A

Course File

On

Mathematics - III

(R16)

In the department of

Humanities and Sciences

CMR ENGINEERING COLLEGE

(Affiliated to J.N.T.U, HYDERABAD)

Kandlakoya(v),Medchal -501 401

COURSE FILE

Subject: Mathematics - III

Year: I– B.Tech I Sem

Branch: C.S.E, E.C.E, MECH.

SL.NO	CONTENTS			
1	Department Vision & Mission			
2	List of PEOs , POs & PSOs			
3	List of Cos (Action verbs as per Bloom's Taxonomy)			
4	Syllabus Copy and Suggested/Reference Books			
5	Session Plan/Lesson Plan			
6	Session Execution Log			
7	Lecture Notes			
8	Assignment Questions along with sample Assignments Scripts			
9	Mid Exam Question Papers along with sample Answers Scripts			
10	Scheme of Evaluation			
11	Mapping of COs with POs and PSOs			
12	Attainment of COs, POs and PSOs (Excel Sheet)			
13	University Question Papers/ Question Bank			
14	Power Point Presentations (PPTs)			
15	Websites/URLs/ e- Resources			

1. Institute Vision & Mission

Vision

To be recognized as a premier institution in offering value based and futuristic quality technical education to meet the technological needs of the society.

Mission

To impart value based quality technical education through innovative teaching and learning methods. To continuously produce employable technical graduates with advanced technical skills to meet the current and future technological needs of the society. To prepare the graduates for higher learning with emphasis on academic and Industrial research

PROGRAM OUTCOMES (PO's):

NBA Graduate Attributes

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

<u>3.List of COs(Action verbs as per Bloom's Taxonomy)</u></u>

Branch : CSE

Regulation: R16

Course	Course Outcomes (CO's)						
Code.CO No							
At the end of	the course student will be able to						
CO1	Differentiate and Study various random variables and distributions.						
CO2	Calculate mean, proportions and variances of sampling distributions and Estimate the confidence interval for population parameters.						
СОЗ	Test the hypothesis for single and difference of means and proportions						
CO4	Perform ANOVA test for several means.						
CO5	Find the root of an equation, Solve the system of equations and to Fit a curve to the given tabulated data.						
CO6	To Study Numerical Integration and to Find approximate solutions of first order ODE with initial conditions.						

COURS E CO-PO MATRI X	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
CO 1	3	3	2	2	-	-	-	-	-	-	-	-
CO 2	3	3	2	2	-	-	-	-	-	-	-	-
CO 3	3	3	2	2	-	-	-	-	-	-	-	-
CO 4	3	3	2	2	-	-	-	-	-	-	-	-
CO 5	3	3	2	2	-	-	-	-	-	-	-	-
CO6	3	3	2	2	-	-	-	-	-	-	-	-

4.Syllabus Copy and Suggested/Reference Books:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I YEAR B.Tech I Sem

UNIT – I Random variables and Distributions:.

OBJECTIVE

- 1. Different types of Random variables discrete and continuous
- 2. To learn Moment generating function, Moments and properties
- 3. Applicability of Binomial & geometric distributions.
- 4. Normal distribution and its properties.

SYLLABUS

Introduction, Random variables, Discrete random variable, Continuous random variable, Probability distribution function, Probability density function, Expectation, Moment generating function, Moments and properties. Discrete distributions: Binomial and geometric distributions. Continuous distribution: Normal distributions

UNIT – II : Sampling Theory

OBJECTIVE

- 1. Construction of sampling distributions of means.
- **2.** To learn Sampling distribution of variances
- 3. Definition of estimation theory.
- 4. Point and interval estimation.

SYLLABUS

Introduction, Population and samples, Sampling distribution of means (σ -known)-Central limit theorem, t-distribution, Sampling distribution of means (σ unknown) Sampling distribution of variances

 $-\chi 2$ and F- distributions, Point estimation, Maximum error of estimate, Interval estimation.

UNIT – III : Tests of Hypothesis :

OBJECTIVE

- 1.Understand the definitions used in Hypothesis testing.
- 2. State the null and alternate hypothesis.
- 3. Find critical values for the z-test.
- 4. State the steps used in Hypothesis testing.
- 5. Test means for large samples using the z test.
- 6. Test means for small samples using the t test.
- 7. Proportions and their differences.
- 8. ANOVA for one-way classified data.

SYLLABUS

Dept. of H&S

Introduction, Hypothesis, Null and Alternative Hypothesis, Type I and Type II errors, Level of significance, One tail and two-tail tests, Tests concerning one mean and proportion, two means-proportions and their differences-ANOVA for one-way classified data.

UNIT – IV Algebraic and Transcendental Equations & Curve Fitting:

OBJECTIVE

1. Finding solution of algebraic and transcendental equations.

2. Solving linear system of equations by Gauss-Jacobi and Gauss-Seidal Methods.

3.To fit a curve by method of least squares.

