β2.X2 + β3.X4+ β4.X5 and y=β0+ β1.X1 +β2.X3. 

With mutation, represented in Figure 5 (b), after a crossover operation, it is randomly 
generated a mutation factor for each new genetic individual. If the mutation factor exceeds a 
predetermined boundary, a sub-tree is selected at random in the LRM and mutated to a new 
different sub-tree. Figure 5 illustrates the mutation of the model y=β0+ β1.X1 + β2.X3 to y=β0+ 
β1.X2 + β2.X3, where it can be noticed that there was a mutation in the genetic content X1 to 
X2. 

In the approach proposed in this work, we used the two-point crossover operator [27], 
because this way it combines the largest number of chromosomal schemes and, 
consequently, increases the performance of the technique. On the other hand, for mutation, 
we used the simple operator [27], because the mutation prevents the stagnation of the search 
with low mutation factor, but if this rate is too high, the search becomes excessively random, 
because the highest its value is, larger is the substituted part of the population, which may 
lead to the less of highly qualified structures. 

3.6. Formal evaluation of a linear regression model 

Once an iteration of the proposed GP algorithm is ended, the best solution found in the 
iteration is formally evaluated. In linear regression, assumptions about the fitted model 
must be considered so that the results can be reliable. So, the evaluation process consists in 
verifying, by residual inference, the assumptions of normality, homoscedasticity and 
independence about the distribution of errors of the fitted LRM. We used the following 
adherence tests: 

• Shapiro-Wilk [30] to check the assumption of normality; 
• Breusch-Pagan [31] to check the assumption homoscedasticity; 
• and Durbin-Watson [32] to check the independence (absence of autocorrelation) among 

the errors. 

If the result of any of these tests is not positive and the maximum number of iterations was 
not reached, the GP algorithm will start a new evolution iteration through the generation of 
a new starting population and will follow the flow presented in Figure 2. Otherwise, the 
algorithm presents the LRM as final solution. 

3.7. Residual Analyses for the genetic individual with the best AIC 

At the end of all the iterations, if no genetic individual is approved in the formal 
evaluations, the GP algorithm will select the solution with the best AIC for residual analysis. 
The residual analysis allows the evaluation of the assumptions about a model [12].  
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So, in this work, the residual analysis is divided in two stages: 

1. Residual diagnostic plots, where we build the following diagrams: 
• Diagram of distribution of accumulated errors, to quantify the distance between 

the estimates given by the LRM and the data of the training set; 
• Q-Q Plots and Histograms, to check the assumptions about the error probability 

distributions; 
• Diagram of residuals dispersion against the fitted values, the check the assumption 

of homoscedasticity; 
• Diagram of dispersion of the residuals, to check the absence of autocorrelation 

among the errors. 
2. Application of the statistical test of Mann-Whitney-Wilcoxon [29] to the data of the 

training set and the respective estimates given by the LRM found. The Mann-Whitney-
Wilcoxon test is a non-parametric [28] statistical hypothesis test used to check whether 
the data of two independent sets tend to be equal (null hypothesis) or different 
(alternative hypothesis). With these same sets, we still perform the computation of the 
global mean errors, as a measurement for the central location of the set of residuals, 
maximums and minimums. These measurements are used to check the precision of the 
estimates and the possibility of presence of outliers. 

4. Case study 

In order to validate the proposed approach, we have used a case study where we predict the 
performance of an embedded system. The case study includes an application of the SPLASH 
benchmark1 [33] for a simulation model of an embedded hardware platform. This application, 
which consists in the sorting a set of integers through radix [34], has two processes. The first 
one allocates, in a shared memory, a data structure (list), comprised of a set of integers, 
randomly chosen, some control flags and a mutex (to manage the mutually exclusive access). 
Once the data structure is allocated, both processes will sort the integers list, concurrently.  

For the execution of the application, we designed a simulation model of a hardware 
platform, described in the language for modeling embedded systems, SystemC [35], 
comprised of two models of MIPS processors, one for each process of the application of 
sorting by radix, a shared memory, to stores program and application data, as well as 
shared data, and a ARM Amba AHB [36] shared bus model. 

This model allows us to explore the bus configurations to optimize the performance of the 
application of radix sort. 

The experiment methodology was based on the comparison between the execution times of 
the application, obtained by the simulation model with the estimates acquired from an LRM 
obtained by the proposed method. The objective is to show that the obtained models may 
bring highly precise estimates. 
                                                                 
1 Set of multiprocessed applications, used to study the following properties: computational load balance, computation 
rates and traffic requirements in communications, besides issues related to spatial locations and how these properties 
can be scalable with the size of the problems and the number of processors. 
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We considered the following configuration parameters for the Amba AHB bus: data bus 
width, fixed priority arbitrage mechanisms, operation frequency and transference types. 
With the combination of the possible values for these parameters, we built a project space 
with 72 distinct configurations. 

In the representation of the LRMs, in the proposed GP algorithm, the configuration 
parameters of the bus ware characterized as predictive variables and the execution time of 
the embedded application, as the independent variable. The table below describes each one 
of these variables. 
 

Variable Representation 
in the LRM Values 

Data bus width bw 8, 16, 32 (bits) 
Transference type ty With preemption, without preemption 
Operation frequency fr 100, 166, 200 (MHz) 
Priority of the first process p1 Higher, lower (priority) 
Priority of the second process p2 Higher, lower (priority) 
Execution time of the application te Time measured in ns 

Table 3. Candidate variables to the linear regression model. 

It can be seen in Table 3 that all the predictive variables have discrete values, and then they 
are classified as factors. In the LRMs, the predictive variables are represented as dummy 
variables. 

With the increase in the training set, the probability of distortion on the estimates may 
increase, because the possibility of existence of outliers in this set may also increase. On the 
other hand, larger training sets may be more significant for the obtainment of a more precise 
model. For this reason, we used three training sets, with distinct sizes, to check these 
assumptions. So, we selected three sets, using the technique introduced in Subsection 3.2, 
with 10% (7 samples), 20% (14 samples) and 50% (36 samples) of the project space. The rest 
of the points were grouped in test sets, used to evaluate the precision of the estimates given 
by the obtained models. 

According to [2], on average, 50 generations are sufficient to find an acceptable solution, and 
larger populations have higher probability of finding a valid solution. So, for the GP 
algorithm, we considered the following parameters: 1000 candidates for each generation of 
LRM trees; the maximum number of generations was limited in 50; and stop condition of the 
algorithm consisting of an LRM which is the fittest candidate for 30 consecutive generations.  

For each generation, 999 tournaments were carried out, where 50 LRMs were randomly chosen 
to participate. During the tournament the AIC index is computed, in order to evaluate each one 
of the participants. So, the winners, those with the best AIC indexes, are selected for crossover. 
For mutation, a mutation factor is randomly computed in all the LRM trees generated by 
crossover. If the computed value for each tree is below 5% - index demonstrated in [37] as 
qualified to find good solutions in several problem types - then the three will mutate and, next, 
selected to make part of the next generation. Finally, the fittest LRM trees of the present 
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generation are automatically selected, through elitism, to complete the number of individuals 
of the next generation. Finally, the maximum number of iterations was limited to 50. 

After the validation stages, the final models found, for the training set, had their estimates, 
given by prediction, compared to those of the respective training sets, as described in the 
next section. 

5. Experimental results 
As described in the previous section, we used three training sets for validation of the proposed 
approach. However, the application of this approach brought different results for these sets. 

For the first set, that with 10% if the project space, which we will call Set A, the final model 
was approved in the formal evaluation, right in the first iteration. For Set B (the set with 20% 
of the design space), the final model was also approved in the formal evaluation, but needed 
five iterations. The results of the formal tests for the models selected for the Sets A and B can 
be seen in Table 4. 
 

Measurement P-Value
Set A B C 
Shapiro-Wilk test(Normality) 14.44% 65.69% 3.2% 
Breusch-Pagan test (Homoscedasticity) 53.66% 47.34% 1e-03% 
Durbin-Watson test (Independence) 87.2% 56.80% 82.80% 

Table 4. Formal test results for verification of assumptions about the LRMs selected for the Sets A, B and C. 

The test results for Sets A and B, presented in Table 4, show indexes (p-values) above the 
significance level, defined in this work as 5%. So, the structures of the errors of the selected 
LRMs, for the sets A and B, tend to have normalized errors, with constant variances and 
independent from each other. 

Finally, for the Set C, the last training set, no model was approved in the formal evaluation. 
Table 4 also shows the tests results for the final model found (best AIC) for the Set C. The p-
values for the Shapiro-Wilk and Breusch-Pagan tests are below the significance level, being 
necessary to do residual analysis. The final results of the residual analysis are shown in the 
graphics of Figure 6. 

Figure 6 presents the graphics of (a) Q-Q Plot and (b) Residuals histograms, as well as (c) of 
dispersion of the values observed in the Set C versus residuals and (d) of the order of 
collection of residuals. Analyzing Figure 6 (b), we may notice that the errors presented by 
the LRM selected for the Set C do not follow a normal distribution, violating the assumption 
of normality of the model structure. However, it can be seen that the distribution of the 
errors tends to be normal, since the points are distributed around the diagonal line of the Q-
Q Plot diagram shown in Figure 6 (a). In Figure 6 (c), in turn, the assumption of 
homoscedasticity can be confirmed, since the maximum dispersion of the points is constant 
around the line. Finally, the last assumption, independence among the errors, can be 
verified in Figure 6 (d), since there is no apparent linear pattern in the distribution of points. 
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So, in the diagrams of residual analysis, we could verify that all the assumptions – 
normality, homoscedasticity and independence of the errors – about the structures of the 
errors of the LRM selected for the Set C were met. 

 
Figure 6. Graphics for analysis of assumptions about the distribution of errors for the training set with 
50% of the project space. 

 

Measurement Set A Set B Set C 
Mann-Whitney-Wilcoxon test (P-Value) 100% 100% 79.12% 
Global mean error 7.81e-08% 0% 7.15e-06% 
Maximum error 1.43e-07% 0% 4.52e-05% 
Minimum error 0% 0% 1.88e-08% 

Table 5. Testing the fitness to the data from the training set and global mean, maximum and minimum 
errors for the LRMs selected for the Sets A, B and C. 
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In order to check the adherence of the LRMs to the data of the respective training sets, we 
performed the Mann-Whitney-Wilcoxon test, besides the computation of the global mean, 
maximum and minimum errors. The results can be seen in Table 5.  

According to the result of the Mann-Whitney-Wilcoxon test, presented in Table 5, we can see 
that the estimates, given by the LRMs selected for the Sets A, B and C, tend to be equal to the 
data in the respective training sets, since the p-values are above the significance level, defined 
in the test as 5%. Analyzing Table 5, still, we notice that the selected LRMs presented accurate 
estimates, since the mean global, maximum and minimum errors were almost zero. 

Still analyzing the precision of the estimates, with respect to the Set C, the diagram of 
accumulated errors is presented in Figure 7. It shows the cumulative error (x axis) for 
percentages of the training set (y axis). The accumulated errors indicate the deviation 
between the estimates given by the LRM and the data from the training set. In this case, the 
estimates given by the selected LRM differed by a maximum of 5e-07. 

 
Figure 7. Graphic of accumulated errors for the LRM selected for the Set C. 

Finally, in order to evaluate the precision of the predictions, which are the estimates given 
for the respective test sets of the Sets A, B and C, the selected LRMS were submitted to the 
Mann-Whitney-Wilcoxon test. Besides this test, the global mean, maximum and minimum 
errors were computed. The results can be seen in Table 6. 

In Table 6, according to the results of the Mann-Whitney-Wilcoxon test, defined with a 
significance index of 5%, for the three sets, the estimates given by the selected LRMs tend to be 
equal to the data of the respective test sets. The three models had values for the global mean 
and minimum errors very close. For the maximum errors, there was a little variation, with the 
LRMs selected for the sets B and C, obtaining the highest and the lowest indexes, respectively. 
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Measurement Results
Set A B C 
Mann-Whitney-Wilcoxon test (P-Value) 53.05% 69.11% 59.25% 
Mean global error 4.12% 4.15% 4.75% 
Maximum error 11.11% 14.21% 9.23% 
Minimum error 4.905e-05% 9.171e-02% 8.27e-06% 

Table 6. Test of fitness to the data of the test set and the global mean, maximum and minimum errors. 

Still analyzing the results of the measurements presented in Table 6, we notice that the 
indexes obtained for the three sets, were comparatively very close. Such results may be 
explained by the used of the technique of selection of the training sets, which returns 
samples with high representative power. 

In general, the use of the approach proposed in this work, which added methods for 
evaluation of the LRMs selected by the GP algorithm and the technique of selection of the 
elements of the training sets, allows the obtainment of solutions capable of providing precise 
estimates, even with the use of small samples. 

6. Conclusions 
This work has described an approach for obtainment and formal validation of LRMs, by 
means of the combination of genetic programming with statistical models. Our approach 
used the Audze-Eglais Uniform Latin Hypercube technique for the selection of samples with 
high representative power to form the training set. In order to evaluate the LRMs found 
with the introduced technique, we used statistical tests of hypothesis and residual analysis, 
aiming to verify the assumptions about the structures of the errors of these models. 

In order to validate the proposed approach, we used a case study, with the prediction of 
performance in embedded systems. The problem of the case study consisted in exploring the 
configurations of a data bus in order to optimize the performance of the embedded 
application of sorting a set of integers by radix. So, with the use of the proposed technique, 
we generated LRMs capable of estimating the performance for all of the bus configurations. 

The validation stages allowed us to realize that the LRMs found are adequate to the 
prediction of performance of the application, since all the assumptions about the structures 
of the errors were verified. So, the final LRMs were able to estimate the performances 
accurately, presenting mean global errors below 5%. 
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1. Introduction

In program inference, the evaluation of how well a candidate solution solves a certain task
is usually a computationally intensive procedure. Most of the time, the evaluation involves
either submitting the program to a simulation process or testing its behavior on many input
arguments; both situations may turn out to be very time-consuming. Things get worse when
the optimization algorithm needs to evaluate a population of programs for several iterations,
which is the case of genetic programming.

Genetic programming (GP) is well-known for being a computationally demanding technique,
which is a consequence of its ambitious goal: to automatically generate computer
programs—in an arbitrary language—using virtually no domain knowledge. For instance,
evolving a classifier, a program that takes a set of attributes and predicts the class they belong
to, may be significantly costly depending on the size of the training dataset, that is, the amount
of data needed to estimate the prediction accuracy of a single candidate classifier.

Fortunately, GP is an inherently parallel paradigm, making it possible to easily exploit any
amount of available computational units, no matter whether they are just a few or many
thousands. Also, it usually does not matter whether the underlying hardware architecture
can process simultaneously instructions and data (“MIMD”) or only data (“SIMD”).1 Basically,
GP exhibits three levels of parallelism: (i) population-level parallelism, when many populations
evolve simultaneously; (ii) program-level parallelism, when programs are evaluated in parallel;
and finally (iii) data-level parallelism, in which individual training points for a single program
are evaluated simultaneously.

Until recently, the only way to leverage the parallelism of GP in order to tackle complex
problems was to run it on large high-performance computational installations, which are
normally a privilege of a select group of researchers. Although the multi-core era has emerged
and popularized the parallel machines, the architectural change that is probably going to

1 MIMD stands for Multiple Instructions Multiple Data whereas SIMD means Single Instruction Multiple Data.
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revolutionize the applicability of GP started about a decade ago when the GPUs began to
acquire general-purpose programmability. Modern GPUs have an astonishing theoretical
computational power, and are capable of behaving much like a conventional multi-core CPU
processor in terms of programmability. However, there are some intrinsic limitations and
patterns of workload that may cause huge negative impact on the resulting performance if
not properly addressed. Hence, this paper aims at presenting and discussing efficient ways
of implementing GP’s evaluation phase, at the program- and data-level, so as to achieve the
maximum throughput on a GPU.

The remaining of this chapter is organized as follows. The next Section, 2, will give an
overview of the GPU architecture followed by a brief description of the open computing
language, which is the open standard framework for heterogeneous programming, including
CPUs and GPUs. Section 3 presents the development history of GP in the pursuit of getting
the most out of the GPU architecture. Then, in Section 4, three fundamental parallelization
strategies at the program- and data-level will be detailed and their algorithms presented
in a pseudo-OpenCL form. Finally, Section 5 concludes the chapter and points out some
interesting directions of future work.

2. GPU programming

The origin of graphics processing units dates back to a long time ago, when they were
built exclusively to execute graphics operations, mainly to process images’ pixels, such
as calculating each individual pixel color, applying filters, and the like. In video or
gaming processing, for instance, the task is to process batches of pixels within a short
time-frame—such operation is also known as frame rendering—in order to display smooth and
fluid images to the spectator or player.

Pixel operations tend to be very independent among them, in other words, each individual
pixel can be processed at the same time as another one, leading to what is known as data
parallelism or SIMD. Although making the hardware less general, designing an architecture
targeted at some specific type of workload, like data parallelism, may result in a very efficient
processor. This is one main reason why GPUs have an excellent performance with respect to
power consumption, price, and density. Another major reason behind such a performance is
attributed to the remarkable growing of the game industry in the last years and the fact that
computer games have become more and more complex, pressing forward the development of
GPUs while making them ubiquitous.

It turned out that at some point the development of GPUs was advancing so well and the
architecture was progressively getting more ability to execute a wider range of sophisticated
instructions, that eventually it earned the status of a general-purpose processor—although
still an essentially data parallel architecture. That point was the beginning of the exploitation
of the graphics processing unit as a parallel accelerator for a much broader range of
applications besides video and gaming processing.

2.1. GPU architecture

The key design philosophy responsible for the great GPU’s efficiency is the maximization
of the number of transistors dedicated to actual computing—i.e., arithmetic and logic units
(ALU)—which are packed as many small and relatively simple processors [26]. This is
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rather different from the modern multi-core CPU architecture, which has large and complex
cores, reserving a considerable area of the processor die for other functional units, such as
control units (out-of-order execution, branch prediction, speculative execution, etc.) and cache
memory [21].

This design difference reflects the different purpose of those architectures. While the GPU
is optimized to handle data-parallel workloads with regular memory accesses, the CPU is
designed to be more generic and thus must manage with reasonable performance a larger
variety of workloads, including MIMD parallelism, divergent branches and irregular memory
accesses. There is also another important conceptual difference between them. Much of
the extra CPU complexity is devoted to reduce the latency in executing a single task, which
classifies the architecture as latency-oriented [14]. Conversely, instead of executing single tasks
as fast as possible, GPUs are throughput-oriented architectures, which means that they are
designed to optimize the throughput, that is, the amount of completed tasks per unit of time.

2.2. Open Computing Language – OpenCL

The Open Computing Language, or simply OpenCL, is an open specification for
heterogeneous computing released by the Khronos Group2 in 2008 [25]. It resembles the
NVIDIA CUDA3 platform [31], but can be considered as a superset of the latter; they basically
differ in the following points. OpenCL (i) is an open specification that is managed by a set
of distinct representatives from industry, software development, academia and so forth; (ii)
is meant to be implemented by any compute device vendor, whether they produce CPUs,
GPUs, hybrid processors, or other accelerators such as digital signal processors (DSP) and
field-programmable gate arrays (FPGA); and (iii) is portable across architectures, meaning
that a parallel code written in OpenCL is guaranteed to correctly run on every other supported
device.4

2.2.1. Hardware model

In order to achieve code portability, OpenCL employs an abstracted device architecture that
standardizes a device’s processing units and memory scopes. All supported OpenCL devices
must expose this minimum set of capabilities, although they may have different capacities
and internal hardware implementation. Illustrated in Figure 1 is an OpenCL general device
abstraction. The terms SPMD, SIMD and PC are mostly GPU-specific, though; they could be
safely ignored on behalf of code portability, but understanding them is important to write
efficient code for this architecture, as will become clear later on.

An OpenCL device has one or more compute units (CU), and there is at least one processing
element (PE) per compute unit, which actually performs the computation. Such layers are
meant (i) to encourage better partitioning of the problem towards fine-grained granularity
and low communication, hence increasing the scalability to fully leverage a large number of
CUs when available; and (ii) to potentially support more restricted compute architectures, by

2 http://www.khronos.org/opencl
3 CUDA is an acronym for Compute Unified Device Architecture, the NVIDIA’s toolkit for GP-GPU programming.
4 It is worthy to note that OpenCL only guarantees functional portability, i.e., there is no guarantee that the same code

will perform equally well across different architectures (performance portability), since some low-level optimizations
might fit a particular architecture better than others.
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Figure 1. Abstraction of a modern GPU architecture

not strictly enforcing parallelism among CUs while still ensuring that the device is capable of
doing synchronism, which can occur among PEs within each CU [15].

Figure 1 shows four scopes of memory, namely, global, constant, local, and private memories.
The global memory is the device’s main memory, the biggest but also the slowest of the four
in terms of bandwidth and latency, specially for irregular accesses. The constant memory is
a small and slightly optimized memory for read-only accesses. OpenCL provides two really
fast memories: local and private. Both are very small; the main difference between them
is the fact that the former is shared among all the PEs within a CU—thus very useful for
communication—and the latter is even smaller and reserved for each PE.

Most of modern GPUs are capable of performing not only SIMD parallelism, but also what is
referred to as SPMD parallelism (literally Single Program Multiple Data), which is the ability to
simultaneously execute different instructions of the same program on many data. This feature is
closely related to the capability of the architecture in maintaining a record of multiple different
instructions within a program being executed which is done by program counter (PC) registers.
Nowadays GPUs can usually guarantee that at least among compute units there exists SPMD
parallelism, in other words, different CUs can execute different instructions in parallel. There
may exist SPMD parallelism within CUs also, but they occur among blocks of PEs.5 For the
sake of simplicity, the remaining of this chapter will ignore this possibility and assume that
all PEs within a CU can only execute one instruction at a time (SIMD parallelism), sharing
a single PC register. A strategy of parallelization described in Section 4.4 will show how
the SPMD parallelism can be exploited in order to produce one of the most efficient parallel
algorithms for genetic programming on GPUs.

2.2.2. Software model

OpenCL specifies two code spaces: the host and kernel code. The former holds any
user-defined code, and is also responsible for initializing the OpenCL platform, managing
the device’s memory (buffer allocation and data transfer), defining the problem’s parallel

5 Those blocks are known as warps [32] or wavefronts [1].
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partitioning, submitting commands, and coordinating executions. The latter, the kernel code,
is the actual parallel code that is executed by a compute device.

An OpenCL kernel is similar to a C function6. Due to architectural differences across devices,
it has some restrictions, such as prohibiting recursion, but also adds some extensions, like
vector data types and operators, and is intended to be executed in parallel by each processing
element, usually with each instance working on a separate subset of the problem. A kernel
instance is known as work-item whereas a group of work-items is called a work-group.

Work-items within a work-group are executed on a unique compute unit, therefore, according
to the OpenCL specification, they can share information and synchronize. Determining how
work-items are divided into work-groups is a critical phase when decomposing a problem; a
bad division may lead to inefficient use of the compute device. Hence, an important part of
the parallel modeling concerns defining what is known as n-dimensional computation domain.
This turns out to be the definition of the global size, which is the total amount of work-items,
and the local size, the number of work-items within a work-group, or simply the work-groups’
size.

In summary, when parallelizing the GP’s evaluation phase, the two most important modeling
aspects are the kernel code and the n-dimensional computation domain. Section 4 will present
these definitions for each parallelization strategy.

3. Genetic programming on GPU: A bit of history

It is natural to begin the history of GP on GPUs referring to the first improvements obtained
by parallelization of a GA on programmable graphics hardware. The first work along this line
seems to be [41], which has proposed a genetic algorithm in which crossover, mutation, and
fitness evaluation were performed on graphic cards achieving speedups up to 17.1 for large
population sizes.

Other GA parallelization on GPUs was proposed in [39] which followed their own ideas
explored in [40] for an evolutionary programming technique (called FEP). The proposal, called
Hybrid GA, or shortly HGA, was evaluated using 5 test-functions, and CPU-GPU as well as
HGA-FEP comparisons were made. It was observed that their GA on GPU was more effective
and efficient than their previous parallel FEP.

Similarly to [41], [24] performed crossover, mutation, and fitness evaluation on GPU to solve
the problem of packing many granular textures into a large one, which helps modelers in
freely building virtual scenes without caring for efficient usage of texture memory. Although
the implementation on CPU performed faster in the cases where the number of textures was
very small (compact search space), the performance of the implementation on GPU is almost
two times faster when compared to execution on CPU.

The well-known satisfiability problem, or shortly SAT, is solved on graphic hardware in
[30], where a cellular genetic algorithm was adopted. The algorithm was developed using
NVIDIA’s C for Graphics (Cg) programming toolkit and achieved a speedup of approximately
5. However, the author reports some problems in the implementation process, like the
nonexistence of a pseudo-random number generator and limitations in the texture’s size.

6 The OpenCL kernel’s language is derived from the C language.
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Due the growing use of graphics cards in the scientific community, in general, and
particularly in the evolutionary computation field, as described earlier, the exploration of this
high-performing solution in genetic programming was inevitable. Ebner et al. published
the first work exploring the GPU capacity in GP [11]. Although a high level language was
used in that case (Cg), the GPU was only used to generate the images from the candidate
programs (vertex and pixel shaders). Then the created images are presented to the user for his
evaluation.

However, it was in 2007 that the extension of the technique of general purpose computing
using graphics cards in GP was more extensively explored [2, 9, 17, 18]. Two general purpose
computation toolkits for GPUs were preferred in these works: while [2, 9] implemented their
GP using Cg, Harding and Banzhaf [17, 18] chose Microsoft’s Accelerator, a .Net’s library
which provides access to the GPU via DirectX’s interface.

The automatic construction of tree-structural image transformation on GPU was proposed in
[2], where the speedup of GP was explored in different parallel architectures (master-slave and
island), as well as on single and multiple GPUs (up to 4). When compared with its sequential
version, the proposed approach obtained a speedup of 94.5 with one GPU and its performance
increased almost linearly by adding GPUs.

Symbolic regression, fisher iris dataset classification, and 11-way multiplexer problems
composed the computational experiments in [9]. The results demonstrated that although
there was little improvement for small numbers of fitness cases, considerable gains could be
obtained (up to around 10 times) when this number becomes much larger.

The classification between two spirals, the classification of proteins, and a symbolic regression
problem were used in [17, 18] to evaluate their Cartesian GP on GPU. In both works, each
GP individual is compiled, transferred to GPU, and executed. Some benchmarks were also
performed in [18] to evaluate floating point as well as binary operations. The rules of a
cellular automaton with the von Neumann neighborhood and used to simulate the diffusion
of chemicals were generated by means of Cartesian GP in [17]. The best obtained speedup in
these works was 34.63.

Following the same idea of compiling the candidate solutions, [16] uses a Cartesian GP on
GPU to remove noise in images. Different types of noise were artificially introduced into a
set of figures and performance analyses concluded that this sort of parallelism is indicated for
larger images.

A simple instruction multiple data interpreter was developed using RapidMind and
presented in [28], where a performance of one Giga GP operations per second was observed
in the computational experiments. In contrast to [16–18] where the candidate programs were
compiled to execute on GPUs, [28] showed a way of interpreting the trees. While the previous
presented approach requires that programs are large and run many times to compensate the
cost of compilation and transference to the GPU, the interpretable proposal of [28] seems to
be more consistent because it achieved speed ups of more than an order of magnitude in the
Mackey-Glass time series and protein prediction problems, even for small programs and few
test cases.

The same solution of interpreting the candidate programs was used in [27], but a predictor
was evolved in this case. Only the objective function evaluation was performed on GPU, but
this step represents, in that study, about 85% of the total run time.
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Another study exploring the GPU capacity in GP is presented in [29]. RapidMind is used
to implement a GP solution to solve a cancer prediction problem from a dataset containing
a million inputs. A population of 5 million programs evolves executing about 500 million
GP operations per second. The author found a 7.6 speed up during the computational
experiments, but their discussion indicates that the increment in the performance was limited
by the access to the 768 Mb of the training data (the device used had 512Mb).

Since these first works were published, improving GP performance by using GP-GPU
becomes a new research field. Even the performance of GP on graphic devices of video game
consoles was analyzed [36–38], but PC implementations of GP have demonstrated to be faster
and more robust. However, it was with the current high level programming languages [4, 34],
namely NVIDIA’s CUDA and OpenCL, that GP implementations using GP becomes popular,
specially in much larger/real world applications. Also, TidePowerd’s GPU.NET was studied
for speed up Cartesian GP [19].

Genetic programming is used in [10] to search, guided by user interaction, in the space of
possible computer vision programs, where a real-time performance is obtained by using GPU
for image processing operations. The objective was evolving detectors capable of extracting
sub-images indicated by the user in multiple frames of a video sequence.

An implementation of GP to be executed in a cluster composed by PCs equipped with GPUs
was presented in [20]. In that work, program compilation, data, and fitness execution are
spread over the cluster, improving the efficiency of GP when the problem contains a very
large dataset. The strategy used is to compile (C code into NVIDIA CUDA programs) and
to execute the population of candidate individuals in parallel. The GP, developed in GASS’s
CUDA.NET, was executed in Microsoft Windows (during the tests) and Gentoo Linux (final
deployment), demonstrating the flexibility of that solution. That parallel GP was capable of
executing up to 3.44 (classification problem of network intrusion) and 12.74 (image processing
problem) Giga GP operations per second.

The computational time of the fitness calculation phase was reduced in [7, 8] by using CUDA.
The computational experiments included ten datasets, which were selected from well-known
repositories in the literature, and three GP variants for classification problems, in which
the main difference between them is the criterion of evaluation. Their proposed approach
demonstrated good performance, achieving a speedup of up to 820.18 when compared with
their own Java implementation, as well as a speedup of up to 34.02 when compared with
BioHEL [13].

Although with much less articles published in the GP field, OpenCL deserves to be
highlighted because, in addition of being non-proprietary, it allows for heterogeneous
computing. In fact, up to now only [4] presents the development of GP using OpenCL,
where the performance of both types of devices (CPU and GPU) was evaluated over the same
implementation. Moreover, [4] discusses different parallelism strategies and GPU was up to
126 times faster than CPU in the computational experiments.

The parallelism of GP techniques on GPU is not restricted only to linear, tree, and graph
(Cartesian) representations. The improvement in performance of other kinds of GP, such as
Grammatical Evolution [33], is just beginning to be explored. However, notice that no papers
were found concerning the application of Gene Expression Programming [12] on GPUs. Some
complementary information is available in [3, 6].
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4. Parallelization strategies

As mentioned in Section 2.2, there are two distinct code spaces in OpenCL, the host and kernel.
The steps of the host code necessary to create the environment for the parallel evaluation
phase are summarized as follows [4]:7

1. OpenCL initialization. This step concerns identifying which OpenCL implementation
(platform) and compute devices are available. There may exist multiple devices on the
system. In this case one may opt to use a single device or, alternatively, all of them, where
then a further partitioning of the problem will be required. Training data points, programs
or even whole populations could be distributed among the devices.

2. Calculating the n-dimensional computation domain. How the workload is decomposed
for parallel processing is of fundamental importance. Strictly speaking, this phase only
determines the global and local sizes in a one-dimensional space, which is enough to
represent the domain of training data points or programs. However, in conjunction with
a kernel, which implements a certain strategy of parallelization, the type of parallelism (at
data and/or program level) and workload distribution are precisely defined.

3. Memory allocation and transfer. In order to speedup data accesses, some content
are allocated/transferred directly to the compute device’s memory and kept there, thus
avoiding as much as possible the relatively narrow bandwidth between the GPU and
the computer’s main memory. Three memory buffers are required to be allocated on the
device’s global memory in order to hold the training data points, population of programs,
and error vector. Usually, the training data points are transferred only once, just before
the beginning of the execution, remaining then unchanged until the end. The population
of programs and error vector, however, are dynamic entities and so they need to be
transferred at each generation.

4. Kernel building. This phase selects the kernel with respect to a strategy of parallelization
and builds it. Since the exact specification of the target device is usually not known in
advance, the default OpenCL behavior is to compile the kernel just-in-time. Although
this procedure introduces some overhead, the benefit of having more information about
the device—and therefore being able to generate better optimized kernel object—usually
outweighs the compilation overhead.

5. GP’s evolutionary loop. Since this chapter focuses on accelerating the evaluation phase of
genetic programming by parallelizing it, the iterative evolutionary cycle itself is assumed
to be performed sequentially, being so defined in the host space instead of as an OpenCL
kernel. 8 The main iterative evolutionary steps are:

(a) Population transfer. Changes are introduced to programs by the evolutionary process
via genetic operators, e.g. crossover and mutation, creating a new set of derived
programs. As a result, a population transfer needs to be performed from host to device
at each generation.

7 This chapter will not detail the host code, since it is not relevant to the understanding of the parallel strategies. Given
that, and considering that the algorithms are presented in a pseudo-OpenCL form, the reader is advised to consult the
appropriate OpenCL literature in order to learn about its peculiarities and fill the implementation gaps.

8 However, bear in mind that a full parallelization, i.e. both evaluation and evolution, is feasible under OpenCL. That
could be implemented, for instance, in such a way that a multi-core CPU device would perform the evolution in
parallel while one or more GPUs would evaluate programs.
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(b) Kernel execution. Whenever a new population arrives on the compute device, a kernel
is launched in order to evaluate (in parallel) the new programs with respect to the
training data points. For any non-trivial problem, this step is the most computationally
intensive one.

(c) Error retrieval. Finally, after all programs’ errors have been accumulated, this vector is
transferred back to the host in order to guide the evolutionary process in selecting the
set of parents that will breed the next generation.

Regarding the kernel code, it can be designed to evaluate programs in different parallel ways:
(i) training points are processed in parallel but programs sequentially; or (ii) the converse,
programs are executed in parallel but training points are processed sequentially; or finally (iii)
a mixture of these two, where both programs and training points are processed in parallel.

Which way is the best will depend essentially on a combination of the characteristics of
the problem and some parameters of the GP algorithm. These strategies are described and
discussed in Sections 4.2, 4.3 and 4.4.

4.1. Program interpreter

The standard manner to estimate the fitness of a GP candidate program is to execute it,
commonly on varying input arguments, and observe how well it solves the task at hand
by comparing its behavior with the expected one. To this end, the program can be compiled
just before the execution, generating an intermediate object code, or be directly interpreted
without generating intermediate objects. Both variations have pros and cons. Compiling
introduces overhead, however, it may be advantageous when the evaluation of a program
is highly demanding. On the other hand, interpretation is usually slower, but avoids the
compilation cost for each program. Moreover, interpretation is easy to accomplish and, more
importantly, is much more flexible. Such flexibility allows, for example, to emulate a MIMD
execution model on a SIMD or SPMD architecture [23]. This is possible because what a
data-parallel device actually executes are many instances of the same interpreter. Programs, as
has always been the case with training points, become data or, in other words, arguments for
the interpreter.

A program interpreter is presented in Algorithm Interpreter. It is assumed that the program to
be executed is represented as a prefix linear tree [5], since a linear representation is very efficient
to be operated on, specially on the GPU architecture. An example of such program is:

+ sin x 3.14

which denotes the infix expression sin(x) + 3.14.

The program interpretation operates on a single training data point at a time. The current
point is given by the argument n, and Xn ∈ �d is a d-dimensional array representing the n-th
variables (training point) of the problem.

The command INDEX extracts the class of the current operator (op), which can be a function,
constant or variable. The value of a constant is obtained by the VALUE command; for variables,
this command returns the variable’s index in order to get its corresponding value in Xn.
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Function Interpreter( program, n )

for op ← programsize − 1 to 0 do
switch INDEX( program[op]) do

case ADD:
PUSH(POP+ POP);

case SUB:
PUSH(POP− POP);

case MUL:
PUSH(POP× POP);

case DIV:
PUSH(POP÷ POP);

case IF-THEN-ELSE:
if POP then

PUSH(POP);
else

POP; PUSH(POP);

...

case CONSTANT:
PUSH(VALUE( program[op]));

otherwise
PUSH(Xn[VALUE( program[op])]);

return POP;

The interpreter is stack-based; whenever an operand shows up, like a constant or variable,
its value is pushed onto the stack via the PUSH command. Conversely, an operator obtains
its operands’ values on the stack by means of the POP command, which removes the most
recently stacked values. Then, the value of the resulting operation on its operands is pushed
back onto the stack so as to make it available to a parent operator.

As will be seen in the subsequent sections, whatever the parallel strategy, the interpreter will
act as a central component of the kernels, doing the hard work. The kernels will basically set
up how the interpreter will be distributed among processing elements and which program
and training point it will operate on at a given time.

4.2. Data-level Parallelism – DP

The idea behind the data-level parallelism (DP) strategy is to distribute the training data
points among the processing elements of a compute device. This is probably the simplest and
most natural way of parallelizing GP’s evaluation phase when the execution of a program on
many independent training points is required.9 Despite its obviousness, DP is an efficient

9 However, sometimes it is not possible to trivially decompose the evaluation phase. For instance, an evaluation may
involve submitting the program through a simulator. In this case one can try to parallelize the simulator itself or,
alternatively, opt to use a program- or population-level kind of parallelism.
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strategy, specially when there are a large number of training data points—which is very
common in complex problems. Moreover, given that this strategy leads to a data-parallel
SIMD execution model, it fits well on a wide range of parallel architectures. Figure 2 shows
graphically how the training data points are distributed among the PEs.10

Figure 2. Illustration of the data-level parallelism (DP).

As already mentioned, to precisely define a parallelization strategy in OpenCL, two things
must be set up: the n-dimensional domain, more specifically the global and local sizes, and
the kernel itself. For the data-level parallelism, it is natural to assign the global computation
domain to the training data points domain as a one-to-one correspondence; that is, simply

globalsize = datasetsize, (1)

where dataset size is the number of the training data points. OpenCL lets the programmer to
choose whether he or she wants to explicitly define the local size, i.e. how many work-items
will be put in a work-group. The exact definition of the local size is only really needed when
the corresponding kernel assumes a particular work-group division, which is not the case for
DP. Therefore, no local size is explicitly defined for DP, letting then the OpenCL runtime to
decide on any configuration it thinks is the best.

Algorithm 1 presents in a pseudo-OpenCL language the DP’s kernel. As with any OpenCL
kernel, there will be launched globalsize instances of it on the compute device.11 Hence, there
is one work-item per domain element, with each one identified by its global or local position
through the OpenCL commands get_global_id and get_local_id, respectively. This
enables a work-item to select what portion of the compute domain it will operate on, based
on its absolute or relative position.

For the DP’s kernel, the globalid index is used to choose which training data point will be
processed, in other words, each work-item will be in charge of a specific point. The for
loop iterates sequentially over each program of the population (the function NthProgram
returns the p-th program), that is, every work-item will execute the same program at a given
time. Then, the interpreter (Section 4.1) is called to execute the current program, but each
work-item will provide a different index, which corresponds to the training data point it took

10 To simplify, in Figures 2, 4 and 5 it is presumed that the number of PEs (or CUs) coincides with the number of training
data points (or programs), but in practice this is rarely the case.

11 It is worthy to notice that the actual amount of work-items executed in parallel by the OpenCL runtime will depend
on the device’s capabilities, mainly on the number of processing elements.
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Algorithm 1: GPU DP’s OpenCL kernel

globalid ← get_global_id();

for p ← 0 to populationsize − 1 do
program ← NthProgram(p);

error ← |Interpreter( program, globalid )− Y[globalid]|;
E[p] ← ErrorReduction(0, . . . , globalsize − 1);

responsibility for. Once interpreted, the output returned by the program is then compared
with the expected one for that point, whose value is stored in array Y. This results in a
prediction error; however, the overall error is what is meaningful to estimate the fitness of
a program.

Note however that the errors are spread among the work-items, because each work-item has
processed a single point and has computed its own error independently. This calls for what
is known in the parallel computing literature as the reduction operation [22]. The naive way
of doing that is to sequentially cycle over each element and accumulate their values; in our
case it would iterate from work-item indexed by 0 to globalsize − 1 and put the total value in
E[p], the final error relative to the p-th program. There is however a clever and parallel way of
doing reduction, as exemplified in Figure 3, which decreases the complexity of this step from
O(N) to just O(log2N) and still assures a nice coalesced memory access suited for the GPU
architecture [1, 32].12

Figure 3. O(log2 N) parallel reduction with sequential addressing.

4.3. Program-level Parallelism – PP

One serious drawback of the data-level parallelism strategy is that when there are few training
data points the compute device may probably be underutilized. Today’s high-end GPUs have
thousands of processing elements, and this number has increased at each new hardware
generation. In addition, to achieve optimal performance on GPUs, multiple work-items
should be launched for each processing element. This helps, for instance, to hide memory

12 This chapter aims at just conveying the idea of the parallel reduction, and so it will not get into the algorithmic details
on how reduction is actually implemented. The reader is referred to the given references for details.
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access latencies while reading from or writing to the device’s global memory [1, 32]. Therefore,
to optimally utilize a high-end GPU under the DP strategy, one should prefer those problems
having tens of thousands of training data points. Unfortunately, there are many real-world
problems out there for which no such amount of data is available.

Another limitation of the DP strategy is that sometimes there is no easy way to decompose
the evaluation of a program into independent entities, like data points. Many program
evaluations that need a simulator, for example, fall into this category, where a parallel
implementation of the simulator is not feasible to accomplish.

