
Specific Heat 
 
Macroscopically, specific heat c , is an intensive property 
that represents the amount of heat that needs to be added 
to 1 kg of material to raise its temperature by 1oK 
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The value of c depends on the process of heat addition 
 
For constant volume heat addition: 
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Hence define specific heat at constant volume as 
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In general cv depends on P and T, so 
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For constant pressure heat addition: 
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Define new property, enthalpy h 
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For constant P process dP=0, so dh = du + Pdv 
 
Substituting into the definition for c 
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In general cP also depends on P and T, so 
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Ideal Gas Assumption 
 
For an ideal gas cV and cP only vary with T, not P 
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Need absolute u and h.  Set T2 to T and T1 to Tref 
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Take Tref =0 (absolute zero temperature) where h=0 
 

∫

∫

=

=
T

P

T
P

dTTcTh

dTTcTh

0

0

)()(

)()(
 

 

RThuRTupvuh
RTpv

−=→+=+=∴
=   gas idealan for 

 

 

TRdTTcTu

RTdTTcTu
T

P

T
P

−=

−=

∫

∫

0

0

)()(

)()(
 

 
cp values are tabulated in Table A-20 and Table A-21 
gives an empirical relation for )/( Rcp  as a function of T 
for various gases. 
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Enthalpy and Internal energy as a function of T for air is 
given in Table A-22, and for other gases in A-23. 
 
Get cV from cP differentiate h = u + RT with respect to T 
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Note :   Since R > 0 and cV > 0  cp > cV 
 
The specific heat ratio k is commonly used, for ideal gas 
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For a substance with molar mass µ if you know k at a 
specific temperature can get cp and cV  
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Example: 
 
A tank contains 0.042 m3 of oxygen (O2) at 21C and 15 MPa.  
Determine the mass of the oxygen, in kg, using  

a) the compressibility chart 
b) ideal gas model 

Comment on the applicability of the ideal gas model 
 
 

V= 0.042 m3

T= 21 C (294 K) 
P= 15 MPa (150 bar) O2 

 
 
 
 
 
a) From table A-1for oxygen: molar mass µ= 32 kg/kmol, 
Tc= 126K, Pc=50.5 bar 
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From the Generalized Compressibility Chart  Z ≈ 0.92 
 

kg 8.94
/kg /m0.0047

m 0.042

 kg/m 0.0047
N/m 150x10

K)(294K)J/kg 320.92(8314/

3

3

3
25

===

=
⋅

==

v
VM

P
ZRTv

 

 

 64



b) Assuming ideal gas 
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Assuming the mass obtained from the chart is correct, the ideal gas model under predicts the 

mass by about 8%, not bad! 

 
 
Do the same problem with carbon dioxide (CO2): 
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From the Generalized Compressibility Chart  Z ≈ 0.3 
 
v = 0.0011 m3/kg   M = 38.2 kg 
 
 

b) Mideal = 11.34 kg 
 
Assuming the mass obtained from the chart is correct, the 
ideal gas model under predicts the mass by about 70%, 
bad! 
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Example: 
 
A piston-cylinder assembly contains 1 kg of nitrogen gas (N2).  
The gas expands from an initial state where T1= 700K and P1= 5 
bar to a final state where P2= 2 bar.  During the process the 
pressure and specific volume are related by Pv1.3= const.  
Assuming ideal gas behaviour and neglecting KE and PE effects, 
determine the heat transfer during the process, in KJ. 
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Note: work is positive  work done by the system 
 
The molar internal energy for nitrogen from Table A-23: 
 

                      

kJ/kmol 11,858)567K(

kJ/kmol14,784)700K(

=

=

u

u
 

 67



kJ 104.5
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kJ/kmol 14,784-11,858kg 1

)( 12
12

−=







=








 −
=−=∆

µ
uuMuuMU

 

 
Q= ∆U + W = (-104.5 kJ) + (132 kJ)= +27.5 kJ 
 
Note: heat transfer is positive  heat transferred into the 
system 
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Constant Specific Heat Assumption 
 
This assumption can be made if the specific heat does not 
vary much in the temperature range of interest, use 
average values cV

~  and Pc~  such that: 
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the average value is taken to be 
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Example: 
 
Recalculate ∆U in last example assuming constant 
specific heat 
 
The specific heats for nitrogen from Table A-20 for the two temperatures are 

 

KkJ/kg 0.771(567K)
KkJ/kg 0.801(700K)
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The average value over the temperature range is thus 
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The value for ∆U obtained using Table A-23 which takes 
into account the change in cV with temperature is exactly 
the same!! 
 
If tables are not available can approximate cV by using the 
specific heat ratio K, which in the temperature range of 
300K to 1000K, is taken to be constant (see Table A-20): 
 
Diatomic molecules               K= 7/5= 1.4 
(N2, O2, H2, CO, “Air”,…) 
 
Monatomic molecules            K=5/3=1.67 
(Ar, He, Ne,…) 
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compared to 0.786 kJ/kgK calculated above
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Incompressible Assumption 
 

A substance is incompressible if there is negligible 
change in specific volume with change in pressure,  
e.g., liquids and solids 
 
The specific internal energy of an incompressible 
substance does not vary much with pressure, therefore the 
specific heat only depends on temperature 
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By definition enthalpy varies both with P and T 
 

h(P,T) = u(T) + Pv 
 
For incompressible v is constant, differentiating with 
respect to T while maintaining P constant yields, 
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cP = cv = c 
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Two special cases: 
 
i) Constant pressure heat addition into an incompressible 
substance (P= const.) 
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ii) Isothermal heat addition into an incompressible 
substance (T= const.) 
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Approximating enthalpy in the compressed liquid 
region of steam tables 
 
Want to get enthalpy at (P*, T*) without using 
compressible liquid tables 
 

P1(= Psat(T*)) isobar 

P* isobar 

Liquid at  
(P*,T*) 

Saturation state (P1,T1)

T1=T* 

Liquid at  
(P*,T*) Saturation line

P* isobar 
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Consider the isothermal process (incompressible) from 
(P1,T1)  (P*,T*) we now know  h*- h1=v(P*- P1) 
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This gives a more accurate result than just taking 

 as proposed earlier for u(P*,T*) *)(*)*,( ThTPh
satf=

 

The last term is a correction which is normally small 
because vfsat is very small 
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