SYLLABUS

Introduction, Bisection Method, Method of False position, Iteration methods: fixed point iteration and Newton Raphson methods. Solving linear system of equations by Gauss-Jacobi and Gauss-Seidal Methods.

Curve Fitting: Fitting a linear, second degree, exponential, power curve by method of least squares.

UNIT – V Numerical Integration and solution of Ordinary Differential equations:

OBJECTIVES

- 1. To understand the concept of numerical integration.
- 2. To find the solution of ordinary differential equations by different methods.

SYLLABUS

Trapezoidal rule, Simpson's 1/3rd and 3/8th rule- Solution of ordinary differential equations by Taylor's series, Picard's method of successive approximations, Euler's method, Runge-Kutta method (second and fourth order)

SUGGESTED BOOKS

Text Books:

1. Probability and Statistics for Engineers by Richard Arnold Johnson, Irwin Miller and John E. Freund, New Delhi, Prentice Hall.

2. Probability and Statistics for Engineers and Sciences by Jay L. Devore, Cengage Learning.

3. Numerical Methods for Scientific and Engineering Computation by M. K. Jain, S. R. K. Iyengar and R. K. Jain, New Age International Publishers

References:

1. Fundamentals of Mathematical Statistics by S. C. Guptha & V. K. Kapoor, S. Chand.

2. Introductory Methods of Numerical Analysis by S. S. Sastry, PHI Learning Pvt. Ltd.

3. Mathematics for engineers and scientists by Alan Jeffrey, 6th edition, CRC press

5. Session Plan/Lesson Plan:

UNIT	TOPICS/ SUB TOPICS	NO. OF PERIODS		SUGGESTED BOOKS	REMA RKS
	Random variables and Distributions:				
	Random variables	L1		T1,T1,R1	
	Discrete & continues	L2,L3		T1,T2,R2	
UNIT-1	Probability distribution function, Probability density function,	L4,L5		T1,T2,R2	
	Expectation, Moment generating function	L6,L7	16	T1,T2,R2	
	Moments and properties.	L8,L9		T1,T2,R2	
	Binomial distribution	L10,L11		T1,T2,R2	
	geometric distribution	L12,L13		T1,T2,R2	
	Normal distribution	L14,15,L16		T1,T2,,R1,R2	
	Sampling Theory				
	Introduction, Population and samples	L17		T1,R1	
	Sampling distribution of means (σ Known)	L18,L19	-	T1,T2,R2	
	Sampling distribution of means(σ un known)	L20,L21	10	T1,T2,R2	
UNIT-II	t-distribution	L22,L23	.12	T1,T2,R2	
	Sampling distribution of variances $-\chi$ 2 and F- distributions,	L24,L25.L26		T1,T2,R2	
	Point estimation, Maximum error of estimate, Interval estimation	L27,L28		T1,T2,R2	
	Tests of Hypothesis				
	Introduction, Hypothesis, Null and Alternative Hypothesis,	L29,L30		T1,R1,T2	
UNIT-III	Type I and Type II errors, Level of significance,	L31	17	T1,R1,T2	
	One tail and two-tail tests,	L32		T1,T2,R2	

	Tests concerning single mean (large and	L33,L34,L35,]	T1,T2,T3,R12
	small), paired t test	L36		
	Tests concerning single proportion(large and small)	L37,L38	-	T1,R1,T2
	Difference of means (large and small)	L39,L40	-	T1,R1,T2
	Difference of proportions (large and small)	L41,L42		T1,R1,T2
	ANOVA for one-way classified data.	L43,L44,L45		T1,R1,T2
	Algebraic and Transcendental Equations & Curve Fitting:			
	Bisection Method	L46,L47		T1,R1,T2
UNIT-IV	Method of False position	L48		T1,R1,T2
	Iteration methods: fixed point iteration	L49	-	T1,T2,R2
	Newton Raphson methods.	L50	-	T1,T2,R2
	Gauss-Jacobi Methods.	L51,L52		T1,T2,R2
	Gauss-Seidal Methods.	L53,L54	14	T1,R1,T2
	Fitting a linear curve	L55,L56		T1,T2,R2
	Fitting a second degree curve	L57		T1,T2,R2
	Fitting an exponential curve	L58	-	T1,T2,R2
	Fitting a power curve	L59		T1,T2,R2
	Numerical Integration and solution of Ordinary Differential equations			
UNIT-V	Trapezoidal rule	L60	0	T1,T2,R2
	Simpson's 1/3rd rule	L61	7	T1,T2,R2