An attempt to overcome the DP limitations, particularly what concerns the desire of a
substantially large amount of training data points, is schematically shown in Figure 4. This
parallelization strategy is here referred to as program-level parallelism (PP), meaning that
programs are executed in parallel, each program per PE [4, 35]. Assuming that there are
enough programs to be evaluated, even a few training data points should keep the GPU fully
occupied.

Figure 4. Illustration of the program-level parallelism (PP).

In PP, while programs are interpreted in parallel, the training data points within each PE
are processed sequentially. This suggests a computation domain based on the number of
programs, in other words, the global size can be defined as:

globalsize = populationsize (2)

As with DP, PP does not need to have control of the number of work-items within a
work-group, thus the local size can be left untouched.

A pseudo-OpenCL code for the PP kernel is given in Algorithm 2. It resembles the DP’s
algorithm, but in PP what is being parallelized are the programs instead of the training data
points. Hence, each work-item takes a different program and interpret it iteratively over all
points. A positive side effect of this inverse logic is that, since the whole evaluation of a
program is now done in a single work-item, all the partial prediction errors are promptly
available locally. Put differently, in PP a final reduction step is not required.

4.4. Program- and Data-level Parallelism – PDP

Unfortunately, PP solves the DP’s necessity of large training datasets but introduces two other
problems: (i) to avoid underutilization of the GPU a large population of programs should now
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Algorithm 2: GPU PP’s OpenCL kernel

globalid ← get_global_id();
program ← NthProgram(globalid);

error ← 0.0;
for n ← 0 to datasetsize − 1 do

error ← error + |Interpreter( program, n )− Y[n]|;
E[globalid] ← error;

be employed; and, more critically, (ii) the PP’s execution model is not suited for an inherently
data-parallel architecture like GPUs.

While (i) can be dealt with by simply specifying a large population as a parameter choice of
a genetic programming algorithm, the issue pointed out in (ii) cannot be solved for the PP
strategy.

The problem lies on the fact that, as mentioned in Section 2, GPUs are mostly a SIMD
architecture, specially among processing elements within a compute unit. Roughly speaking,
whenever two (or more) different instructions try to be executed at the same time, a hardware
conflict occurs and then these instructions are performed sequentially, one at a time. In
the related literature, this phenomenon is often referred to as divergence. Since in PP each
PE interprets a different program, the degree of divergence is the highest possible: at a
given moment each work-item’s interpreter is potentially interpreting a different primitive.
Therefore, in practice, the programs within a CU will most of the time be evaluated
sequentially, seriously degrading the performance.

However, observing the fact that modern GPUs are capable of simultaneously executing
different instructions at the level of compute units, i.e. the SPMD execution model, one could
devise a parallelization strategy that would take advantage of this fact. Such strategy exists,
and it is known here as program- and data-level parallelism, or simply PDP [4, 35]. Its general
idea is illustrated in Figure 5. In PDP, a single program is evaluated per compute unit—this

Figure 5. Illustration of the program- and data-level parallelism (PDP).

prevents the just mentioned problem of divergence—but within each CU all the training data
points are processed in parallel. Therefore, there are two levels of parallelism: a program-level
parallelism among the compute units, and a data-level parallelism on the processing elements.
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Indeed, PDP can be seen as a mixture of the DP and PP strategies. But curiously, PDP avoids
all the drawbacks associated with the other two strategies: (i) once there are enough data
to saturate just a single CU, smaller datasets can be used at no performance loss; (ii) large
populations are not required either, since the number of CUs on current high-end GPUs is in
the order of tens; and (iii) there is no divergence with respect to program interpretation.13

In order to achieve both levels of parallelism, a fine-tuned control over the computation
domain is required; more precisely, both local and global sizes must be properly defined.

Since a work-group should process all training data points for a single program and there is a
population of programs to be evaluated, one would imagine that setting localsize as datasetsize
and globalsize as populationsize × datasetsize would suffice. This is conceptually correct, but an
important detail makes the implementation not as straightforward as one would expect. The
OpenCL specification allows any compute device to declare an upper bound regarding the
number of work-items within a work-group. This is not arbitrary. The existence of a limit on
the number of work-items per work-group is justified by the fact that there exists a relation
between the maximum number of work-items and the device’s capabilities, with the latter
restricting the former. Put differently, an unlimited number of work-items per work-group
would not be viable, therefore a limit, which is provided by the hardware vendor, must be
taken into account.

With the aforementioned in mind, the local size can finally be set to

localsize =

{
datasetsize if datasetsize < localmax_size

localmax_size otherwise
, (3)

which limits the number of work-items per work-group to the maximum supported, given by
the variable localmax_size, when the number of training data points exceeds it. This implies that
when such a limit takes place, a single work-item will be in charge of more than one training
data point, that is, the work granularity is increased. As for the global size, it can be easily
defined as

globalsize = populationsize × localsize, (4)

meaning that the set of work-items defined above should be replicated as many times as the
number of programs to be evaluated.

Finally, algorithm 3 shows the OpenCL kernel for the PDP strategy. Compared to the other
two kernels (Algorithms 1 and 2), it comes as no surprise its greater complexity, as this kernel
is a combination of the other two and still has to cope with the fact that a single instance,
i.e. a work-item, can process an arbitrary number of training data points. The command
get_group_id, which returns the work-group’s index of the current work-item, has the
purpose of indexing the program that is going to be evaluated by the entire group. The for
loop is closely related to the local size (Equation 3), and acts as a way of iterating over multiple
training data points if the work-item (indexed locally by localid) is in charge of many of them;
when the dataset size is less or equal to the local size, only one iteration will be performed.
Then, an index calculation is done in order to get the index (n) of the current training data

13 Notice, though, that divergence might still occur if two (or more) training data points can cause the interpreter to take
different paths for the same program. For instance, if the conditional if-then-else primitive is used, a data point could
cause an interpreter’s instance to take the then path while other data could make another instance to take the else path.
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Algorithm 3: GPU PDP’s OpenCL kernel

localid ← get_local_id();
groupid ← get_group_id();
program ← NthProgram(groupid);

error ← 0.0;
for i ← 0 to �datasetsize/localsize� − 1 do

n ← i × localsize + localid;
if n < datasetsize then

error ← error + |Interpreter( program, n )− Y[n]|;

E[groupid] ← ErrorReduction(0, . . . , localsize − 1);

point to be processed.14 Due to the fact that the dataset size may not be evenly divisible
by the local size, a range check is performed to guarantee that no out-of-range access will
occur. Finally, since the prediction errors for a given program will be spread among the local
work-items at the end of the execution, an error reduction operation takes place.

5. Conclusions
This chapter has presented different strategies to accelerate the execution of a genetic
programming algorithm by parallelizing its costly evaluation phase on the GPU architecture,
a high-performance processor which is also energy efficient and affordable.

Out of the three studied strategies, two of them are particularly well-suited to be implemented
on the GPU architecture, namely: (i) data-level parallelism (DP), which is very simple and
remarkably efficient for large datasets; and (ii) program- and data-level parallelism (PDP),
which is not as simple as DP, but exhibits the same degree of efficiency for large datasets and
has the advantage of being efficient for small datasets as well.

Up to date, only a few large and real-world problems have been solved by GP with the help of
the massive parallelism of GPUs. This suggests that the potential of GP is yet under-explored,
indicating that the next big step concerning GP on GPUs may be its application to those
challenging problems. In several domains, such as in bio-informatics, the amount of data
is growing quickly, making it progressively difficult for specialists to manually infer models
and the like. Heterogeneous computing, combining the computational power of different
devices, as well as the possibility of programming uniformly for any architecture and vendor,
is also an interesting research direction to boost the performance of GP. Although offering
both advantages, OpenCL is still fairly unexplored in the field of evolutionary computation.

Finally, although optimization techniques have not been thoroughly discussed in this chapter,
this is certainly an important subject. Thus, the reader is invited to consult the related material
found in [4], and also general GPU optimizations techniques from the respective literature.
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1. Introduction 

Antennas are 3D structures, so, at variance of other MW subsystems like filters and 
couplers, their design has been a matter of intuition and brute-force computations from the 
beginning (Silver, 1949; Elliott, 1981 just to remember a few). Therefore, an antenna design 
has been faced at different levels, from simple formulas (Collin, 1985) to sophisticated 
synthesis techniques (Orchard et al., 1985; Bucci et al., 1994), and from simple heuristic 
models (Carrel, 1961) to modern global random optimizations, such as GA (Linden & 
Altshuler, 1996, 1997; Jones & Joines, 1997) and PSO (Baskar et al., 2005), with their heavy 
computational loads. 

Moreover, an antenna design problem is typically divided into two phases, namely an 
external problem (the evaluation of the antenna currents from the field requirements) and 
an internal problem (the design of the feed structure needed to achieve those currents, and 
the input match) (Bucci et al., 1994). In many cases these two phases are almost independent, 
but for some mutual constraints, as in reflector (Collin, 1985) and slot (Costanzo et al., 2009; 
Montisci, 2006) or patch (Montisci et al., 2003) array synthesis, since in these cases there is a 
clear boundary separating the feeding and radiating part of the antenna. In other problems, 
as in wire antennas design (Johnson & Jasik, 1984), such phases are strictly interconnected, 
since no clear-cut divides the two parts. For parasitic wire antennas, the interconnection is 
even stronger, since every element acts as feeding and radiating part at the same time.   

The traditional approach to the design of wire antennas starts by choosing a well-defined 
structure, whose parameters are then optimized. However, a good design requires also a 
continuous human monitoring, mainly to trim the initial structure to better fit the antenna 
specifications. A trimming which requires both a deep knowledge and experience in order 
to effectively change the structure under design. As a matter of fact, such traditional 
approach is quite expensive, and therefore design techniques without human interaction are 
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of interest, as long as they provide equal, or better, results. This can be achieved only when 
no initial structure is assumed, since this choice (by necessity fixed in a fully automated 
procedure) can constrain too strongly the final solution. 

The present work proposes such an alternative technique which allows to automate the 
whole project (and not only its repetitive parts), and provide original solutions, not 
achievable using standard design techniques. This is obtained by describing the whole 
antenna in terms of elementary parts (wire segments, junctions, and so on), and of their 
spatial relations (distance, orientation), and searching for high-performance structures by 
distributing, in the space, groups of these elementary objects. In this way, the final antenna 
is sought for in an enormous search space, with a very large number of degrees of freedom 
which leads to better solutions both in terms of performance and overall dimensions. On the 
other hand, such solution space must be searched for in an effective, and automatic, way in 
order to get the required antenna. Aim of this work is to describe how to effectively perform 
an automatic design of wire antennas without an initial choice of the structure, in order to 
achieve higher performances than those obtainable by using classical design techniques (eg 
Yagi antennas and log-periodic antennas (Johnson & Jasik, 1984)).  

This can be achieved using a new design technique, namely the Structure-based 
Evolutionary Design (SED), a new global random search method derived by the strategy 
first proposed by Koza (Koza, 1992). Many optimization techniques recently proposed, such 
as GA, share the same inspiration, though natural selection is definitely not an optimization 
process. As a matter of fact, Darwin stated that “the natural system is founded on the 
descent with modification” (Darwin, 1859), since what is commonly named natural selection 
is a process leading to biological units better matched to local changing environments. 
Therefore, from a conceptual point of view, design approaches based on natural selection 
should be formulated as a search for antennas fulfilling a set of antenna specifications (the 
local changing environment) rather than as optimization of a given performance index. As we 
will show later, SED allows following this paradigm and in a way closer to how natural 
selection works. Natural selection has, in fact, a number of peculiar characteristics. First, if 
we look at it in a functional, or effective, way it works at the organ level. Moreover, it allows 
an enormous variability, which is limited only by some broad-sense constraints. 

Each individual in the SED approach is a “computer program”, i.e., a sequential set of 
unambiguous instructions completely (and uniquely) describing the realization (almost in 
engineering terms) of the physical structure of an admissible individual. This is a marked 
difference with GA, where an individual is only a set of physical dimensions and other 
parameters. In the practical implementation of SED, populations of thousands of 
individuals, which are traditionally stored as tree structures, are genetically bred using the 
Darwinian principle of survival and reproduction of the fittest, along with recombination 
operations appropriate for mating computer programs. Tree structures can be easily 
evaluated in a recursive manner; every tree node has an operator function and every 
terminal node has an operand, making mathematical expressions easy to evolve and to be 
evaluated. 
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The performance, in the particular problem environment, of each individual computer 
program in the population is measured by its “fitness”. The nature of the fitness measure 
depends on the problem at hand. Different fitness functions, built from different 
requirements, can lead to completely different results, each one best fitted to the 
corresponding original requirements. 

The only information which the design process requires to advance in its search within the 
space of possible solutions are the current population and the fitness of all its individuals. A 
new population is then generated, by applying simple rules inspired by natural evolution. 

The main (meta)-operators used in SED are reproduction, crossover and mutation.  

• The reproduction simply reproduces in the new population, without any change, a 
predetermined number of individuals among those who obtained the best fitness. 

• Crossover is applied on an individual by simply switching one of its nodes with 
another node from another individual in the population. With a tree-based 
representation, replacing a node means the replacement of the whole branch. This adds 
greater effectiveness to the crossover operation, since it exchanges two actual sub-
individuals with different dimensions. The expressions resulting from a single 
crossover can be either quite close or very different from their initial parents. The 
sudden jump from an individual to a very different one is a powerful trap-escaping 
mechanism. 

• Mutation affects an individual in the population, replacing a whole node in the selected 
individual, or just the node's information. To maintain integrity, operations must be 
fail-safe, i.e. the type of information the node holds must be taken into account.  

Since each individual in the SED approach is a set of unambiguous instructions describing 
the realization of a generic physical structure, the presented procedure can be extended, in 
principle, to any 3D structure. 

Before entering into the SED description, some considerations on the name chosen (Casula et 
al., 2011a) are in order. Koza, in his 1992 paper, coined the name “genetic programming” for 
his approach. Actually, this name resembles too closely another optimization approach, but 
with marked differences with the Koza approach, namely the genetic algorithms (GA). We 
decided to use a different name, better linked to the approach we use, to avoid any ambiguity 
between very different approaches. In order to better grasp the differences between SED and 
GA, we can say that GA works on the “nucleotide” (i.e. bit) level, in the sense that the 
structure is completely defined from the beginning, and only a handful of parameters remain 
to be optimized. On the other hand, the approach used in SED assumes no “a priori” 
structure, and it builds up the structure of the individuals as the procedure evolves. 
Therefore it operates at the “organ” (i.e. physical structure) level, a far more powerful level: it 
acts on subparts of the whole structure, thus allowing an effective exploration of a far more 
vast solution space than other design techniques. SED is able to determine both the structure 
shape and dimensions as an outcome of the procedure, and is therefore a powerful tool for 
the designer. As a consequence, its solution space has the power of the continuum, while the 
GA solution space is a discrete one, so it is a very small subspace of the former. Moreover, the 
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typical evolution operators work on actual physical structures, rather than on sequences of 
bits with no intuitive link to the structure shape. The enormous power of SED fully allows the 
exploration of more general shapes for the structure. The main drawback is the ill-posedness 
of the SED, which calls for a regularization procedure. 

The rest of this chapter is organised as follows: 

• Section 2 starts with a general description of  the Structure-based Evolutionary Design, 
and of the main steps of the evolutionary process.  

• SED is then specifically applied to the design of broadband parasitic wire arrays 
(Sections 2.1-2.3): a suitable tree representation of wire antennas is devised, appropriate 
antenna requirements are set, a suitable fitness is derived and the evaluation procedure 
for each individual is described. 

• In Section 3 several examples are presented: for each set of requirements, a suitable 
fitness function must be derived, and some suggestions are given to choose the best 
fitness for the problem at hand.  

• The results obtained with SED are finally compared with other algorithms like Particle 
Swarm Optimization and Differential Evolution, showing that the performances 
obtained by SED are significantly higher. 

2. Description of the Structure-based Evolutionary Design 
SED is a global random search procedure, looking for individuals best fitting a given set of 
specifications. These individuals are described as instruction sets, and internally represented 
as trees. The main steps of the whole evolutionary design can be summarized in the 
flowchart of Fig.1: 

 
Figure 1. Flowchart of the Evolutionary Design.  
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After an initial step, where N individuals are picked up at random, an iterative procedure 
starts, which includes the evaluation of the fitness (appropriate for the problem at hand) for 
each individual, and the building of the next generation of the population. A larger 
probability of breeding is assigned to individuals with the highest fitness. The generation of 
new populations ends only when opportune stopping rules are met (i.e. when the 
individual-antenna fulfils, to a prescribed degree, the stated requirement).  

The solution space, i.e., the set of admissible solutions in which the procedure looks for the 
optimum, has the power of the continuum. This is the main advantage of SED, since it 
allows exploring, and evaluating, general structure configurations, but, on the other hand, it 
can lead to a severely ill-conditioned synthesis problem. As a consequence, a naive 
implementation usually does not work, since different starting populations lead to 
completely different final populations, possibly containing only individuals poorly matched 
to the requirements (a phenomenon similar to the occurrence of traps in optimization 
procedures). 

A suitable stabilization is therefore needed. This role can be accomplished by suitable 
structure requirements, or forced by imposing further constraints, not included in the 
structure requirements. Whenever possible, the former ones are the better choice, and 
should be investigated first.  

Typically, a high number N of individuals for a certain number of generations must be 
evaluated in order to obtain a good result from the design process. Since each individual can 
be evaluated independently from each other, the design process is strongly parallelizable, 
and this can significantly reduce the computation time. 

2.1. SED applied to the design of wire antennas 

The Structure-Based Evolutionary Design, based on evolutionary programming, has been 
devised and applied to the design of broadband parasitic wire arrays for VHF-UHF bands. 
This requires first to devise a suitable tree representation of wire antennas, well tailored to 
the SED meta-operators, and then suitable antenna requirements. We consider only 
antennas with a symmetry plane, and with all element centres on a line. Therefore, each 
“wire” is actually a symmetric pair of metallic trees, and only one of them must be 
described. 

In antenna design, the most intuitive fitness function can be built as the ”distance” between 
actual and required far-field behaviour (Franceschetti et al., 1988) or, even more simply, as 
the antenna gain or SNR (Lo et al., 1966). However, this is not the case for SED. The solution 
space, i.e., the set of admissible solution in which the procedure looks for the optimum, is 
composed, in our case, of every Parasitic Dipole Array (PDA) antenna with no limit on the 
number of wire segments, nor on the size or orientation, represented as real numbers. The 
design problem is therefore strongly ill-conditioned and, in order to stabilize it,  appropriate 
suitable antenna requirements must be set. Far-field requirements are unable to stabilize the 
problem, since the far-field degrees of freedom are orders of magnitude less than those of 
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the solution space (Bucci & Franceschetti, 1989), so that a huge number of different antennas 
gives the same far field. As a matter of fact, a wire segment whose length is a small fraction 
of the wavelength can be added or eliminated without affecting the far field. We must 
therefore revert to near-field requirements. Among them, the easiest to implement, and 
probably the most important, is a requirement on the input impedance over the required 
bandwidth. Since this constraint is a “must-be” in order to get a usable solution, we get the 
required stabilization at virtually no additional cost. As a further advantage, a low input 
reactance over the bandwidth prevents from superdirective solutions (Collin, 1985) even 
when a reduced size is forced as a constraint.  

The performances of each individual (antenna) of the population are evaluated by its fitness 
function. The details of the fitness function we have chosen for PDA design are widely 
described in the next section. However, at this point it must be stressed that the fitness 
function depends in an essential way on the electromagnetic behaviour of the individual.  

Since we are interested in assessing SED as a viable, and very effective, design tool, we 
accurately try to avoid any side-effect stemming out from the electromagnetic analysis of 
our individuals. Therefore we rely on known, well-established and widely used antenna 
analysis programs. Since our individuals are wire antennas, our choice has fallen on NEC-2 
(Burke et al., 1981).  

The Numerical Electromagnetics Code (NEC-2) is a MoM-based, user-oriented computer 
code for the analysis of the electromagnetic response of wire antennas and other metallic 
structures (Lohn et al., 2005). It is built around the numerical solution of the integral 
equations for the currents induced on the structure. This approach allows taking well into 
account the main second-order effects, such as conductor losses and the effect of lossy 
ground on the far field. Therefore we are able to evaluate the actual gain, and not the array 
directivity, with a two-fold advantage. First of all, the gain is the far-field parameter of 
interest and, second, this prevents from considering superdirective antennas, both during 
the evolution and as final solution, which is even worse. NEC has been successfully used to 
model a wide range of antennas, with high accuracy (Burke & Poggio, 1976a, 1976b, 1981; 
Deadrick et al., 1977) and is now considered as one of the reference electromagnetic software 
(Lohn et al., 2005; Linden & Altshuler, 1996, 1997). However, since SED is by no means 
linked, or tailored, to NEC, a different, and most effective, EM software could be used, to 
reduce the total computational time, further improving the accuracy of the simulation.  

2.2. Construction and evaluation of each parasitic dipole array 

Each PDA is composed of a driven element and a fixed number of parasitic elements. In 
order to get transverse dimensions close to those of Yagi and LPDA, and to ease the 
realization, the centers of the elements are arranged on a line, with the driven element at the 
second place of the row. In Yagi terminology, we use a single reflector. We actually have 
experimented with more reflectors but, exactly as in standard Yagi, without any advantage 
over the single-reflector configuration. Each element is symmetric w.r.t its center, and the 
upper part is represented, in the algorithm, as a tree.  
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Each node of the tree is an operator belonging to one of the following classes: 

a. add a wire according to the present directions and length 
b. transform the end of the last added wire in a branching point 
c. modify the present directions and length 
d. stretch (or shrink) the last added wire 

This mixed representation largely increases the power of the standard genetic operations 
(mutation and cross-over), since each element can evolve independently from the others. Of 
course, after each complete PDA is generated, its geometrical coherency is verified, and 
incoherent antennas (e.g., an antenna with two elements too close, or even intersecting) are 
discarded.  

The SED approach has been implemented in Java, while the analysis of each individual has 
been implemented in C++ (using the freeware source code Nec2cpp) and checked using the 
freeware tool 4nec2. The integration with NEC-2 has mainly been achieved through three 
classes: 

1. a parser for the conversion of the s-expressions, represented as n-ary trees, in the 
equivalent NEC input files; 

2. a NecWrapper which writes the NEC listing to a file, launches a NEC2 instance in a  
separate process, and parses the output generated by NEC; 

3. an Evaluator which calculates the fitness using the output data generated by NEC. 

In order to better grasp the representation chosen, the S-expression for the simple Yagi 
antenna of Fig.2 follows. 

 
 

 
 
Figure 2. Antenna Structure corresponding to the S-expression of the example 
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S-expression:  

Tree 0: 

(StretchAlongZ 1.3315124586134857 (Wire 0.42101090906114413 1.0 

     (StretchAlongX 0.5525837649288541 (StretchAlongY 1.4819461053740617 

         (RotateWithRespectTo_Y 0.3577743384222999 END))))) 

Tree 1: 

(Wire 0.5581593081319647 1.0 (RotateWithRespectTo_X -0.44260816356142224 

     (RotateWithRespectTo_Z 0.08068272691709244 (StretchAlongZ 0.7166185389610261 

         (StretchAlongX 1.42989629787443 (StretchAlongZ 1.346598788775623 

             END)))))) 

Tree 2: 

(Wire 0.3707701115469606 1.0 (RotateWithRespectTo_X 0.5262591815805174 

     (RotateWithRespectTo_Z -0.7423883999218206 (RotateWithRespectTo_Z 0.07210315212202911 

         END)))) 

The corresponding NEC-2 input file is: 

GW 1 17 0.00E00 0.00E00 0.00E00 -1.34E-02 1.44E-02 1.33E-01 1.36E-03 

GW 2 22 -1.38E-01 0.00E00 0.00E00 -1.25E-01 0.00E00 1.66E-01 1.36E-03  

GW 3 15 1.21E-01 0.00E00 0.00E00 1.21E-01 0.00E00 1.18E-01 1.36E-03  

GX 4 001 

GE 

2.3. Fitness function 

The fitness function must measure how closely the design meets the desired 
requirements. To achieve our design goal, a fitness should be developed, which is to 
direct the evolution process on a structure with reduced size, with the highest end-fire 
gain, and with an input match as better as possible in the widest frequency range. 
Actually, the increase in a parameter (i.e. the gain) usually results in a reduction in the 
other ones (i.e. frequency bandwidth and input matching), thus the algorithm must 
manage an elaborate trade-off between these conflicting goals. Therefore, the form of 
the fitness function can be a critical point, since only a suitable fitness can lead the 
design process to significant results. Moreover, depending on the used fitness, the 
computation time can be largely reduced (i.e. a good result can be obtained with less 
generations). 
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After evaluation of different fitness structures, we have chosen a fitness function composed 
by three main terms suitably arranged as:  

 ( )M G SFitness F F F= + ⋅             (1) 

The first term (FM) takes into account the input matching of the antenna, the second term 
(FG) takes into account the antenna gain including the effect of ohmic losses, and the last 
term (FS) takes into account the antenna size. 

In (2.1): 

 1 ;           ;        1MAX REAL MAX
M M G G S S

MAX

G D D
F SWR F F

DG
α α α

−
= − ⋅ = ⋅ = + ⋅  (2) 

wherein αM, αG and αS are suitable weights, while SWR and G  are the mean values of SWR 
and gain over the bandwidth of interest, DREAL represents the real antenna size and DMAX is 
the maximum allowed size for the antenna. 

The requirement of a given, and low, VSWR all over the design bandwidth is obviously 
needed to effectively feed the designed antenna. However it has an equally important role. 
The VSWR requirement (a near-field requirement) stabilizes the problem, at virtually no 
additional cost.  

The evaluation procedure for each individual (i.e. for each antenna) can be described by the 
flowchart in Fig.3. 

 
Figure 3. Flowchart of the evaluation procedure for each individual of the population. 
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The process requires, as inputs, the required frequency range of the antenna, the number of 
frequency points NF to be evaluated, the metal conductivity and the maximum size of the 
antenna. Actually, the generated antenna can overcome the bounding box dimensions, but 
with a penalty directly proportional to the excess size. 

The proposed fitness functions try to perform a trade-off between contrasting objectives, 
through the relative weights. 

In this sense, we can say that the selected individuals are the best adapted to the (present) 
antenna requirements. However, a different view would be the association of each 
(different) requirement to a different fitness, thus leading to a multi-objective design. 

In fact, generic evolutionary algorithms, like SED, PSO, DE, GA are a very powerful tool for 
solving difficult single objective problems, but they can also be applied to solving many 
multi-objective problems. Actually, real-world problems usually include several conflicting 
objectives, and a suitable trade-off must be found. An interesting topic is therefore the study 
of Multi-Objective optimization methods (Chen, 2009), and in solving such multi-objective 
problems the adopted optimization method must provide an approximation of the Pareto 
set such that the user can understand the trade-off between overlapped and conflicting 
objectives, in order to make the final decision. Usually, a decomposition method is 
implemented to convert a multi-objective problem into a set of mono-objective problems, 
and an optimal Pareto front is approximated by solving all the sub-problems together 
(Carvalho, 2012), and this requires insight not only of the algorithmic domain, but also 
knowledge of the application problem domain.  

In design methods dealing with a set of individuals, like SED, such point of view could lead 
to better ways to explore the solution space, and is a promising direction for future 
investigations.  

3. Results 

The automated design of wire antennas using SED has been applied to several PDAs, with 
different maximum sizes, number of elements, and operation frequencies, and with different 
requirements both on Gain and input matching, always obtaining very good results. 

We present here only a few examples, chosen also to show the flexibility of SED. All 
designed antennas have been compared with known antennas. However, since our antennas 
are wide-band 3D structures, it has been difficult to device a suitable comparison antenna. 
To get a meaningful comparison, we decided to compare our designed antennas with an 
antenna of comparable size. 

The first presented antenna (Casula et al., 2009), shown in Fig.4a, has been obtained by 
constraining the evolution of each individual only in two directions (i.e. horizontally and 
vertically). This limitation is a hard limitation, and significantly affects the antenna 
performances. This compromise leads anyway to antennas easy to realize, and with good 
performances.  
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The designed antenna works at the operation frequency of 800 MHz, and the requested 
bandwidth is of 70 MHz (i.e. 9%, from 780 MHz to 850 MHz). The best designed antenna is 
represented in Fig.1a. The antenna size is 0.58λ0 x 0.67λ0 x 1.2λ0, λ0 being the space 
wavelength at the operation frequency of 800 MHz, its gain is above 11.6 dB (see Fig.5) and 
its SWR is less than 2 in the whole bandwidth of 70 MHz (see Fig.1b). No additional 
matching network is therefore required.  

The chosen comparison antenna has been a 4-elements dipole array, with the same H-plane 
size of our antenna. This array, shown in Fig.4b, is composed of 4 vertical elements, with a 
length of 1.2λ0 and spacing of 0.58λ0 in the H-plane and of  0.67λ0 in the E-plane, and its gain 
is within +/- 1 dB with respect to our antenna. The latter, therefore, uses in an effective way 
its size. However, it must be stressed that our antenna has a single, and well-matched, feed 
point, while the array needs a BFN to produce the correct feeding currents of the array 
elements, which have also a quite large Q. The array realization is therefore more complex. 

 
Figure 4. a) SED designed antenna; b) Reference Planar Array with 4 elements and the same size (in the 
H-plane). 

 
Figure 5. Gain and SWR of the GP designed antenna compared to the Gain of the reference Planar 
Array with 4 elements and the same size (in the H-plane). 
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Note that we have considered the antenna made of perfectly conducting (PEC) wires. The 
VSWR constraint has prevented to fall in a super-directive solution, but the robustness of a 
designed ideal antenna respect to conductor losses has not been checked. 

The second example removes the constraints of right-angle junctions made in the first 
example, and will be used also to evaluate the role of the conductor losses on the SED 
performances. As a matter of fact, this can be easily done by designing an optimal antenna 
assuming PEC (Antenna 2A) and another one, assuming a finite conductivity σ (antenna 
2B), in this case equal to that of pure copper (σ=5.8*107 S/m). Then the first antenna is 
analysed by including also the finite conductivity of the wires (Casula et al., 2011b). 

For the 2A antenna, at the operation frequency of 500 MHz, requiring a bandwidth of 60 
MHz (i.e. 12%, from 470 MHz to 530 MHz), SED designs the antenna shown in Fig.6a. The 
performances of the antenna 2A are shown in Table 1. 

Antenna 2A has been analysed also assigning to the conductors a finite conductivity equal 
to the pure copper (σ=5.8*107 S/m). The results show a significant degradation of the antenna 
performances, since even using a very good conductor as material, the dissipations due to 
the finite conductivity are very large, making the antenna unusable (in fact NEC2 gives 
similar values for the SWR, but a very low efficiency). In other words, such antenna is 
actually close to a super-directive one. 

On the other side, asking SED to design an antenna with the same specifications of antenna 
2A, but assuming σ=5.8*107 S/m, we obtain an antenna with similar performances with 
respect to the 2A antenna, but with a larger size (Antenna 2B). The designed antenna is 
shown in Fig.6b, and, since the losses affect the antenna gain, the finite conductivity effect is 
already included in the fitness. The performances of the antenna 2B are shown in Table 1. 

This antenna shows similar performances with respect to the antenna shown in Fig.6a, but it 
has a larger size (0.1833λ03 with respect to 0.03λ03). Nevertheless, unlike the antenna shown 
in Fig.6a, it is feasible. 
 

Antenna 
Conductivity

σ (S/m) 
Design 
Shown 

Antenna Size 
Bandwidth

(SWR<2) 
MAX Directivity Gain 

(dBi) 
Efficiency 

(%) 

2A 
+∞ 

(PEC) 
Fig.6a 

0.33λ0x 0.22λ0 x 
0.4λ0 

70 MHz 
(14%) 

26 100 

2B 
5.8*107 
(pure 

copper) 
Fig.6b 

0.47λ0 x 0.3λ0 x 
1.3λ0 

90 MHz 
(18%) 

20 90.09 

Table 1. Performances of the antennas 2A and 2B. 

The frequency responses of both antennas are shown in Fig. 7 and 8. Also from these 
responses, we easily deduce that antenna 2A (designed and analysed using PEC) is almost 
superdirective. 

The presented results show that the introduction of a finite value of metal conductivity 
allows to obtain antennas with similar performances with respect to the antennas designed 
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with perfect conductors, but with a larger size. On the other hand, antennas designed 
assuming perfect conductors are characterized by collected and closer branches and tend to 
be super-directive. 

 
 

 
 

Figure 6. a) Antenna 2A, designed using perfect conductors; b) Antenna 2B, designed using finite metal 
conductivity. 

 

 
Figure 7. SWR of the antennas 2A and 2B. 
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Figure 8. Gain of the antennas 2A and 2B. 

 

Material Conductivity σ (S/m) Efficiency (%) Max Directivity Gain (dB) 
PEC +∞ 100 20.35 

Copper 5.8*107 90.09 20.3 
Aluminium 3.77*107 87.71 20.29 

Stainless Steel 0.139*107 34.84 20.01 

Table 2. Performances of the antenna designed using pure copper (shown in Fig.6b) for different values 
of conductivity. 

In Table 2, the antenna shown in Fig.6b, designed supposing the metal to be copper, has 
been analysed for different values of conductivity. While the maximum directivity is almost 
constant with respect to σ, the efficiency rapidly decreases. It is therefore required to take 
into account in SED the actual conductivity of the antenna material, but, doing so, the 
designed antennas will show similar performances to the antenna designed using copper, 
with an acceptable value for the efficiency. 

The last presented antenna (Casula et al., 2011a) is a broadband parasitic wire array for 
VHF-UHF bands with a significant gain, showing significant improvements over existing 
solutions (Yagi and LPDA) for the same frequency bands. In order to fulfil these strict 
requirements, we had to devise a quite complicate fitness function, composed by several 
secondary objectives overlapped to the main goal; these objectives are expressed by 
appropriate weights modelling trade-offs between different goals. These relative weights 
have been modelled by linear relations to avoid discontinuities and thus reducing the 
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probability of local maxima of the fitness, which trap the evolution process. The robustness 
respect to realization errors is also evaluated and taken into account in the fitness. 

We choose to maximize gain as the main goal of the fitness. Since we want to maximize the 
end-fire gain, the radiation pattern has been divided into 4 regions: 

1. The endfire direction:  

        θ = 90°;  ϕ = 0°    

2. The back direction:   

        θ = 90°;  ϕ = 180°    

3. The FRONT region:  

        |θ| > 90°+2Δθ;  0° +2Δϕ < ϕ ≤ 90° 

        (where Δϑ and Δϕ take into account the desired main lobe amplitude)  

4. The REAR region:   

               0° ≤ |θ| ≤ 180°;  90° ≤ |ϕ| ≤ 180°;  

Our goal is the maximization of the gain in the region 1 while minimizing the gains in the 
other 3 regions, with all the gains expressed in dB. Since we want to optimize the antenna in 
a certain frequency bandwidth, we start computing a suitable weighted average gain GAW1 
on region 1: 

 1
1

1 FN

AW i Ei
iF

G w G
N =

= ⋅            (3) 

wherein the average is taken over the NF frequency points, spanning the whole bandwidth 
of interest. In (3.1) GEi is the endfire gain and wi depends on the input impedance of the 
PDA: 

0.2       

1

i iw α



= 


    

αi is a weight proportional to the difference between the imaginary part XINA and the real 
part RINA of the array input impedance.  

The average gains over all other regions, namely  GBGR in the back direction, GFGR in the front 
region and GRGR in the rear region, are then computed. An “effective” endfire gain GAW is 
then obtained properly weighting each gain: 

If  [(Re (ZIN) < 35 Ω) or (Re (ZIN) > 400 Ω)]  

 

 

If       [(35Ω ≤ Re(ZIN)≤ 400 Ω)]   and [(Im(ZIN) >Re (ZIN))]  
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α α

⋅
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The weigths αBGR, αFGR and αRGR are chosen through a local tuning in order to get the 
maximum gain in the end-fire direction and an acceptable radiation pattern in the rest of the 
space. In our case, we obtained the following values: αBGR=0.08, αFGR=0.14 and αRGR=0.02. 

In order to design a wideband antenna, we must add some parameters taking into account 
the antenna input matching, and therefore we introduced suitable weights connected to the 
antenna input impedance. Holding gain weights fixed, the other parameters concerning 
input matching are added one by one choosing each weight through a further local tuning. 

The GAW is therefore furthermore modified taking into account: 

a. The values of RINA, XINA (averaged over the BW), and their normalized variance; 

b.  The SWR over all the required bandwidth 

according to the following guidelines: 

1. A step is introduced, with a weight αXR=50 if |XINA|> RINA, and αXR=0 otherwise, to boost 
up structures with RINA> |XINA|;   

2. A weight αXX=0.03 is introduced, related to |XINA|, forcing the evolution process to 
structures with an |XINA| as small as possible; 

3. A weight αRX=0.1 is introduced, related to RINA-|XINA|, to advantage structures with a 
low Q factor; 

4. A weight αRR=0.055 is introduced, related to RINA, to boost up structures with a high real 
part of the input impedance (as long as it is lower than 300 Ω); 

5. Weights αVR=αVX=0.015 are introduced, inversely related to the normalized variance of 
RINA and XINA, to advantage structures with a regular impedance behaviour; 

6. A sequence of small steps, related to the SWR (with a weight αSWR between 30 for an 
SWR>20 and 0.005 for an  SWR<4), is introduced to first boost up and then hold the 
evolution in areas of the evolution space with good SWR values.  

At this point we have a modified average gain GM, expressed by: 

 
XR XX

1 1=    
1 + 1 + 

M AW A
IN

G G
Xα α
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where σR2 and σX2 are the normalized variance of RINA and of XINA, respectively. 

The difference GR-GM (where GR is a suitably high gain, needed only to work with positive 
fitness values) is then modulated taking into account both the Q factor (obtained as the 
ratio between the imaginary part and the real part of the array input impedance at the 
central frequency) and the structure size to get a particular fitness f1. The individual 
generated by the genetic process associated to a fitness f1 higher or very close to the best 
fitness obtained as yet, are then perturbed (assigning random relocations to array 
elements) and analysed to assess their robustness respect to random modification of the 
structure. Two different random perturbed antennas are considered for each individual, 
and the final fitness f2 is the partial fitness f1 averaged over all the initial and perturbed 
configurations. This random relocation allows getting robust structures respect to both 
constructive errors and bad weather conditions (for example movements due to wind 
effect). On the other hand, this robustness test is quite time-consuming. Therefore it is 
performed only on antennas already showing good performances. The final population is 
graded according to their f2 value. 

The antenna designed using the fitness expressed by (3.3) is a PDA with 20 elements: 1 
reflector, 1 driven element and 18 directors. The operation frequency is 500 MHz, and the 
requested bandwidth is of 70 MHz (i.e. 14%, from 475 MHz to 545 MHz). The best 
antenna is represented in Fig.9, and its shape is typical of all antennas designed using 
our SED optimization technique. The antenna size is very small, since it fits in a box 
large 1.72 λ0 x 0.03 λ0 x 0.57 λ0, being λ0 the space wavelength at the operation frequency 
of 500 MHz.  Its SWR is less than 2 in the whole bandwidth of 70 MHz, and its gain is 
above 18 dB. 

 
 
 

 
 
 

 
Figure 9. Designed Antenna Structure. 

The antenna has been designed using a population size of 1000 individuals, with a crossover 
rate set to 60%, and a mutation rate set to 40%. Its convergence plot is shown in Fig.10, and 
it appears that 300 generations are enough to reach convergence. 
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Figure 10. Plot of convergence of the designed antenna in Fig.9. 

To assess the performances of our designed PDA, we need a comparison antenna. The best 
candidate is an existing Yagi but its choice is by no means obvious. Since, for a parasitic 
antenna, an increase in the number of elements adds little to the antenna complexity, we 
think that the most significant comparison is a gain comparison with a standard Yagi with 
the same size of our PDA (about 1.72λ0 in the endfire direction), and a size comparison with 
an Yagi with the same number of elements as our PDA. The first standard Yagi is composed 
of only 9 elements, and its gain and SWR, compared to our optimized PDA, are shown in 
Fig. 11. The standard Yagi bandwidth (SWR<2) is about 35 MHz (7% compared to 14%) with 
a gain between 12 and 13 dB, i.e. at least 5 dB less than ours, over the whole bandwidth. 

A standard Yagi antenna with the same number of elements than our PDA, i.e., 20 has been 
selected for the second comparison. Though this antenna is very large (its size is about 6λ0x 
0.5λ0), it has (see Fig.12) a quite narrow  bandwidth (its gain is above 15 dB in a bandwidth 
smaller than 10%, and even its SWR is less than 2 in a bandwidth of about 9%) if compared 
with our PDA.  

The PDA antenna of Fig. 11 and 12 has been designed choosing a fitness which pushes 
individuals toward higher Gain giving a smaller importance to input matching. As a further 
example, it is possible, by suitably choosing the fitness weights, to design a PDA antenna 
which favours individuals with better input matching. The performances of such an antenna 
are shown in Fig.13. The bandwidth (with SWR<2) has increased to 150 MHZ (30%), and its 
gain is only a few dB less than the first optimized PDA antenna. It is important to highlight 
that the size of the antenna with a larger input bandwidth is the same of the antenna with a 
higher gain.  

In Fig. 14 we show also the F/B ratio of both the PDA designed antennas, which is very close 
also to standard Yagis’ F/B. This comparison shows that, though the PDA we have designed 
appear to be more difficult to realize than a standard Yagi, they allow significantly better 
performances in a larger bandwidth, both on input matching, gain and F/B ratio. 
Furthermore, it is significantly smaller than standard Yagis. 
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          a)                                                                                   b) 

Figure 11. (a) Gain and (b) SWR comparison between the PDA Designed Antenna and a standard Yagi 
with the same size (and 9 elements); (b): SWR comparison between the PDA Designed Antenna and a 
standard Yagi with the same size (and 9 elements). 

         
           a)                                                                                 b) 
Figure 12. (a) Gain and (b) SWR comparison between the PDA Designed Antenna and a standard Yagi 
with the same number of elements, 20, and a far larger size (6 λ0 vs 1.72 λ0). 

  
              a)                                                                             b) 
Figure 13. (a) Gain and (b) SWR of the PDA Designed Antenna with a fitness pushing towards a larger 
SWR bandwidth 
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Figure 14. F/B ratio comparison between the PDA Designed Antenna with a fitness pushing towards a 
larger Gain bandwidth and one towards a larger SWR bandwidth. 

In order to demonstrate that the inclusion of the antenna robustness into the fitness using 
our simple device works well, we have tested a hundred random perturbations of the 
reference antenna of Fig.9. These have been obtained perturbing the ends of each arm of the 
antenna with a random value between -2 and 2 mm. The standard deviations of the SWR 
and gain are shown in Fig.15 and are expressed in percentage with respect to the values of 
the unperturbed antenna shown in Fig.9. Despite of such huge perturbation, the designed 
PDA is so robust that the behaviour of all perturbed antennas is essentially the same of the 
unperturbed one. Therefore, despite of its (relative) low computational cost, the approach 
we have devised to include robustness in the fitness allows to design antennas which are 
very robust respect to realization errors. 

 
Figure 15. Standard Deviation of SWR and Gain of the PDA Designed Antenna in Fig.9, considering 
100 randomly perturbed configurations. 
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Finally, we consider the computational issue. The computational cost of SED, like that of 
many other random optimization techniques, is the computational cost required to evaluate 
each individual. Therefore different techniques, such as SED and standard GA, can have 
different cost as long as they evaluate a different number of individuals, or more complex 
ones. 

For the example presented in Fig.10, SED requires 3*105 NEC evaluations of individuals. GA 
with comparable antenna size (such as the one described in (Jones & Joines, 1997)) requires a 
likely, or even larger, number of NEC evaluations. Since also the number of NEC unknown 
is more or less the same for both approaches, depending essentially on the antenna size, we 
can conclude that SED has a computational cost comparable, or slightly larger than standard 
GA. On the other hand, SED allows to explore a far larger solution space. If we consider as 
computational effectiveness of a design approach the size of the solution space explored for 
a given computational cost, we can conclude that SED is computationally more effective and 
with more performing antennas than GA. 

A comparison between SED and other algorithms like Particle Swarm Optimization and 
Differential Evolution, shows that both the computational cost and the complexity are of the 
same order of magnitude, also in these cases. But, again, the performances obtained by them 
are not as good as the ones obtained using SED. 

In Table 3, we show the results obtained by our PDA, designed using SED, compared with 
the results obtained by: 

(Baskar et al., 2005), who used  PSO to optimize the element spacing and lengths of a Yagi–
Uda antenna; 

(Goudos et al., 2010) who used Generalized Differential Evolution applied to Yagi-Uda 
antenna design;  

(Li, 2007), who used Differential Evolution to optimize the geometric parameters of Yagi-
Uda antennas; 

(Yan et al., 2010), who  designed a wide-band Yagi-Uda antenna with X-shape driven 
dipoles and parasitic elements using differential evolution algorithm, obtaining a 
bandwidth of 20%.  

 

 N° 
Elements 

Size 
Gain at center 
frequency (dB) 

VSWR at center 
frequency 

Bandwidth 
(VSWR<2) 

Baskar 2005 
(PSO) 15 

0.239x4.115 
λ0 

16.4 1.05 - 

Goudos 2010 
(DE) 15 

0.239x4.943 
λ0 

17.58 1.1 - 

Yan 2010 
(DE) 11 

0.527x1.391 
λ0 

12.5 1.8 20% 

Li 2007 
(DE) 15 

0.459x4.664 
λ0 

16.59 1.085 - 

SED 20 0.57x1.72 λ0 21 1.4 30% 

Table 3. Comparison between the performances reached by SED, PSO and DE in the design of a 
Parasitic Wire Dipole Array. 
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Both (Baskar et al., 2005), (Goudos et al., 2010) and (Li, 2007) decide to perform the 
optimization only at the center frequency, and this is a simpler task and can lead to better 
results than an optimization over the whole antenna bandwidth, which is the choice we 
made in our SED design. Nonetheless, the results obtained by SED are better than the ones 
obtained by PSO and DE even at the center frequency.   

In fact we are able to get a wideband antenna with a very high gain, i.e. we both maximize 
antenna gain and minimize SWR and antenna size within the whole bandwidth (which is a 
wide bandwidth, equal to 30%). 

Therefore, SED can lead to better results if compared with PSO and DE, both in terms of 
performances and of overall size. This is probably due to the fact that the solution space of 
SED is larger than the corresponding solution spaces of PSO and DE, and hence a proper 
choice of the fitness function can push the evolution process to more performing 
antennas. 

4. Conclusion  

In this chapter a new design technique, namely the Structure-based Evolutionary Design 
(SED) has been described in detail. This is a new global random search method based on 
the evolutionary programming concept. The proposed technique has been compared with 
the standard genetic algorithms (GA), a widely used design technique, showing the 
numerous advantages of our approach with respect to standard ones. Its main advantage is 
the ability to explore a far larger solution space than standard optimization algorithms. 
Moreover, SED assumes no “a priori” structure, but it builds up the structure of the 
individuals as the procedure evolves, being able to determine both the structure shape and 
dimensions as an outcome of the procedure. Inclusion of input matching requirements 
prevents from ill-posedness, a danger always present when the solution space is so large. 
The described procedure has been used to design wire antennas, and several examples are 
presented, showing very good results. The goal of the design process is to develop wire 
antennas fulfilling the desired requirements for both Gain and VSWR in a frequency band 
as wide as possible, and with the smallest size. For each set of requirements, a suitable 
fitness function must be derived, and some suggestions are given to choose the best fitness 
for the problem at hand. The results obtained with SED are finally compared with other 
global search algorithms showing that both the computational cost and the complexity are 
of the same order of magnitude, but the performances obtained by SED are significantly 
higher.  
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1. Introduction 

One challenge posed by financial markets is to correctly forecast the volatility of financial 
securities, which is a crucial variable in trading and risk management of derivative 
securities. Dynamic hedging is very sensitive to volatility forecast and good hedges require 
accurate estimate of volatility. Implied volatilities, generated from option markets, can be 
particularly useful in such contents as they are forward-looking measures of the market's 
expected volatility during the remaining life of an option [1, 2]. Since there is no explicit 
formula available to compute directly the implied volatility, the latter can be obtained by 
inverting the option pricing model. On the contrary, the genetic programming offers explicit 
formulas which can compute directly the implied volatility. This volatility forecasting 
method should be free of strong assumptions regarding underlying price dynamics and 
more flexible than parametric methods. This paper proposes a non parametric approach 
based on genetic programming to improve the accuracy of the implied volatility forecast 
and consequently the dynamic hedging. 

Genetic Programming [3] is an optimization technique which extends the basic genetic 
algorithms [4] to process non-linear problem structure. In genetic programming, solutions 
are represented as tree structures that can vary in size and shape, rather than fixed length 
character strings as in genetic algorithms. This means that genetic programming can be used 
to perform optimization at a structural level. In the standard genetic programming, the 
entire population of function-trees is evaluated against the entire training data set, so the 
number of function-tree evaluations carried out per generation is directly proportional to 
both the population size and the size of the training set. Genetic programming can 
encounter the problem of managing training sets which are too large to fit into the memory 
of computers, and then the realization of predictors. In machine learning, the practiced 
solution to learn large data set is the application of resampling techniques, such as, bagging 
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[5], boosting [6] and arcing [7]. However, these techniques require that the entire data sets 
be stored in the main memory. When applied to large data sets, this approach could be 
impractical. In this paper, we proposed to split data into smaller subsets. First, the genetic 
programming is run separately on all training sub-samples. Such approach is called static 
training-subset selection method [8]; it might provide local solutions not adaptive to the 
entire enlarged data set. Alternatively, a dynamic training approach is developed. It allows 
genetic programming to learn simultaneously on all training sub-samples and it implies a 
new parameter added to the basic genetic programming algorithm which is the number of 
generations to change sample. This approach lightens the training task for the genetic 
programming and favors the discovery of solutions that are more robust across different 
learning data samples and seem to have better generalization ability.  Comparison between 
generated models using static and dynamic selection methods reveals that, the dynamic 
approach improves the forecasting performance of the generated models using genetic 
programming. The best forecasting implied volatility models are selected according to total 
MSE criterion. They are used to compute hedge factors and implement dynamic hedging 
strategies. According to the average hedging errors, the genetic programming presented 
accurate hedging performance compared to that of Black-Scholes model.  

The rest of the paper is organized as follows: section 2 provides background information 
regarding related works in forecasting volatility and dynamic hedging, section 3 describes 
research design and methodology used in this paper, section 4 reports experimental results 
and finally section 5 concludes. 

2. Related works 
Traditional parametric methods have limited success in estimating and forecasting volatility 
as they are dependent on restrictive assumptions and difficult to estimate. Several machine 
learning techniques have been recently used to overcome these difficulties such as artificial 
neural networks and evolutionary computation algorithms. In particular, genetic 
programming has been successfully applied to forecast financial time series [9,10].  

This paper makes an initial attempt to test whether the hedger can benefit more by using 
generated genetic programming implied volatilities instead of Black-Scholes implied 
volatilities in conducting dynamic hedging strategies.  

Changes in asset prices is not the only risk faced by market participants, instantaneous 
changes in market implied volatility can also bring a hedging portfolio significantly out of 
balance. Extensive research during the last two decades has demonstrated that the volatility 
of stocks is not constant over time [11]. The Autoregressive Conditional Heteroskedasticiy 
(ARCH ) and the Generalized ARCH (GARCH) models are introduced [12,13] to describe 
the evolution of the asset price’s volatility in discrete time. Econometric tests of these models 
clearly reject the hypothesis of constant volatility and find evidence of volatility clustering 
over time. In the financial literature, stochastic volatility models have been proposed to 
model these effects in a continuous-time setting   [14-17]. Although these models improve 
the benchmark Black-Scholes model, they are complex because they require strong 
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assumptions and computational effort to estimate parameters and stochastic process. As 
mentioned in [18], traditional financial engineering methods based on parametric models 
such as the GARCH model family, seem to have difficulty to improve the accuracy in 
volatility forecasting due to their rigid as well as linear structure. Using its basic and flexible 
tree-structured representation, genetic programming is capable of solving non-linear 
problems. In the context of forecasting volatility, most of research papers have focused on 
forecasting historical volatility based on past returns in different markets. Using historical 
returns of Nikkei 225 and S&P500 indices, Chen and Yeh [19] have applied a recursive 
genetic programming approach to estimate volatility by simultaneously detecting and 
adapting to structural changes. Results have shown that the recursive genetic programming 
is a promising tool for the study of structural changes. Using high frequency foreign 
exchange USD-CHF and USD-JPY time series, Zumbach et al. [20] have compared the 
genetic programming forecasting accuracy to that of historical volatilities, the GARCH (1,1), 
FIGARCH and HARCH models. According to the root-mean squared errors, the generated 
genetic programming volatility models did consistently outperform the benchmarks. 
Similarly, Neely and Weller [21] have tested the forecasting performance of genetic 
programming for USD-DEM and USD-YEN daily exchange rates against that of GARCH 
(1,1) model and a related RiskMetrics volatility forecast over different time horizons, using 
various accuracy criteria. While the genetic programming rules did not usually match the 
GARCH (1,1) or RiskMetrics models' MSE or 2R , its performance on those measures was 
generally close. But, the genetic programming did consistently outperform the GARCH 
model on mean absolute error (MAE) and model error bias at all horizons. Overall, on some 
dimensions the genetic programming has produced significantly superior results. Applying 
a combination of theory and techniques such as wavelet transform, time series data mining, 
Markov chain based discrete stochastic optimization, and evolutionary algorithms genetic 
algorithms and genetic programming, Ma et al. [22,23] have proposed a systematic approach 
to address specifically non linearity problems in the forecast of financial indices using 
intraday data of S&P100 and S&P500 indices. As a result, accuracy of forecasting has 
reached an average of over 75% surpassing other publicly available results on the forecast of 
any financial index. Abdelmalek et al. [8] have extended the studies mentioned earlier by 
forecasting the implied volatility of Black-Scholes from the S&P500 index call options 
instead of historical volatility using a static training of genetic programming. The 
performance of generated genetic programming volatility forecasting models is compared 
between time series samples and moneyness-time to maturity classes. Using Total and out-
of-sample mean squared errors (MSE) as forecasting performance measures, the time series 
model seems to be more accurate in forecasting implied volatility than moneyness-time to 
maturity models.  

Option contracts prices are affected by new information and changes in expectations as 
much as they are by changes in the value of the underlying index. If traders have perfect 
foresight on forward volatility, then dynamic hedging would be essentially riskless. In 
practice, continuous hedging is impossible, but the convexity of option contract allows for 
adjustments in the exposure to higher-order sensitivities of the model, such as gamma, vega, 
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etc. Most of the existing literature on hedging a target contract using other exchange-traded 
options focuses on static strategies, motivated at least in part by the desire to avoid the high 
costs of frequent trading. The goal of static hedging is to construct a buy-and-hold portfolio 
of exchange traded claims that perfectly replicates the payoff of a given over-the-counter 
product [24,25]. The static hedging strategy does not require any rebalancing and therefore, 
it does not incur significant transaction costs. Unfortunately, the odds of coming up with a 
perfect static hedge for a given over-the-counter claim are small, given the limited number 
of exchange listed option contracts with sufficient trading volume. In other words, the static 
hedge can only be efficient if traded options are available with sufficiently similar maturity 
and moneyness as the over-the-counter product that has to be hedged. Under a stochastic 
volatility, a perfect hedge can in principle be constructed with a dynamically rebalanced 
portfolio consisting of the underlying and one additional option. In practice, the dynamic 
replication strategy for European options will only be perfect if all of the assumptions 
underlying the Black-Scholes formula hold. For general contingent claims on a stock, under 
market frictions, the delta might still be used as first-order approximation to set up a riskless 
portfolio. However, if the volatility of the underlying stock varies stochastically, then the 
delta hedging method might fail severely. A simple method to limit the volatility risk is to 
consider the volatility sensitivity vega of the contract. The portfolio will have to be 
rebalanced frequently to ensure delta-vega neutrality. With transaction costs, frequent 
rebalancing might result in considerable losses. In practice, investors can rebalance their 
portfolios only at discrete intervals of time to reduce transactions costs.  

Non parametric hedging strategies as an alternative to the existing parametric model based- 
strategies, have been proposed [26,27]. Those studies estimated pricing formulas by 
nonparametric or semi-parametric statistical methods such as neural networks and kernel 
regression, and they measured their performance in terms of delta-hedging. Few researches 
have focused on the dynamic hedging using genetic programming, however. Chen et al. [28] 
have applied genetic programming to price and hedge S&P500 index options. By 
distinguishing the case in-the-money from the case out-of-the-money, the performance of 
genetic programming is compared with the Black-Scholes model in terms of hedging accuracy. 
Based on the post-sample performance, it is found that in approximately 20% of the 97 test 
paths, genetic programming has lower tracking error than the Black-Scholes formula. 

Based on the literature survey, one can conclude that the genetic programming could be 
used to efficiently forecast volatility and implement accurate dynamic hedging strategies, 
which opens up an alternative path besides other data-based approaches.  

3. Research design and methodology 

Accurate volatility forecasting is an essential element in conducting good dynamic hedging 
strategies. The first thrust of this paper deals with generation of implied volatility from 
option markets using static and dynamic training of genetic programming, respectively. 
While the static training [8] is characterized by training the genetic programming 
independently on a single Sub-sample, the dynamic training allows the genetic 
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programming to train on the entire data sub samples simultaneously rather than just a 
single subset by changing the training Sub-sample during the run process. This permits to 
improve the robustness of genetic programming to generate general models adaptive to all 
training samples. The second thrust of this paper is to study the accuracy of the generated 
genetic programming implied volatility models in terms of dynamic hedging. Since the true 
volatility is unobservable, it is impossible to assess the accuracy of any particular model; 
forecasts can only be related to realized volatility. In this paper, we assume that the implied 
volatility is a reasonable proxy for realized volatility, to generate forecasting implied 
volatility models using genetic programming and then to analyze the implications of this 
predictability for hedging purposes.  

Figure 1 illustrates the operational procedure to implement the proposed approach. 

 
Figure 1. Description of the proposed approach’s implementation 

The operational procedure consists of the following steps: The first step is devoted for the 
data division schemes. The second step deals with the implementation of genetic 
programming1 (GP), the application of training subset selection methods and the selection of 
the best forecasting implied volatility models. The last step is dedicated to dynamic hedging 
results.  

3.1. Data division schemes 

Data used in this study consist of daily prices for the European-style S&P 500 index calls and 
puts options traded on the Chicago Board of Options Exchange from 02 January to 29 
August 2003. The data base include the time of the quote, the expiration date, the exercise 
price and the daily bid and ask quotes for call and put options. Similar information for the 
underlying S&P 500 index is also available on a daily basis. S&P500 index options are among 
the most actively traded financial derivatives in the world. The minimum tick for series 
trading below 3 is 1/16 and for all other series 1/8. Strike price intervals are 5 points, and 25 
points for far months. The expiration months are three near term months followed by three 
additional months from the March quarterly cycle (March, June, September, and December). 
Following a standard practice, we used the average of an option’s bid and ask price as a 
stand-in for the market value of the option. The risk free interest rate is approximated by 
using 3 month US Treasury bill rates. It is assumed that there are no transaction costs and no 
dividend. 
                                                                 
1 GP system is built around the Evolving Object library, which is an ANSI-C++ evolutionary computation Framework 
(EO library). 
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To reduce the likelihood of errors, data screening procedures are used [29,30]. We apply 
four exclusion filters to construct the final option sample. First, as implied volatilities of 
short-term options are very sensitive to small errors in the option price and may convey 
liquidity-related biases, options with time to maturity less than 10 days are excluded. 
Second, options with low quotes are eliminated to mitigate the impact of price discreteness 
on option valuation. Third, deep-in-the-money and deep-out-of-the money option prices are 
also excluded due to the lack of trading volume. Finally, option prices not satisfying the 

arbitrage restriction [31], rC S Ke τ−≥ − , are not included. 

The final sample contains 6670 daily option quotes, with at-the-money (ATM), in-the-money 
(ITM) and out-of-the money (OTM) options respectively taking up 37%, 34% and 29% of the 
total sample. 

In this paper, two data division schemes are used. The full sample is sorted first, by time 
series (TS) and second by moneyness-time to maturity (MTM). For time series, data are 
divided into 10 successive samples (S1, S2…S10), each contains 667 daily observations. The 
first nine samples are used as training sub-samples. For moneyness-time to maturity, data 
are divided into nine classes with respect to moneyness and time to maturity criteria. 
According to moneyness criterion: A call option is said out-of-the money (OTM) if

/ 0.98S K < ; at-the-money (ATM) if / 0.98,1.03S K  ∈   ; and in-the-money (ITM) if
/ 1.03S K ≥ . According to time to maturity criterion: A call option is Short Term (ST) if

60τ <  days; Medium Term (MT) if 60,180τ  ∈    days; and Long Term (LT) if 180τ >  days. 
Each class Ci is divided on training set CiL and test set CiT, which produces respectively nine 
training and nine test MTM sub-classes. Figure 2 illustrates the two division schemes. 

 
Figure 2. Data division schemes  

3.2. Implied volatility forecasting using genetic programming: 

This subsection describes the design of genetic programming and the experiments 
accomplished using the genetic programming method to forecast implied volatility. In the 
first experiment, the genetic programming is trained using static training-subset selection 
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method; in the second one, we used dynamic training-subset selection methods. We  
describe training and test samples used in these experiments. 

3.2.1. The design of genetic programming: 

Our genetic programming software is referred to as symbolic regression written in C++ 
language. It is designed to find a function that relates a set of inputs to an output without 
making any assumptions about the structure of that function. Symbolic regression was one 
of the earliest applications of genetic programming [3], and has continued to be widely 
studied [32-35]. The following pseudo code describes the genetic programming's algorithm 
structure used in this paper. 

Initialize population 
While (termination condition not satisfied) do 
Begin 

Evaluate the performance of each individual according to the fitness criterion 
Until the offspring population is fully populated do  

 - Select individuals in the population using the selection algorithm 
 - Perform crossover and mutation operations on the selected individuals 
 - Insert new individuals in the offspring population 

      Replace the existing population by the new population 
End while 
Report the best solution found 
End 

Algorithm 1 Pseudo code of genetic programming 

The genetic programming’s algorithm structure consists of the following steps: nodes 
definition, initialization, fitness evaluation, selection, genetic operators (crossover and 
mutation) and termination condition. 

Nodes Definition: The nodes in the tree structure of genetic programming can be classified 
into terminal (leaf) nodes and function (non-terminal) nodes. The terminal and function sets 
used are described in Table 1. 

The terminal set includes the inputs variables, notably, the option price divided by strike 

price ( C
K

for calls and P
K

for puts), the index price divided by strike price S
K

and time to 

maturityτ . The function set includes unary and binary nodes. Unary nodes consist of 
mathematical functions, notably, cosinus function (cos), sinus function (sin), log function 
(ln), exponential function (exp), square root function ( ) and the normal cumulative 
distribution function ( Φ ). Binary nodes consist of the four basic mathematical operators, 
notably, addition (+), subtraction (-), multiplication ( × ) and division ( 0

0 ). The basic 
division operation is protected against division by zero and the log and square root 
functions are protected against negative arguments.  
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Expression Definition

Terminal Set C/K Call price / Strike price 

S/K Index price / Strike price 

τ Time to maturity 

Function Set + (plus) Addition 

- (minus) Subtraction 

* (multiply) Multiplication 

0
0 (divide) Protected division: x 0

0 y = 1 if y=0;   x 0
0 y =  x 0

0 y otherwise 

ln Protected natural log: ( ) ( )ln lnx x=  

Exp Exponential function: ( )exp xx e=  

Sqrt Protected square root: x x=  

Ncdf Normal cumulative distribution function Φ  

Table 1. Terminal set and function set 

Individuals are encoded as LISP S-expressions which can also be depicted as a parse tree. 
The search space for genetic programming is the space of all possible parse trees that can be 
recursively created from the terminal and function sets. 

 
Figure 3. Example of a tree structure for GP and the corresponding functions 

Initialization: The generated genetic programming volatility models are performed using a 
ramped half and half as initialization method [3]. This method involves generating an equal 
number of trees using a maximum initial depth that ranges from 2 to 6, as specified in Table 
2. For each level of depth, 50% of the initial trees are generated via the full method and the 
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other 50% are generated via the grow method. In the full method, the initial trees have the 
property that every path from root to endpoint is of maximum depth. In the grow method, 
initial trees can be of various depths, subject to the constraint that they do not exceed the 
maximum depth. 

Fitness function: The fitness function assigned to a particular individual in the population 
must reflect how closely the output of an individual program comes to the target function. 

In this paper, the Black-Scholes implied volatility BS
tσ  is used as target output. It is defined 

as the standard deviation which equates the Black-Scholes price BSC 2 to the market option 

price *
tC [36]: 
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The generated genetic programming trees provide at each time t the forecast value ˆtσ , and 
the fitness function used to measure the accuracy of forecast is the mean squared error 

(MSE) between the target ( BS
tσ ) and forecasted ( ˆtσ ) output volatility, computed as follows:   

 ( )
2
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Where, N is the number of data sample.  

Selection: Based on the fitness criterion, the selection of the individuals for reproduction is 
done with the tournament selection algorithm. A group of individuals is selected from the 
population with a uniform random probability distribution. The fitness values of each 
member of this group are compared and the actual best is selected. The size of the group is 
given by the tournament size which is equal to 4, as indicated in Table 2.  

Genetic operators: Crossover and mutation are the two basic operators which are applied to 
the selected individuals in order to generate new individuals for the next generation. As 
described in Figure 4, the subtree crossover creates new offspring trees from two selected 
parents by exchanging their sub-trees. As indicated in Table 2, the crossover operator is 
used to generate about 60% of the individuals in the population. The maximum tree size 
(measured by depth) allowed after the crossover is 17. This is a popular number used to 
limit the size of tree [3]. It is large enough to accommodate complicated formulas and works 
in practice. 
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Figure 4. Example of subtree mutation 

The mutation operator randomly changes a tree by randomly altering nodes or sub-trees to 
create a new offspring. Often multiple types of mutation are beneficially used 
simultaneously [37,38]. In this paper, three mutation operators are used simultaneously, 
they are described below: 

Branch (or subtree) mutation operator randomly selects an internal node in the tree, and 
then it replaces the subtree rooted at that node with a new randomly-generated subtree 
[3].  

 
Figure 5. Example of point mutation 
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Point mutation operator consists of replacing a single node in a tree with another randomly-
generated node of the same arity [39].  

Expansion mutation operator randomly selects a terminal node in the tree, and then replaces 
it with a new randomly-generated subtree.  

 

 
 
Figure 6. Example of expansion mutation 

As indicated in Table 2, Branch mutation is applied with a rate of 20%; Point and Expansion 
mutations are applied with a rate of 10%, respectively. 

Replacement: The method of replacing parents for the next generation is comma replacement 
strategy [40], which selects the best offspring to replace the parents. It assumes that 
offspring size is higher than parents' size. If µ is the population size and λ is the number of 
the new individuals (which can be larger than µ), the population is constructed using the 
best µ out of the λ new individuals.  

Termination criterion: The stopping criterion is the maximum number of generations. It is 
fixed at 400 and 1000 for static and dynamic training- subset selection, respectively. In the 
dynamic training- subset selection approach, the maximum number of generations is 
increased to allow the genetic programming to train on the maximum of samples 
simultaneously. The number of generations to change sample varied between 20 and 100 
generations. 

The implementation of genetic programming involves a series of trial and error experiments 
to determine the optimal set of genetic parameters which is listed in Table 2. By varying 
genetic parameters, each program is run ten times with ten different random seeds. The 
choice of the best genetic program is made according to the mean and median of Mean 
Squared Errors (MSE) for training and testing sets. 
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Population size: 
Offspring size: 
Maximum number of generations for static method: 
Maximum number of generations for dynamic method: 
Generations' number to change sample  
Maximum depth of new individual: 
Maximum depth of the tree: 
Tournament size: 
Crossover probability: 
Mutation probability: 

Branch mutation: 
Point mutation: 
Expansion mutation: 

100 
200 
400  
1000  
20-100 
6 
17 
4 
60% 
40% 
20% 
10% 
10% 

Table 2. Summary of genetic programming parameters 

3.2.2. Dynamic training-subset selection method 

As data are divided in several sub-samples, the genetic programming is trained, first, 
independently on each sub-sample relative to each data division scheme (algorithm 1). This 
approach is called static training-subset selection method [8]. Second, the genetic 
programming is trained simultaneously on the entire data sub-samples relative to each data 
division scheme, rather than just a single subset by changing the training sub-sample during 
the run process. This approach is called dynamic training-subset selection method. The main 
goal of this method is to make genetic programming adaptive to all training samples and 
able to generate general models and solutions that are more robust across different learning 
data samples. In the context of evolutionary algorithms, there are at least three approaches 
for defining the frequency of resampling [41]. The first approach called “individual-wise” 
consists of extracting a new sample of data instances from the training set for each 
individual of the population. As a result, different individuals will probably be evaluated on 
different data samples, which cast some doubts on the fairness of the selection procedure of 
the evolutionary algorithm. The second approach called “run-wise” consists of extracting a 
single fixed sample of data instances from the training set used to evaluate the fitness of all 
individuals throughout the evolutionary run, which will probably reduce significantly the 
robustness and predictive accuracy of the evolutionary algorithm. The third approach called 
“generation-wise” consists of extracting a single fixed sample of data instances from the 
training set at each generation, and all individuals of that generation will have their fitness 
evaluated on that data sample. This method avoids the disadvantages of the two previous 
approaches, and as such seems more effective. In particular, an individual will only survive 
for several generations if it has a good predictive accuracy across different data samples. 
The dynamic approach proposed in this study differs from the three previous approaches as 
it doesn’t extract a fixed sample of data instances from the training set, but selects it from the 
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whole sub-samples data which are already built up and use it to evaluate the fitness of all 
individuals when the generations’ number to change sample is reached. In this paper, we 
proposed four dynamic training-subset selection methods: Random Subset Selection method 
(RSS), Sequential Subset Selection method (SSS), Adaptive-Sequential Subset Selection method 
(ASSS) and Adaptive-Random Subset Selection method (ARSS). The RSS and SSS allow the 
genetic programming to learn on all training samples in turn (SSS) or randomly (RSS). 
However, with these methods, there is no certainty that genetic programming will focus on 
the samples which are difficult to learn. Then, the ASSS and the ARSS, which are variants of 
the adaptive subset selection (ASS), are introduced to focus the genetic programming’s 
attention onto the difficult samples i.e. having the greatest MSE and then to improve the 
learning algorithm.  

Dynamic subset selection is easily added to the basic GP algorithm with no additional 
computational cost according to the static subset selection. 

Let S be the set of training samples Si (i=1…k), where k is the total number of samples. A 
selection probability P (Si) is allocated to each sample Si from S. The training sample Si is 
changed each g generations (g is the number of generations to change sample) according to 
this selection probability and the dynamic training-subset selection method used. Once a 
new training sample is selected, the best individuals are used as population for the next 
training samples. This procedure is repeated until the maximum number of generations is 
reached. This permits genetic programming to adapt its generating process to changing data 
in response to feedback from the fitness function which is the mean squared error computed 
as in static approach. By the end of the evolution, only individuals with the desirable 
characteristics that are well adapted to the environmental changes will survive.  

a. Random training-Subset Selection method (RSS):  

It selects randomly the training samples with replacement. At each g generations, all the 
samples from S have the same probability to be selected as the current training sample: P (Si) 
=1/k, 1≤ i ≤ k. This method differs from that proposed by Gathercole and Ross [42] as 
random selection concerns training samples which are already constructed according to data 
division scheme, rather than data instances. 

As selection of training samples is random, the performance of the current population 
changes with the training sample used for evolving the genetic program. Figure 8 illustrates 
an example of the best fitness (MSE) curve along evolution using RSS method. With the 
sample change, the MSE may increase, but it is improved during the following generations, 
the time that the population adapts itself to the new environment. 

Figure 8 shows that some training samples could be duplicated, but some others could be 
eliminated.  

b. Sequential training-Subset Selection method (SSS)  

It selects all the training samples in the order. If, at generation g-1, the current training 
sample is Si, then at generation g: P (Sj) = 1, with j= i+1 if i<k, or j=1 if i=k. 
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Figure 7. Example of fitness curve of the best individuals generated by genetic programming using RSS 
method for time series samples 

 
Figure 8. Example of curve fitness of the best individuals generated by genetic programming using SSS 
method for moneyness-time to maturity classes 

As illustrated in Figure 9, all the learning subsets are used during the evolution in an 
iterative way.  

c. Adaptive training-Subset Selection method (ASS):  

Instead of selecting a training subset data in a random or sequential way, one can use an 
adaptive approach to dynamically select difficult training subsets data which are frequently 
misclassified. This approach is inspired from the dynamic subset selection method proposed 
by Gathercole and Ross [42] which is based on the idea of dynamically selecting instances, 
not training samples, which are difficult and/or have not been selected for several 
generations. Selection is made according to a weight computed proportionally to the 
sample's average fitness. Each g generations, the weights are updated as follows: 
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Where, M is the size of Si ( j iX S∈ ), g is the number of generations to change sample, and 
( )jf X  is the MSE of the individual jX . 

At each g generations, training samples are re-ordered, so that the most difficult training 
samples, which have higher weights, will be moved to the beginning of the ordered training 
list, and the easiest training samples, which have smaller weights, will be moved to the end 
of the ordered training list. 

1. Adaptive-Sequential training-Subset Selection method (ASSS):  

It uses the following procedure (step 1 to step 3): 

Step 1. Let the first generation t be set to 0. Each training sample is assigned an equal 
weight, i.e., W(Si) = 1 for 1≤ i ≤ k. 

Step 2. The probability P (Si) that a training sample Si is selected to be included in the 
training set and evolve genetic programming is determined using the Roulette wheel 
selection scheme. 

����� =
�����
∑����� 

Where, the summation is over all training samples. 

Moreover, the probability P (Si) is positively related to the fitness of the parse tree generated 
relative to the corresponding training sample. 

����� =
�����
∑����� 

Where, ����� is the average fitness of individuals relative to the training sample.  

Compute a fitness function which is the mean squared error for each individual in the 

training sample and then the average fitness. Update the weights:
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Step 3. t=t+g. If t<T (T is the total number of generations), then go to step 2. 

As illustrated in Figure 10, selection of training samples is made in the order for the first t 
generations using the SSS method. Some training samples could be duplicated to improve 
the genetic programming learning. Later, samples are selected for the next run according to 
the adaptive approach based on the re-ordering procedure.  

2. Adaptive-Random training-Subset Selection method (ARSS):  

The ARSS method uses the same procedure as the ASSS method, except that the initial 
weights are generated randomly in the start of running, rather than initialized with a 
constant: For t=0, ( ) , 0,1 ,1 .i i iW S P P i k = ∈ ≤ ≤ 

  Then, for the few first generations, samples 
are selected using RSS method. After, the selection of samples is made using the adaptive 
approach based on the re-ordering procedure.  
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Figure 9. Example of curve fitness of the best individuals generated by genetic programming using 
ASSS method for time series samples 

 

 
Figure 10. Example of curve fitness of the best individuals generated by genetic programming using 
ARSS method for moneyness-time to maturity classes 

3.2.2. Training and test samples 

Different forecasting genetic programming volatility models are estimated from the training 
set and judged upon their performance on the test set. Table 3 summarizes the training and 
test data samples used for static and dynamic training-subset selection methods, 
respectively. 

In static training-subset selection approach, first, the genetic program is trained separately 
on each of the first nine TS sub-samples (S1,…, S9) using ten different seeds and is tested on 
the subset data from the immediately following date (S2,…, S10). Second, using the same 
genetic parameters and random seeds applied for TS data, the genetic programming is 
trained separately on each of the first nine MTM sub-classes (C1L,…, C9L) and is tested on the 
second nine MTM sub-classes (C1T,…, C9T). 
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Subset Selection Learning data sample Test data sample
Static Subset 
Selection 

Si ∈  TS samples (S1, …, S9)      
(1 subset for a run) 

The successive TS sample Sj, j=i+1 

CiL ∈  MTM training samples  
(C1L, …, C9L)    
(1 subset for a run) 

The corresponding MTM test samples 
CiT 

Dynamic Subset 
Selection 
(RSS/SSS/ASSS/ 
ARSS) 
 

TS samples S1, …, S9                  
(9 subsets for a run) 

The last subset  in TS samples set (S10) 

MTM samples C1L, …, C9L        
(9 subsets for a run) 

The nine MTM test  samples  
(C1T + C2T …+ C9T)  

TS samples + MTM samples 
(S1, …, S9 ; C1L, …, C9L  )            
(18 subsets for a run) 

The last TS sample with the nine MTM 
test  samples (S10  + C1T + C2T …+ C9T) 

Table 3. Definition of training and test data samples for static and dynamic training-subset selection 
methods 

In dynamic training-subset selection approach, first, the genetic program is trained on the 
first nine TS sub-samples simultaneously (S1,…, S9) using ten different seeds and it is tested 
only on the tenth sub-sample data (S10). Second, the genetic programming is trained on the 
first nine MTM sub-classes simultaneously (C1L,…, C9L) and it is tested on the second nine 
MTM sub-classes regrouped in one test sample data (C1T + C2T …+ C9T). Third, the genetic 
programming is trained on both the nine TS sub-samples and the nine MTM sub-classes 
simultaneously (S1, …, S9 ; C1L, …, C9L ) and it is tested on one test sample data composed of 
the TS and MTM test data (S10  + C1T + C2T …+ C9T).   

Based on the training and test MSE, the best generated genetic programming volatility 
models relative to static and dynamic training-subset selection methods respectively are 
selected. These models are then compared with each other according to the MSE total and 
the best ones are used to implement the dynamic hedging strategies as described in the 
following section. 

3.3. Dynamic hedging 

To assess the accuracy of selected generated genetic programming volatility models in 
hedging with respect to Black-Scholes model, three dynamic hedging strategies are 
employed, notably, delta-neutral, delta-gamma neutral and delta-vega neutral strategies. 

For delta hedging, at date zero, a delta hedge portfolio consisting of a short position in one 
call (or put) option and a long (short) position in the underlying index is formed. At any 
time t, the value of the delta hedge portfolio ( )tΡ  is given by: 

  ( ) ( ) ( ) ( ) ( )VP t V t t S t tβ= + Δ +   (4) 

Where, ( )P t , ( )V t , ( )S t , ( )V tΔ and ( )tβ denote the values of the portfolio, hedging option 
(call or put), underlying, delta hedge factor and bond (money market account) respectively.  
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The portfolio is assumed self-financed, so the initial value of the hedge portfolio at the 
beginning of the hedge horizon is zero: 

   (0) (0) (0) (0) (0) 0VV S βΡ = + Δ + =     (5) 

    (0) ( (0) (0) (0))VV Sβ = − + Δ    (6) 

A dynamic trading strategy is performed in underlying and bond to hedge the option during 
the hedge horizon. The portfolio rebalancing takes place at intervals of length tδ during the 
hedge horizon 0,τ   , o Tτ< ≤ , where T is the maturity of the option. At each rebalancing 
time it , the hedge factor ( )v itΔ is recomputed and the money market account is adjusted:  

  1 1( ) ( ) ( )( ( ) ( ))r t
i i i V i V it e t S t t tδβ β − −= − Δ − Δ    (7) 

The delta hedge error is defined as the absolute value of the delta hedge portfolio at the end 
of the hedge horizon of the option, ( )P τ . 

For delta-gamma hedging, a new position in a traded option is required. Then, the delta-
gamma hedge portfolio is formed with: 

     1( ) ( ) ( ) ( ) ( ) ( ) ( )P t V t x t S t y t V t B t= + + +    (8) 

Where, ( )1V t is the value of an additional option which depends on the same underlying, 
with the same maturity but different strike price than the hedging option ( )V t . ( )x t and

( )y t  are the proportions of the underlying and the additional option respectively. They are 
chosen such that the portfolio ( )tΡ  is both delta and gamma neutral: 
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Where, the values of ( )V tΔ  and ( )V tΓ  are the delta and gamma factors for the option ( )V t ; 
the values ( )

1V tΔ  and ( )
1V tΓ  are the delta and gamma factors for the option ( )1V t . 

At the beginning of the hedge horizon, the value of the hedge portfolio is zero: 

   1(0) (0) (0) (0) (0) (0) (0) 0P V x S y V B= + + + =  (11) 

     1  (0) ( (0) (0) (0) (0) (0))B V x S y V = − + +  (12) 

At each rebalancing time it , both delta and gamma hedge factors are recomputed and the 
money market account is adjusted:  

   
1 1 1 1( ) ( ) ( ( ) ( )) ( ) ( ( ) ( )) ( )r t

i i i i i i i iB t e B t x t x t S t y t y t V tδ
− − −= − − − −   (13) 
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The delta-gamma hedge error is defined as the absolute value of the delta-gamma hedge 
portfolio at the end of the hedge horizon of the option, ( )P τ . 

For delta-vega hedging, a new position in a traded option is required as in the delta-gamma 
hedging. The proportions of the underlying ( )x t  and the additional option ( )y t  are chosen 
such that the portfolio ( )tΡ  is both delta and vega neutral: 
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Where, ( )V tϑ  and 
1
( )V tϑ  are the vega factors for the options ( )V t  and ( )1V t respectively. 

As in delta-gamma hedging, at each rebalancing time it , both delta and vega hedge factors 
are recomputed and the money market account is adjusted. The delta-vega hedge error is 
defined as the absolute value of the delta-vega hedge portfolio at the end of the hedge 
horizon of the option, ( )P τ . 

35 option contracts are used as hedging options and 35 other contracts which depend on the 
same underlying, with the same maturity but different strike prices are used as additional 
options. Contracts used to implement the hedging strategies are divided according to 
moneyness and time to maturity criteria, which produces nine classes.  

The delta, gamma and vega hedge factors are computed using the Black-Scholes formula by 
taking the derivative of the option value with respect to index price, the derivative of delta 
with respect to index price and the derivative of the option value with respect to volatility 
respectively. For the genetic programming models, the hedge ratios are computed using the 
same formulas replacing the Black-Scholes implied volatilities with the generated genetic 
programming volatilities. Two rebalancing frequencies are considered: 1-day and 7 days 
revision. 

The average hedging error is used as performance measure. For a particular moneyness- 
time to maturity class, the tracking error is given by:  
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Where, n is the number of options corresponding to a particular moneyness-time to 
maturity class and ( )iε τ  is the present value of the absolute hedge error of the portfolio
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( )P τ over the observation path N (as a function of rebalancing frequency), divided by the 
initial option price ( )0V .  