Simps	on's 3/8th rule	L62	T1,T2,R2
Taylor	's series method	L63	T1,T2,T3,R1
Picard approx	's method of successive	L64	T1,T2,R2
Euler'	s method	L65,L66	T1,R1,T2
Runge order)	-Kutta method (second and fourth	L67,L68	T1,R1,T2

6.Session Execution Log:

UNIT		TOPICS/ SUB TOPICS	Period of Completion
		Random variables	
	Random variables and Distributions	Discrete & continues	
UNIT-1		Probability distribution function, Probability density function,	
		Expectation, Moment generating function	
		Moments and properties.	-
		Binomial distribution	
		geometric distribution	
		Normal distribution	-
		Introduction, Population and samples	-
		Sampling distribution of means (σ Known)	
	Sampling Theory	Sampling distribution of means(σ un known)	-
UNIT-II		t-distribution	
		Sampling distribution of variances $-\chi 2$ and F-distributions,	

		Point estimation, Maximum error of estimate, Interval estimation
		Introduction, Hypothesis, Null and Alternative Hypothesis,
		Type I and Type II errors, Level of significance,
	Tests of Hypothesis	One tail and two-tail tests,
		Tests concerning single mean (large and small), paired t test
UNIT- III		Tests concerning single proportion(large and small)
111		Difference of means (large and small)
		Difference of proportions (large and small)
		ANOVA for one-way classified data.
		Bisection Method
UNIT-		Method of False position
IV	Algebraic and Transcendental Equations & Curve Fitting:	Iteration methods: fixed point iteration
		Newton Raphson methods.
		Gauss-Jacobi Methods.
		Gauss-Seidal Methods.
		Fitting a linear curve
		Fitting a second degree curve

		Fitting an exponential curve Fitting a power curve	
		Trapezoidal rule	
		Simpson's 1/3rd rule	
		Simpson's 3/8th rule	
UNIT-V	Numerical Integration and solution of Ordinary Differential equations	Taylor's series method	
		Picard's method of successive approximations	
		Euler's method	
		Runge-Kutta method (second and fourth order)	

7. Lecture Notes (Attached)

8. Assignment Questions along with sample Assignments Scripts: MATHEMATICS – 3 MID I ASSIGNMENT QUESTIONS

1.A). If X is a continuous random variable has the probability density - (CO 1)

 $f(x) = \begin{cases} kx^2 e^{-X}, x > 0\\ 0, x \le 0 \end{cases}$. then find the value of k, mean and variance.

b). Given that f(x) = K/2x, if X = 1,2,3,4 is a probability distribution of a random variable X Find K, mean and variance of x.

c).Calculate the first four moments of the following dist. about an arbitrary origin. Also find moments about mean.

Dept. of H&S

Class Interval	60-62	63-65	66-68	69-71	72-74
Frequency	5	18	42	27	8

d)Derive the moment generating function .Also find MGF of X having the pdf , $f(x)=x, 0 \le x < 1$

$$2 - x, 1 \le x < 2$$
.

e).Explain, with suitable examples, discrete and continuous random variables.

2.a) Find the first 3 moments about origin from moment generating function of the binomial distribution. - (CO 1)

b) Find the moment generating function of the Normal distribution. Find the odd and even order moments of a normal distribution .

c)) Two dice are thrown 5 times. Find the probability of getting a sum of 7 (i)Twice,(ii) at least once iii)P(1 < X < 5).

d)The mean and variance of a binomial dist. are 4 and 4/3 respectively. Find $P(X \ge 1)$, P(X > 5).

e). Fit a binomial distribution to the following data.

ſ	х	0	1	2	3	4	5
	f	2	14	20	34	22	8

3)a). If X is a normal variate with mean 30 and the standard deviation 5, find the probabilities that - (CO 1)

- (a) $26 \le X \le 40$ (b) $X \ge 45$.
- b) In a normal distribution, 7% of the items are under 35 and 89% are under 63. Find the mean and the standard deviation of the distribution.
- c). In a normal distribution 31% of the items are under 31% and 8% are over 64. Find the mean and standard deviation of the distribution.

d).If the height of 300 students are normally distributed with mean 172 centimeters and standard deviation 6 cm, how many students have heights greater than 184 centimeters; between 164 and 180 centimeters (inclusive) and equal to 172 centimeters?

e). Fit a normal distribution to the following data.

x	2	4	6	8	10
f	1	4	6	4	1

4). a)A population consists of the five numbers 3, 4, 7, 9, and 12. Consider all possible samples of size two, which can be drawn i). with replacement and ii). Without replacement from this population. Find: - (CO 2)

the mean of the population

the standard deviation of the population

the mean of the sampling distribution of means

the standard error of means.

b) If 2 gallon can of paint covers on the average 800 sft. with standard deviation 80 sft., what is the probability that the mean area covered by the sample of 60 of these 2 gallon cans will be any where from 750 to 825 sft.?