4. Result analysis and empirical findings 

4.1. Selection of the best genetic programming-implied volatility forecasting 
models 

Selection of the best generated genetic programming volatility model, relative to each 
training set, for TS, MTM, and both TS and MTM classifications, is made according to the 
training and test MSE. For static training-subset selection method, nine generated genetic 
programming volatility models are selected for TS (M1S1…M9S9) and similarly nine 
generated genetic programming volatility models are selected for MTM classification 
(M1C1…M9C9). The performance of these models is compared according to the MSE Total, 
computed using the same formula as the basic MSE for the enlarged data sample. 

Table 4 reports the MSE total and the standard deviation (in parentheses) of the generated 
genetic programming volatility models, using static training-subset selection method, 
relative to the TS samples and the MTM classes.  

 

TS Models MSE Total MTM Models MSE Total 
M1S1 0,002723 (0,004278) M1C1 2,566 (20,606) 
M2S2 0,005068 (0,006213) M2C2 0,006921 (0,032209) 
M3S3 0,003382 (0,004993) M3C3 0,030349 (0,076196) 
M4S4 0,001444 (0,002727) M4C4 0,001710 (0,004624) 
M5S5 0,002012 (0,003502) M5C5 1,427142 (33,365115) 
M6S6 0,001996 (0,003443) M6C6 0,002357 (0,004096) 
M7S7 0,001901 (0,003317) M7C7 0,261867 (0,303256) 
M8S8 0,002454 (0,004005) M8C8 0,004318 (0,008479) 
M9S9 0,002419 (0,004095) M9C9 0,002940 (0,010490) 

Table 4. Performance of the generated genetic programming volatility models using static training-
subset selection method, according to MSE total for the TS samples and the MTM classes  

Table 4 shows that, the generated genetic programming volatility models M4S4, M4C4 and 
M6C6 present the smallest MSE on the enlarged sample for TS and MTM samples respectively. 
Comparison between these models reveals that the TS model M4S4 seems to be more 
performing than MTM models M4C4 and M6C6 for the enlarged sample. Furthermore, results 
show that the performance of TS models is more uniform than that of MTM models. MTM 
models are not able to fit appropriately the entire data sample as well as the TS models as they 
have large Total MSE. Indeed, the MSE total exceed 1 with some MTM classes, however it does 
not reach 0.006 for all TS samples. Figure 12 describes the evolution's pattern of the squared 
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errors given by TS models and MTM models for all observations in the enlarged data sample. 
Some extreme MSE values for MTM data are not shown in this figure. 

It appears throughout Figure 12 that, the TS models are adaptive not only to training 
samples, but also to the enlarged sample. In contrast, the MTM models such as M1C1 are 
adaptive to training classes, but not all to the enlarged sample. A first plausible explanation 
of these unsatisfied results is an insufficient search intensity inducing difficulty to obtain 
general model suitable for the entire benchmark input data. To enhance exploration 
intensity during learning and thus improve the genetic programming performance, we 
introduced to the evolution procedure the dynamic subset selection, which aims to obtain a 
general model that can be adaptive to both TS and MTM classes simultaneously.   

 
Figure 11. Evolution of the squared errors for total sample of the best generated GP volatility models, 
using static training-subset selection method, relative to TS samples(a) and MTM classes (b). 

 
Figure 12. Evolution of the squared errors for total sample of the best generated GP volatility models, 
using dynamic training-subset selection methods, relative to TS samples (a), MTM classes (b) and both 
TS and MTM samples (c). 

For dynamic training-subset selection methods (RSS, SSS, ASSS and ARSS), four generated 
genetic programming volatility models are selected for TS classification (MSR, MSS, MSAS 
and MSAR). Similarly, four generated genetic programming volatility models are selected 

(a) MSE pattern for TS samples (b) MSE pattern for MTM classes 

(a) MSE pattern for  
TS samples 

(b) MSE pattern 
for MTM classes 

(c) MSE pattern for 
TS+MTM 
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for MTM classification (MCR, MCS, MCAS and MCAR) and four generated genetic 
programming volatility models are selected for global classification, both TS and MTM 
classes (MGR, MGS, MGAS and MGAR). Table 5 reports the best generated genetic 
programming volatility models, using dynamic training-subset selection, relative to TS 
samples, MTM classes and both TS and MTM data. 
 

TS 
Models MSE Total MTM 

Models MSE Total Global 
Models MSE Total 

MSR 0.002367 (0.003934) MCR 0.002427 (0.003777) MGR 0.002034 (0.003501) 
MSS 0.002076 (0.004044) MCS 0.007315 (0.025811) MGS 0.002492 (0.003013) 

MSAS 0.002594 (0.003796) MCAS 0.002831 (0.004662) MGAS 0.001999 (0.003587) 
MSAR 0.002232 (0.003782) MCAR 0.001424 (0.003527) MGAR 0.001599 (0.003590) 

Table 5. Performance of the generated genetic programming volatility models, using dynamic training-
subset selection method, according to MSE total for the TS samples, the MTM classes and both TS and 
MTM samples 

Based on the MSE total as performance criterion, the generated genetic programming 
volatility models MSS, MCAR and MGAR are selected. They seem to be more accurate in 
forecasting implied volatility than the other models because they have the smallest MSE in 
enlarged sample. However, the MTM model MCAR and the global model MGAR 
outperform the TS model MSS. Figure 13 describes the evolution's pattern of the squared 
errors for these generated volatility models. 

Figure 13 shows that almost all models relative to each data's group are performing on the 
enlarged sample and present forecasting errors which are small and very closed. Forecasting 
errors are higher for the MTM classes than for the TS samples and both TS and MTM 
samples. Comparison between models generated using static training-subset selection 
method (Figure 12) and dynamic training-subset selection methods (Figure 13) respectively, 
reveals that the amplitude of forecasting errors relative to TS and MTM classes respectively 
is lower for the models generated using dynamic training-subset selection methods than for 
the models generated using static training-subset selection method. Actually, the quality of 
the generated genetic programming forecasting models has been improved with the 
dynamic training, in particular for MTM classes.  

The best generated genetic programming volatility models selected, relative to dynamic 
training-subset selection method, are compared to the best generated genetic programming 
volatility model, relative to static training-subset selection method. Results are reported in 
Table 6. 

Models MSE total
M4S4 0,001444 (0,002727) 
MCAR 0.001424 (0.003527) 
MGAR 0.001599 (0.003590)

Table 6. Comparison between best models generated by static and dynamic selection methods for call 
options 
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Comparison between models reveals that the best models generated respectively by static 
(M4S4) and dynamic selection methods (MCAR and MGAR) present total MSE small and 
very close. While the generated genetic programming volatility models M4S4 and MCAR 
have total MSE smaller than the MGAR model, the latest seems to be more accurate in 
forecasting implied volatility than the other models. This can be explained by the fact that, on 
one hand, the difference between forecasting errors is small, and on the other hand, the MGAR 
model is more general than MCAR and M4S4 models because it is adaptive to all TS and MTM 
classes simultaneously. In fact, the MGAR model, generated using ARSS method, is trained on 
all TS and MTM classes simultaneously. Whereas, the MCAR model, generated using ARSS 
method, is trained only on MTM classes simultaneously; and the M4S4 model, generated using 
static training-subset selection method, is trained separately on each subset of TS. 

As the adaptive-random training subset selection method is considered the best one to 
generate implied volatility model for call options, it is applied to put options. The decoding 
of volatility forecasting formulas generated for call and put options as well as their 
forecasting errors are reported in Table 7.  

A detailed examination of the formulas in Table 7 shows that the implied volatilities 
generated by genetic programming are function of all the inputs used, namely the option 

price divided by strike price ( C
K

 for calls and P
K

for puts), the index price divided by strike 

price S
K

 and time to maturityτ . The implied volatilities generated for calls and puts cannot 

be negative since they are computed using the square root and the normal cumulative 
distribution functions as the root nodes. Furthermore, the performance of models is uniform 
as they present near MSE on the enlarged sample. 
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Table 7. Performance of the best generated genetic programming volatility models for call and put 
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4.2. Dynamic hedging results 

The performance of the best genetic programming forecasting models is compared to the 
Black-Scholes model in delta, gamma and vega hedging strategies. Table 8 reports the 



 
Genetic Programming – New Approaches and Successful Applications 164 

average hedging errors for call options using Black-Scholes (BS) and genetic programming 
(GP) models, at the 1-day and 7-days rebalancing frequencies. Values in bold correspond to 
the GP hedging errors which are less than the BS ones. 

Results in Table 8 show that the delta hedging performance improves for out-of-the money 
call options at longer maturities, for at-the-money call options at medium maturities and for 
in-the money call options at shorter maturities, regardless of the model used at daily hedge 
revision frequency. The best delta hedging performance is achieved using in-the-money 
short term call options for all MTM classes, regardless of the option model used. 

The delta-gamma hedging performance improves for all moneyness classes of call options at 
longer maturities, regardless of the model used at daily hedge frequency (except in-the-
money call options using the genetic programming model). The best delta-gamma hedging 
performance is achieved, for BS model, using at-the-money long term call options for all 
MTM classes. However, the best delta-gamma hedging performance is achieved, for genetic 
programming model, using in-the-money short term call options for all MTM classes. 

The delta-vega hedging performance improves for out-of-the money and in-the-money call 
options at longer maturities and for at-the-money call options at shorter maturities, 
regarding BS model at daily hedge revision frequency. However, the delta-vega hedging 
performance improves for out-of-the money call options at shorter maturities, for at-the-
money call options at medium maturities and for in-the money call options at longer  
 

    Rebalancing Frequency  
    1-day  7- days  

S/K Hedging 
strategy 

Model <60 60-180 >=180 <60 60-180 >=180 

<0.98 Delta hedging BS 0,013119 0,001279 0,000678 0,057546 0,010187 0,005607 
  GP 0,009669 0,001081 0,000662 0,053777 0,009585 0,005594 
 Gamma hedging BS 0,000596 0,000732 0,000061 0,003026 0,007357 0,000429 
  GP 0,000892 0,002040 0,000075 0,003855 0,001359 0,000153 
 Vega hedging BS 0,000575 0,000050 0,000039 0,000525 0,000226 0,000099 
  GP 0,000473 0,002035 0,004518 0,000617 0,004642 0,040071 

0.98-1.03 Delta hedging BS 0,002508 0,000717 0,000730 0,019623 0,005416 0,002283 
  GP 0,002506 0,0007 0,001725 0,020 0,0054 0,0022 
 Gamma hedging BS 0,000069 0,000018 0,000006 0,000329 0,000169 0,000027 
  GP 0,000377 0,000040 0,000029 0,000727 0,000155 0,000059 
 Vega hedging BS 0,000066 0,000373 0,003294 0,000527 0,023500 0,031375 
  GP 0,000281 0,000013 0,000207 0,001102 0,000147 0,000134 

>=1.03 Delta hedging BS 0,000185 0,000906 0,001004 0,001602 0,006340 0,006401 
  GP 0,000184 0,000905 0,001 0,000840 0,005789 0,0064 
 Gamma hedging BS 0,000323 0,000047 0,000028 0,001546 0,000386 0,000157 
  GP 0,000028 0,000057 0,000036 0,000227 0,000429 0,000175 
 Vega hedging BS 0,000362 0,000060 0,000052 0,001757 0,002015 0,000247 
  GP 0,000067 0,000057 0,00005 0,000831 0,000864 0,000186 

Table 8. Average hedge errors of dynamic hedging strategies relative to BS and GP models for call options 
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maturities, regarding genetic programming model at daily hedge revision frequency. The 
best delta-vega hedging performance is achieved, for BS model, using out-of-the-money 
long term call options for all moneyness and time to maturity classes. However, the best 
delta-gamma hedging performance is achieved, for genetic programming model, using at-
the-money medium term call options for all MTM classes. 

The percentage of cases where the hedging error of the genetic programming model is less 
than the BS hedging error is around 59%. In particular, the performance of genetic 
programming model is better than the BS model on in-the-money call options class. Further, 
the total of hedging errors relative to genetic programming model is about 21 percent 
slightly lower than 19 percent relative to BS model. Table 9 displays the average hedge 
errors for put options using BS and genetic programming models, at the 1-day and 7-days 
rebalancing frequencies. Values in bold correspond to the genetic programming hedging 
errors which are less than the BS ones. 

Results in Table 9 show that the delta-gamma hedging performance improves for all 
moneyness classes of put options (except in-the-money put options) at longer maturities, 
regarding BS model at daily hedge frequency. However, the delta-gamma hedging 
performance improves for in-the money put options and at-the-money put options at medium 
maturities and for out-of-the money put options at longer maturities, regarding genetic 
programming model at daily hedge revision frequency. The best delta-gamma hedging 
performance is achieved, for BS model, using at-the-money long term put options for all 
 

    Rebalancing Frequency  
    1-day  7- days  

S/K Hedging strategy Model <60 60-180 >=180 <60 60-180 >=180 
<0.98 Delta hedging BS 0,007259 0,002212 0,001189 0,015453 0,013715 0,007740 

  GP 0,064397 0,002270 0,001256 0,016872 0,013933 0,007815 
 Gamma hedging BS 0,000107 0,000043 0,000705 0,000383 0,000253 0,013169 
  GP 0,000177 0,000351 0,000676 0,000990 0,000324 0,009201 
 Vega hedging BS 0,000051 0,000715 0,000612 0,000174 0,002995 0,008527 
  GP 0,002800 0,000345 0,000625 0,018351 0,000184 0,008979 

0.98-1.03 Delta hedging BS 0,007331 0,002267 0,001196 0,170619 0,009875 0,004265 
  GP 0,0073 0,002219 0,001185 0,170316 0,009715 0,004260 
 Gamma hedging BS 0,003750 0,000049 0,000027 0,032725 0,000119 0,000119 
  GP 0,003491 0,000031 0,000024 0,029792 0,000113 0,000103 
 Vega hedging BS 0,035183 0,000052 0,000044 0,037082 0,000329 0,000043 
  GP 0,004343 0,000038 0,000043 0,037045 0,000190 0,000041 

>=1.03 Delta hedging BS 0,007680 0,004469 0,000555 0,037186 0,017322 0,011739 
  GP 0,006641 0,004404 0,0005 0,037184 0,017076 0,011733 
 Gamma hedging BS 0,000262 0,000204 0,000079 0,001196 0,001319 0,000369 
  GP 0,000548 0,000287 0,000166 0,002034 0,001323 0,001059 
 Vega hedging BS 0,000232 0,000108 0,000025 0,000488 0,000644 0,000270 
  GP 0,000312 0,000080 0,00002 0,001047 0,001186 0,000244 

Table 9. Average hedge errors of dynamic hedging strategies relative to BS and GP models for put options 
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MTM classes. However, the best delta-gamma hedging performance is achieved, for genetic 
programming model, using out-of-the-money long term put options for all MTM classes. 

The delta-vega hedging performance improves for BS using at-the-money and out-of-the-
money put options at longer maturities and in-the-money put options at shorter maturities, 
at daily hedge revision frequency. However, the delta-vega hedging performance improves for 
all moneyness classes of put options (except in-the-money put options) at longer maturities, 
regarding genetic programming model at daily hedge frequency. The best delta-vega hedging 
performance is achieved, for BS model, using out-of-the-money long term put options for all 
MTM classes. However, the best delta-vega hedging performance is achieved, for genetic 
programming model, using at-the-money long term put options for all MTM classes. 

The percentage of cases where the hedging error of the genetic programming model is less 
than the BS hedging error is around 57%. In particular, the performance of genetic 
programming model is better than the BS model on at-the-money put options class. But, the 
total of hedging errors relative to genetic programming model is about 50 percent slightly 
higher than 46 percent relative to BS model. 

In summary, the genetic programming model is more accurate in all hedging strategies than 
the BS model, for in-the-money call options and at-the-money put options. The performance 
of genetic programming is pronounced essentially in terms of delta hedging for call and put 
options. The percentage of cases where the delta hedging error of the genetic programming 
model is less than the BS delta hedging error is 100% for out-of-the money and in-the-money 
call options as well as for at-the-money and out-of-the-money put options. The percentage 
of cases where the delta-vega hedging error of the genetic programming model is less than 
the BS delta-vega hedging error is 100% for in-the-money call options as well as for at-the-
money put options. The percentage of cases where the delta-gamma hedging error of the 
genetic programming model is less than the BS delta-gamma hedging error is 100% for at-
the-money put options.  

Furthermore, results exhibit that as the rebalancing frequency changes from 1-day to 7-days 
revision, as the hedging errors increase and vice versa. The option value is a nonlinear function 
of the underlying, therefore, hedging is instantaneous and hedging with discrete rebalancing 
gives rise to error. Frequent rebalancing can be impractical due to transactions costs. In the 
literature, consequences of discrete time hedging have been considered usually in conjunction 
with the existence of transaction costs, that’s why hedgers would like to trade at least frequently 
as possible. Pioneered by Leland [43], asymptotic approaches are used as well [44-46]. For most 
MTM classes, delta-gamma and delta-vega hedging strategies are shown to perform better in 
dynamic hedging when compared with delta hedging strategy, regardless of the model used. 
The delta-gamma strategy enables the performance of a discrete rebalanced hedging to be 
improved. The delta-vega strategy corrects partly for the risk of a randomly changing volatility. 

5. Conclusion  

This paper is concerned with improving the dynamic hedging accuracy using generated 
genetic programming implied volatilities. Firstly, genetic programming is used to predict 
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implied volatility from index option prices. Dynamic training-subset selection methods are 
applied to improve the robustness of genetic programming to generate general forecasting 
implied volatility models relative to static training-subset selection method. Secondly, the 
implied volatilities derived are used in dynamic hedging strategies and the performance of 
genetic programming is compared to that of Black-Scholes in terms of delta, gamma and 
vega hedging.  

Results show that the dynamic training of genetic programming yields better results than 
those obtained from static training with fixed samples, especially when applied on time 
series and moneyness-time to maturity samples simultaneously. Based on the MSE total as 
performance criterion, three generated genetic programming volatility models are selected 
M4S4, MCAR and MGAR. However, the MGAR seems to be more accurate in forecasting 
implied volatility than MCAR and M4S4 models because it is more general and adaptive to 
all time series and moneyness-time to maturity classes simultaneously. 

The main conclusion concerns the importance of implied volatility forecasting in conducting 
hedging strategies. Genetic programming forecasting volatility makes hedge performances 
higher than those obtained in the Black-Scholes world. The best genetic programming hedging 
performance is achieved for in-the-money call options and at-the-money put options in all 
hedging strategies. The percentage of cases where the hedging error of the genetic 
programming model is less than the Black-Scholes hedging error is around 59% for calls and 
57% for puts. The performance of genetic programming is pronounced essentially in terms of 
delta hedging for call and put options. The percentage of cases where the delta hedging error 
of the genetic programming model is less than the Black-Scholes delta hedging error is 100% 
for out-of-the money and in-the-money call options as well as for at-the-money and out-of-the-
money put options. The percentage of cases where the delta-vega hedging error of the genetic 
programming model is less than the Black-Scholes delta-vega hedging error is 100% for in-the-
money call options as well as for at-the-money put options. The percentage of cases where the 
delta-gamma hedging error of the genetic programming model is less than the Black-Scholes 
delta-gamma hedging error is 100% for at-the-money put options. 

Finally, improving the accuracy of implied volatility forecasting using genetic programming 
can lead to well hedged options portfolios relative to the conventional parametric models. 

Our results suggest some interesting issues for further investigation. First, the genetic 
programming can be used to hedge options contracts using implied volatility of other 
models than Black-Scholes model, notably stochastic volatility models and models with 
jump, as a proxy for genetic programming volatility forecasting. Further, the hedge factors 
can be computed numerically not analytically. Second, this work can be reexamined using 
data from individual stock options, American style index options, options on futures, 
currency and commodity options. Third, as the genetic programming can incorporate 
known analytical approximations in the solution method, parametric models such as 
GARCH models can be used as a parameter in the genetic programming to build the 
forecasting volatility model and the hedging strategies. Finally, the genetic programming 
can be extended to allow for dynamic parameter choices including the form and the rates of 
genetic operators, the form and pressure of selection mechanism, the form of replacement 
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strategy and the size of population. This dynamic genetic programming method can 
improve the performance without extra calculation costs. We believe these extensions are of 
interest for application and will be object of our future works. 
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1. Introduction 

Advanced fabric production demands developing strategies with regard to new fabric 
constructions in which sample-production is reduced to a minimum. It is clear that a new 
fabric construction should have the desired end-usage properties pre-specified as project 
demands. Achieving such a demand is a complex task based on our knowledge of the 
relations between the fabric constructional parameters and the predetermined fabric end-
usage properties that fit the desired quality. Individual fabric properties are difficult to 
predict when confronting the various construction parameters, which can be separated into 
the following categories: raw materials, fabric structure, design, and manufacturing 
parameters. 

Many attempts have been made to develop predictive models for fabric properties with 
different modelling tools. There are essentially two types of modelling tools: deterministic 
(mathematical models, empirical models, computer simulation models) and non-
deterministic (models based on genetic methods, neural network models, models based on 
chaos theory and theory of soft logic), and each of them has its advantages and 
disadvantages [1]. 

Deterministic modelling tools present the heart of conventional science and have their basis 
in first principles, statistical techniques or computer simulations. Mathematical models offer 
a deep understanding of relations between constructional parameters and predetermined 
fabric property, but due some simplifying assumptions large prediction errors occur. 
Empirical models based on statistical techniques show a much better agreement with the 
real values but the problems with samples preparing, process repeatability, measurements 
errors and extrapolation occur. They usually refer to the one type of testing method of 
particular fabric property. The advantage of computer simulation models is their ability to 
capture the randomness inherent in fabric structure so the predicted values are very near the 
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real ones, but on the other hand they require numerous fabric samples data. The problem 
with extrapolation still remains. In general, when deterministic modelling is used, the 
obtained models are the results of strict mathematical rules and/or the models are set in 
advance. In this case the goal is to discover merely a set of numerical coefficients for a model 
whose form has been pre-specified. However, nowadays more and more processes and 
systems are modelled and optimized by the use of non-deterministic approaches. This is due 
to the high degree of complexity of the systems, and consequently, inability to study them 
successfully by the use of conventional methods only. In non-deterministic modelling of 
systems, no precise and strict mathematical rules are used [2, 3, 4, 5, 6, 7]. For example, in 
genetic programming, no assumptions about the form, size, and complexity of models are 
made in advance. They are left to the stochastic, self-organized, intelligent, and non-
centralized evolutionary processes [1, 8].  

Fabrics are porous materials having different porous structures as the consequence of 
different manufacturing techniques needed to interlace the fundamental structural elements, 
e.g. fibres, yarns or layers, into fibrous assembly. Fabric porosity strongly determines 
important physical, mechanical, sorptive, chemical, and thermal properties of the fabrics 
such as mechanical strength, thermal resistance, permeability (windproofness, 
breathability), absorption and adsorption properties (wicking, wetting), translucence, soiling 
propensity, UV light penetration, sound absorption ability, etc. [9, 10]. Knowledge about the 
fabric’s porous structure is, therefore, an important step when characterising fabrics, in 
order to predict their behaviour under different end-usage conditions regarding a product. 
Hence, if porosity is estimated or predicted then when developing a new product the 
desired porosity parameters can be set in advance on the basis of selecting those fabric 
constructional factors that have an effect on porosity and, in this way sample production 
trials could be reduced. 

This chapter gives some basic information about the porosity, porosity parameters of woven 
and nonwoven fabrics, and the results of the studies dealing with the prediction of porosity 
parameters of two types of fabrics, e.g. woven fabrics made from the 100% cotton staple 
yarns and needle-punched nonwovens made from the mixture of viscose/polyester fibres, 
using nondeterministic modelling tools, e.g. genetic programming (GP) and genetic 
algorithms (GA), respectively. 

2. Porosity and porosity parameters 

Flat textile materials, e.g. fabrics, are porous materials which allow the transmission of 
energy and substances and are therefore interesting materials for different applications. In 
general, they are used for clothing, interior and wide range of technical applications. Fabric 
as porous barrier between the human body an environment should support heat and water 
vapour exchange between the body and environment in order to keep the body temperature 
within the homeostasis range. Besides thermo-physiological protection, fabrics also play an 
important role by heat protection due to the flames or convection heat, contact heat, radiant 
heat as well as due to the sparks and drops of molten metal, hot gases and vapours [11]. 
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Fabrics protect users against micro-organisms, pesticides, chemicals, hazardous particles 
and radiations (radioactive particles, micro-meteorites, X-rays, micro-waves, UV radiation, 
etc.). They act very important role also by environmental protection as filters for air and 
water filtrations, sound absorption and isolation materials against noise pollution, 
adsorption materials for hazardous gas pollution, etc. [10, 12, 13]. By all mentioned 
applications dedicated to absorption, desorption, filtration, drainage, vapours transmission, 
etc., the essential constructional parameter that influences fabric efficiency to protect human 
or environment is porosity. The fabric in a dry state is a two-phase media which consists of 
the fibrous material – solid component and void spaces containing air – gas (void) 
component. The porosity of a material is one of the physical properties of the material and 
describes the fraction of void space in the material. The porosity (or void volume fraction) is 
expressed as coefficient ranging between 0 and 1 or as percentage ranging between 0% and 
100% (by multiplying the coefficient by 100). Mathematically, the porosity is defined as the 
ratio of the total void space volume to the total (or bulk) body volume [14, 15]: 

 vV
V

ε =  (1) 

where, ε is the porosity expressed as coefficient, Vv is the volume of the total void space in 
cm3, and V is the total or bulk body volume in cm3. The total volume of the body consists of 
the volumes of the solid and void components as follows: 

 v sV V V= +  (2) 

where, V is the total volume of the body in cm3, Vv is the volume of void component in cm3, 
and VS is the volume of solid component in cm3. If the volume of void component is exposed 
from the Equation 2, the Equation 1 can be further written as follows: 
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ε β
−
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where, β is the fulfilment (or solid volume fraction) which describes the fraction of solid 
component volume in the material expressed as coefficient ranging between 0 and 1 or as 
percentage. If we take into account the common equation for material density (Equation 5), 
and assume that the mass of the material is actually the mass of solid component (ms=mb), 
the Equation 3 could be further written in the form of Equation 6: 
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where, ε is the porosity expressed as coefficient, Vs is the volume of solid component in cm3, 
V is the volume of the body (or bulk volume) in cm3, ms is the mass of solid component in g, 
mb is the mass of the body (or bulk mass) in g, ρb is the bulk density in g/cm3, and ρs is the 
density of solid component in g/cm3. 

In this way exactly defined porosity of the material is useful parameter, only, when 
materials with the same porous structure are compared, and gives an indication which 
material possesses more void space in the bulk volume. It does not give any information 
about the porous structure of the material, so it is an insufficient parameter for describing 
fibre assembly characteristics [16]. Namely, the materials with the same porosity could have 
very different porous structure and consequently, in the case of fabrics, different protection, 
filtration, sound absorption, etc., properties; so the need to define porous structure and some 
other porosity parameters is essential. From the theoretical point of view, the porosity 
parameters could be easily determined on the basis of an ideal geometrical model of the 
material porous structure. The simpler models consider that all pores, whatever their shape, 
are the same and regularly arranged in a fibre assembly [16, 17]. Ideal models are based also 
on some other simplifying assumptions depending on the fibre assembly type. Porosity 
parameters calculated on the basis of ideal models of porous structures are usually not in a 
good correlation with the real porosity parameters. Real porous media generally have rather 
complex structures that are relatively difficult to define. But the advantage of ideal geometric 
models of porous structures is the possibility to understand the influence of porous structure 
on some end-usage properties of the material, which is crucial by a new product planning. 

The fundamental building elements of the material porous structure are pores (also 
capillaries, channels, holes, free volume) [15, 18]. Pores are void spaces within the material 
which are separated between each other, and are classified [19, 20]: 

1. according to the position in the material into: 
a. inter-pores, e.g. pores which lie between the structural elements of the material, 
b. intra-pores, e.g. pores which lie within the structural element of the material; 

2. according to the pore width (the shortest pore diameter) into: 
a. macropores whose pore-width is greater than 50 nm, 
b. mesopores whose pore-width lies in the range between 2 and 50 nm, and 
c. micropores with the pore-width lower than 2 nm; 

3. according to the fluid accessibility into (Figure 1): 
a. closed pores being inaccessible for fluid flow or surroundings, 
b. blind pores which are accessible for fluid but terminate inside the material and 

prevent fluid flow, and 
c. open (or through) pores which are open to external surface and permit fluid flow; 

 
Figure 1. Types of pores according to the fluid accessibility  



 
The Usage of Genetic Methods for Prediction of Fabric Porosity 175 

4. according to the pore shape into (Figure 2): 
a. cylindrical pores, 
b. slit-shape pores, 
c. cone-shape pores, and 
d. ink bottle pores; 

 
Figure 2. Types of pores according to the pore shape [19] 

5. according to the geometry of pore-cross section into (Figure 3): 
a. pores with geometrically regular cross-sectional shape and 
b. pores with geometrically irregular cross-sectional shape, 

 
Figure 3. Different shapes of pore cross-sections [20] 

6. according to the uniformity of pore cross-section over the pore length into (Figure 4): 
a. pores with a permanent cross-section, 
b. pores with a different cross-sections and for which different diameters are defined 

(the most constricted,  the largest, the mean pore diameters). 

 
Figure 4. Pores with permanent (a) and non-permanent (b) cross-sections over their length 

Four groups of pore descriptors, e.g. size, shape, orientation, and placement, are defined as 
important parameters [21]. Pores can be mathematically assessed on the basis of known 
model of pores geometry and constructional parameters of the material with the following 
parameters: the number of pores, pore size, pore volume, pore surface area, pore length, etc.  



 
Genetic Programming – New Approaches and Successful Applications 176 

On the basis of an ideal geometrical model of porous structure, the pore size distribution 
which is also an important parameter of material porous structure can not assessed while 
the pores in geometrical model are usually assumed to be the same sizes. Such situation 
rarely occurs in the real fabrics. The further considerations of ideal geometrical models of 
material porous structures and porosity parameters will be focused on different types of 
fabrics. 

Fabrics are flat textile materials which are produced by different manufacturing techniques 
using different fibrous forms of input material (or structural element), and consequently 
having different porous structures. Following basic types of fabrics are known (Figure 5): 

• woven fabrics which are made by interlacing vertical warp and horizontal weft yarns at 
right angles to each other, 

• knitted fabrics which are made by forming the yarn into loops and their interlacing in 
vertical (warp-knitted fabrics) or horizontal (weft-knitted fabrics) direction, 

• nonwoven fabrics which are produced from the staple fibres, filaments or yarns by 
different web-forming, bonding and finishing techniques. 

 
Figure 5. 2-D schematic presentations of woven-, knitted-, and nonwoven (made from staple fibres) 
fabrics 

While this chapter is focused on the genetic methods in order to predict porosity of woven 
and nonwoven fabrics, only those types of fabrics and their ideal geometric models of 
porous structure will be presented. 

2.1. Woven fabric’s ideal geometric model of porous structure 

When a woven fabric is treated as a three dimensional formation, different types of pores 
are detected [22, 23, 24]: 1. inter-pores, e.g. the pores which are situated between warp and 
weft yarns (macropores, interyarn pores) and pores which are situated between fibres in the 
yarns (mesopores, interfiber/intrayarn pores), 2. intra-pores, e.g. the pores which are 
situated in the fibres (micropores, intrafiber pores). The structure and dimensions of the 
inter- or intrayarn pores are strongly affected by the yarn structure and the density of yarns 
in the woven structure [22]. As fibrous materials, woven fabrics have, with regard to knitted 
fabrics or nonwovens, the most exactly determined an ideal geometrical model of a macro-
porous structure in the form of a tube-like system, where each macropore has a cylindrical 
shape with a permanent cross-section over all its length (Figure 6) [25]. Because the warp 
density is usually greater than the weft density, the elliptical shape of the pore cross-section 



 
The Usage of Genetic Methods for Prediction of Fabric Porosity 177 

is used to represent the situation in Figure 6. Macropores are opened to the external surface 
and have the same cross-section area. They are separated by warp or weft yarns, and are 
uniformly distributed over the woven fabric area.  

The primary constructional parameters of woven fabrics which alter the porous structure are: 

• yarn fineness, e.g. the mass of 1000 meter of yarn from which the yarn diameter can be 
calculated, 

• type of weave, e.g. the manner how the yarns are interlaced. It has an effect on the pore 
size as well as on the shape of pore cross-section [26], 

• the number of yarns in length unit (warp and weft densities), which directly alters the 
pore size. 

When fibre properties (fibre density, dimension, and shape) are different, two woven fabrics 
with similar woven structures and geometrical configurations can have distinctly different 
porosity [22]. 

 
Figure 6. 2D and 3D presentations of an ideal model of the porous structure of a woven fabric [27, 28] 
(d – yarn thickness, p – yarn spacing, MP - macropore; 1, 2 indicates warp and weft yarns, respectively) 

To compare woven fabrics with porosity, the following porosity parameters can be 
calculated on the basis of the woven fabric primary constructional parameters and the ideal 
model of porous structure in the form of a tube-like system: 

• (total) porosity by using Equation 6 where the bulk density of the material is actually 
the woven fabric density and the density of solid component is the yarn density. If the 
fibre volume fraction (yarn packing factor) is exposed from the Equation 7 which 
represents the yarn diameter calculation, and then inserted in Equation 8 by  assuming 
Equation 9 for woven fabric density at the same time, the porosity of woven fabrics can 
be then written in the form of Equation 10: 
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where, d is the yarn diameter in cm, T is the yarn fineness in tex, ρyarn is the yarn bulk 
density in g/cm3, ρfib is the fibre density in g/cm3, βfib is the fibre volume fraction (or yarn 
packing factor), ρfab is the woven fabric bulk density in g/cm3, m is the woven fabric mass 
per unit area in g/m2, D is the woven fabric thickness in mm, ρb is the body bulk density in 
g/cm3, and ρs is the density of solid component in g/cm3. It is worth to mention that in this 
way defined porosity refers to all types of pores regarding their position in the woven 
fabric, e.g. inter- and intra-pores; 

• area of pore cross-section which refers only on macropores in a woven fabric. The ideal 
model of woven fabric porous structure is based on the assumption that macropores 
have cylindrical shape with circular cross-section. In real woven fabrics, the macropore 
cross-section shape is more likely to be irregular rather regular (Figure 7) [26]. The 
shape of pore cross-section and consequently the area of pore cross-section depend on 
the type of yarns used. Woven fabrics made from filament yarns have pure macropores 
with rectangular cross-sections, whilst woven fabrics made from staple yarns have a 
small percentage of pure macropores, some of partly latticed macropores as well as 
fully latticed macropores (as the consequence of the phenomenon of latticed pores) with 
mostly irregular cross-sections. The area of pore cross-section also depends on the 
phenomenon of changing the position of warp threads according to the longitudinal 
fabric axis and the phenomenon of thread spacing irregularity [28]. For the theoretical 
calculations of the macropore cross-section area three types of regular pore cross-
section shapes are taken into account, e.g. circular (Equation 11), rectangular (Equation 
12) and elliptical (Equation 13) as follows: 
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where, Ap is the area of macropore cross-section in mm2, p is the yarn spacing in mm, d is 
the yarn diameter in mm, g is the number of yarns per unit length in threads/cm, and 
subscripts 1 and 2 indicate warp and weft yarns, respectively; 
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Figure 7. Real and binary images of the pore cross-section shape and the number of pores in real woven 
fabrics (magnification of binary images: 20 x, magnification of real images: 80 x, yarn fineness: 36 tex, 
fabric relative density: 83 %) 

• number of macropores in the area unit (pore density). It can be seen from Figure 7, 
that one macropore belongs to one warp yarn and one weft yarn, so the number of 
macropores can be calculated on the basis of warp and weft densities using Equation 
14: 

 1 2pN g g= ⋅  (14) 

where, Np is the pore density in pores/cm2, g1 is the warp density in threads/cm, and g2 is the 
weft density in threads/cm; 

• open porosity (open area) which describes the fraction of macropore cross-section area 
in the area unit of woven fabric. If we assume elliptical macropore cross-section area 
(Figure 7), the open porosity is calculated as follows: 
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where, εopen is the open porosity, Ap is the macropore cross-section area in mm2, Ay is the 
projection area of warp and weft yarns, which refers to one macropore in mm2, p is the yarn 
spacing in mm, d is the yarn diameter in mm, and subscripts 1 and 2 indicate warp and weft 
yarns, respectively. Open porosity can be calculated also on the basis of cover factor 
(Equation 16) or pore density (Equation 17) [26, 29]: 

    

   

   

plain, 21/16 threads/cm twill, 27/22 threads/cm satin, 30/24 threads/cm 
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where, εopen is the open porosity, K is the woven fabric cover factor, d is the yarn diameter in 
mm, g is the warp/weft density in threads/cm, Np is the pore density in pores/cm2, Ap is the 
area of macropore cross-section in cm2, and subscripts 1 and 2 indicate warp and weft yarns, 
respectively; 

• equivalent macropore-diameter. If we assume that macropore has cylindrical shape, 
then the area of macropore cross-section is equal to the area of circle with radius r 
(Equation 18). Equivalent macropore diameter is the diameter of macropore with 
circular cross-section whose area is the same as the area of the macropore with irregular 
cross-section shape (Equation 19) [30]. 
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where, Acircle is the circular cross-section macropore area in mm2, r is the macropore radius in 
mm, d is the macropore diameter in mm, de is the equivalent macropore diameter in mm, 
and Ap is the macropore cross-section area of macropore with irregular shape in mm2; 

• maximal an minimal macropore diameters which refer to the elliptical shape of 
macropore cross-section. In the case where warp density is greater than weft density the 
maximal diameter is equal to p2-d2, while minimal diameter is equal to p1-d1 (Figure 7); 

• macroporosity which describes the portion of macropore volume in volume unit of 
woven fabric. In general, it is defined using Equation 20. In the case of the elliptical 
macropore cross-section shape, the macroporosity, defined with Equation 21, is the 
same as open porosity:  
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where, εmacro is the macroporosity, Vp is the macropore volume in cm3, Vy is the volume of 
warp and weft yarns which refers to one macropore in cm3, p is the yarn spacing in mm, d is 
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the yarn diameter in mm, D is the woven fabric thickness in mm, Ap is the macropore area in 
mm2, εopen is the open porosity, and subscripts 1 and 2 indicate warp and weft yarns, 
respectively. 

2.2. Nonwoven fabric’s ideal geometric model of porous structure  

The porous structure of nonwoven fabric is a result of nonwoven construction (the type and 
properties of fibres or yarns as input materials, fabric mass, fabric thickness, etc.) as well as 
technological phases, e.g. the type of web production, bonding methods and finishing 
treatments. According to several different methods to produce non-woven fabrics having 
consequently very different porous structure, the ideal geometric model of porous structure 
in the form of tube-like system is partially acceptable only by those nonwovens which are 
thin and translucence, e.g. light polymer–laid nonwovens and some thin spun-laced or heat-
bonded nonwovens (Figure 8). Such model is based on the assumptions that fibres having  
the same diameter are distributed only in the direction of fabric plane and the distance 
between fibres and the length of individual fibres is much greater than the fibre diameter. 
Xu [21] found out that in most nonwoven fabrics, pore shape is approximately polygonal 
and that pores appear more circular when the fabric density increases. Pore orientation to 
some extent relates to fibre orientation. If pores are elongated and predominantly oriented 
in one direction, fibres are likely to be oriented in that direction. The variation in pore size is 
inherently high. Some regions may contain more pores than others or may have larger pores 
than those in other regions.  

 
Figure 8. 2D and 3D presentations of an ideal model of the porous structure of a nonwoven fabric (with 
detail to define opening diameter of pore by 2D presentation) 

The primary constructional parameters of nonwoven fabrics which alter the porous 
structure are: 

• fibre fineness, e.g. the mass of 1000 meter of fibre, from which the fibre diameter can be 
calculated, 

• web mass per unit area and 
• web thicknesses. 

To compare nonwoven fabrics with porosity, the following porosity parameters can be 
calculated on the basis of the nonwoven fabric primary constructional parameters and the 
ideal model of porous structure in the form of a tube-like system: 
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• (total) porosity by using Equation 6 where the bulk density of the material is actually 
the nonwoven fabric density and the density of solid component is the fibre density. 
The nonwoven fabric density is calculated on the basis of primary nonwoven 
constructional parameters, e.g. fabric mass and thickness using Equation 9 where index 
fab in this case refers to the nonwoven fabric. Substituting Equation 9 into Equation 6, 
final Equation 22 of nonwoven porosity which refers to inter- (pores between fibres in 
nonwovens) and intra-pores (pores inside the fibres) is obtained: 
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where, ε is the nonwoven fabric porosity, ρb is the body bulk density in g/cm3, ρs is the 
density of solid component in g/cm3, ρfab is the nonwoven fabric density in g/cm3, ρfib is the 
fibre density in g/cm3, mfab is the nonwoven fabric mass per unit area in g/m2, and Dfab is the 
nonwoven fabric thickness in mm; 

• opening diameter which is the diameter of the maximum circle that can fit in a pore 
(Figure 8). It is predicted on the basis of nonwoven fabric constructional parameters and 
refers to the heat-bonded nonwoven fabrics, as follows [17, 21]: 
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where, d0 is the opening diameter in µm, C is the thickness factor, L is the specific total 
length of fibres per nonwoven unit area in mm-1, dfib is the fibre diameter in µm, Dfab is the 
nonwoven thickness in mm, mfab is the nonwoven fabric mass per unit area in g/m2, and ρfib 
is the fibre density in g/cm3; 

• average area of pore cross-section which is for un-needled fabrics (e.g. fabrics made of 
layers of randomly distributed fibres) predicted using Equation 26 [17]: 
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where, Ap is the average area of pore cross-section in mm2, ε is the porosity, and dfib is the 
fibre diameter in µm. On the basis of calculated average area of pore-cross-section, the 
equivalent pore diameter is then calculated using Equation 19. 
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Needle-punched nonwoven fabric is a sheet of fibres made by mechanical entanglement, 
penetrating barbed needles into a fibrous mat [31]. Needle-punched nonwovens represent 
the largest segment of filtration materials used as dust filters [32]. The geometrical model of 
three-dimensional needle-punched nonwoven fabric proposed by Mao & Rusell [33], is also 
known from the literature, and it is constructed on a two-dimensional fibre orientation 
within the fabric plane, with interconnecting fibres oriented in the z-direction (Figure 10). 
Such model relies on the following basic assumptions: 1. the fibres in the fabric have the 
same diameter, and a fraction of the fibres is distributed horizontally in the two-dimensional 
plane, the rest are aligned in the direction of the fabric thickness, 2. fibre distribution in both 
the fabric plane and the z-direction is homogeneous and uniform, 3. in each two-
dimensional plane, the number of fibres oriented in each direction is not the same, but obeys 
the function of the fibre orientation distribution Ω(α), where α is the fibre orientation angle, 
4. the distance between fibres and the length of individual fibres is much greater than the 
fibre diameter. The basic porosity parameters which are based on the mentioned 
geometrical model of needle-punched nonwoven fabric are still difficult to define due to the 
fact that in each fabric planes fibres lie in different direction and in this way produce pores 
with different orientations, diameters, connectivity and accessibility to fluid flow (Figure 9). 
The only porosity parameters that are calculated from such model are: 

 
Figure 9. Geometrical models of needle-punched nonwoven fabric and porous structure [14, 34] 

• total porosity (Equation 22) and  
• mean pore diameter which is deduced from the fibre radius and porosity according to 

the following relation proposed by White [34]: 

 
1 2

fib
p

d
d ε

ε
= ⋅

−
 (27) 

 35.68fib
fib

Td
ρ

=  (28) 

where, dp is the mean pore diameter in µm, ε is the nonwoven fabric porosity, dfib is the 
fibre diameter in µm, T is the fibre linear density in tex, and ρfib is the fibre density in 
g/cm3.  
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Three kinds of pores may be present in needle-punched nonwoven fabrics, namely, closed 
pores, open pores, and blind pores. The important pore structure characteristics of needle-
punched nonwoven fabrics as filter media are the most constricted open pore diameter 
(smallest detected pore diameter), the largest pore diameter (bubble point pore diameter), 
and mean pore diameter (mean flow pore diameter) [35]. 

3. The usage of genetic programming to predict woven fabric porosity 
parameters 

Porosity parameters based on an ideal geometrical model of porous structure give woven 
fabric constructor some useful information about porosity by developing a new product, but 
they are not in a good agreement with the experimental values. In order to balance the 
difference between the theoretical and experimental values of porosity parameters, genetic 
programming was used to develop models for predicting the following macro-porosity 
parameters of woven fabric: the area of macro-pore cross-section, macro-pore density, open 
porosity, and equivalent macro-pore diameter. The genetic programming is a variant of 
evolutionary algorithm methods described in many sources (e.g., [2, 3, 4]).  The basic 
information on the evolutionary algorithms is given at the beginning of the section 4.  We 
implemented Koza's variant of genetic programming [2]. In our research, the independent 
input variables (the set of terminals) were: yarn fineness T (tex), weave value V, fabric 
tightness t (%) and denting D (ends/dent in the reed). The set of terminals also included 
random floating-point numbers between –10 and +10. Variegated reed denting was treated 
as an average value of treads, dented in the individual reed dent. The dependent output 
variables were: area of macro-pore cross-section Ap (10-3 mm2), pore density Np (pores/cm2), 
and equivalent macro-pore diameter (µm). For all modelling, the initially set of functions 
included the basic mathematical operations of addition, subtraction, multiplication, and 
division. In the case of modelling the area of macro-pore cross-section and pore density the 
initially set of functions also included a power function, whereas the set of functions for 
modelling of equivalent macro-pore diameter included an exponential function. We then 
used the genetic programming system to evolve appropriate models consist of above-
mentioned sets of terminals and functions. Open porosity was calculated on the basis of 
predicted values of the area of macro-pore cross-section and macro-pore density and 
Equation 17. The equivalent macro-pore diameter was calculated on the basis of predicted 
values of the area of macro-pore cross-section using Equation 19. The fitness measure for 
modelling by genetic programming was exactly the same as defined by Equation 33 in 
section 4. The goal of the modelling was to find such a predictive model in a symbolic form, 
that Equation 33 would give as low an absolute deviation as possible.  

The evolutionary parameters for modelling by genetic programming were: population size 
2000, maximum number of generations to be run 400, probability of reproduction 0.1, 
probability of crossover 0.8, probability of mutation 0.1, minimum depth for initial random 
organisms 2, maximum depth for initial random organisms 6, maximum depth of mutation 
fragment 6, and maximum permissible depth of organisms after crossover 17. The 



 
The Usage of Genetic Methods for Prediction of Fabric Porosity 185 

generative method for the initial random population was ramped half-and-half. The method of 
selection was tournament selection with a group size of 7. For the purpose of this research 
100 independent genetic programming runs were executed. Only the results of the best runs 
(i.e., the models with the smallest error between the measurements and predictions) are 
presented in the paper. 

3.1. Materials and porosity measurements 

Our experiments involved woven fabrics made from staple yarns with two restrictions: first, 
only fabrics made from 100% cotton yarns (made by a combing and carding procedure on a 
ring spinning machine) were used in this research; second, fabrics were measured in the 
grey state to eliminate the influence of finishing processes. We believe that it is very hard, 
perhaps even impossible, to include all woven fabrics types to predict individual macro-
porosity parameters precisely enough, and so we focused our research on unfinished staple 
yarn cotton fabrics. We would like to show that genetic programming can be used to 
establish the many relations between woven fabric constructional parameters and particular 
fabric properties, and that the results are more useful for fabric engineering than ideal 
theoretical models. The cotton fabrics varied according to yarn fineness (14 tex, 25 tex, and 
36 tex), weave type (weave value), fabric tightness (55% - 65%, 65% - 75%, 75% - 85%), and 
denting. The constructional parameters of woven fabric samples are collected in Table 1. 
They were woven on a Picanol weaving machine under the same technological conditions. 
The weave values of plain (0.904), twill (1.188), and satin (1.379) fabrics, as well as fabric 
tightness, were determined according to Kienbaum’s setting theory [36]. 

We used an optical method to measure porosity parameters of woven fabrics, since it is the 
most accurate technique for macro-pores with diameters of more than 10 μm. For each fabric 
specimen, we observed between 50 and 100 macro-pores using a Nikon SMZ-2T computer-
aided stereomicroscope with special software. We measured the following macro-porosity 
parameters: area of macro-pore cross-section, pore density, and equivalent macro-pore 
diameters.  

3.2. Predictive models of woven fabric porosity parameters 

Equations 29 and 30 present predictive models of the area of macro-pore cross-section Ap 
and macro-pore density Np, respectively [37]. Here V is the weave factor, T is the yarn linear 
density in tex, t is the fabric tightness in %, and D is the denting in ends per reed dent. The 
open porosity and equivalent diameter are calculated using Equations 17 and 19, 
respectively, where for Ap and Np the predicted values are taken into account. Because the 
model of the area of macro-pore cross-section is more complex, the functions f1, f2,…f10 are not 
presented here but are written in the appendix. When calculating the values of models, the 
following rules have to be taken into account: the protected division function returns to 1 if 
denominator is 0; otherwise, it returns to the normal quotient. The protected power function 
raises the absolute value of the first argument to the power specified by its second argument. 
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By a comparison of both GA models (Equations 29 and 30) with the theoretical ones 
(Equations 11-13 and 14), the complexity of GA models is obvious and derives from the 
factors involved in the models. Namely, factors involved in GA models don’t ignore the 
irregularity of macro-pores cross-section area as well as the number of pores, due to the 
phenomenon of latticed pores in the case of staple yarns (which depends on the type of 
weave – factor V and fabric tightness – factor t) and the phenomenon of thread spacing 
irregularity (factor D), as theoretical models do. Theoretical model for the macro-pore cross-
section area assumes that all macro-pores in woven structure have the same cross-section 
area regardless the type of used yarns, type of weave, fabric tightness and denting, whilst 
the theoretical model for the pore density assumes no reduction of the number of pores. 
 

Ref. Yarn linear density T, 
tex 

Weave value
V 

Fabric tightness t,
% 

Denting D, 
ends/reed dent 

1 14 0.904 62 2 
2 14 0.904 70 2 
3 14 0.904 84 2 
4 14 1.188 62 3 
5 14 1.188 70 3 
6 14 1.188 80 3 
7 14 1.379 59 5 
8 14 1.379 69 5 
9 14 1.379 79 5 
10 25 0.904 62 2 
11 25 0.904 73 2 
12 25 0.904 83 2 
13 25 1.188 63 2 
14 25 1.188 73 2 
15 25 1.188 84 2 
16 25 1.379 60 2+3 
17 25 1.379 70 2+3 
18 25 1.379 81 2+3 
19 36 0.904 62 1 
20 36 0.904 71 1 
21 36 0.904 83 1 
22 36 1.188 63 2 
23 36 1.188 72 2 
24 36 1.188 83 2 
25 36 1.379 58 2+3 
26 36 1.379 65 2+3 
27 36 1.379 79 2+3 

Table 1. The constructional parameters of woven fabric samples 
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Figure 10 presents a comparison of the experimental, predicted, and theoretical values of 
macro-porosity parameters. Theoretical values of macro-pore density are calculated on the 
basis of an ideal model of porous structure using Equation 14. By calculation of the 
theoretical values of the area of macro-pore cross-section, open porosity, and the equivalent 
pore diameter, the circular, rectangular, and elliptical shape of macro-pore area are taken 
into account.  

Theoretical values of woven fabric porosity parameters deviate from experimental ones on 
average by 118.3% (min 8.8%, max 452.9%) for the area of the macro-pore with rectangular 
cross-section, 111.5% (min 14.5%, max 370.6%) for the area of the macro-pore with circular 
cross-section, 72.8% (min 0.2%, max 335.3%) for the area of the macro-pore with elliptical 
cross-section, 37.3% (min 0.0%, max 395.0%) for the macro-pore density, 232.6% (min 19.9%, 
max 1900.1%) for the open porosity of fabrics with rectangular pore cross-section, 221.0% (min 
14.3%, max 1558.0%) for the open porosity of fabrics with circular pore cross-section, 166.3% 
(min 5.9%, max 1479.0%) for the open porosity of fabrics with elliptical pore cross-section, 
43.7% (min 4.3%, max 135.1%) for the equivalent pore diameter where rectangular pore cross-
section is taken into account, 43.7% (min 7.0%, max 116.9%) for the equivalent pore diameter 
where circular cross-section is taken into account, and 28.0% (min 0.1%, max 108.6%) for the 
equivalent pore diameter where elliptical pore cross-section is taken into account. 

The results of woven fabric porosity parameters determined with models based on genetic 
programming show very good agreement with experimental values (Figure 11) and justify 
the complexity of GA models. The predicted values deviate from experimental ones on 
average by 1.5% (min 0.0%, max 10.2%) for the area of the macro-pore cross-section, 2.0% 
(min 0.0%, max 8.0%) for the macro-pore density, 3.2% (min 0.0%, max 10.1%) for the open 
porosity, and 0.8% (min 0.0%, max 5.2%) for the equivalent macro-pore diameter. The 
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correlation coefficients between the predicted and experimental values are 0.9999, 0.9989, 
0.9941, and 0.9997 for the area of macro-pore cross-section, macro-pore density, open 
porosity, and equivalent diameter, respectively. 
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Figure 10. Results of woven fabric porosity parameters 

The models are based on image analysis technique and assumption that woven samples are 
transparent. The boundary limits for the validity of the models are as follows: 1. the minimal 
values for yarn linear density, weave factor and fabric tightness, are 14 tex, 0.904, and 55%, 
respectively, 2. the maximal values for yarn linear density, weave factor and fabric tightness 
are 36 tex, 1.379, and 85%, respectively. 
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Figure 11. Scatter plots of experimental and predicted porosity parameters using GP models 

4. The usage of genetic algorithm to predict nonwoven fabric porosity 
parameters 

In this research, the genetic algorithm was used for definition of predictive models of 
nonwoven fabric porosity parameters. Since needle-punched nonwoven fabrics have 
completely different porous structure when compared to woven fabrics, it is inappropriate 
to focus on open porosity through the prediction of the area of macro-pore cross-section and 
macro-pore density. The most valuable porosity parameters for needle-punched nonwoven 
porous structure characterisations are total porosity and mean pore diameter, and those 
parameters were the subjects of our research. Since the basic steps in evolutionary 
computation are well-known, only a brief description follows. Firstly, the initial population 
P(t) of the random organisms (solutions) is generated. The variable t represents the 
generation time. The next step is the evaluation of population P(t) according to the fitness 
measure. Altering the population P(t) by genetic operations follows. The genetic operations 
alter one or more parental organism(s); thus, creating their offspring. The evaluation and 
alteration of population takes place until the termination criterion has been fulfilled. This 
can be the specified maximum number of generations or a sufficient quality of solutions 
[38]. More comprehensive information on evolutionary computation can be found in [39]. 

The independent input variables were fibre fineness - T (dtex), nonwoven fabric area mass - m 
(g/m2), and nonwoven fabric thickness - D (mm). The dependent output variables were mean 
pore diameter dp (µm) and total porosity ε (%). Since the GA approach is unsuitable for the 
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evolution of prediction models (organisms) in their symbolic forms, it is necessary to define 
them in advance [38]. In this study, a quadratic polynominal equation with three variables was 
used as a prespecified model for the prediction of porosity parameters as follows: 

 2 2 2
1 2 3 4 5 6 7 8 9 10 11Y c c m c D c T c m c D c T c mD c mT c DT c mDT= + + + + + + + + + +   (31) 

where, Y is the dependent output variable, m is the nonwoven fabric mass per unit area in 
g/m2, D is the nonwoven fabric thickness in mm, T is the fibre fineness in dtex, and c1…11 are 
constants. The main reasons for this selection were as follows: 1. a polynominal model is 
relatively simple, 2. for the problem studied we did not expect harmonic dependence of the 
output variables, 3. some preliminary modelling-runs with different types of prespecified 
models showed that the quadratic polynominal model provides very good selection in terms 
of prediction quality. In our research, the initial random population P(t) consisted of N 
prespecified models (Equation 31) where N is the population size. Of course, in our 
computer implementation of the GA, the population P(t) consisted only of the N sets of the 
real-valued vectors of model constants. The individual vector is equal to: 

 c = (c1 , c2 , · · ·, c11) (32) 

The absolute deviation D(i,t) of individual model i (organism) in generation time t was 
introduced as a fitness measure. It was defined as: 

 
1

( , ) ( ) ( , )
n

j
D i t E j P i j

=
= −   (33) 

where, E(j) is the experimental value for measurement j, P(i, j) is the predicted value 
returned by the individual model i for measurement j, and n is the maximum number of 
measurements. The goal of the optimisation task was to find such a predictive model 
(defined by Equation 31), that Equation 33 would give as low an absolute deviation as 
possible. Therefore, the aim was to find out appropriate real-valued constants in Equation 
32. However, since it was unnecessary that the smallest values of the above equation also 
meant the smallest percentage deviation of this model, the average absolute percentage 
deviation of all measurements for individual model i was defined as: 

 ( , )( ) 100%
| ( )|

D i ti
E j n

Δ = ⋅  (34) 

The Equation 33 was not used as a fitness measure for evaluating population, but only for 
finding the best organism within the population, after completing the run. 

The altering of population P(t) was effected by reproduction, crossover, and mutation. For 
the crossover operation, two parental vectors, e.g., c1 and c2 were randomly selected. Then 
the crossover took place between two randomly-selected parental genes having the same 
index. Two offspring genes were created according to the extended intermediate crossover, 
as considered by Mühlenbeim and Schlierkamp-Voosen [40]. During the mutation 
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operation, one parental vector c was randomly selected. Then, the mutation took place in 
one randomly selected parental gene. During both the crossover and mutation processes, the 
numbers of crossover and mutational operations performed on parental vector(s), were 
randomly selected. The evolutionary parameters for modelling by genetic algorithms were: 
population size 300, maximum number of generations to be run 5000, probability of 
reproduction 0.1, probability of crossover 0.8 and probability of mutation 0.1. Tournament 
selection with a group size of 5 was used.  For the purpose of the research 200 independent 
genetic algorithms runs were carried out. Only the best models are presented in the paper. 

4.1. Materials and porosity measurements 

Bearing in mind the fact that nonwovens have very different structures and, thus, also 
porosity parameters due to their sequences when web-forming, bonding, as well as finishing 
methods, the nonwoven fabric samples were limited to one type of nonwoven fabrics – 
those needle-punched nonwoven fabrics made from a mixture of polyester and viscose 
staple fibres. Nonwoven multi-layered webs were first obtained from the same 
manufacturing process by subjecting the fibre mixtures to carding and then orienting the 
carded webs in a cross-direction by using a cross lapper to achieve web surface mass ranges 
of 100-150, 150-200, 250-300, and 300-350 g/m2, and a web volume mass range of 0.019-0.035 
g/cm3. The webs were made from a mixture of polyester (PES) and viscose (VIS) staple fibres 
of different content, fineness, and lengths, as follows: samples 1–3 from a mixture of 87% 
VIS fibres (1.7 dtex linear density, 38 mm length) and 12.5% of PES fibres (4.4 dtex linear 
density, 50 mm length), samples 4–7 from a mixture of 60% VIS fibres (1.7 dtex linear 
density, 38 mm length) and 40% PES fibres (3.3 dtex linear density, 60 mm length), samples 
8–11 from a mixture of 30% VIS fibres (3.3 dtex linear density, 50 mm length), 40% PES 
fibres type 1 (6.7 dtex linear density, 60 mm length) and 30% of PES fibres type 2 (4.4 dtex 
linear density, 50 mm length), samples 12–15 from a mixture of 70% PES fibres type 1 and 
30% PES type 2. Multi-layered carded webs were further subjecting to pre-needling using 
needle-punching machine, under the following processing parameters of one-sided pre-
needle punching: stroke frequency 250/min; delivery speed 1.5 m/min; needling density 
30/cm, depth of needle penetration 15 mm, and felting needles of 15x18x38x3 M222 G3017. 
The processing parameters of further two-sided needle-punching were as follows: stroke 
frequency 900/min; delivery speed 5.5 m/min; needling density 60/cm (30/cm upper and 
30/cm lower), depth of upper and lower needle penetrations 12 mm, and felting needles of 
15x18x32x3 M222 G3017. The webs were further processed through a pair of heated 
calendars at under 180 °C with different gaps between the rollers, in order to achieve further 
changes in fabric density and, consequently, in the porosity within the range of 80–92 %. The 
constructional parameters of the nonwoven fabric samples are collected in Table 2. All the 
nonwoven fabric samples were in a grey state to eliminate the influence of finishing 
treatments. The constructional parameters of the nonwoven fabric samples, e.g. the 
nonwoven fabric mass per unit area and thickness were measured according to ISO 9073-1 
(Textiles – Test Methods for nonwovens – Part 1:  Determination of mass per unit area) and 
ISO 9073-2 (Textiles – Test Methods for nonwovens – Part 2:  Determination of thickness). 
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Ref. Average fibre fineness 
T, dtex 

Fabric mass per unit area 
m, g/m2 

Fabric thickness  
D, mm 

1 2.0 143 1.202 
2 2.0 142 0.941 
3 2.0 142 0.576 
4 2.3 173 1.509 
5 2.3 201 1.558 
6 2.3 171 0.941 
7 2.3 200 1.071 
8 5.0 259 1.360 
9 5.0 259 1.261 
10 5.0 279 1.182 
11 5.0 274 1.112 
12 6.0 298 1.400 
13 6.0 304 1.266 
14 6.0 352 1.347 
15 6.0 343 1.235 

Table 2. The constructional parameters of nonwoven fabric samples 

The porosity parameters of the nonwoven fabric samples were measured using the Pascal 140 
computer aided mercury intrusion porosimeter, which measures pores’ diameters between 3.8 - 
120 µm, and operates under low pressure. The mercury intrusion technique is based on the 
principle that non-wetting liquid (mercury) coming in contact with a solid porous material can 
not be spontaneously absorbed by the pores of the solid itself because of the surface tension, but 
can be forced by applying external pressure. The required pressure depends on the pore-size 
and this relationship is commonly known as the Washburn equation [9]: 

 2 cosP
r

γ θ− ⋅ ⋅=  (35) 

where, P is the applied pressure, ϒ is the surface tension of mercury, θ is the contact-angle 
and r is the capillary radius. The distribution of pore size, as well as the total porosity and 
the specific pore volume can be obtained from the relationship between the pressure 
necessary for penetration (the pore dimension) and the volume of the penetrated mercury 
(pore volume). There are certain main assumptions necessary when applying the Washburn 
equation: the pores are assumed to be of cylindrical shape and the sample is pressure stable.  

Each nonwoven sample of known weight was placed in the dilatometer, then the air around 
the sample was evacuated and finally the dilatometer was filled with mercury by increasing 
the pressure up to the reference level. The volume and pressure measurements’ data were 
transferred into the computer programme and the following data were detectable or 
calculated:  the specific pore volume (mm3/g), the average pore diameter (µm) and the total 
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porosity (%). The volume of penetrated mercury is directly the measure of the sample’s pore 
volume expressed as a specific pore volume in mm3/g, and is obtained by means of a 
capacitive reading system. The average pore diameter is evaluated at 50% of the cumulative 
volume of mercury.  

4.2. Predictive models of nonwoven fabric porosity parameters 

Equations 36 and 37 present predictive models of the total porosity ε and mean pore 
diameter dp, respectively. Here T is the fibre fineness in dtex, m is the nonwoven fabric mass 
per unit area in g/m2, and D is the nonwoven fabric thickness in mm.  

 
2 2 3 2 2
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3
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  (37) 

Figure 12 presents a comparison of the experimental, predicted and theoretical values of 
porosity parameters, e.g. total porosity and mean pore diameter. The theoretical values of 
total porosity and mean pore diameters were calculated using Equation 22 and 27-28, 
respectively. 
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Figure 12. Results of nonwoven fabric porosity parameters 
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In Figure 12, the theoretical values of total porosity and mean pore diameter as well as 
predicted values of pore diameter are linked with lines while samples (1-3, 4-7, 8-11, and 12-
15) are arranged regarding their decreased porosity. The results show that nonwovens with 
similar porous structure and lower porosity also have lower pore diameter. The 
experimental values of total porosity are for some samples not in a good agreement with 
theoretical ones, while samples which should have the highest porosity actually have the 
lowest (samples No. 1, 8, and 12). The reason may lie in fact, that these samples contain 
more closed pores which are not detectable with mercury porosimetry.  

The results show that the theoretical values of porosity parameters deviate from 
experimental ones on average by 8.0% (min 0.0%, max 15.4%) for total porosity and by 
19.7% (min 2.9, max 57.3%) for pore diameter, whilst the predicted values, calculated using 
Equations 36-37, are in better agreement with the experimental ones. The mean predicted 
error is: 1.1% (from 0.0% to 4.4%) for the total porosity and 1.9% (from 0.0% to 12.4%) for the 
average pore diameter. The correlation coefficients between the predicted and experimental 
values are 0.9024 and 0.8492 for the total porosity and the average pore diameter, 
respectively. Scatter plots of the experimental and predicted values for porosity parameters, 
are depicted in Figure 13. 

 
Figure 13. Scatter plots of experimental and predicted porosity parameters using GA models 

5. Conclusion 
By a new fabric developing, there is a need to know some relationships between the 
constructional parameters of fabrics and their predetermined end-usage properties in order 
to produce fabrics with desired quality. Fabric constructors develop a new fabric 
construction on the basis of their experiences or predictive models using different modelling 
tools of which deterministic and nondeterministic are distinguished. In general, the models 
obtained by deterministic modelling tools are the results of strict mathematical rules while 
in the case of models obtained by nondeterministic modelling tools, there are no precise, 
strict mathematical rules. Our study focused on the development of predictive models based 
on the genetic methods, e.g. genetic programming and genetic algorithms, in order to 
predict some porosity parameters of woven and nonwoven fabrics. Predictive models of the: 
1. area of macro-pore cross-section and macro-pore density of woven fabrics based on the 
constructional parameters of woven fabrics (yarn linear density, weave factor, fabric 
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tightness, denting), image analysis as testing method of porosity measurements, and genetic 
programming, and 2. total porosity and mean pore diameter of nonwoven fabrics based on 
the constructional parameters of nonwoven fabrics (fibre linear density, fabric mass per unit 
area, fabric thickness), mercury intrusion porosimetry as testing method of porosity 
measurements, and genetic algorithm, were developed. Open porosity and equivalent pore 
diameter of woven fabric were also predicted using values calculated on the basis of 
predictive models of the area of macro-pore cross-section and pore density, and known 
mathematical relationships. All proposed predictive models were created very precisely and 
could serve as guidelines for woven/nonwoven engineering in order to develop fabrics with 
the desired porosity parameters. 

In general, for prediction of porosity parameters of woven or nonwoven samples both 
modelling tools can be used, e.g. GA and GP. Usually, GP method is used for more difficult 
problems. Our purpose was to show usability and effectiveness of both methods. By woven 
fabric modelling, the range of porosity parameters’ measurements was substantial larger 
with more input variables when compared to the nonwoven fabrics (and this means more 
difficult problem), so the GP was used as modelling tool. By GP modelling, the models are 
developed in their symbolic forms, thus more precise models are developed in regard to the 
GA modelling, where only coefficients of prespecified models are defined. At the same time, 
for GP modelling more measurements data are desired for better model accuracy, while by 
GA modelling  good results are achieved by lower number of measurements (in our case 27 
measurements were available for woven fabrics and only 15 for nonwoven fabrics). The 
advantage of GP modelling is its excellent prediction accuracy, while its disadvantage is the 
complexity of the developed models. In general, by GA modelling, the developed models 
are simple but less accurate.  
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1. Introduction 

The use of artificial intelligence in day to day life has increased since late 20th century as seen 
in many home appliances such as microwave oven, washing machine, camcorder etc which 
can figure out on their own what settings to use to perform their tasks optimally. Such 
intelligent machines make use of the soft computing techniques which treat human brain as 
their role model and mimic the ability of the human mind to effectively employ modes of 
reasoning that are approximate rather than exact. The conventional hard computing 
techniques require a precisely stated analytical model and often a lot of computational time. 
Premises and guiding principles of Hard Computing are precision, certainty, and rigor [1].  
Many contemporary problems do not lend themselves to precise solutions such as 
recognition problems (handwriting, speech, objects and images), mobile robot coordination, 
forecasting, combinatorial problems etc. This is where soft computing techniques score over 
the conventional hard computing approach. Soft computing differs from conventional 
(hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty, 
partial truth, and approximation. The guiding principle of soft computing is to exploit the 
tolerance for imprecision, uncertainty, partial truth, and approximation to achieve 
tractability, robustness and low solution cost [1]. The principal constituents, i.e., tools, 
techniques of Soft Computing (SC) are Fuzzy Logic (FL), Neural Networks (NN), 
Evolutionary Computation (EC), Machine Learning (ML) and Probabilistic Reasoning (PR). 
Soft computing many times employs NN, EC, FL etc, in a complementary rather than a 
competitive way resulting into hybrid techniques like Adaptive Neuro-Fuzzy Interface 
System (ANFIS).  

The application of soft computing techniques in the field of Civil Engineering started since 
early nineties and since encompassed almost all fields of Civil Engineering namely 
Structural Engineering, Construction Engineering and Management, Geotechnical 
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Engineering, Environmental Engineering and lastly Hydraulic Engineering which is the 
focus of this chapter. The technique of ANN is now well established in the field of Civil 
Engineering to model various random and complex phenomena. Other techniques such as 
FL and EL caught attention of many research workers as a complimentary or alternative 
technique to ANN, particularly after knowing the drawbacks of ANN [2].  The soft 
computing tool of Genetic Programming which is essentially classified as an Evolutionary 
Computation (EC) technique has found its foot in the field of Hydraulic Engineering in 
general and modeling of water flows in particular since last 12 years or so. Modeling of 
water flows is perhaps the most daunting task ever faced by researchers in the field of 
Hydraulic Engineering owing to the randomness involved in many natural processes 
associated with the water flows. In pursuit of achieving more and more accuracy in 
estimation/forecasting of water related variables the researchers have made of use Genetic 
Programming for various tasks such as forecasting of runoff with or without rainfall, 
forecasting of ocean waves, currents, spatial mapping of waves to name a few.  The present 
chapter takes a stalk of the applications of GP to model water flows which will enable the 
future researchers who want to pursue their research in this field. The chapter is organized 
as follows. Next section deals with basics of GP. A review of applications of GP in the field 
of Ocean Engineering is presented in the next section followed by review of applications in 
the field of hydrology. Few applications in the field of Hydraulics are discussed in the 
subsequent section. It may be noted that papers published in reputed international journals 
are only considered for review. Two case studies are presented next which are based on 
publications of the first author. The concluding remarks and future scope as envisaged by 
the authors are discussed at the end.   

2. The evolutionary computation 

The paradigm of evolutionary processes distinguishes between an organism’s genotype, 
which is constructed of genetic material that is inherited from its parent or parents, and the 
organism’s phenotype, which is the coming to full physical presence of the organism in a 
certain given environment and is represented by a body and its associated collection of 
characteristics or phenotypic traits. Within this paradigm, there are three main criteria for an 
evolutionary process to occur as per [3] and they are  

• Criterion of Heredity: Offspring are similar to their parents: the genotype copying 
process maintains a high fidelity.  

• Criterion of Variability: Offspring are not exactly the same as their parents: the 
genotype copying process is not perfect. 

• Criterion of Fecundity: Variants leave different numbers of offspring: specific variations 
have an effect on behavior and behavior has an effect on reproductive success.  

The evolutionary techniques can be differentiated into four main streams of Evolutionary 
Algorithm (EA) development [4] namely Evolution Strategies (ES), Evolutionary 
Programming (EP), Genetic Algorithms (GA) and Genetic Programming (GP) [5].  However, 
all evolutionary algorithms share the common property of applying evolutionary processes 
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in the form of selection, mutation and reproduction on a population of individual structures 
that undergo evolution. The criterion of heredity is assured through the application of a 
crossover operator, whereas the criterion of variability is maintained through the 
application of a mutation operator. A selection mechanism then ‘favours’ the more fit 
entities so that they reproduce more often, providing the fecundity requirement necessary 
for an evolutionary process to proceed. 

3. Genetic programming:  

Like genetic algorithm (GA) the concept of Genetic Programming (GP)  follows the principle 
of ‘survival of the fittest’ borrowed from the process of evolution occurring in nature. But 
unlike GA its solution is a computer program or an equation as against a set of numbers in 
the GA and hence it is convenient to use the same as a regression tool rather than an 
optimization one like the GA. GP operates on parse trees rather than on bit strings as in a 
GA, to approximate the equation (in symbolic form) or computer program that best 
describes how the output relates to the input variables. A good explanation of various 
concepts related to GP can be found in [5] Koza (1992). GP starts with a population of 
randomly generated computer programs on which computerized evolution process 
operates. Then a ‘tournament’ or competition is conducted by randomly selecting four 
programs from the population. GP measures how each program performs the user 
designated task. The two programs that perform the task best ‘win’ the tournament. GP 
algorithm then copies the two winner programs and transforms these copies into two new 
programs via crossover and mutation operators i.e. winners now have the ‘children.’ These 
two new child programs are then inserted into the population of programs, replacing the 
two loser programs from the tournament. Crossover is inspired by the exchange of genetic 
material occurring in sexual reproduction in biology. The creation of offspring’s continues 
(in an iterative manner) till a specified number of offspring’s in a generation are produced 
and further till another specified number of generations are created. The resulting offspring 
at the end of all this process (an equation or a computer program) is the solution of the 
problem. The GP thus transforms one population of individuals into another one in an 
iterative manner by following the natural genetic operations like reproduction, mutation 
and cross-over. Figure 1 shows general flowchart of GP as given by [5].  

The tree based GP corresponds to the expressions (syntax trees) from a ‘functional 
programming language’ [5]. In this type, Functions are located at the inner nodes; while 
leaves of the tree hold input values and constants. A population of random trees 
representing the programs is initially constructed and genetic operations are performed on 
these trees to generate individuals with the help of two distinct sets; the terminal set T and 
the function set F.   

Population: These are the programs initially constructed from the data sets in the form of 
trees to perform genetic operations using Terminal set and Function set. The function set for 
a run is comprised of operators to be used in evolving programs eg. addition, subtraction, 
absolute value, logarithm, square root etc. The terminal set for a run is made up of the 
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values on which the function set operates. There can be four types of terminals namely 
inputs, constant, temporary variables, conditional flags. The population size is the number 
of programs in the population to be evolved. Larger population can solve more complicated 
problem. The maximum size of population depends upon RAM of the computer and length 
of programs in the population. 

4. Genetic operations 
Cross over: Two individuals (programs) are chosen as per the fitness called parents. Two 
random nodes are selected from inside such program (parents) and thereafter the resultant 
sub-trees are swapped, generating two new programs. The resulting individuals are 
inserted into the new population. Individuals are increased by 2. The parents may be 
identical or different. The allowable range of cross over frequency parameter is 0 to 100% 

Mutation: One individual is selected as per the fitness. A sub-tree is replaced by another one 
randomly. The mutant is inserted into the new population. Individuals are increased by 1.  
The allowable range of mutation frequency parameter is 0 to 100% 

Reproduction: The best program is copied as it is as per the fitness criterion and included in 
the new population.  Individuals are increased by 1. Reproduction rate = 100 – mutation rate 
– (crossover rate * [1 – mutation rate]) 

 
Figure 1. Flowchart of Genetic programming (Ref: [5]) 
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The second variant of GP is Linear genetic Programming (LGP) which uses a specific 
linear representation of computer programs. The name ‘linear’ refers to the structure of 
the (imperative) program representation only and does not stand for functional genetic 
programs that are restricted to a linear list of nodes only. On the contrary, it usually 
represents highly nonlinear solutions. Each individual (Program) in LGP is represented 
by a variable-length sequence of simple C language instructions, which operate on the 
registers or constants from predefined sets. The function set of the system can be 
composed of arithmetic operations (+, - , X, /), conditional branches, and function calls (f 
{x, xn, sqrt, ex ,sin, cos, tan, log, ln  }). Each function implicitly includes an assignment to a 
variable which facilitates use of multiple program outputs in LGP. LGP utilizes two-
point string cross-over. A segment of random position and random length of an 
instruction is selected from each parents and exchanged. If one of the resulting children 
exceeds the maximum length, this cross-over is abandoned and restarted by exchanging 
equalized segments. An operand or operator of an instruction is changed by mutation 
into another symbol over the same set.  The readers are referred to [7] and [8] for further 
details. 

Gene-Expression Programming (GEP) is an extension of GP, developed by [5]. The 
genome is encoded as linear chromosomes of fixed length, as in Genetic Algorithm 
(GA); however, in GEP the genes are then expressed as a phenotype in the form of  
expression trees. GEP combines the advantages of both its predecessors, GA and GP, 
and removes their limitations. GEP is a full fledged genotype/phenotype system in 
which both are dealt with separately, whereas GP is a simple replicator system. As a 
consequence of this difference, the complete genotype/phenotype GEP system surpasses 
the older GP system by a factor of 100 to 60,000. In GEP, just like in other evolutionary 
methods, the process starts with the random generation of an initial population 
consisting of individual chromosomes of fixed length. The chromosomes may contain 
one or more than one genes. Each individual chromosome in the initial population is 
then expressed and its fitness is evaluated using one of the fitness function equations 
available in the literature. These chromosomes are then selected based on their fitness 
values using a roulette wheel selection process. Fitter chromosomes have greater 
chances of selection for passage to the next generation. After selection, these are 
reproduced with some modifications performed by the genetic operators. In Gene 
Expression Programming, genetic operators such as mutation, inversion, transposition 
and recombination are used for these modifications. Mutation is the most efficient 
genetic operator, and it is sometime used as the only means of modification. The new 
individuals are then subjected to the same process of modification, and the process 
continues until the maximum number of generations is reached or the required 
accuracy is achieved.  

5. Why use GP in modeling water flows? 

It is a known fact that many variables in the domain of Hydraulic Engineering are of 
random nature having a complex underlying phenomenon. For example the generation 
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of ocean waves which are primarily functions of wind forcing is a very complex 
procedure. Forecasting of the ocean waves is an essential prerequisite for many ocean-
coastal related activities. Traditionally this is done using numerical models like WAM 
and SWAN.  These models are extremely complex in development and application 
besides being highly computation-intensive.  Further they are more useful for forecasting 
over a large spatial and temporal domain.  The accuracy levels of wave forecasts 
obtained through such numerical models again leaves scope for exploration of 
alternative schemes. These numerical models suffer from disadvantages like requirement 
of exogenous data, complex modeling procedure, rounding off errors and large 
requirement of computer memory and time and there is no guarantee that the results 
will be accurate. Particularly when point forecasts were required the researchers 
therefore used the data driven techniques namely ARMA, ARIMA and since last two 
decades or so the soft computing technique of Neural Networks. A comprehensive 
review of applications of ANN in Ocean Engineering is done by [9]. Although wave 
forecasting models were developed using Artificial Neural Networks by many research 
workers their was scope for use of another data driven techniques in that the ANN based 
models generally were unable to forecast extreme events with reasonable accuracy and 
the accuracy of forecasts decreases with increase in lead time as reported in many 
research papers. This became an ideal situation for the entry of another soft computing 
tool of GP which functions in a completely different way than ANN in that it does not 
involve any transfer function and evolves generations and generations of ‘offspring’ 
based on the ‘fitness criteria’ and genetic operations as explained in the earlier section 
the researchers thought, may be useful to capture the underlying trends better than ANN 
technique and can be used as a regressive tool. Same can be said about another 
important variable in hydraulic engineering “runoff or stream flow”.  

The rainfall -runoff modeling is very complex procedure and many numerical schemes are 
available as well as a large number of attempts by ANNs are also been made [2, 10, 11]. 
Thus Genetic Programming entered in rainfall-runoff modeling. It was also found that GP 
results were superior to that of M5 Model Trees another data driven modeling technique 
[12, 13]. Apart from these two variables the use of GP for modeling for many hydraulic 
engineering processes was found necessary for similar reasons. A review of these 
applications particularly in Ocean Engineering, Hydrology and Hydraulics (all grouped 
under Hydraulic Engineering) will be presented in the next three sections.  

6. Applications in ocean engineering 

As mentioned earlier papers published in reputed international journals are considered in 
this chapter. Primarily the applications of GP in Ocean Engineering were found for 
modeling of oceanic parameters like waves, water levels, zero cross wave periods, currents, 
wind, sediment transport and circular pile scour. Table 1 shows applications of GP in the 
field of Ocean Engineering listed chronologically followed by their review. This will 
facilitate the reader to have a glance of the work which would be presented next.  
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REF. 
NO. 

YEAR AUTHOR TITLE OF PAPER JOURNAL/PUBLICATION 
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Table 1. Applications of GP in Ocean Engineering 

One of the earlier applications was done to retrieve missing information in wave records 
along the west coast of India [14]. Such a need arises many times due to malfunctioning of 
instrument or drift of wave measuring buoy making it inoperative as a result of which data 
is not measured and it is lost forever. Filling up the missing significant wave height (Hs) 
values at a given location based on the same being collected at the nearby station(s) was 
done using GP. The wave heights were measured at an interval of 3 hours. Data at six 
locations around Indian coastline was used in this exercise. Out of the total sample size of 
four years the observations for the initial 25 months were used to evaluate the final or 
optimum GP program or equation while those for the last 23 months were employed to 
validate the performance and achieve gap in-filling with different quanta of missing 
information. It was found that both tree based and linear GP models worked in similar 
fashion as far as accuracy of estimation was considered. The data was made available by 
National Institute of Ocean Technology (NIOT) under the National Data Buoy Programme 
implemented by the Department of Ocean Development, Government of India from January 
2000 to December 2003 ( www.niot.res.in). The initial parameters selected for a GP run were 
as follows: initial population size = 500; mutation frequency = 95%; crossover frequency = 
50%. The fitness criterion was the mean squared error. 

When the similar work was also carried out using ANN it was found that GP produces 
results that are marginally more satisfactory than ANN. Another exercise was also carried 
out especially to estimate peaks by calibrating a separate model for high wave data which 
showed a marginal improvement in prediction of peaks. A similar exercise was carried out 
by [15], albeit in altogether different area of Gulf of Mexico near the USA coastline.  Gaps in 
hourly significant wave height records at one location were filled by using the significant 
wave heights at surrounding 3 locations at same time instant and the soft tool of GP and 
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ANN. In all data spanning over 4 years was used for the study. The exercise was carried out 
for 4 locations in the Gulf of Mexico. The data can be downloaded from 
www.ndbc.noaa.gov. The typical value of the population size was 500, number of 
generations 15 and number of tournaments 90,00,000. The mutation and the cross-over 
frequency also varied for different testing exercises and it ranged from 20% to 80%. The 
fitness criterion was the mean squared error between actual observations and corresponding 
predictions. 

The suitability of this approach was also tried for different gap lengths ranging from 1 day 
to 1 month and it was concluded on the basis of 3 error measures that the accuracy of gap 
filling decreases with increase in the gap length. The accuracy of the results were also 
judged by calculating statistical parameters of the wave records without gaps filled and 
with gaps filled using GP model. When the gap lengths did not exceed 1 or 5 days all the 
four statistics were faithfully reproduced. Compared to ANN GP produced marginally 
better results. In both the cases Linear Genetic Programming technique was employed.  

In another earlier works of GP current predictions over a time step of twenty minutes, one 
hour, 3 hours, 6 hours, 12 hours and 24 hours at 2 locations in the tidal dominated area of 
the Gulf of Khambhat along west coast of India was carried out using two soft techniques of 
ANN and GP and 2 hard techniques of traditional harmonic analysis and ARIMA [16]. The 
work involved antecedent values of current only to forecast the current for various lead 
times at these locations. The fitness function selected was the mean square error, while the 
initial population size was 500, mutation frequency was 95%, and the crossover frequency 
was kept at 50%. The authors concluded that the model predictions were better for 
alongshore currents and small interval of times. For cross shore currents ARIMA performs 
better than ANN and GP even at longer prediction intervals. In general the three data 
driven techniques performed better than harmonic analysis. The new technique GP 
performed at par with ANN if not better. Perhaps the only drawback of the work was that 
the data (spanning over 7 months) is less than a year indicating that all possible variations in 
data set were not presented while calibrating the model making it susceptible when it is 
used at operational level.  

Online wave forecasts over lead times of 3, 6, 12 and 24 hours were carried out at two 
locations in the gulf of Mexico using past values of wave heights (3 in number) and the soft 
computing technique of GP [17]. The data measured from 1999 to 2004 was available for free 
download on the web site of National Buoy Centre (http://www.ndbc.noaa.gov). The data 
belonged to the hourly wave heights measured over a period of 15 years with an extensive 
testing period of about 5 years which is the most in the papers reported till this time (with 
ANN as modeling tool). The locations chosen were differing to a large extent in that one was 
a deep water buoy and the other was a coastal buoy. The work was different from others in 
one aspect that monthly models were developed instead of routine yearly models. However 
any peculiar effect of this either good or bad on forecasting accuracy was not evident from 
the 3 error measures calculated.  Though the results of GP were promising (high correlation 
coefficients for 3 and 6 hr forecast) the forecasting accuracy decreased for longer lead times 
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of 12 hr and 24 hr. It was found that the results of GP were superior to ANN. For GP model 
the initial population size was 500 while the number of generations was 300. The mutation 
frequency was 90 percent while the cross over frequency was 50 percent. Values of these  

control parameters were selected initially and thereafter varied in trials till the best fitness 
measures were produced. The fitness criterion was the mean squared error between the 
actual and the predicted value of the significant wave height. Another exercise on real time 
forecasting of waves for warning times up to 72 hours at three locations along the Indian 
coastline using alternative techniques of ANN, GP and MT was carried out by [18]. The data 
was measured from 1998 to 2004 by the national data buoy program (www.niot.res.in).   
Forecasting waves up to 72hr and that too with reasonable accuracy is itself a specialty of 
this work. The data had many missing values which were filled by using temporal as well as 
spatial correlation approaches. Both MT and GP results were competitive with that of the 
ANN forecasts and hence the choice of a model should depend on the convenience of the 
user. The selected tools were able to forecast satisfactorily even up to a high lead time of 72 
hrs. The authors have rightly stated that this accuracy was possible in the moderate ocean 
environment around Indian coastline where the target waves were less than around 6 m and 
2.5 m for the offshore and coastal stations respectively. The paper does not provide any 
information about the initial parameters chosen for implementing GP. The significant wave 
height and average wave period at the current and subsequent 24 hr lead time were 
predicted from continuous and past 24-hourly measurements of wind speeds and directions 
as well as two soft computing techniques of GP and MT [19]. The data collected at 8 
locations in Arabian Sea and Indian Ocean (www.niot.res.in) was used to develop both 
hind-casting and forecasting models. Both the methods, GP and MT, performed 
satisfactorily in the given task of wind wave simulation as reflected in high values of the 
error statistics of R, R2, CE and low values of MAE, RMSE and SI. This is noteworthy since 
MT is not purely non-linear like GP. Although the magnitudes of these statistics did not 
indicate a significant difference in the relative performance of GP and MT, qualitative scatter 
diagrams and time histories showed the tendency of MT to better estimate the higher waves. 
Forecasting at higher lead times were fairly accurate compared to the same at lower ones. In 
general the performance of wave period was less satisfactory than that of wave height and 
this can be expected in view of a highly varying nature of wave period values. For details 
regarding the initial GP parameters involved in calibration readers are referred to the 
original paper where an exhaustive list of parameters is given. Lately [12], extended their 
earlier work by forecasting Significant wave height and zero cross wave period over time 
intervals of 1 to 4 days using the current and previous values of wind velocity and wind 
direction at 2 locations around the Indian coastline. It was found out that best results were 
possible when the length of the input sequence matched with that of the output lead time. 
As observed earlier here also it was found that the accuracy of prediction decreases with 
increase in lead time. However the results were satisfactory for 4 days ahead predictions 
also. In general it was observed that results of MT were slightly inferior to that of GP. 
Separate models were also developed to account for the monsoon (rainfall season in India) 
which showed a considerable improvement over yearly models. The models calibrated at 
one location when applied for another nearby locations also shown satisfactory performance 
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provided both sites have spatial homogeneity in terms of openness, long offshore distances 
and deep water conditions. This work used tree based GP where as earlier mentioned three 
works used Linear Genetic Programming.  

GP was used to forecast sea levels averaged over 12 h and 24 h time intervals for time 
periods from 12 to 120 h ahead at the Cocos (Keeling) Islands in the Indian Ocean [20]. The 
model produced high quality predictions over all considered time periods. The presented 
results demonstrates the suitability of GP for learning the non-linear behavior of sea level 
variations in terms of the R2 (with values no lower than 0.968), MSE (with values generally 
smaller than 431) and MARE (no larger than 1.94%). This differs from earlier applications 
particularly for wave forecasting in that for forecasting of waves it was difficult to achieve 
higher order accuracy in terms of r, rmse and other error measures for as far as 24 hour 
forecast. Perhaps the recurring nature of sea water levels (the deterministic tidal component 
which is inherent in water level, is the reason behind this high level accuracy. In order to 
assess the ability of GP model relative to that of the ANN technique, a comparison was 
performed in terms of the above mentioned statistics. The developed GP model was found 
to perform better than the used ANNs. In the current work, the linear genetic programming 
approach was employed. The water level at Hillary’s Boat Harbor, Australia was predicted 
three time steps ahead using time series averaged over 12hr, 24hr, 5 day and 10 day time 
interval and the soft tool of GP [21]. The results are compared with ANN. Total 12 years of 
data was used out of which 3 years of data is used for model validation. Tree based GP was 
used. The results of 12 hr averaged input data were found to be better than 24 hr averaged 
input data and in general the accuracy of prediction reduced for higher lead times. For both 
the cases GP results were better than ANN. For 5 day averaged inputs performance of GP 
was inferior to that of ANN though it improved for 10 day averaged inputs. It may be noted 
that the input data is averaged over 12hr, 24hr, 5days and 10 days which means there is 
possibility of loss of information which can be major draw back of this work. For both the 
above works the hourly sea-level records from a SEA-level Fine Resolutions Acoustic 
Measuring Equipment (SEA-FRAME) station were used. The information about initial 
parameters of GP is however not mentioned in both the works. 

Estimation of wind speed and wind direction using the significant wave height, zero cross 
wave period, average wave period and the soft tools of ANN and GP was carried out at 5 
locations around Indian coastline [22]. The paper has three folds in that in the first attempt 
both ANN and GP were tried for estimating the wind speed in which GP was found better 
and therefore in the second fold GP was only used to determine both wind speed and 
direction by calibrating the model by splitting of wind vector into two components. Two 
variants of GP, one based on Tree based approach and the other on Linear Genetic 
Programming were also tried though the accuracy of estimation for both the approaches 
was at par. In the third fold a network of wave buoys were formed and wind direction and 
wind speed at one location was estimated using the same at other locations. This was also 
done by combining data of all locations and making a regional model. All the attempts 
yielded highly satisfactory results as far as accuracy of estimation is considered. It was also 
confirmed that for estimation of only wind speed the non-splitting of wind velocity gives 
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better results. Similarly wind speed and its directions were predicted for intervals of 3hr, 
6hr, 9hr, 12hr and 24 hr at locations along the west coast of India using two soft computing 
techniques of ANN and GP and previous values of the same [23]. It was found that GP 
rivaled ANN predictions at all the cases and even bettered it particularly for open sea 
location. The results for prediction of wind speed and wind direction together were better 
when training of GP and ANN models was done on the basis of splitting of wind vector into 
two components along orthogonal directions although a separate model for wind speed 
alone was better (as shown by [22]). In general long interval predictions were less accurate 
compared to short interval predictions for both the techniques. Data for one location was for 
about 1.5 years while for the other location it was for 3 years. A discussion on appropriate 
use of statistical measures to assess the model accuracy was also presented. A similar work 
was carried out to estimate the wind speed at 5 locations around the Indian coastline using 
the wave parameters and 3 data driven techniques namely GP (program based- tree type), 
MT and another data driven tool of Locally weighted projection regression (LWPR) by [24]. 
All models showed tendency to underestimate higher values in given records. When all of 
the eight error statistics employed were viewed together, no single method appeared 
distinctly superior to others, but the use of an average evaluation index EI which they have 
suggested in this work gave equal weightage to each measure showed that the GP was more 
acceptable than other methods in carrying out the intended inverse modeling. Separate GP 
models were developed to estimate higher wind speeds that may be encountered in stormy 
conditions. At all the locations, these models indicated satisfactory performance of GP 
although with a fall in accuracy with increase in randomness. For all the above works the 
data was measured by national data buoy program of India (www.niot.res.in) however no 
mention is made about the initial parameters chosen for GP implementation. 

The estimation of longshore sediment transport rate at an Indian location was carried out using 
GP and combined GP-ANN models [25]. The data was actually measured by one of the authors 
in his field study. The inputs were significant wave height, zero cross wave period, breaking 
wave height, breaking wave angle and surf zone width. The limitation of the work was the 
amount of data (81) used for training and testing of the models. The choice of control 
parameters was as follows: initial population size = 500; mutation frequency = 95%; crossover 
frequency = 50%. The initial trial with GP yielded reasonable results (r = 0.87). However by first 
training the ANN with same inputs and using the output as input for GP model yielded better 
results ( r = 0.92). Thus the paper shows that combined ANN-GP model is more attractive than 
single GP model. It may be noted this is a kind of work done in the domain of Ocean 
Engineering wherein a different parameter (sediment transport rate) is modeled rather than the 
usual parameters of waves, periods etc. Another different work was carried out by [26], for 
prediction of scour depth due to ocean/lake waves around a pile/pier in medium dense silt and 
sand bed using Linear Genetic Programming and Adaptive Neuro-Fuzzy Inference system and 
measured laboratory data. For initial GP parameters readers are referred to actual paper where 
in an exhaustive list of parameters is provided. The study was carried out in both dimensional 
and non-dimensional form in which non-dimensional form yielded better results. The relative 
importance of input parameters on scour process was also investigated by first using all the 
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influential parameters as inputs and then removing them one by one and observing the results. 
The drawback of the work is perhaps the small number of data used in model making (total 38 
data, 28 of which is used for training the model) which may be impediment in operational use 
of this model. The results were found to be superior to ANFIS results.  

In all the above cases where GP is compared with another data driven technique like ANN, 
MT or LWPR it was found that GP is superior to all of them in terms of accuracy of results. 
However it can be said that GP needs to be explored further particularly for prediction of 
extreme events like water levels, wave heights during hurricanes. A detailed study on effect 
of variation of GP control parameters like initial population, mutation, crossover percentage 
etc. on model accuracy is now need of the day. Similarly the critic on other approaches 
about decreasing forecasting accuracy with increase in the lead time seems to be true for GP 
as well. This needs more attention if GP is here to stay.  

7. Applications in hydrology 

Table 2 exhibits the applications of GP in Hydrology chronologically which are reviewed in 
this paper. The table also indicates that the applications of GP to the field of Hydrology 
started much earlier as compared to Ocean Engineering. 

Genetic Programming is used in Hydrology (science of water) for various purposes such as 
modeling of phenomena like rainfall-runoff process, evapo-transpiration, flood routing, 
stage-discharge curve. The GP approach was applied to the flow prediction of the Kirkton 
catchment in Scotland (U.K.) [27]. The results obtained were compared to those attained 
using optimally calibrated conceptual models and an ANN. The data sets selected for the 
modeling process were rainfall, streamflow and Penman open water evaporation. The data 
used for calibration was of 610 days while that of validation was of 1705 days. The models 
were developed with preceding values of rainfall, evaporation and stream flow for 
predicting stream flow one time step ahead. Two conceptual models as well as ANN were 
employed for developing the stream flow forecasting model. It was observed that the 
rainfall data was the most influencing factor on the output. All models performed well in 
terms of forecasting accuracy with GP performing better. The paper does not give any 
details about the values of the parameters used for calibration of GP model. In another work 
one day ahead forecasting of runoff knowing the rainfall and runoff of the previous days 
and the soft computing tool of Linear Genetic Programming was carried out in Lindenborg 
catchment of Denmark by [28]. The models were developed for forecasting runoff as well as 
variation of runoff by using previous values of variation of discharge as input as well as 
previous values of discharge as input along with rainfall information. It was found that it was 
necessary to include information of discharge rather than variation of discharge. The model 
predicting discharge gave wrong local peaks in the low regime where as models predicting 
variation of discharge gave less wrong peaks in the low flow. Both the models had difficulty 
in predicting high peaks. The models were also developed using ANN. The author concluded 
that GP is more efficient in peak flow prediction where as ANNs were better in dealing with 
the noise. The author suggested specialized model for each type of flow to improve the 
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Table 2. Applications of GP in Hydrology 

accuracy at peak prediction. He also suggested coupling of black box models with gray 
models. No specific information is provided about the initial values of GP parameters. The 
rainfall-runoff relationship in two different catchments was discovered by [29] using GP. 
The results obtained with a deterministic lumped parameter model, based on the unit 
hydrograph approach were compared with those obtained using a stochastic machine 
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learning model of GP. For the Welsh catchment in UK, the results between the two models 
were similar. Since rainfall and runoff were highly correlated, the deterministic assumption 
underlying the IHACRES model (deterministic) was satisfied. Therefore, IHACREX could 
achieve a satisfactory correlation between calibration and simulation data. The GP approach 
which did not require any causal relationships achieved similar results. The behavior of the 
studied Australian catchment is very different from the Welsh catchment. The runoff ratio 
was very low (7%), and hence, the a priori assumptions of IHACRES (and other 
deterministic models) were a poor representation of the real world. This was demonstrated 
by the inability of IHACREJS to use more than one season’s data for calibration purposes 
and only able to use data from a high rainfall period. Since the GP approach did not make 
any assumptions about the underlying physical processes, calibration periods over more 
than one season could be used. These led to significantly improved generalizations for the 
modeled behavior of the catchment. In summary, either approach worked satisfactorily 
when rainfall and runoff were correlated. However, when this correlation was poor, the 
CFG-GP had some advantages because it did not assume any underlying relationships. This 
is particularly important when considering the modeling of environmental problems, where 
typically the relationships are nonlinear, and are often measured at a scale which does not 
match with conceptual or deterministic modeling assumptions.  Readers are referred to 
original paper for details of parameters setting for evolving the rainfall-runoff model.  In 
their work of GP in hydrology, [30] first used a simple example of the Bernoulli equation to 
illustrate how GP symbolically regresses or infers the relationship between the input and 
output variables. An important conclusion from this study was that non-dimensionalizing 
the variables prior to symbolic regression process significantly enhance the success of GSR 
(Genetic Symbolic Regression). GP was then applied to the problem of real-time runoff 
forecasting for the Orgeval catchment in France. GP functions as an error updating 
procedure complementing the rainfall-runoff model, MIKE11/ NAM. Ten storm events were 
used to infer the relationship between the NAM simulated runoff and the corresponding 
prediction error. That relationship was subsequently used for real-time forecasting of six 
storm events. The results indicated that the proposed methodology was able to forecast 
different storm events with great accuracy for different updating intervals. The forecast 
hydrograph performs well even for a long forecast horizon of up to nine hours. However, it 
was found that for practical applications in real-time runoff forecasting, the updating 
interval should be less than or equal to the time of concentration of the catchment. The 
results were also compared with two known updating methods such as the auto-regression 
and Kalman filter. Comparisons showed that the proposed scheme, NAM-GSR, is 
comparable to these methods for real time runoff forecasting. Readers are referred to 
original paper for details of initial values of various parameters used in calibrating the GP 
model. The rainfall-runoff models were created on the basis of data alone as well as in 
combination with conceptual models and Genetic Programming [31]. The study was carried 
out in Orgeval catchment of France having an area about 104 km2 using hourly rainfall 
runoff data of 10 storms for calibration and 6 storms for testing the models. The models 
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were calibrated to forecast the temporal difference between the current and future discharge 
rather than absolute value of discharge for the lead times of 1 to 12 hours. In fact the paper 
discusses the phase lag associated with temporal time series forecasting models and 
removal of it by forecasting the temporal difference. The results were superior to conceptual 
numerical model. The model was then calibrated using a hybrid method in that the surface 
runoff value was first forecasted by using a conceptual forecasting model and then using the 
simulation error and GP to forecast the stream flow. The hybrid models provided a many 
fold improvement over the raw GP models. The paper in our opinion serves as a basic paper 
in the field of application of GP in Hydrology and readers may read the paper in original for 
all details about the GP models developed. The details are not produced here to save the 
space.  Linear Genetic Programming technique was used to predict daily river discharge one 
day ahead using previous values of the same at Schuylkill River at Berne, PA, USA [8]. 
Additionally the models were developed using multilayer perceprton as well as Generalized 
Regression Neural Networks (GRNN). The statistical ARMA method was also used to 
develop the stream flow forecasting model. The results showed that both LGP and NN 
techniques predicted the daily time series of discharge with quite good agreement as 
indicated by high value of coefficient of determination and low values of error measures 
with the observed data. LGP models generally predicted the maximum and minimum 
discharge values better than the NN models though LGP results were also far from accurate. 
The robustness of the developed models was tested by using applied data which was 
neither used in training or testing and the results were judged using Akaike Information 
Criterion (AIC). For LGP parameters readers are requested to refer the comprehensive list 
presented in the paper. 

The potential of the GP-based model for flood routing between two river gauging stations 
on river Walla in USA was explored for single peaked as well as multi-peaked flood 
hydrographs by [32]. The accuracy of GP models was far superior than modified 
Muskingum method which is a traditional physics based hydrologic flood routing model 
which also showed time lag in predictions. The inputs were current and antecedent 
discharge at upstream station and antecedent discharge at downstream station while the 
output was current discharge at the downstream station. The LGP was employed for the 
flood routing exercise. The optimal GP parameters used in this study were: crossover rate, 
0.9; mutation rate, 0.5; population size, 200; number of generations, 500; and functional set, 
i.e. simple arithmetic functions (plus, minus, multiply, divide). 

The utility of genetic programming in modeling the eddy-covariance (EC) measured evapo-
transpiration flux was investigated by [33]. The performance of the GP technique was 
compared with artificial neural network and Penman-Monteith model estimates. EC 
measured evapo-transpiration fluxes from two distinct case-studies with different climatic 
and topographic conditions were considered for the analysis and latent heat is modeled as a 
function of net radiation, ground temperature, air temperature, wind speed and relative 
humidity. Results from the study indicated that both data-driven models (ANN and GP) 
performed better than the Penman-Monteith method. However, the performance of the GP 
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model is comparable with that of ANN models. One of the important advantages of 
employing GP to model evapo-transpiration process is that, unlike the ANN model, GP 
resulted in an explicit model structure that can be easily comprehended and adopted. 
Another advantage of GP over ANN was found that unlike ANN, GP can evolve its own 
model structure with relevant inputs reducing the tedious task of identifying optimal input 
combinations. This work was extended by [34] where in an additional data driven tool of 
Evolutionary Polynomial Regression was used to model the evapo-transpiration process. 
Additionally the effect of previous states of input variable (lags) on modeling the EC 
measured AET (actual evapo-transpiration) is investigated. The evapo-transpiration is 
estimated using the environmental variables such as net radiation (NR), ground 
temperature (GT), air temperature (AT), wind speed (WS) and relative humidity (RH). It has 
been found out that random search and evolutionary-based techniques, such as GP and EPR 
techniques, do not guarantee consistent performance in all case studies e.g. good and/or bad 
performance for modelling AET. The authors further stated that this may be due to the 
practical impossibility of conducting exhaustive search, i.e. searching the entire solution 
space, to reach the optimal model. The results of ANN, GP and EPR were mostly at par with 
each other though EPR models were easier to understand. Readers may refer the original 
papers for above two works for the values of GP parameters. 

Recently the stage –discharge relationship for the Pahang River in Malaysia was modeled 
using Genetic Programming (GP) and Gene Expression Programming (GEP) by [35]. The 
data was provided by Malaysian Department of Irrigation and Drainage (DID). Gene 
Expression Programming is an extension of GP. GEP is a full-fledged genotype/phenotype 
system in which both are dealt with separately, whereas GP is a simple replicator system.  
Stage and discharge data from 2 years were used to compare the performance of the GP and 
GEP models against that of the more conventional (stage-rating curve) SRC and 
(Regression) REG approaches. The GEP model was found to be considerably better than the 
conventional SRC, REG and GP models. GEP was also relatively more successful than GP, 
especially in estimating large discharge values during flood events. For details of initial GP 
parameters the original paper may be referred. The paper elaborates the details of the Gene-
expression programming, the new variant of GP.  

Like applications in Ocean Engineering it can be said that there is a lot of scope for use of GP 
in the field of Hydrologic Engineering and more and more applications needs to be tried 
out.  

8. Applications in hydraulics 

A few applications of GP in Hydraulic Engineering are also reported in reputed journals which 
are from open channel hydraulics. Various GP models were developed by [36] to predict 
velocities across a compound channel with vegetated floodplains. The velocity data was 
collected in a laboratory flume with steady flow and deep channel and relatively shallow 
vegetated floodplain on either side. The GP model was developed with all 12 variables in 
dimensional form depicted accurate results though the evolved equation was complex. The GP 
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models were developed with dimensionless variables and separate for main channel and 
floodplain. Both the velocity prediction on flood plain and main channels showed good 
correlations with measured values. However the resulting expressions were complex. A 
dimensionally aware GP was then used to predict the velocity separately in main channel and 
flood plains. The performance of the symbolic expressions induced by the dimensionless GP for 
the floodplain and main channel was marginally better than those for the dimensionally aware 
GP. However, the expressions were more complex and not particularly useful for knowledge 
induction. The dimensionally aware GP was shown to hold more scientific information, as units 
of measurement were included, although it was also shown to be open ended in that it does not 
strictly adhere to the dimensional analysis framework, thereby allowing improved goodness-of-
fit whilst yielding on goodness-of-dimension. The paper provides no information about the 
initial values of GP parameters used in evolving the GP model. GP was applied to the 
determination of the Chezy’s roughness coefficient for corrugated channels in wake-
interference flow, i.e. hyper-turbulent flow by [37]. The GP models were calibrated using the 
experimental data devised by carrying out experiments for 3 plastic corrugated pipes with 
variations of discharge and slope. GP quite easily and quickly supplied at least two good 
formulae that fit the experimental data better and are more parsimonious than the monomial 
formula (mathematical). Moreover, GP has supplied six parsimonious expressions (one or two 
constants compared to four for the monomial formula) for the Chezy’s resistance coefficient, all 
confirming the dependencies on hydraulic radius, slope and roughness index. It can be said that 
the two new formulae for the Chezys resistance coefficient, derived from these GP formulae by 
means of ‘mathematical/physical post-refinement’, are suitable for explaining the effect of the 
macro-roughness elements, with respect to the behavior of the rough commercial channels and 
their traditional expressions for resistance coefficients. The work indicated that this approach, 
which combines data-mining techniques together with a theoretical understanding, provides 
very good results. It was also commented that strictly speaking, GP is a data-driven technique, 
but prior knowledge during the setting up of the evolutionary search and final physical post-
refinement of the hypothesis should make it very close to a white box technique, especially 
when GP is used in scientific discovery problems. The initial model parameters can be found in 
the original paper. To save space the list is not provided here. 

An alternative approach of GP was proposed in the estimation of relative scour depth using 
field data by [38]. The comparison between the GP model with ANN found that the GP 
model has good ability of forecasting the scour depth. The discharge intensity and height of 
fall were used as inputs to estimate scour depth below tail water. The predictive ability of 
this approach is however clouded by use of very small number of data (total 91 data sets) 
used for calibration and testing of the model. The values of initial model parameters can be 
referred from the original paper.  

9. Case study I: Soft computing approach for real-time estimation of 
missing wave heights 

The work dealt with application of GP to retrieve the missing/ lost wave data at a particular 
location using the wave heights at other locations in the region. Six regional networks (with 
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buoys 42001, 42003, 42007, 42036, 42039,42040) were developed in the Gulf Of Mexico 
(Figure 2) around USA coastline to estimate the  wave heights at a location using wave 
heights at other five locations in the network. The required data from these six buoys was 
measured by National Data Buoy Center (NDBC, http://www.ndbc.noaa.gov) of National 
Oceanic and Atmospheric administration of USA (NOAA, http://www.noaa.gov ). The 
common wave data at all the above six locations for the years 2002-2004 was used in the 
present work. The networks were developed by having one station as target location at a 
time and remaining five locations as inputs turn by turn.  Approximately 70% of the total 
values were used to calibrate the model and the remaining was kept unseen for testing. 
While doing this a particular event which occurred during Hurricane Ivan in 2004 at buoy 
42040 which involved a Significant Wave Height of 15.96 m was focused for studying the 
performance of developed models during extreme events. It is to be noted that the exercise 
was of estimation and not of forecasting for which both the tools did not performed well as 
noted in the section on applications of GP in Ocean Engineering. 

Thus a network was developed with wave buoy 42040 as the target and buoys 42001, 42003, 
42007, 42036, 42039 as inputs. Along with 42040 the other locations namely 42003, 42007, 
42039 also experienced largest ever wave heights of 11.04, 9.09, 12.05 making the entire 
event a truly extra ordinary event having a return period of over 5000 years [39].  The initial 
parameters selected for a GP run were as follows: initial population size 500, mutation 
frequency 95%, and crossover frequency 50%. The fitness criterion was the mean squared 
error.  

Additionally a three layer Feed Forward Neural Network was also developed for the same 
buoy network. The results were also compared with a large-scale continuous wave 
modeling /forecasting systems (NOAA’s WAVEWATCH III model) which follows the 
approach of physics-based model.  Though WAVEWATCH III is a continuous running 
forecasting model it was the only source of information for wave environment at a location 
and therefore in absence of any reliable observed data, these results were used for 
comparison. The GP model estimated a wave height of 13.67m as against 15.96 m as 
compared to 9.05m that of ANN model and 7.82m of WAVEWATCH III, which was an 
excellent result as far as GP approach is considered. Figure 3 shows the wave plot at 42040 
in testing. 

From results of all the models developed by both the approaches (ANN & GP), it was 
observed that all models performed reasonably well in testing as evident by wave height 
plots, scatter plots along with the correlation coefficient ranging from 0.85 to 0.98, MAE 
from 0.13 to 0.28, RMSE from 0.20 to 0.45 m and coefficient of efficiency from 0.67 and 0.96. 
When it was tried to remove 42001 from the network as it is away from the prevailing wind 
direction by training a separate GP model with 42003, 42007, 42036, and 42039 as ‘input 
buoys’ and 42040 as ‘target buoy’, though the value of correlation coefficient was increased, 
the peak prediction was not in a fair range of accuracy for extreme event of Hurricane Ivan. 
Due to better performance of the network with inclusion of buoy 42001 especially for 
extreme event, buoy 42001 was retained in the network. Also it was found that 42039 was a 
potential candidate for redeployment in any other suitable position outside the network as  
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Figure 2. Study area and Buoy Locations (Ref: [6]) 

 
Figure 3. Wave height comparison at 42040 during Hurricane Ivan (Ref: [6]) 

the buoy network developed for 42039 , provided the wave heights using wave heights at 
other five locations in the network with the best accuracy achieved between all the networks 
(r = 0.98). Figure 4(a, b) shows the scatter plots for results of buoy 42039. Table 3 shows 
results reproduced from [6] giving the details of developed networks along with correlation 
coefficient between the model estimated and observed values for both GP and ANN models. 
In general it was shown that GP was superior to other soft tool of ANN and numerical 
model WAVEWATCH in retrieving the missing wave heights including the extreme events 
and in redeployment of buoy at other location outside the network.  
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Figure 4. a. Scatter plot for buoy 42039 (GP approach); b. Scatter plot for buoy 42039 (ANN approach) 
(Ref: [6]) 

 

network Input buoys Target buoy rANN rGP 
BN1 42003, 42007, 42036, 42039, 42040 42001 0.85 0.88 
BN2 42001, 42007, 42036, 42039, 42040 42003 0.87 0.91 
BN3 42001, 42003, 42036, 42039, 42040 42007 0.90 0.92 
BN4 42001, 42003, 42007, 42039, 42040 42036 0.92 0.94 
BN5 42001, 42003, 42007, 42036, 42040 42039 0.98 0.98 
BN6 42001, 42003, 42007, 42036, 42039 42040 0.94 0.97 

Table 3. Results of buoy networks [6] 

10. Case study II: Comparison of data-driven modelling techniques for 
river flow forecasting 

In the case study GP was used for prediction of average daily flow values one day in 
advance at two locations, Rajghat and Mandaleshwar, in the Narmada basin, India using the 
previous values of measured streamflows at these two locations. The observations of daily 
average stream flow values at both these stations for the years 1987–1997 were obtained 
from the Central Water Commission, Narmada Division, Bhopal, India. Considering the 
variations in daily stream flow values four separate models for the monsoon months of July, 
August, September and October were prepared along with the one separate but common 
model for the non monsoon months of November–June. Thus five models were developed 
in all for each station (total 10 models) to predict discharge at one day in advance. In a view 
of fair judgment along with GP, ANN and Model trees approach was also employed to 
develop the models. The number of antecedent discharge values which were used for 
predicting discharge one day in advance was decided by carrying out the auto-correlation 
analysis.  
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The GP models were developed with major fitness function of mean squared error, initial 
population size of (2048), mutation frequency of  (95%) and the cross-over frequency of 
(53%) with same data division for both ANN and GP models so that their results could be 
compared. All the developed forecasting models were tested for unseen inputs and their 
qualitative and quantitative performance was judged by means of correlation coefficient (r) 
between the observed and forecasted values along with root mean square error (RMSE) and 
plotting scatter plots between the same. Hydrographs were also plotted to visualize the 
behavior of the forecasting models particularly for extreme events (peaks). 

After examining the results it was observed that for the location of Rajghat in the month of 
July, ANN model exhibited a reasonable performance in testing with an ‘r’ value of 0.75 
between the observed and forecasted discharges whereas GP model had showed a better ‘r’ 
value of 0.78 with better performance for higher values of stream flow, though over-
predicted in some instances. The MT model gave a lower ‘r’ value of 0.7 and prediction of 
MT model for high stream flows was poor as compared to ANN and GP models. The scatter 
plot (Fig. 5) between the observed and forecasted discharges confirmed this with a balanced 
scatter except at the high values of measured stream flows. 

 

 
Figure 5. Scatter plot for RajJuly Model 

For the months of August and September, models showed similar performance with GP 
models performing better than their  ANN and MT counterparts (r GP = 0.75,rANN = 0.7, r MT = 
0.72 for Raj Aug and r GP = 0.79,rANN = 0.76, r MT = 0.78 for Raj Sept). For the October model, 
the predicted discharges in testing were highly in agreement with the observed values for 
both the models as shown by the discharge hydrograph (Fig. 6). The results were also 
supported by a high value of correlation coefficient (r = 0.92 for ANN and GP and r = 0.87 
for MT) for all the three models in testing. 
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The Mandaleshwar models behaved in a similar fashion as that of the Rajghat models with 
correlation coefficients of r > 0.7 for all ANN, GP and MT models. For the month of August 
the performance of all models was reasonable with r values of 0.74, 0.78 and 0.71 for ANN, 
GP and MT models respectively. The other monthly models of ANN, GP and MT also 
performed well, with high correlation coefficients in testing (r > 0.86).  It was again observed 
that GP models work better while predicting extreme events. The maximum observed 
discharge of 3790 m3/s was predicted as 1742 m3/s by the ANN model, 3342 m3/s by the GP 
model and 1718 m3/s by the MT model. Figure 7 shows discharge hydrographs for the 
ManNov-June models. The RMSE values also showed a similar trend to that of the 
correlation coefficients.  

Thus it was seen that the GP technique outperforms both ANN and MT in almost all the 
cases in terms of overall accuracy in prediction. The GP approach based on evolutionary 
principles has a completely different approach to the ANN technique in that it does not 
involve any transfer function, and evolves generations of “offspring” based on the “fitness 
criteria” and genetic operations; this seems to capture the underlying trends better than the 
ANN technique. Thus it can be said that ANN and MT perform almost equally but GP 
performed better than both of them where prediction accuracy in both normal and extreme 
events is concerned. 

11. Concluding remarks and future scope 

Applications of GP for modeling water flows were discussed in the preceding sections of this 
chapter. It may be noted that every attempt is made to provide readers the details of GP 
techniques and their parameters employed in each work. However in view of keeping the 
length of the chapter in stipulated limits sometimes the readers are referred to the original 
paper.  Details about the data are also provided at appropriate locations. Interested readers 
may further enquire the authors or download the data whenever possible from the web sites 
to perform the similar exercise. The applications were from three particular areas of water 
flows namely Ocean Engineering, Hydrology and Hydraulics. It was shown in all the 
applications for that modeling of natural random processes of complex underlying 
phenomenon the Genetic Programming can certainly be employed. The results of this 
technique were found to be superior than other contemporary soft computing techniques. 
However it was also seen that the tool is not explored to its full capacity by the research 
community in any of the above fields. The developed GP models also need to be applied at 
operational level. For this a partnership between the researchers and practitioners is 
necessary. The GP models can certainly work as supplementary tool if not as replacement 
techniques. It can be said that the early days of GP modeling are over and the tool needs to be 
used more judiciously for the problems worthy of its use. Otherwise a stage will be reached 
where in GP will be used because data is available. It’s use is certainly for the phenomena 
which are difficult to explain and model. However if the technique is to stay here it needs to 
be explored further for more challenging problems like modeling of infiltration, high flood 
events, hurricane path, storm surge, tsunami water levels to name a few.  
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Figure 6. RajOct Model results [13] 

 
Figure 7. ManNovJune Model results [13] 
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1. Introduction 

With the advent of computers a wide range of mathematical and numerical models have 
been developed with the intent of predicting or approximating parts of hydrologic cycle. 
Prior to the advent of conceptual or process based models, physical hydraulic models, 
which are reduced scale representations of large hydraulic systems, were used commonly in 
water resources engineering. Fast development in the computational systems and numerical 
solutions of complex differential equations enabled development of conceptual models to 
represent physical systems in almost all arenas of life including hydrological and water 
resources systems. Thus, in the last two decades large number of mathematical models was 
developed to represent different processes in the hydrological cycle. Hydrological models 
can be broadly classified in to three.  

1. Physical models 
2. Conceptual models 
3. Statistical / Black box models 

Physical models are reduced scale representations of the actual hydrological system and the 
responses obtained from these models are up-scaled to estimate the responses of the real 
system. Conceptual models are based on different individual processes or components of a 
hydrological process. For example, in modelling the watershed response to a storm event a 
conceptual model make use of different equations to compute different components like 
subsurface flow, evapo-transpiration,   channel flow, groundwater flow, surface run off etc. 
The third type of modelling involves using mathematical and statistical techniques to fit a 
model to a data set which then relates the dependent variable to the independent variables. 
This type of modelling includes regression models, response matrix, transfer functions, 
neural networks, support vector machine etc. The most widely used “black box” type 
modelling approach in hydrology and water resources literature is neural networks. Genetic 
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programming is a potential tool to develop simple and efficient functional relationship 
between hydrological variables. In spite of the wide range of possible applications in 
hydrology and water resources, GP has not been widely reported in the hydrology and 
water resources literature.  The focus of this chapter is to discuss the potential applicability 
of genetic programming to develop simple and computationally efficient hydrological 
models, in light of a few studies reported in the recent years. The key points discussed are as 
follows; 

1. GP’s ability to develop simple models with interpretability to overcome the curse of 
“black box” nature of data intensive models. 

2. Lesser number of parameters used in GP models as compared to parallel neural 
network architectures. 

3. GP’s ability to parsimoniously identify the significance of the modelling inputs. 

1.1. Genetic programming as a modelling tool 

Genetic programming belongs to and is one of the latest members in the family of 
evolutionary computation. Evolutionary computation refers to the group of 
computational techniques which are inspired by and emulate the natural process of 
evolution which resulted in the formation of  the entire variety of organisms present on 
earth. Just as the way evolution and natural selection has resulted in the formation of 
organisms that are competent and best suitable inhabitants to live in any natural 
environment, the principle has been applied in computational science to evolve solutions 
to complex engineering problems which are subject to random and chaotic environments 
similar to the circumstances in which natural evolution has occurred. Evolutionary 
computation forms the basic principle behind the evolutionary algorithms like genetic 
algorithm (GA), genetic programming (GP), Evolutionary programming, evolution 
strategy, differential evolution. Evolutionary algorithms, widely used in mathematical 
optimization, are in general based on the application of evolutionary principles like 
selection, cross-over and mutation to a “population” of candidate solutions over a 
number of generations to find the optimal solutions to an engineering problem. Genetic 
algorithm is, for example, a widely used optimization techniques using these principles 
as the basic “operators” of the algorithm. Genetic programming [1] is similar to genetic 
algorithm in this aspect that it uses these genetic operators selection, cross-over and 
mutation in its algorithms. However, the uniqueness of genetic programming is that it 
performs these operators over symbolic expression or formulae or programs rather than 
over numbers which represent the candidate solutions. Thus, in genetic programming 
the candidate solutions are symbolic expressions or formulae. In a modelling framework 
these symbolic expressions or formulae or programs are candidate models to simulate a 
physical phenomenon. The parse tree notations of two parent and offspring genetic 
programs are shown in figure 1. Thus the optimal formula that is evolved by genetic 
programming can be used as a best fit model for predicting the physical phenomenon 
under consideration.  
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Figure 1. Symbolic representation of parent and offspring genetic programs 

In figure 1, two parent programs to model a physical phenomenon are shown. After testing 
these programs for their modelling performance, they are operated by cross-over operator. 
That is, parts of the programs are crossed over at the dashed locations to generate the 
offspring programs. Also, mutation is illustrated by arbitrarily changing the parameter 2 to 
6.   

In the last decade a few studies in the broad area of hydrology have utilized genetic 
programming based models for making hydrological predictions. The utility of GP in 
developing rainfall-runoff models, which are highly non-linear models was addressed in [2] 
They combined the use of GP based models with other conceptual models in deriving useful 
hydro-climatic models.  It was concluded that GP was able to develop more robust models 
in that the functional relationships between different model inputs could be easily identified 
thus resulting in more transparency of the “black box” type of modelling. Another study  [3] 
applied genetic programming and artificial neural networks in hydrology to model the 
effect of rain on the runoff flow in an urban basin. This study also illustrated the possibility 
of including the physical basis of the problem in the GP based model. Another research in 
this direction [4] compared three different artificial intelligence techniques viz, neural 
networks, adaptive neuro-fuzzy inference system (ANFIS), and genetic programming for 
discharge routing of a river in Turkey. The study revealed that GP displayed a better edge 
over the other two modelling approaches in all the statistics compared like the mean 
absolute error (MAE), mean squared relative error (MSRE) and correlation coefficient.  Kisi 
et al (2010) [5] developed a wavelet gene expression programming (WGEP) for forecasting 
daily precipitation and compared it with wavelet neuro-fuzzy models (WNF). The results 
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showed that WGEP models are effective in forecasting daily precipitation with better 
performance over WNF models. Selle [6] utilized genetic programming to systematically 
develop alternative model structures with different complexity levels for hydrological 
modelling with the objective of testing whether GP can be used to identify the dominant 
processes within the hydrological system. Models were developed for predicting the deep 
percolation responses under surface irrigated pastures to different soil types, water table 
depths and water ponding times during surface irrigation. The dominant process in the 
model prediction as determined from the models generated using genetic programming was 
found to be comparable to those determined using conceptual models. Thus it was 
concluded that Genetic programming can be used to evaluate the structure of hydrological 
models. A common aspect of GP based modelling that all these studies reported is the fact 
that the GP modelling resulted in fairly simpler models which could be easily interpreted 
for the physical significance of the input variables in making a prediction. Jyothiprakash and 
Magar (2012) [12] performed a comparative study of reservoir inflow models developed 
using ANN, ANFIS and linear GP for lumped and distributed data. The study reported 
superior performance of GP models over ANN and ANFIS models. 

2. Simple and interpretable hydrological models using genetic 
programming 

The major drawback of all the data driven modelling approaches is the black box nature of 
these models, i.e., the user cannot easily identify what is happening in model which 
computes the outputs corresponding to the inputs supplied to the model. One of the key 
advantages of genetic programming as a modelling tool is its ability to develop simple 
hydrological models. The simplicity of the models is close associated with their 
interpretability. The simpler the models are the better they can be interpreted. This in turn 
helps in assessing the contributions of different members of the predictor set or inputs in 
making a particular prediction. Selle and Muttil (2011) utilized this capability of GP to test 
the structure of hydrological models to predict deep percolation response in surface 
irrigated pastures. Data obtained using lysimeter experiments were used to develop simple 
models using genetic programming. The developed models were simple and interpretable 
which helped in identifying the dominant processes involved in the deep percolation 
process. Often the developed models could be expressed as simple algebraic equations. The 
dominant processes identified compared well with the same as used in conceptual models. 
The study also investigated the recurrence of the models developed using GP in multiple 
runs and found out that they were consistently coming up with the same model for a given 
level of complexity of the model. However, the study also reported that as the level of 
complexity increases recurrence of the generated model were affected and the physical 
interpretability of the models decreases and hence careful understanding of the complexity 
of the system is to be considered before a level of complexity is chosen for the GP models. 

This however, illustrates that carefully developed GP models remain mathematically simple 
and are readily interpretable to the extent that the dominant processes which influence the 
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prediction could be readily identified from the model structure.  When carefully 
implemented models can throw light into and identify the key physical processes 
contributing to the phenomenon predicted and hence the development of the model. This is 
an important feature lacking from many of the data mining based prediction models 
resulting from which these modelling approaches are often earmarked as “black-box” 
models. “Black-box” nature of the prediction models often result in the limited use of such 
models for practical predictive  applications.  

2.1. Model complexity of GP and neural networks – Comparative study  

The authors had conducted a study [7] to evaluate the complexity of predictive models 
developed using Genetic programming in comparison with models developed using 
neural networks. The models based on GP and neural network were developed as 
potential surrogate models to a complex numerical groundwater flow and transport 
model.  The saltwater intrusion levels at monitoring locations resulting due to the 
excitation of the aquifer by pumping from a number of groundwater pumping wells were 
modelled by using GP and neural networks. The pumping rates at these groundwater 
well locations for three different stress periods were the inputs or independent variables 
for the model. The resulting salinity levels at the monitoring locations were the dependent 
variables or outputs.  

The GP and ANN based surrogate models were trained based on the training and validation 
data generated using a three dimensional coupled flow and transport simulation model 
FEMWATER. The GP models were developed using a software Discipulus, which uses a 
linear genetic programming algorithm. The ANN surrogate models were developed using a 
feed forward back propagation algorithm implemented in the software neuroshell. The 
input data considered were the pumping rates at eleven well locations over three different 
time periods, constituting 33 input variables. Since pumping at each location can take any 
real value between the prescribed minimum and maximum these input variables constitute 
a 33 dimensional continuous space, each dimension representative of a pumping rate at a 
particular location in a particular stress period. Hence efficient training of the GP and ANN 
models required carefully chosen input data which is representative of the entire input 
space. Latin hypercube sampling was performed to choose uniformly distributed input 
samples from the 33 dimensional input space. An input sample is a vector of 33 values of 
pumping rate at 11 well locations during three stress periods. The salinity level at each 
observation location is the dependent variable or output. The values of the outputs required 
for training the GP and ANN models were generated by running the FEMWATER model. 
The numerical simulation model was run numerous times to generate the output data set 
corresponding to each input vector. The input-output data set generated following this 
procedure was divided into two sets with three quarters of the data in one set and the rest in 
the other. The larger set was used for training GP and ANN models and the smaller one was 
used for validating the models. The members of the training and validation sets for both GP 
and ANN were chosen randomly.  
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The ANN used in the study was trained in the supervised training mode using   a back 
propagation algorithm. The objective function considered for both the GP and ANN training 
was minimization of the total root mean square error (RMSE) of the prediction. The 
prediction error was calculated as the difference between the model (GP or ANN) predicted 
values and the actual from the numerical model generated data set.   

The input-hidden-output layer architecture for the ANN model was optimized by trial and 
error. Both GP and ANN models had 33 input variables and 3 outputs. The number of 
hidden neurons in the ANN model was determined by adding 1  hidden neuron during 
each trial. A sigmoid transfer function and a learning rate of 0.1 were used. In developing 
the model the back propagation algorithm modifies the connection weights connecting the 
input-hidden and output neurons by an amount proportional to the prediction error in each 
iteration and repeats this procedure numerous times till the prediction errors are minimized 
to a pre-specified level. Thus for any given model architecture (model structure) the neural 
network model optimizes the connection weights to accomplish satisfactory model 
predictions. Where as the genetic programming modelling approach is different in that it 
evolves the optimal model architecture and their respective parameters in achieving 
satisfactory predictions.  

The GP models developed used a population size of 500, mutation and cross over 
frequencies of respectively 95 and 50 percent. The number of generations were not specified 
a priory, instead the evolutionary process was stopped when the fitness function was less 
than a critical value. In order to achieve the simplest models, the mathematical operators 
where initially kept a minimum and then further operators were added into the functional 
set. In this manner, initially addition and subtraction were alone added in this set and later 
the operators multiplication, arithmetic and data transfer were added into the set.  

The predictive performance of the GP and ANN models on an independent set of data were 
found to be satisfactory in terms of the correlation coefficient and minimized RMSE. Figure 
2 and 3 respectively shows the ANN and GP predictions of salinity levels at three 
monitoring locations corresponding to the their corresponding values from the numerical 
simulation model A dissection of the GP and ANN models were performed to evaluate the 
model complexity.  The modelling framework of the GP models essentially has a functional 
set and a terminal set. The functional set comprises of the mathematical operations like 
addition, subtraction, division, multiplication, trigonometric functions etc. The terminal set 
of GP comprises of the model parameters which are also optimized simultaneously as the 
model structure is optimized. In our study the developed GP models used a maximum 
terminal set size of 30. i.e., satisfactory model predictions could be achieved with only 30 
parameters for the GP model. 

The functional operators essentially develop the structure of the GP models by operating on 
the input variables. In the GP modelling framework this model structure is not pre-specified 
unlike the ANN models. Instead, the model structure is evolved in the course of model 
development by testing numerous different model structures. This approach definitely 
provides scope for the development of improved model structures as against the ANN 



 
Genetic Programming: Efficient Modeling Tool in Hydrology and Groundwater Management 231 

method. In the ANN approach where comparatively only a few models are tested in the trial 
and error approach which does not implement an organized search for better model 
architectures. The only components that are optimized during the development of the ANN 
model are the connection weights. Thus the model structure is rigid and is retained as 
determined by the trial and error procedure. This gives lesser flexibility in adapting the 
model structure with respect to the process being modelled. In our study it was found that 
while GP models required only 30 parameters in developing the model the number of 
connection weights in the ANN models was 1224. This is a metric of the simplicity of the GP 
models as against the ANN models. From figures 2 and 3 it is observed that despite the 
simplicity of the model and much lesser number of parameters used GP predictions are very 
similar to the ANN model predictions. For each hidden neuron added into the ANN 
architecture the number of connection weights increases by a number equal to the total 
number of inputs and outputs. Hence there is a geometric increase in the number of 
connection weights with increase in the number of hidden neurons in ANN architecture.   

The comparison of the number of parameters in itself testifies the ability of the genetic 
programming framework to develop simpler models. The impact of the number of 
parameters on the model is on the uncertainty of the predictions made using the model. The 
more the number of parameters, the more uncertainty in them and hence this uncertainty 
propagates into the predictions made.  

3. Parsimonious selection of input variables 

Another key feature of the genetic programming based modelling approach is the ability of 
genetic programming to identify the relative importance of the independent variables 
chosen as the modelling inputs. Many often in hydrological applications it is uncertain 
which variables are important to be included as inputs in modelling a physical 
phenomenon. Similarly time series models are used quite often in predicting or forecasting 
hydrological variables. For example the river stages measured on a few consecutive days 
can be used to forecast the river stage for the following days. In doing so the number of past 
days’ flow to be included as inputs into the time series model depends on the size and shape 
of the catchment and many similar parameters. Most often rigorous statistical tests like auto-
correlation studies are conducted to determine whether an independent variable is 
significant to be included in the model development or not. Once included most often it is 
not possible to eliminate from most of the modelling frameworks because of the earlier 
mentioned rigidity of the model structure. For example, in neural networks an insignificant 
model input should be ideally assigned zero connection weights to the output. However, 
these connection weights most often don’t assume the zero value but converge to very small 
values near zero. This results in the insignificant variable being influencing the predictions 
made by a small amount. These results in uncertainties in the predictions made.  

The evolutionary process of determining the optimum model structure helps GP to identify 
and eliminate insignificant variables from the model development. The authors conducted a 
study dissecting the neural network and GP models developed in the same study described 
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above to evaluate the parsimony in the selection of inputs for model development. GP 
evolves the best model structure and parameters by testing millions of alternate model 
structures. The relative importance of the each independent variable in the model 
development was computed by the recurrence of each independent variable in the best 30 
models developed by GP. Thus, if an input appears in all the 30 models its impact factor is 1 
and if one independent variable appears in none of the best 30 models its impact factor is 0.  

 
Figure 2. Salinity predictions at three locations by the ANN models 

To determine the significance of the inputs in the neural network model a connection 
weights method was used [7]. In this method the significance of each input is computed as a 
function of the connection weights which connects it to the output through the hidden layer. 
The formulae used in [7] were used to compute this; 

1. First step in this approach was to compute the product of the input-hidden layer and 
hidden output layer weights. The, divide this by the sum of products of absolute values 
of the input-hidden and hidden output layer weights of all input neurons. This is given 
by ihQ  in (2) 

 , , ,| | | |i h i h h oP W W= ×  (1) 

        

1

ih
ih ni

ih
i

P
Q

P
=

=


                   (2) 



 
Genetic Programming: Efficient Modeling Tool in Hydrology and Groundwater Management 233 

2. Divide the sum of the ihQ  for each hidden neuron by the sum for each hidden neuron 
of the sum for each input neuron of ihQ , for each i. The relative importance of all output 
weights attributable to the given input variable is then obtained. The relative 
importance is then mapped to a 0-1 scale with the most important variables assuming a 
value of 1. A RI value of 0 indicates an insignificant variable. 
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In this manner, the significance of each independent variable (input) to the model was 
quantified in a 0-1 range as impact factor and relative importance respectively for GP and 
ANN models. These values for GP and ANN models are plotted in figures 4,5 and 6.  

 
 
 

 
 
 
 
Figure 3. Salinity predictions at three locations by the ANN models 
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Figure 4. Impact factors of input variables in predicting Salinity at location 1. 

 
Figure 5. Impact factors of input variables in predicting Salinity at location 2. 

From these figures it can be observed that all the variables considered has a non-zero impact 
in the developed ANN models. Whereas, GP is able to assign zero impact factor to those 
inputs which are not significant and thus able to eliminate them from the model. This helps 
in developing simpler models and reducing the predictive uncertainty. In figure 4 it can be 
seen that GP identified 13 inputs with zero impact factor. This implies that the pumping 
values corresponding to these inputs have negligible effect on the salinity levels at the 
observation location. Thus 13 out of the 33 inputs considered are eliminated from the GP 
models resulting in much simpler models compared to the ANN models where all the 33 
inputs take part in predicting the salinity even though some of them are having very less 
impact on the predictions made. The ability of GP to eliminate insignificant variables is 
because of the evolutionary nature of model structure optimization. By performing cross-
over, mutation and selection of candidate models over a number of generations GP is able to 
derive the optimum model structure with the most important input variables which are 
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relevant to the model prediction. This inturn help in developing simpler models with fewer 
uncertainties in the model prediction.  

 
Figure 6. Impact factors of input variables in predicting Salinity at location 3. 

4. Multiple predictive model structures using GP 

The advent of GP as a modelling tool has paved the way for researches exploring the 
possibility of multiple optimal models for predicting hydrological processes. Genetic 
programming, in its evolutionary approach to derive optimal model structures and 
parameters, tests millions of model structures which can mimic the physical process 
under consideration. Researches have found that multiple models can be identified using 
GP which are considerably different in model structures but able to make consistently 
good predictions. Parasuraman and Elshorbagy [8] developed genetic programming 
based models for predicting the evapo-transporation. In doing so, multiple optimal GP 
models were trained and tested and they were applied to quantify the uncertainty in 
those models. Another study by the authors [9] developed ensemble surrogate models for 
predicting the aquifer responses to pumping in terms of salinity levels at observation 
locations. An ensemble of surrogate models based on GP was developed and the 
ensemble was used to get model predictions with improved reliability levels. The variance 
of the model predictions were used as the measure of uncertainty in the modelling 
process.  

5. GP as surrogate model for simulation-optimization 

A very important application of data intensive modelling approaches is to develop 
surrogate models to computationally complex numerical simulation models. As detailed 
elsewhere in this article, the authors have utilized GP in developing potential surrogates to a 
complex density dependent groundwater flow and transport simulation model. The 
potential utility of the surrogates is to replace the numerical simulation model in simulation-
optimization frameworks. Simulation-optimization models are used to derive optimal 
management decisions using optimization algorithms in which a  numerical simulation 
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models is run to predict the outcome of implementing the alternative management options. 
For example, the authors developed simulation-optimization models to develop optimal 
management decisions for coastal aquifers. The optimal pumping from the coastal aquifer 
can be decided only by considering the impact of any alternative pumping strategy on 
saltwater intrusion. For this the numerical simulation model needs to be integrated with the 
optimization algorithm and the impact of each candidate pumping strategy is predicted by 
using the simulation model iteratively. This involve a lot of computational burden as 
thousands of  numerical model runs are required before an optimal pumping strategy is 
identified.  

GP was used  a surrogate model within the optimization algorithm as a substitute of the 
numerical simulation model in our study (Sreekanth and Datta, 2010). Previous studies 
have used artificial neural networks as surrogate models to replace groundwater 
numerical simulation models. Emily et a1 (2005) used genetic programming based 
surrogate models for groundwater pollution source identification. In our study (Sreekanth 
and Datta, 2010), it was found that genetic programming could be used as a superior 
surrogate model in such application with  definite advantages. The study intended to 
develop optimal pumping strategies for coastal aquifers in which the total pumping could 
be maximized and at the same time limiting the saltwater intrusion at pre-specified limits. 
In doing so, the effect of pumping on the salinity levels was predicted using trained and 
tested GP models. The GP models were externally coupled to a genetic algorithm based 
optimization model to derive the optimal management strategies. The results of the GP 
based simulation-optimization was then compared to the results obtained using an ANN-
based simulation-optimization model. The ability of GP in parsimoniously identifying the 
model inputs helped in reducing the dimension of the decision space in which modelling 
and optimization was carried out. The smaller dimension of the modelling space helped 
in reducing the training and testing required to develop the surrogate models.  The study 
identified that GP has potential applicability in developing surrogate models with 
potential application in simulation-optimization methodology to solve environmental 
management problems.   

6. Conclusion 

The aim of this chapter is to introduce genetic programming as a potential modelling tool 
for hydrology and water resources applications. Genetic programming belongs to the broad 
class of evolutionary computational tools developed in recent years. Compared to the vast 
number of data mining and artificial intelligence applications in hydrology and water 
resources, the application of GP has been limited in spite of its potential applicability in a 
wide range of modelling applications. This chapter illustrates a few applications of GP as a 
modelling tool in the broad area of water resources modelling and management.  The 
studies have found GP to be a useful tool for such applications with some advantages over 
other artificial intelligence techniques. The major findings reported in this chapter are 
enumerated as follows; 
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1. Genetic programming is able to develop simple models for developing the time series 
forecast models. When compared to the complex architecture of neural networks the GP 
models are simpler and easy to analyse. This is particularly relevant in developing 
transparent models for predicting natural phenomena. Complex neural network 
architectures make ANN model more or less “black-box” in nature, where as simpler 
GP models makes it easy to analyse the physical significance of each input in the model 
development.  

2. In GP modeling, the optimum model architecture is evolved by GP after testing, most 
often, millions of alternate model structures and parameters as against the trial and 
error approach being followed by other artificial intelligence modeling approaches like 
neural networks. This helps in converging to global optimal solutions in minimizing the 
error criteria used for model development. Thus GP is able to develop global optimum 
models for predicting/forecasting hydrological processes and time series. 

3. Genetic programming has the capability of parsimoniously selecting the variables for 
model development from the potential inputs. This helps to prevent redundancy in 
model development in terms of unnecessary inputs and parameters. In course of the 
model development GP determines the significance of each input in the model 
development in an efficient way so that the totally insignificant inputs are eliminated 
from the model. As shown in the results approaches like neural network models are 
also able to identify the relative significance of the inputs, they are less efficient in 
achieving this because of the rigidity of the model structure and connection weights.  

These key advantages of GP modeling are illustrated using realistic example in the broad 
area of hydrology and groundwater management for time series model development and 
conclusions are drawn which establishes the potential of genetic programming as a 
modeling and prediction tool for hydrology and water resources application. 
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1. Introduction 

The Ebro River is located in north-eastern Spain. After crossing the Catalan coastal 
mountain system, the Ebro reaches the sea. Along the lower part of the river, about 100 km 
from the mouth, there is a system of three reservoirs: Mequinenza (1500 hm3), Ribarroja (210 
hm3) and Flix (11 hm3). These reservoirs regulate the hydrologic regime of the lower part of 
the river until it reaches the sea. The Mequinenza and Ribarroja reservoirs were finished in 
the late 1960s (in 1966 and 1969, respectively), while the Flix reservoir was completed in 
1945. About 5 km downstream from the Flix reservoir is the Ascó nuclear power plant, 
which began its activity in December 1984 [1]. 

Ascó Nuclear Power Station, located on the Ebro River in Spain (Figure 1), takes river water 
for cooling purposes. The temperature of discharged water must be less than 13 ºC, however 
five kilometers downstream a water temperature of nearly 14ºC was estimated and such an 
anomaly was reported to the nuclear center. A detailed analysis shows the relationship 
between water temperature variation and the presence of a cascade dam system upstream of 
the Ascó Nuclear Power Station. Water temperature decreases downstream in the outlets of 
cascade dam systems [1]. During the winter period there also exists thermal stratification 
within the river, whereby water temperatures near deep intake areas are considerably less 
than the ambient temperature. Such a situation impacts water taken for cooling purposes by 
Ascó Nuclear Power Station. 

Throughout the years, the human being has made use of fluvial ecosystems. Some actions 
have caused changes in the thermal regimes of rivers (eg.  [2 ,3]). 
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Reservoirs and the use of water for cooling are the most important sources of water 
temperature modifications caused by humans. The use of water for cooling, usually by 
power plants, causes the water to become warmer [4].  This is often called “thermal 
pollution”. 

Reservoirs can cause various effects, depending on various factors such as the climate, the 
size of the impoundment, the residence time, the stability of the thermal stratification and 
the depth of the outlet [5]. Due to thermal stratification occurs, the water from deep-release 
reservoirs is cooler in the summer and warmer in the winter than it would be without the 
reservoir [6,7]. Water diversions can also alter water temperature regimes because they 
reduce discharge, which causes water temperature range to increase throughout the year [8]. 
Irrigation is also known to decrease discharge and increase water temperature [9]. 

In order to preserve the ecological balance it is very important to have a continuous 
inspection of water quality in that portion of the river. Freshwater organisms are mostly 
ectotherms and are therefore largely influenced by water temperature. Some of the expected 
consequences of a water temperature increase are life-cycle changes [4, 10], and shifts in the 
distribution of species with the arrival of allochthonous species [11, 12] and the expansion of 
epidemic diseases [13] as a possible result. Also, aquatic flora and fauna depend on 
dissolved oxygen to survive and this water quality parameter is a function of water 
temperature as well. 

Water temperature variation analysis, in a river with a cascade dam, involves several 
hydrological and environmental aspects because of the dams impact on aquatic flora and 
fauna as shown by [14,15,16,1,17,18,19]. 

Because temperature is a water quality parameter that affects aquatic flora and fauna, it is 
important to have mathematical models which allow one to make estimations of water 
temperature behavior. These models are based on climatic data such as solar radiation, net 
radiation, relative humidity, air temperature, and wind speed. Accurate water temperature 
modeling may help diminish the environmental impact of increased water temperature on 
aquatic flora and fauna within the river. 

Genetic programming (GP) algorithms have been used to derive equations which estimate 
the ten minute average water temperature from known variables such as relative humidity, 
air temperature, wind speed, solar radiation, and net radiation  [20]. Only air temperature 
and relative humidity were associated with water temperature in some of the resulting 
equations, even though solar radiation is known to increase water temperature in rivers and 
ponds. 

A correlation analysis could prove the implicit participation of solar radiation as a variable 
in air temperature, even though an explicit solar radiation term does not appears in the 
equation. Solar radiation was assumed to be independent with respect to water temperature 
resulting from neglecting the lag time between a change in the solar radiation value and the 
corresponding change in water temperature, [1] estimated this lag time to be nearly 160 
minutes. By inputting data to both the genetic programming algorithm and multiple linear 
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regression (MLR) in this study, it was possible to identify the relative significance of each 
climatic variable in estimating water temperature. 

Tests were made from data collected at the Ribarroja Station, which is located on the Ebro 
River in Spain (Figure 1). 

 
Figure 1. Location of reservoirs and climatic stations on the Ebro River in Spain (Val, 2003 and 
google.com.mx) 

2. Methods 

2.1. Genetic programming 

Evolutionary Computation (EC) are learning, search and optimization algorithms based on 
the theories of natural evolution and genetic. The steps of the basic structure of this kind of 
algorithms are shown in Figure. First, an initial population of potential solutions is 
randomly created (in the case of a Simple Genetic Algorithm (SGA), the initial population is 
composed of binary individuals). Then, the individuals of this population are evaluated 
considering the problem to be solved (environment) where a fitness value is assigned to 
each individual depending on how close individuals are to the optimum. A new generation 
is created by selecting the fitter solutions of previous generation and then, genetic operators 
such as crossover and mutation (Alter P(t) of Figure 2) are applied to selected individuals in 
order to create a new population (offsprings) which improve their fitness values in 
comparison to previous generation. This new population is evaluated and selection, 
crossover and mutation are again applied. This process continues until a termination 
criterion is reached (this is commonly established as the maximum number of generation). 
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Genetic Programming (GP) is a class of Evolutionary Algorithm (EA) [ 21,22,23] where 
individuals in the population are computer programs, usually expressed as syntax trees or 
as corresponding expressions in prefix notation (see Figure 3).  

 
Figure 2. Evolution-based algorithm. 

 
Figure 3. Genetic programming representation: syntax tree, LISP or prefix notation, mathematical 
function and MATLAB program 
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As seen from Figure 3, individuals are created based on a function and terminal set 
according to the problem to be solved. A root node is generally a function selected 
randomly from the function set. Then, functions and terminals are chosen in order to form 
the syntax tree that represents an individual. It is important to set a maximum depth or 
maximum number of nodes, thus the size of the individuals can be control and avoid 
bloating. Bloat is the rapid growth of programs produced by genetic programming or 
variable coding heuristics. 

The fitness value of the population is usually calculated by running each individual with the 
problem input data, or testing data, and see how close the output of the program 
(individual) is to some desired (reference) output specified by the user.  

Each generation, fitter individuals are evolved by means of crossover and mutation. 
Crossover is a sexual genetic operator that takes two parent-individuals, randomly selects a 
node in each parent and exchanges the associated sub-branch starting from the selected 
node between the parents producing two new individuals. Due to GP uses variables 
individuals representation, the selected nodes for crossing over two individuals are different 
in each parent. Note that if the parents to crossover are identical, the new two offsprings are 
generally different to the parents because the node selected for crossing over is different in 
each paren. In contrast to Genetic Algorithms, when two identical parents are crossing over, 
the offsprings are similar to their parents because the crossing point is the same for both 
parents and they have the same length. 

Mutation is a asexual genetic operator that takes an individual, randomly selects a node and 
replaces the associated branch for a new branch generated based on the primitive set 
(functions and terminals sets). 

The application of evolutionary computing algorithms has expanded in the last few years to 
several engineering applications, particularly in regards to hydraulics and hydrological 
engineering. Examples include: studies of hydroinformatics by  [24,25]; studies in rainfall 
runoff modeling by [26-31] . The unit hydrograph for a typical urban basin was obtained by 
means of genetic programming  in [32]. 

A study of Chezy’s roughness coefficient by [33], who also uses an evolutionary polynomial 
regression in [34,35]. 

A deep percolation model  using genetic programming was obtained by [36].  Models 
related to sediments were obtained with genetic programming by [37].  

Evapotranspiration phenomena has been predicted by means of genetic programming [38]. 
The flood routing problem was analyzed by means of genetic programming by [39]  and the 
soil moisture too  [40]. 

In this work, a genetic programming algorithm operating in the MATLAB environment [41] 
developed at the Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), 
Universidad Nacional Autónoma de México (UNAM) was applied and compared with a 
traditional curve adjustment technique, in an attempt to get another useful application of these 
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optimization procedures. Here, a stochastic universal selection method was used [42] (Baker, 
1987); crossover operator was used with a probability of 90% (see Table 1). It is important to 
mention that two different mutation operators were used. The first one with a probability of 
5% randomly selects a branch and then it exchanges this selected branch by a new generated 
one. The second mutation operator works by selecting constant values and with a probability 
of 5%, these constants are mutated by adding a random value of a defined range. 

This climatic data modeling problem is expressed as a symbolic regression, a common 
application of genetic programming, where function set consists of arithmetic and 
trigonometric functions and terminals set consists of climatological variables which are 
described in next section. 

2.2. Input data  

Water temperature (Tw), solar radiation (rs), net radiation (rn), relative humidity (hr), air 
temperature (Ta), and wind speed (Vv) data measured at the Ribarroja Station from January 
to June of 1998 were utilized in this study. The ten minute water temperature average was 
calculated using all of these variables. Later, the averaged air temperature and relative 
humidity (in decimals) were filtered to take into account a seven day relay. Data filtering 
was done with the following equation: 
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          (1) 

Where : 

Vi is the original independent variable 

tf
Vi  is the filtered independent variable and 

k is the size or widow filter (in this case k=6). 

Recorded solar radiation at minute ti has its influence on water temperature at instant ti+160  
[1]  and such a gap needs to be taken into account for all considered data. For example, the 
first data point of the dependent variable, ten minute average water temperature at instant 
ti+160, was coupled with the first data point of the independent variable, such as solar 
radiation at instant ti. For the independent variables, net radiation (rn) and wind speed (vw) 
values of ti+160 were used, while air temperature and relative humidity values were 
considered using both seven day filtering and values corresponding to instant ti+160 . 

2.3. Objective function 

The objective function was to minimize the mean square error between the calculated and 
measured data using the following equation: 

 21 ˆmin ( )nZ Tw Tw
n

= −                                      (2) 
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Where: 

Z is the function to minimize 
Tw is the average of measured temperature each ten minute interval in ºC 
T̂w  is the calculated temperature with the genetic programming algorithm in ºC, and n is 
the data number. 

2.4. Parameter setting 

Parameters used in the genetic programming algorithm are shown in Table 1. 
MaxNumNodes corresponds to the maximum number of nodes an individual can have; 
meanwhile MaxNodesMut represents the maximum number of nodes a new created branch 
can have for mutation. Terminal set represents the independent variables and Tw 
corresponds to the dependent variable to be modeled.  
 

Parameter Value Description

Pcross 0.9 Probability of crossover 

Pmut 0.05 Probability of mutation 

Pmut_R 0.05 Probability of mutating a node containing a constant 

MaxNodesMut 8 Maximum number of nodes for mutation 

Nind 200 Number of individuals in the population 

MaxNumNodes 30 Maximum number of nodes for each individual 

MaxGen 5000 Maximum number of generations (iterations) 

Function_Set           +,-,*, /,cos Function set  

Terminal Set   rs, rn, hr, Ta, Vv     Climatological variables 

Table 1. Parameter settings 

The function cosine (cos) was included in the function set due to preliminary tests, where a 
reduction in mean quadratic error was obtained, included this cosine function. This fact is 
related to one of the two properties that GP individuals must satisfy: sufficiency. This 
property says that the set of terminals and the set of functions should be defined in order to 
express a solution to the study problem [23]. The second property, closure, specifies that each 
of the functions in the function set can be able to accept, as its argument, any value and data 
type that may possibly be returned by any function and any value or data type that can be 
possibly assumed by any terminal [23]. In this approach, a protected division was 
implemented in order to avoid a division by zero. In this situation occurs, a high value is 
returned.  

By including the cosine function, associated equation also presented a good reproduction of 
the periodic behavior of water temperature over time. 
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2.5. Multiple linear regressions 

Multiple linear regressions (MLR) relate a dependent variable, y, with two or more 
independents variables, x1, x2, x3,…, xn, by means of an equation expressed as: 

 1 1 2 2 3 3 n ny a x a x a x a x= + + + +           (3) 

Coefficients a1,a2,a3,…an, are weighting factors which allow one to see the relative importance 
of each variable xi as y is approached. Indirectly the coefficients can indicate if there is a 
strong correlation or lack of correlation between xi and y. 

This method is often applied for several hydrology problems such as: forecasting equations 
for standardized runoff in a region of a country with standardized teleconnection indices, 
when El Niño or La Niña phenomenon occur  [43] (González et al., 2000), or as an auxiliary 
method in estimating intensity-duration-frequency curves. In this research, regressions were 
made using the Microsoft Excel data analysis tool.  

3. Results and discussion 

Measured climatic data of the above variables, corresponding from January to June of 1998, 
were fed into both the symbolic regression genetic programming model and the multiple 
linear regression model in order to estimate water temperature. The models were then 
applied using data from January to June of 1999 in order to approach water temperature 
averages. Comparisons for the1998 and 1999 results were then made. 

The genetic programming algorithm (equation 4) determined the next mathematical model 
which approaches the water temperature (average of each ten minutes). 

 
( cos(cos(( cos ) * 0.6904149))

cos(cos(1.17748531* cosh )) 1.87808843) * 0.67508628
w a a a

a r

T T T T
T

= + + +
+ + +

  (4) 

Using equation (4), the individual with the best performance reported an objective function 
value of 0.7922. 

Meanwhile, the multiple linear regression model is expressed as follows:  

 w s n a v rT 0.00022505r 0.00036289r 0.66464617T 0.02807297V 1.24438982h 3.87792166= + + − − +     (5) 

Where: 

Tw corresponds to the average water temperature each ten minute interval at instant t+160 in 
ºC 
Ta is the average air temperature each ten minute interval, with seven days filtering, 
corresponding to instant t+160, in ºC 
hr represents the average relative humidity each ten minutes interval, with seven days 
filtering, corresponding to instant t+160  in decimals 
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rs is the average solar radiation each ten minutes interval, at instant t, in W/m2 

 rn corresponds to the average net radiation each ten minutes interval, corresponding to 
instant t+160, in W/m2 

and finally, 

vv represents the average wind speed each ten minutes interval, corresponding to instant 
t+160, in m/s. 

The objective function value using equation 5 was 0.8724. 

Figure 4 represents both measured and calculated water temperature variation versus time 
using both equations (4) and (5). Measured and calculated water temperature values also 
appear in Figure 5 with equations (4) and (5) in comparison with the identity function. 

Figure 4 indicate similar results for both genetic programming and multiple linear 
regression models in comparison with measured data.  

In Figures 5  the  measured data  were compared against the identity function  and the best 
correlation between  these values was found using genetic programming (r=0.9697). 

 
 
 
 

 
 
 
 
 

Figure 4. Time variation of measured and calculated water temperature data, Ribarroja Station. January 
to June, 1998 
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wT  mean of Tw, with the same units than Tw (the arithmetic average can be used) and 

wTσ  standard deviation of Tw, with the same units than Tw 

Another possibility to analyze  is the splitting of the considered function by taking into 
account the different times of year that causes a variation in water temperature behavior. 

 

 
 

Figure 6. Residuals and measured water temperature data for the year 1999 at the Ribarroja Station in 
Spain 

4. Conclusions 

Water temperature adjustment curves, in a gauged station on the Ebro River in Spain, were 
obtained by means of two procedures: a genetic programming algorithm (equation 4) and a 
multiple linear regression (equation 5), using data from 1998. The multiple linear regression 
method yielded a function containing the five considered variables (solar radiation, net 
radiation, wind speed, air temperature and relative humidity) with each variable weighted. 
The genetic programming algorithm yielded a function where water temperature was 
obtained only as a function of air temperature and relative humidity. The others variables 
were eliminated by the evolution algorithm due to the lack of correlation between water 
temperature and the remaining variables although solar radiation is implied inside the air 
temperature term.  
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Comparing measured data with calculated data, for the year 1998, led to only minor errors 
in estimating the average water temperature using the genetic programming algorithm. 
When equations (4) and (5) were applied to another year, 1999, minor mean quadratic error 
in estimating water temperature was obtained using the multiple linear regression equation 
(5). The mean quadratic error associated with the multiple linear regression equation (5) for 
1999 was 1.375 ºC; whereas with the genetic programming equation (4) was 2.248 ºC. This 
error can be considered acceptable if one takes in account the average temperature from 
January to June 1998 was 12.54 ºC, whereas the average temperature in 1999 for the same 
period was 11.62 ºC. The residuals obtained with equations (4) and (5) using data for the 
year 1999 had average values of 1.04 ºC and 0.43 ºC, respectively and with this criteria, 
multiple linear regression model can be considered better than the GP. However, reviewing 
the standard deviations, both models had almost the same value (1.09 ºC and 1.08 ºC, 
respectively). 

The described procedures are then useful because equations similar to (4) or (5) can estimate 
important water quality characteristics, such as water temperature, using previously 
measured climatic data, predicted climatic data, and hydrological parameters for a given 
time period. 

Engineer’s criteria and common sense must be considered before to apply any model to 
simulate physical variables. 

Some standardization procedures to the involved data are suggested in order to improve the 
results from new models that can be obtained. 

The methods here applied are undoubtedly  useful in several areas of knowledge, and can 
led us to new approaches  to physical phenomena by considering measured  field data. 

Future work is focuses on the use of NARMAX (Non-linear Autorregressive Moving 
Average with eXogenous inputs) model combined with genetic programming in order to 
model the water temperature providing more accurate equations. 
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1. Introduction 

The experience of applying evolutionary computing to time series describing local physical 
problems has benefited the modelling culture by showing that many different mathematical 
formulae can be produced to describe the same problem. This experience brings into the 
focus the roles of pluralism in the modelling culture as opposed to searching for the best 
model, where physical problems provide relevance and context to the choice of modelling 
techniques. Both of these roles are often overlooked and do not directly influence research 
agenda. Although the focus of this paper is on evolutionary computing, it also promotes a 
pluralistic modelling culture by studying other modelling techniques, as well as by keeping 
the role of physical problems in the foreground. 

Estimating suspended sediment loads is a problem of practical importance and includes 
such problems as changing courses in rivers, loss of fertile soil, filling reservoirs and impacts 
on water quality. The study of these problems in the short-run are referred to as sediment 
transport and erosion for those in the long-run. Past empirical capabilities remain invaluable 
but are not sufficient on their own as management and engineering solutions often require 
an insight into the problem. Empirical knowledge has been incorporated into the body of 
distributed modelling techniques giving rise to sophisticated modelling software tools but 
their applications require a great deal of resources. There remains a category of problems, 
often referred to as time series analysis, which uses the sequences of time variations and 
predicts the future values. This category of models provides useful information to 
management of local problems. For instance, such models may be used to schedule 
dredging requirements or other maintenance activities. Time series analysis is developing 
into local management tools and it is a focus of this chapter. 
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The aim of this chapter is to predict suspended sediment load of a river into the future. 
Besides the traditional empirical Sediment Rating Curve (SRC), there are several strategies 
for analysing such time series and evolutionary computing is one of Artificial Intelligence (AI) 
approaches, which broadly include capabilities for searching and recognising patterns 
among others. This chapter also employs Artificial Neural Network (ANN), which is 
another AI approach. Yet another strategy is to regard time series as outcomes of many 
random drivers and this assumption is supported by a whole body of probabilistic 
approaches, where this chapter uses Multi-Linear Regression (MLR) analysis to model the 
same data. Over the past few decades, research has increasingly focused on the application 
of deterministic chaos (or chaos theory or dynamic systems) showing that many of 
apparently randomly varying system behaviours can be explained by deterministic chaos. 
The concept behind this modelling strategy is that the particular data can largely be 
explained by deterministic behaviour, where in time the system evolves asymptotically 
towards an attractor. Its random-looking variations are assumed to be an internal feature of 
the system and depending on its initial conditions, its state under a certain range may 
become highly erratic but with a predictable behaviour. Evidently, none of these strategies 
are identical and different models rarely produce identical results. This chapter therefore 
compares the performance of these modelling strategies for solving an engineering problem. 

The study employs 26 years of the Mississippi River data recorded at Tarbert + RR Landings 
and involve both flows and suspended sediment load. The river discharges about 200 
million metric tons of suspended sediment per year to the Gulf of Mexico, where it ranks 
about sixth in the world today. 

2. Literature review  

Sediment Rating Curve (SRC) is an empirical approach used by practitioners in the 
engineering studies of sediment and erosion problems. The log linear rating curve method 
has been used widely and Sivakumar and Wallender (2005) outline the many flaws 
associated with this technique, including the lack of fit due to missing variables (e.g. Miller, 
1951), retransformation bias (e.g. Ferguson, 1986), and non-normality of the error 
distribution (e.g. Thomas, 1988). According to Sivakumar and Wallender (2005), the 
technique has been modified including, among others, use of separate curves for different 
seasons (Miller, 1951), stratifying the data according to the magnitude of flow and applying 
a separate curve for each stratum (Glysson, 1987), and use of a single multivariate model 
instead of multiple rating curves (Cohn et al., 1992). Sivakumar and Wallender (2005) argue 
that there is not a simple (and universal) ‘water discharge-suspended sediment 
concentration-suspended sediment load’ relationship. A brief overview of past studies is as 
follows. 

Kisi, et al (2008) review the application of ANN and neuro-fuzzy techniques to time series 
analysis of sediment loads at various timescales, uncertainty in the data. Variations of these 
techniques have also been reported by Jain (2001), Tayfur (2002), Cigizoglu (2004), Kisi 
(2004), Raghuwanshi et al. (2006), Cigizoglu & Kisi (2006). Other studies on the application 
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of ANN to suspended sediment include that by Wang et al (2008), who applied ANN to 
derive the coefficients of regression analysis for their SRC model. 

Aytek and Kishi (2008) used the GP approach to model suspended sediment for two stations 
on the Tongue River in Montana, USA, and indicate that the GP formulation performs quite 
well compared to sediment rating curves and multi linear regression models. 

Chaotic signals have also been identified in time series of suspended sediment loads by 
Sivakumar and Jayawardena (2002, 2003), Farmer and Sidorowich, 1987). The outcomes 
revealed the usefulness of these methods towards an effective prediction capability.  

Overall, a general understanding of the analysis of suspended sediment load is yet to 
emerge and one way to gain an insight into the problem is to carry out inter-comparison 
studies of the performance of a host of models applied to diversity of rivers of different 
shapes and sizes. 

3. Study area and data  

3.1. Understanding the problem  

Sediment transport is concerned with entrained soil materials carried in water by erosion on 
the catchment and within channels. Sediment particles are categorised as follows (i) the 
saltation load (not discussed here); (ii) bedload (not discussed here) and (iii) suspended load 
including clay (< 62μm in particle diameter), silt and sand. Suspended load (both as “fine-
grained sediment” and “wash load”) is directly a result of the turbulence in water and forms 
a large proportion of the transported load, where the turbulence is a measure of the energy 
in the water to carry the load. 

Sediment discharge is a measure of the mass rate of sediment transport at any point in space 
and time and determines whether the load is being transported or deposited. The whole 
process comprises soil erosion, sediment transport and sediment yield, where the deposited 
load delivered to a point in the catchment is referred to as sediment yield and is expressed 
as tons per unit area of the basin per year, measured at a point. Estimation of sediment yield 
(and soil erosion) is essential for management but these and mathematical models are used 
to gain an insight into the underlying processes. Sediment yield is estimated by (i) direct 
measurement, (ii) using local time series models to predict future states; (iii) using 
mathematical models to study jointly both erosion and sediment processes.  

Suspended sediment forms most of the transported load and can be affected by many 
parameters including rainfall, land use pattern, slope, soil characteristics, e.g. soil moisture 
content but their considerations lead to distributed models, which are complex. Recorded 
suspended sediment derives distributed models by serving them as boundary conditions or 
input sources but their inherent information is not tapped on. There is a case for local 
models to study the information contained in recorded sediment loads alone in terms of 
flow and sediment hydrographs. This chapter is concerned with the study of the suspended 
load of a river, as discussed below. 
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Figure 1. Mississippi River Station at Tarbert + RR Landings 
(http://pubs.usgs.gov/circ/circ1133/geosetting.html). 

3.2. Study area 

The flow–sediment time series data of a Mississippi river Station is used in the study, the 
location of which is shown in Figure 1. The gauge is situated at Tarbert + RR Landings, LA 
(USGS Station no. 07373291, latitude 30°57′40″, longitude 91°39′52″) and it is operated by the 
US Geological Survey (USGS) – the location map is shown in Figure 1. The Mississippi River 
discharges an average of about 200 million metric tons of suspended sediment per year to 
the Gulf of Mexico and to the ocean. 

3.3. Review of data records 

Daily suspended sediment measurements for the above station have been made available by 
the USGS from April 1949. The data used herein span over a period of about 26 years 
(amounting to 9496 datapoints) starting on October 1, 1949. Figures 2 show the variation of 
the daily suspended sediment and stream flow series observed at the above station. 

Of the 26 water-years of the data sample of daily records of flow and suspended sediment 
(9496 datapoints), the first 25 water years of data (9131 datapoints) were used to train the 
models and the remaining 365 datapoints of daily records were used for testing. The 
statistical parameters of stream flow and sediment concentration data are shown in Table 1. 
These results show that the overall contribution of the datapoints in the test period is 
average; its individual characteristics in terms of kurtosis show the annual hydrographs to 
be less peaked and more flat but at the same time, the suspended sediment load during the 
year is significantly high. Thus, the minimum values during this year were significantly 
above the average but persistent and though less dynamic. 
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Figure 2. Variation of Daily Suspended Sediment and Flow Data in the Mississippi River Basin 
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 Training set Testing set All Dataset 

Data Type 
Suspended 
Sediment 
(ton/day) 

Discharge 
(m3/sec) 

Suspended 
Sediment 
(ton/day) 

Discharge 
(m3/sec) 

Suspended 
Sediment 
(ton/day) 

Discharge 
(m3/sec) 

Datapoints 9131 9131 365 365 9496 9496 
Mean 6.37E5 1.27E4 4.52E5 1.58E4 6.30E5 1.28E4 
St dev 6.30E5 7.60E3 2.53E5 7.80E3 6.21E5 7.60E3 
Max 4.97E6 4.25E4 1.22E6 3.45E4 4.97E6 4.25E4 
Min. 4.00E3 2.80E3 6.70E4 5.40E3 4.00E3 2.80E3 
CV 1.0 0.60 0.56 0.49 0.99 0.59 

Skew 1.78 0.95 0.10 0.51 1.82 0.93 
Kurt 3.98 0.34 -0.98 -0.85 4.20 0.27 

*Data = Number of Data; Std = Standard Deviation; Max = Maximum Value; Min = Minimum Value; CV = Coefficient 
of Variation; Skew = Skewness; Kurt = Kurtosis 

Table 1. Statistical Parameters for Dataset from the Mississippi River Basin 

3.4. Overview of the models 

The sediment rating curve method is the traditional method for converting measured flows 
to predict suspended sediment load and this paper aims to test the performance of 
evolutionary computing models but uses a host of other techniques for the inter-comparison 
purpose. These models are outlined in this section but evolutionary computing is explained 
in more detail. Their underlying notion is that past values contain a sufficient amount of 
information to predict the future values and a systematic way of representing this notion is 
purported in Table 2 in terms of a selection of models. These models, in essence, are 
reminiscent of regression analysis but GEP, ANN and MLR models approach the problem in 
their own individual ways to unearth the structure of the information inherent in time 
series. Notably, the SRC model is expressed by Model 1 and the deterministic chaos model 
is expressed by Model 0. These models will all be evaluated by using coefficient of 
Correlation (CC), Relative Absolute Errors (RAE) and Root Mean Square Errors (RMSE). 

Model Input variables Output variables The Structure 
Model 0 St-1, St-2… St Chaos 
Model 1 Qt St ANN, SRC 
Model 2 Qt , St-1 St GEP, ANN, MLR 
Model 3 Qt ,Qt-1 St GEP, ANN, MLR 
Model 4 Qt , Qt-1 , St-1 St GEP, ANN, MLR 
Model 5 Qt,Qt-1,Qt-2 St GEP, ANN, MLR 
Model 6 Qt,Qt-1,Qt-2,St-1 St GEP, ANN, MLR 

Where Qt and St represent respectively flow and suspended sediment load at day t. 

Table 2. Modelling Structures of the Selected Modelling Techniques  
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3.4.1. Sediment rating curve 

Sediment rating-curve is a flux-averaged relationship between suspended sediment, S, and 
water discharge, Q, expressed as a power law in the form of: = bS aQ , where a and b are 
coefficients. Values of a and b for a particular stream are determined from data via a linear 
regression between (log S) and (log Q). The SRC model is represented in terms of Model 1 in 
Table 2. For more critical views on this model, references may be made Kisi (2005) and 
Walling (1977), among others. 

3.4.2. Evolutionary computing 

Evolutionary computing techniques apply optimisation algorithms as a tool to facilitate the 
mimicking of natural selection. A building block approach to generalised evolution driven 
by natural selection is yet to be presented, although Khatibi (2011) has outlined a rationale 
for it. Traditional understanding of natural selection for biological species is well developed, 
according to which the process takes place at the gene level of all individuals of all species 
carrying hereditary material for reproduction by inheriting from their parents and by 
passing on a range of their characteristics to their offspring. The process of reproduction is 
never a perfect copying process, as mutation may occur from time to time in biological 
reproductions involving the random process of reshuffling the genes during sexual 
reproduction. The paper assumes preliminary knowledge on genes, chromosomes, gene 
pool, DNA and RNA, where the environment also has a role to play. The environment for 
the production of proteins and sexual reproduction is different than the outer environment 
for the performance of the individual entities supported by the proteins or produced by 
sexual reproduction. The outer environment is characterised by (i) being limited in 
resources, (ii) having no foresight, (iii) organisms tend to produce more offspring than can 
be supported, a process that is driven by positive feedback loops, and (iv) there is a process 
of competition and selection. Some of these details are normally overlooked or simplified in 
evolutionary computing and therefore the paper stresses the point that natural selection 
takes place at the gene level and this is not directly applicable to that at the social level.  

Facts on natural selection are overwhelming but there are myths as well, e.g. the myth of 
“the survival of the fittest” and this term is widely used in evolutionary computing. 
Although the fittest has a selective advantage to survive, this is not a guarantee for the 
survival in the natural world. An overview of the dynamics of natural selection in an 
environment is that (i) the environment can only support a maximum population of certain 
size, but there is also a lower size at the critical mass below which a population is at risk of 
losing its viability; (ii) there is a process of reproduction, during which natural selection 
operates at the gene level, although there are further processes operating at the individual 
levels beyond the direct reach of natural selection (e.g. interactions among the individuals 
catered for by other mechanisms or each individual is under selection pressure by the 
environment); (iii) the process of reproduction is associated with mutation, which gives rise 
to the production of gene pools. 
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A great deal of the above overview has been adopted in evolutionary computing, the history 
of which goes back to the 1960s when Rechenberg (1973) introduced evolution strategies. 
The variants of this approach include genetic algorithm (Holland, 1975), evolutionary 
programming (Fogel et al, 1966), genetic programming (Koza, 1992) and Gene Expression 
Programming (GEP), Ferreira (2001a). This paper uses the latter approach, which in a simple 
term is a variation of GP but each of these techniques have differences with one another. 
These techniques have the capability for deriving a set of mathematical expressions to 
describe the relationship between the independent and dependent variables using such 
functions as mutation, recombination (or crossover) and evolution.  

This chapter is concerned with GEP and one of the important preliminary decisions in its 
implementations is to establish the models represented in Table 2 (Models 2-6). There is no 
prior knowledge of the appropriateness of any of these models and therefore this is normally 
fixed in a preliminary modelling task through a trial-and-error procedure. Whichever the 
model choice (Model 2 – Model 6 or similar other ones), each implementation of GEP builds 
up the model in terms of the values of the coefficients (referred to as terminals) and the 
operations (functions) through the procedure broadly outlined in Figure 3.  

 
Figure 3. Simplified Outline of Implementation of Evolutionary Programming Models 

The working of a gene expression program depicted in Figure 3 is outlined as follows. A 
chromosome in GEP is composed of genes and each gene is composed of (i) terminals and 
(ii) functions. The gene structures and chromosomes in GEP are illustrated for the solution 
that is obtained for the dataset used in this study (see Section 4.2). The terminals as their 
names suggest are composed of constants and variables and the functions comprise 
mathematical operations, as shown by (4.a)-(4.f). 
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Figure 4. Expression Trees – (a) typical expression tree; (b) the selected GEP model in this study 

As the term terminal suggests, it comprises a set of values at the tail-ends of the genes of the 
chromosomes and these are made meaningful by the functions making up the other 
component of the genes of the chromosomes. In GEP, these are represented by a bilingual 
notation called Karva language of (i) genetic codes, which are not deemed necessary for a 
description here and (ii) expression trees (or parse trees), as illustrated by Figure 4.a and the 
recommended solution is shown in Figure 4.b, which is transcribed by Equation (4) in 
Section 4.2. The initial chromosomes of the initial population are no different than the 
solution shown in Figure 4.b but their difference is that the composition of each of the initial 
chromosomes is selected often in random and then GEP is expected to improve them 
through evolution by the strategy of selections, replication and mutation but there are other 
facilities that not mentioned facilitating a more robust solution and these include inversion, 
transposition and recombination. The improvements are carried out through selection from 
one generation to another and this is why this modelling strategy is called evolutionary 
computation. The main strength of this approach is that it does not set up any system of 
equation to predict the future but it evaluates the fitness of each chromosome and selects 
from those a new population with better performance traits. 

The GEP employed in this study is based on evolving computer programs of different sizes 
and shapes encoded in linear chromosomes of fixed lengths, Ferreira, 2001a; Ferreira, 
(2001b). The chromosomes are composed of multiple genes, each gene encoding a smaller 
subprogram. Furthermore, the structural and functional organisation of the linear 
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chromosomes allows the unconstrained operation of important genetic functions, such as 
mutation, transposition and recombination. It has been reported that GEP is 100-10,000 
times more efficient than GP systems (Ferreira, 2001a; Ferreira, 2001b) for a number of 
reasons, including: (i) the chromosomes are simple entities: linear, compact, relatively small, 
easy to manipulate genetically (replicate, mutate, recombine, etc); (ii) the parse trees or 
expression trees are exclusively the expression of their respective chromosomes; they are 
entities upon which selection acts, and according to fitness, they are selected to reproduce 
with modification. 

3.4.3. Artificial Neural Networks (ANNs) 

Whilst evolutionary programming emulates the working of Nature, ANNs emulate the 
workings of neurons in the brain. Both the brain and ANNs are parallel information 
processing systems consisting of a set of neurons or nodes arranged in layers but this is 
where the parallel ends. The actual process of information processing in the brain is a topical 
research issue but the drivers of ANNs are polynomial algebra and there is no evidence that 
the brains of humans, monkeys or any other animals employ algebraic computations such as 
optimisation methods. Although there is a great incentive to understand the working of the 
brain, it is not imperative to be constrained by it and the use of algebra in ANNs is not 
criticised here but awareness is raised as these two processes are not identical. 

The ANN theory has been described in many books, including the text by Rumelhart et al. 
(1986). The application of ANNs has been the subject of a large number of papers that have 
appeared in the recent literature. There are various implementations of ANNs but the type 
used in this study is a Multi-Layer feedforward Perceptron (MLP) trained with the use of 
back propagation learning algorithm with the following functions: (i) the input layer accepts 
the data, (ii) intermediate layer processes them, and (iii) the output layer displays the 
resultant outputs. The number of hidden layers is decided in a preliminary modelling 
process by finding the most efficient number of layers through a trial-and-error procedure. 
Each neuron in a layer is connected to all the neurons of the next layer, and the neurons in 
one layer are not connected among themselves. All the nodes within a layer act 
synchronously.  

This study implements the ANN models in terms of Models 1-6 of Table 2 and Figure 5 
shows one of the implementation selected. For each of these models, the data passing 
through the connections from one neuron to another are multiplied by weights that control 
the strength of a passing signal. When these weights are modified, the data transferred 
through the network changes; consequently, the network output also changes. The signal 
emanating from the output node(s) is the network's solution to the input problem. 

In the back-propagation algorithm, a set of inputs and outputs is selected from the training 
set and the network calculates the output based on the inputs. This output is subtracted 
from the actual output to find the output-layer error. The error is back propagated through 
the network, and the weights are suitably adjusted. This process continues for the number of 
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prescribed sweeps or until a prescribed error tolerance is reached. The mean square error 
over the training samples is the typical objective function to be minimized. After training is 
complete, the ANN performance is validated. Depending on the outcome, either the ANN 
has to be retrained or it can be implemented for its intended use. 

 
Figure 5. Implementation of the ANN Models and its Various Layers 

3.4.4. Multi Linear Regression (MLR) 

An overview of the data presented in Figure 2 invokes the thought that other than the 
annual trend within the data, the underlying process is probably random and a more 
rational way of explaining the data would be through probabilistic approaches. One such 
method applied to the selected data is the Multi-Linear Regression (MLR) model. It fits a 
linear combination of the components of a multiple signals x (e.g. recorded flows and 
suspended sediment timeseries as defined by the Models 2-6 in Table 2) to a single output 
signal y, as defined by (1.a) (e.g. predicted suspended sediment load) and returns the 
residual, r, i.e. the difference signal, as defined by (1.b): 

 
=

= +
0

N
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i
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 = − − − −1 1 2 2 ...r y a x a x b  (1b) 

Where ix  is defined in Table 2 in terms of various models and ia  values are called 
regression coefficients, which are estimated by using the least square or any other similar 
method. In this study, the coefficients of the regressions were determined using the least 
square method. 

3.4.5. Chaos theory 

A cursory view of the suspended sediment record of the Mississippi River in Figure 2 
provides no clue to a strategy for its underlying patterns, if any, although annual trend 
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superimposed on random variation may be an immediate reaction of a hydrologist. Another 
strategy to explore such possible patterns is through the application of chaos theory, more 
specifically through the “phase-space diagram” as shown in Figure 6 for this river data. A 
point in the phase-space represents the state of the system at a given time. The narrow dark 
band in the figure signifies strong determinism but its scattered band signifies the presence 
of noise and therefore there is a possibility to explain this set of data by chaos theory. The 
dark band signifies convergence of the trajectories of the phase-space with a fractal 
dimension towards the attractor of the data, where the dynamics of the system can be 
reduced to a set of deterministic laws to enable the prediction of its future states. 

 
Figure 6. Phase-space Diagram of Daily Suspended Sediment Data in the Mississippi River Basin  

Chaos theory is a method of nonlinear time series analysis and involves a host of methods, 
essentially based on the phase-space reconstruction of a process, from scalar or multivariate 
measurements of physical observables. This method is implemented in terms of Model 0 of 
Table 2. It is largely based on the representation of the underlying dynamics through 
reconstruction of phase-space, originally given by Takens, 1981. It is implemented in terms 
of two parameters of delay time and embedding dimension, according to which given a set 
of physical variables and an analytical model describing their interactions, the dynamics of 
the system can be represented geometrically by a single point moving on a trajectory, where 
each of its points corresponds to a state of the system. The phase-space diagram is 
essentially a co-ordinate system, whose coordinates represent the variables necessary to 
completely describe the state of the system at any moment.  

One difficulty in its construction is that in most practical situations, information on every 
variable influencing the system may not be available. However, a time series of a single 
variable may be available, which may allow the construction of a (pseudo) phase-space. The 
idea behind such a reconstruction is that a non-linear system is characterized by self-
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interaction, and a time series of a single variable can carry the information about the 
dynamics of the entire multi-variable system. The trajectories of the phase-space diagram 
describe the evolution of the system from some initial state, and hence represent the history 
of the system.  

This paper applies chaos theory to analyse the suspended sediment load of the Mississippi 
River data in a similar fashion to the other modelling strategies described above. It uses the 
local prediction method for training and testing, as outlined below, but it is a traditional 
practice to apply several methods to build evidence for the existence of chaotic signals in a 
particular data. These techniques employ the delay-embedding parameters of τ  and m, 
which are unknown a-priori. The following methods are used in this chapter: 

1. Average Mutual Information (AMI) is used to estimateτ ; and the minimization of the 
False Nearest Neighbours to do that of the optimal values for the embedding 
dimension, m.  
AMI (Fraser and Swinney, 1986) defines how the measurements ( )X t at time t  are 
related, from an information theoretic point of view, to measurements τ+( )X t  at time

τ+t . The average mutual information is defined as: 
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where i is total number of samples. ( ( ))P X i and τ+( ( ))P X i  are marginal probabilities 
for measurements ( )X i and τ+( )X i , respectively, whereas ( ( ))P X i , τ+( ( ))P X i is their 
joint probability. The optimal delay time τ  minimises the function τ( )I  for τ=t , 

τ+( )X i adds the maximum information on ( )X i . 
The False Nearest Neighbours procedure (Kennel et al., 1992) is a method to obtain the 
optimum embedding dimension for phase-space reconstruction. By checking the 
neighbourhood of points embedded in projection manifolds of increasing dimension, 
the algorithm eliminates 'false Neighbours': This means that points apparently lying 
close together due to projection are separated in higher embedding dimensions. when 
the ratio between the number of false neighbours at the dimension m +1 and m is below 
a given threshold, generally smaller than 5%, each > +' 1m m is an optimal embedding. 
A poor reconstruction of few embedding states with several components is obtained if 

'm  is too large and the next analyses should not be performed. 
2. Correlation Dimension (CD) method: is a nonlinear measure of the correlation 

between pairs lying on the attractor. For time series whose underlying dynamics is 
chaotic, the correlation dimension gets a finite fractional value, whereas for stochastic 
systems it is infinite. For an m -dimensional phase-space, the correlation function ( )mC r  
is defined as the fraction of states closer than r  (Grassberger and Procaccia, 1983; 
Theiler, 1986): 

 
→∞ =

= − −
− 

, 1

2( ) lim ( )
( 1)

N

i jN i j
C r H r Y Y

N N
 (2b) 



 
Genetic Programming – New Approaches and Successful Applications 268 

where H is the Heaviside step function, 


iY  is the thi state vector, and N is the number of 
points on the reconstructed attractor. The number w is called Theiler window and it is 
the correction needed to avoid spurious results due to temporal correlations instead of 
dynamical ones. For stochastic time series ∝( ) m

mC r r  holds, whereas for chaotic time 
series the correlation function scales with r  as:  

 ∝ 2( ) D
mC r r  (2c) 

where D2, correlation exponent, quantifies the degrees of freedom of the process, and 
defined by: 

 
→

=2 0
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lnr

C rD
r  (2d)  

and can be reliably estimated as the slope in the ln ( )mC r vs. ln( )r  plot. 
3. Local Prediction Model: The author’s implementation of the local prediction method 

for deterministic chaos is details in Khatibi et al (2011) but the overview is that a correct 
phase-space reconstruction in a dimension m  facilitates an interpretation of the 
underlying dynamics in the form of an m-dimensional map, Tf ,according to 

 + = ( )j T T jY f Y  (2e) 

where jY  and +j TY  are vectors of dimension m, describing the state of the system at 
times j  (i.e. the current state) and +j T  (i.e. the future state), respectively. The problem 
then is to find an appropriate expression for Tf  (i.e. TF ). Local approximation entails the 
subdivision of the Tf domain into many subsets (neighbourhoods), each of which 
identifies some approximations TF ,valid only in that same subset. In other words, the 
dynamics of the system is described step-by-step locally in the phase-space. In this m-
dimensional space, prediction is performed by estimating the change of iX with time, 
which are observed values of discrete scalar timeseries, with delay coordinates in the m-
dimensional phase space. The relation between the points tX and +t pX  (the behaviour 
at a future time p on the attractor) is approximated by function F as: 

 + ≅ ( )t p tX F X  (2f) 

In this prediction method, the change of tX  with time on the attractor is assumed the 
same as those of nearby points, =( , 1,2,..., )

hTX h n . Herein, +t pX  is determined by the dth 
order polynomial ( )tF X as follows (Itoh, 1995): 
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Using n of 
hTX  and 

+h pTX  for which the values are already known, the coefficients, f, are 
determined by solution of the following equation: 

 ≅X Af  (2h) 

where 
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and A is the × +( )! ! !n m d m d  Jacobian matrix which in its explicit form is: 
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In order to obtain a stable solution, the number of rows in the Jacobian matrix A must 
satisfy: 

 +≥ ( )!
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m d

 (2l) 

As stated by Porporato and Ridolfi (1997), even though F-values are first degree 
polynomials, the prediction is nonlinear, because during the prediction procedure every 
point ( )x t belongs to a different neighbourhood and is therefore defined by different 
expressions for f (Koçak,1997). 

4. Setting up models and preliminary results  

4.1. Performance of sediment rating curve 

The SRC model was implemented by using a simple least squares method leading to  

 S=13.2Q1.14 (3) 

The performance of this model is summarised in Table 3 and shown in Figure 7. Evidently, 
its performance is poor and the concern raised in the literature on this model is confirmed. 
This is a sufficient justification to search for reliable models. 

Model Input 
Training Testing

CC MAE RMSE CC MAE RMSE 
Model 1: Qt 0.76 2.62E5 4.11E5 0.82 3.89E5 4.86E5 

Table 3. Statistical Performance of the Sediment Rating Curve for the Training and Test Periods 
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Figure 7. Comparison of Observed Suspended Sediment with that Modelled by SRC; (a) hydrograph, 
(b) cumulative values 

4.2. Implementation of GEP 

The preliminary investigation for the construction of a relationship between flows and 
suspended sediment in GEP requires: (i) the setting of the functions, as discussed below; (ii) 
the fitness function; and (iii) a range of other parameters, but the default values, given in 
Table 11, were sufficient in this study. The following functions were investigated: 

 {+,-,×}  (4a)  
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 {+,-,×, x}  (4b)  

 {+,-,×, x2} (4c)  

 {+,-,×, x3} (4d)  

 {+,-,×, ex}  (4e)  

 {+,-,×, ln(x)}  (4f)  

The performance of each function was investigated in terms of CC, MAE, and RMSE and 
the results are shown in Table 4.a for the training periods. The results show that (i) the 
model performances are more sensitive to the choice of independent variables than the 
function choices; (ii) the models not including suspended sediment time series perform 
poorly; and (iii) the model performance is not overly sensitive to the choice of the 
function. Appendix I, Table 11 specifies the fitness function to be Root Relative Squared 
Errors (RRSE). 

Model  Qt Qt , St-1 Qt ,Qt-1 Qt , Qt-1 , St-1 Qt,Qt-1,Qt-2 Qt,Qt-1,Qt-2,St-1 

4.a): 
{+,-,×} 

CC 0.77 0.99 0.78 0.99 0.78 0.99 

MAE 2.79E5 3.88E4 2.78E5 3.25E4 2.79E5 3.37E4 

RMSE 4.13E5 8.43E4 4.07E5 7.74E4 4.05E5 7.98E4 

(4.b): 
{+,-,×, x} 

CC 0.77 0.99 0.77 0.99 0.77 0.99 

MAE 2.82E05 3.87E04 2.81E05 3.80E04 2.78E05 3.27E04 

RMSE 4.15E05 8.42E04 4.14E05 8.36E04 4.10E05 7.75E04 

(4.c): 
{+,-,×, x2} 

CC 0.77 0.99 0.78 0.99 0.78 0.99 

MAE 2.82E05 3.89E04 2.78E05 3.25E04 2.76E05 3.45E04 

RMSE 4.15E05 8.43E04 4.08E05 7.74E04 4.05E05 8.02E04 

(4.d): 
{+,-,×,x3} 

CC 0.77 0.99 0.77 0.99 0.77 0.99 

MAE 2.43E5 3.89E4 2.76E5 3.21E4 2.76E5 3.41E4 

RMSE 4.05E5 8.43E4 4.12E5 7.76E4 4.13E5 8.03E4 

(4.e): 
{+,-,×,ex} 

CC 0.77 0.99 0.77 0.99 0.77 0.99 

MAE 2.81E5 3.88E4 2.81E5 3.56E4 2.42E5 3.64E4 

RMSE 4.15E5 8.43E4 4.14E5 8.16E4 4.00E5 8.23E4 

(4.f): 
{+,-,×,ln(x)} 

CC 0.76 0.99 0.76 0.99 0.78 0.99 

MAE 2.56E5 3.89E4 2.64E5 3.25E4 2.60E5 3.21E4 

RMSE 4.09E5 8.42E4 4.10E5 7.72E4 4.02E5 7.72E4 

Table 4. a. Statistical Performance of a Selection of Functions for the Training Period 
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The performance of the GEP model is presented in Table 4.b, according to which there is not 
much to differences between performances of a number of the alternative models but (4.e) is 
selected in this study for the prediction purposes (its expression tree is given in Figure 4) 
and given below.  

 �� � ���� � 1�.77�� − 1�.77���� − 13.87 (5) 

 

Model  Qt Qt , St-1 Qt ,Qt-1 Qt , Qt-1 , St-1 Qt,Qt-1,Qt-2 Qt,Qt-1,Qt-2,St-1 

(4.a): 
{+,-,×} 

CC 0.83 0.99 0.84 0.99 0.84 0.99 

MAE 3.99E5 2.34E4 4.01E5 2.32E4 4.08E5 2.08E4 

RMSE 4.72E5 3.87E4 4.73E5 4.06E4 4.79E5 3.75E4 

(4.b) 
{+,-,×,x} 

CC 0.83 0.99 0.84 0.99 0.84 0.99 

MAE 3.99E05 2.33E04 4.01E05 2.28E04 3.96E05 2.34E04 

RMSE 4.69E05 3.87E04 4.70E05 3.08E04 4.65E05 4.04E04 

(4.c) 
{+,-,×,x2} 

CC 0.83 0.99 0.84 0.99 0.84 0.99 

MAE 4.00E05 2.35E04 4.01E05 2.32E04 3.79E05 2.31E04 

RMSE 4.69E05 3.86E04 4.71E05 4.06E04 4.67E05 3.96E04 

(4.d): 
{+,-,×,x3} 

CC 0.83 0.99 0.83 0.99 0.83 0.99 

MAE 3.87E5 2.35E4 4.00E5 2.10E4 3.96E5 2.06E4 

RMSE 4.94E5 3.87E4 4.75E5 3.81E4 4.69E5 3.69E4 

(4.e): 
{+,-,×,ex} 

CC 0.83 0.99 0.84 0.99 0.84 0.99 

MAE 3.98E5 2.35E4 3.97E5 2.06E4 3.80E5 2.17E4 

RMSE 4.67E5 3.86E4 4.66E5 3.64E4 4.84E5 3.73E4 

(4.e): 
{+,-,×,ln(x)} 

CC 0.83 0.99 0.83 0.99 0.83 0.99 

MAE 3.90E5 2.35E4 3.90E5 2.40E4 3.81E5 2.29E4 

RMSE 4.93E5 3.86E4 4.81E5 4.18E4 4.69E5 4.05E4 

Table 4 b. Statistical analysis of the estimated values for the test period 

Figure 8 compares modelled suspended sediment against their observed values, according 
to which the improvement by GEP is remarkable compared with SRC. Overall, the GEP 
modelling results follow observed values rather faithfully both in values and patterns, 
although there are still discrepancies in predicted values.  



Inter-Comparison of an Evolutionary Programming  
Model of Suspended Sediment Time-Series with Other Local Models 273 

 
Figure 8. Comparison of Observed Suspended Sediment with that Modelled by GEP; (a) hydrograph, 
(b) cumulative values 

4.3. Implementation of ANN  

ANN implements another AI approach to the data represented in Figure 2 by another 
strategy, as described in Section 3.4.3. A preliminary investigation was carried out to make 
decisions on the choice of the models given in Table 2 (Models 1-6) and the ANN structure 
in terms of the neuron structure of the various layers. Table 5 presents model structures 
investigated. The preliminary modelling task also included a normalisation function for the 
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data. In this study, MATLAB was employed to develop the ANN model and its mapstd 
function was selected for the normalisation (further defaults values are given in Table 11). 
The investigated ANN model structures are defined in Table 5 and their results for both the 
training and testing periods are presented in Table 6. 

Model Identifier Model Inputs Training Testing

Model 1 Qt 2-5-1 2-5-1 

Model 2 Qt , St-1 3-5-1 3-5-1 

Model 3 Qt ,Qt-1 3-7-1 3-7-1 

Model 4 Qt , Qt-1 , St-1 4-6-1 4-6-1 

Model 5 Qt,Qt-1,Qt-2 4-9-1 4-9-1 

Model6 Qt,Qt-1,Qt-2,St-1 5-12-1 5-12-1 

Table 5. ANN Structure (number of nodes in layers) 

The performances of Models 1-6 are shown in Table 6 in terms of the values of three 
statistical indices of CC, MAE and RMSE. The performance of different models in terms of 
CC is remarkably high but Model 4 (Qt , Qt-1 , St-1) produce less deviations, which is selected 
for the final run. 

 Model Training Model Testing 

Model Inputs CC MAE RMSE CC MAE RMSE 

Qt 0.999 2.32E4 2.70E4 0.999 2.16E4 2.30E4 

Qt , St-1 0.999 2.59E4 3.12E4 0.996 2.17E4 2.64E4 

Qt ,Qt-1 0.999 2.00E4 2.79E4 0.981 4.19E4 4.84E4 

Qt , Qt-1 , St-1 0.999 2.01E4 2.51E4 0.998 1.18E4 1.37E4 

Qt,Qt-1,Qt-2 0.991 7.57E4 8.42E4 0.942 8.47E4 8.41E4 

Qt,Qt-1,Qt-2,St-1 0.995 5.66E4 6.42E4 0.976 4.63E4 5.47E4 

Table 6. Statistical Performance of the Selected Model Structure for the Training and Testing periods 

4.4. Implementation of the MLR model 

The MLR modelling strategy was implemented using Mathematica to derive regression 
coefficients for both periods of model fitting (training in the AI terminology) and testing 
using different statistical indices (CC, MAE and RMSE) given in Table 7, which shows that 
Model 2 (Qt , St-1) performs relatively better than the others. The regression equation 
suggested by this technique is given by: 

  �� � ������ � ��� ������	 (6) 
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 Model Training Model Testing 

Model Inputs CC MAE RMSE CC MAE RMSE 

Qt 0.77 2.41E5 4.05E5 0.833 3.85E5 4.96E5 

Qt , St-1 0.994 3.90E4 8.40E4 0.988 2.40E4 3.90E4 

Qt ,Qt-1 0.78 2.40E5 3.97E5 0.837 3.85E5 4.98E5 

Qt , Qt-1 , St-1 0.993 3.30E4 7.60E4 0.987 2.50E4 4.10E4 

Qt,Qt-1,Qt-2 0.779 2.40E5 3.95E5 0.840 3.84E5 4.96E5 

Qt,Qt-1,Qt-2,St-1 0.993 3.30E4 7.70E4 0.987 2.50E4 4.10E4 

Table 7. Statistical analysis of the estimated values for the train and test period 

4.5. Implementation of the deterministic chaos model 

A visual assessment for the existence of chaotic behaviour in the suspended sediment time 
series was presented in Figure 9, although it was not conclusive evidence but just invoked 
the possibility of the existence of a low-dimensional chaos. Traditionally, several techniques 
are employed to show the existence of low-dimensional chaos and below the results of the 
determination of the dimensions of the phase-state diagram are given: 

1. Using the AMI method, the delay time, is estimated for the data as the intercept with 
the x-axis of the curves by plotting the values of the AMI evaluated by the TISEAN 
package (Hegger et al., 1999) against delay times progressively increased from 1 to 100. 
The value of delay time is calculated as the first (local) minimum in the variation of 
AMI against varying delay time from 1 to 100 day. The results are shown in Figure (9.a), 
signifying a well-defined first minimum at delay time of 94 day. The delay time is then 
used in the determination of the sufficient embedding dimension using the percentage 
of false nearest neighbours for the time series. Figure (9.b) shows the results of the false 
nearest neighbours method for embedding dimension m, by allowing it to vary from 1 
to 40 and hence its value is 28. 

2. The presence of chaotic signals in the data is further confirmed by the correlation 
dimension method. Figure (10.a) shows the relationship between correlation function 
C(r) and radius r (i.e. lnC(r) versus ln(r)) for increasing m, whereas Figure (10.b) shows 
the relationship between the correlation dimension values D2(m) and the embedding 
dimension values m. It can be seen from Figure (10.b) that the value of correlation 
exponent increases with the embedding dimension up to a certain value and then 
saturates beyond it. The saturation of the correlation exponent is an indication of the 
existence of deterministic dynamics. The saturated correlation dimension is 3.5, 
(D2=3.5). The value of correlation dimension also suggests the possible presence of 
chaotic behaviour in the dataset. The nearest integer above the correlation dimension 
value (D2=4) is taken as the minimum dimension of the phase space. 
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3. Local prediction algorithm is used to predict suspended sediment time series. The 
procedure involves varying the value of the embedding dimension in a range, say 3-8, 
and estimating the CC and RMSE. The embedding function with the highest coefficient 
of correlation is selected as the solution. These are given in Table 8 for Mississippi River 
basin for the dataset with daily time interval, as well as a selection of other time steps. It 
shows that the best predictions are achieved when the embedding dimension is m=3 
produce the best results.  

 
Figure 9. Analysis of the Phase-Space Diagram of Suspended Sediment Data in the Mississippi River 
basin; (9.a): Average Mutual Information; (9.b) Percentage of false nearest neighbours  

m CC RMSE 

3 0.988 4.00E4 
4 0.988 4.10E4 
5 0.986 4.30E4 
6 0.985 4.60E4 
7 0.986 4.40E4 
8 0.987 4.20E4 

Table 8.  Local Prediction Using Different Embedding Dimension for the Mississippi River Dataset 

 
Figure 10. Correlation Dimension Method to Identify the Presence of Chaos Signal in the Dataset; 
(10.a): Convergence of logC(r) versus log(r); (10.b): saturation of correlation dimension D2(m) with 
embedding dimension m – this signifies chaotic signals in the Dataset 
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5. Inter-comparison of the models and discussion of results 

Table 9 summarises the performance and main features of each and all of the modelling 
strategies. The results presented so far confirms the experience that the traditional SRC 
model performs poorly and may only be used for rough-and-ready assessments. However, 
the results by the GEP model show that considerable improvements are likely by using it. 
This section also analyses the relative performance of the various modelling strategies. An 
overall visual comparison of all the results is presented in Figure 11, according to which 
GEP, ANN, MLR and local prediction models perform remarkably well and similar to one 
another. 

Model Performance Model Structure Outcome Comments 

SRC Poor Model 1 Eq. (3) For rough-and-ready estimates 

GEP Good Model 4 Eq. (4.e)  
ANN Good Model 4 → The model is bounded to software 
MLR Good Model 2 Eq. (6)  

Chaos Good Model 0 → Needs expertise to implement 

Table 9. Qualitative Overview of the Performances of Various Modelling Strategies 

 
Figure 11. Model Predictions for Suspended Sediment – Performances of GP, ANN, MLR, Chaos 
(closest to observed), and SRC (poor) 

Scatter diagrams are also a measure of performance. These are presented in Figures 12, 
which provides a quantitative basis that (i) SRC performs poorly and (ii) there is little to 
choose between the other models, although the performance of ANN stands out. 
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Figure 12. Scatter between Modelled and Observed Suspended Sediment Load 

The relative performances of GEP, ANN, MLR and local prediction models are not still 
visible from Figure 12 and therefore attention is focused on the differences between the GEP 
and ANN models with respect to their corresponding observed values. Figures 13 shows the 
respective results for both the GEP and ANN models and that of ANN is remarkable, as the 
differences are nearly zero. It may be reported that those of local prediction model and MLR 
are very close to that of GEP. 

 
Figure 13. Performances of the ANN and GEP Models – y-ordinates: observed – modelled values  

Due to the importance of the volume of transported sediment, the total predicted values are 
also compared with that of the observed values for the testing period and the results are 
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presented in Table 10. The table show that the traditional SRC model is in error by as much 
as nearly 50% but the other models perform well, among which the error in the performance 
of ANN is the lowest. It is also noted that, despite the good performance of ANN models, it 
is not transferrable, like the GEP models. The implementation of both ANN and 
deterministic chaos models require considerable expertise. 

Model Actual Val. 
(ton/year)

Estimation Val. 
(ton/year) Dif. Val. (%) 

SRC 1.65E8 3.06E8 +46 % 
GEP 1.65E8 1.65E8 - 0.4 % 
ANN 1.65E8 1.64E8 - 0.3 % 
MLR 1.65E8 1.66E8 +0.6 % 

Chaos 1.65E8 1.66E8 +0.7 % 

Table 10. Total Volume of Suspended Sediment Predicted by each of the Models at Gauging Station for 
the Mississippi River basin 

The chapter presents the performance of the GEP model, as a variation of evolutionary 
programming, to forecast suspended sediment load of the Mississippi River, the USA. GEP 
is just a modelling strategy, where any other relevant strategy is just as valid if its 
performance is satisfactory. The overall results show that the information contained in the 
observed data can be treated by the following modelling strategies: 

1. Evolutionary computing: this produced a formula to forecast the future values in terms 
of recorded values of flows and suspended sediment. The results show that the strategy 
can be successful in identifying a number of different formulae. 

2. Emulation of the working of the brain: this successfully fitted an inbuilt polynomial to 
the data. It performs better than the other tested models but is not readily transferrable 
as it resides in particular software applications. 

3. Regression analysis: this produced a regression equation, according to which the future 
values would regress towards average recorded values, in spite of the presence of noise. 

4. Deterministic chaos: this produced future values of suspended sediment load by 
identifying an attractor towards which the system performance would converge even 
when the internal system behaves erratically. 

The only common feature in the above modelling strategies is their use of optimisation 
techniques. Otherwise, they are greatly different from one another but remarkably, they 
produce models fit for purpose and can explain the data. Undoubtedly, the data can be 
explained by many more sets of equations or by other possible strategies. This emphasises 
that models are just tools and the modelling task is to test the performance of the various 
models to add confidence to the results. Yet the poor performance of the traditional SRC 
underlines the fact that a good performance cannot be taken for granted. 

A review of the data (in Section 3) shows that the overall contribution of the datapoints in 
the test period is average; its individual characteristics in terms of kurtosis shows that the 
annual hydrographs are less peaked and more flat but at the same time the suspended 
sediment load during the year was significantly high. Thus, the minimum values during this 
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year were significantly above the average but persistent and though less dynamic. However, 
all the four modelling strategies coped well with these data peculiarities. If the data during 
the test period have a more pronounced feature not very common during the training 
period, the various local modelling strategies are likely to perform poorly in their own 
unique way and one of the greatest tasks of research in modelling should be investigations 
to understand these unique features and not to sweep them under the carpet. 

A general view projected by the investigation in this chapter is that the performance of 
modelling techniques must not be the only basis of practical applications. Equal attention 
must also be paid to the quality of the data used. If the data suffers from inherent 
uncertainties, no good model will compensate for the inherent shortfalls. 

6. Conclusion 

This chapter presents an investigation of the performance of the Gene Expression 
Programming (GEP) models of suspended sediment load of the Mississippi River, the USA. 
The study employs the Mississippi River data spanning 26 years involving both flows and 
suspended sediment load, of which the first 25 years of the data is used for training and the 
remaining for the prediction of one year into the future. This investigation concurs with the 
past findings that the performance of sediment rating curve, an empirical technique used 
widely in practice, can lead to gross errors. This alone underlines the value of other 
modelling techniques capable of producing reliable results with less than 1% of errors. 

The chapter promotes a pluralist culture of modelling and although presents the GEP model as 
the focus, it also presents the application of other techniques to model the same data. The other 
models comprise: artificial neural networks, multi-linear regression analysis and deterministic 
chaos. The chapter outlines the modelling strategy underlying each of these techniques and the 
results show in spite of their differences they produce similar results inflicting less 1% of 
errors. The lowest errors are associated with the artificial neural networks for this set of data 
but each of these techniques should be considered as reliable. The volume of sediment load is 
an important management parameter and the error associated with each model was estimated 
for each model. The results show that the traditional SRC model suffers from gross errors by as 
much as 50% but the other tested models perform well, among which the error in the 
performance of ANN is the lowest. ANN is noted for its good performance but with some 
drawback that these models are not transferrable, like the GEP models. It is noted that the 
implementation of ANN requires an ANN-platform for further modelling and deterministic 
chaos models require considerable expertise. 
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7. Appendix 
Symbols 

SRC Sediment Rating Curve
MLR Multi Linear Regression
Qt Discharge Series 
St Sediment Series
MLR Xi Term of Various Model 
 ai Values Called Regression 

Chaos 

Τ Delay Time
Cm(r) Fraction of states  
H Heaviside Step
N Number of Points 
D2 Correlation Exponent 
Yj Vectors of Dimension 
M Dimensional phase Step 
A Jacobean Matrix 
x(t) different neighbors 
R Radius Spherical 
C(r) Correlation Function 

Appendix I 

Table 11 Defaults Values Employed in Implementing GEP and ANN Models 

GP ANN
Training parameters Values Training parameters Values 

Crossover rate 0.1 Goal Mean Square Error 
Mutation rate 0.044 Epochs 10 - 100 

Inversion 0.1 Training algorithm Trainlm 
IS Transposition 0.1  

RIS Transposition 0.1  
1-point Recombination 0.3  
2-point Recombination 0.3  
Gene Recombination 0.1  
Gene Transposition 0.1  

Population (Chromosome) size 30  
Head Size 7  

Number of Genes 3  
Linking Function Addition  

Random Numerical Constants Yes  
Number of generation 1000  
Arithmetic functions (4.a)-(4.f)  

Fitness Function RRSE: RRSE: Root Relative Squared Errors 

Table 11. Default Parameter Values Used by the Model 
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