c). A random sample of size n=100 is taken from a population with $\sigma = 5.1$. Give that the sample mean $\overline{X} = 21.6 = 0.52$ ($\sigma = 5.1$).

is $\overline{X} = 21.6$. Construct a 95% confidence interval for the population mean.

d).For an F- distribution find i). $F_{0.05}$ with $v_1 = 7$ and $v_2 = 15$. ii). $F_{0.01}$ with $v_1 = 24$ and $v_2 = 19$. iii). $F_{0.95}$ with $v_1 = 19$ and $v_2 = 24$. iv). $F_{0.99}$ with $v_1 = 28$ and $v_2 = 12$

5).a)A random sample of size 400 has a mean 82 and a SD of 18. What can you say about the maximum error with 95% confidence. Find the confidence limits if $\bar{x} = 82$. - (CO 4)

b).Write about Type I and Type II errors.

c).Explain the procedure for testing of hypothesis.

MATHEMATICS – 3 MID II ASSIGNMENT QUESTIONS

1.a). Mean of population = 0.700, mean of the sample=0.742, standard deviation of the sample =0.040 sample size=10.Test the null hypothesis for population mean=0.700

b) A researcher wants to know the intelligence of students in a school. He selected two groups of students. In the first group there 150 students having mean IQ of 75 with a S.D of 15 in the second group there are 250 students having mean IQ of 70 with S.D ofr 20. Is there a significant difference between the means of two groups?

c). In a city A 20% of a random sample of 900 school boys had a certain physical

defect.In another city B 18.5% of a random sample of 1600 school boys had the same

defect.Is the difference between the proportions significant?

2.a). Two horses A and B were tested according to the time (in seconds) to run a particular track with the following results.

Horse A	28	30	32	33	35	29	34
Horse B	29	30	30	24	27	29	-

Test whether the two horses have the same running capacity.

b) A random sample of size 32 is taken from a population whose variance is 8 with probability 99, find the maximum error.

c). Write the formula to find the maximum error for the proportions. Dept. of H&S

i) single ii) difference between the proportions

3.a). Find the root of the equation $x \log x = 1.2$ using false position method.

b). Find the root of the equation $x^3-x-3=0$

4.(a) By the method of least squares find the straight line that best fits the following data

х	1	2	3	4	5
У	14	27	40	55	68

b) Fit a parabola to the following data using the method of least squares.

X	1	3	7	9	11	13
У	3.49	8.69	19.09	24.29	29.49	34.69

- c). Fit a polynomial of second degree to the data points (2, 3.07), (4, 12.85),(6, 31.47), (8, 57.38) and (10, 91.29).
- d). Fit the curve $y=ae^{bx}$ to the following data.

Х	0	0.5	1.0	1.5	2.0	2.5
У	0.10	0.45	2.15	9.15	40.35	180.7 5

└└ 5.a).Use Taylors

series method to find the approximate value of y when x=0.1 given that y(0)=1, $y'=3x+y^2$.

b). Find y(0.1)&y(0.2) using Euler's modified form given that $y'=x^2-y$, y(0)=1.

9.Mid Exam Question Papers along with sample Answers Scripts:

I-Mid MATHEMATICS-III

Answer all the questions

1a)Define randomvariable. (2M)(CO 1)

b).Define Type – I and Type – II errors.

2) If X is a continuous random variable has probability density function $f(x) = \{ kx^2 e^{-x} ; x > 0 \}$

0 otherwise

Dept. of H&S

Find i)k,ii)mean iii)variance (3M) (CO1)

3a) In a normal distribution 7% of the items are under 35 and 89% are under 63. Find the mean and standard deviation of the distribution. (CO1)

b).Prove that area under Normal curve is unity.

(OR)

4a) A population consists of the five numbers 3, 4, 7, 9, and 12. Consider all possible samples of size two, which can be drawn i). with out replacement . Find: - (CO 2)

the mean of the population

the standard deviation of the population

the mean of the sampling distribution of means

the standard error of means.

b) a) A random sample of size 100 has a mean 21.6 and with population SD of 5.1 find fudicial limits at 95% confindence.

II-Mid MATHEMATICS-III

Answer all the questions

PART – A

1. a). Using Newton – Raphson method find square root of 24 (1 M) (CO 4) b).Derive normal equations of a parabola by method of least squares (1 M) (CO 4) 2.a). Fit the curve $y = ae^{bx}$ to the following data. (1.5M) (CO 5) 0 2.5 х 0.5 1.0 1.5 2.0 0.10 0.45 2.15 9.15 180.7 5 40.35 y

y(0.1)&y(0.2) using Euler's method given that $y' = x^2 - y$, y(0)=1.

PART B

3.a). Two horses A and B were tested according to the time (in seconds) to run a particular track with the following results. (2.5 M)(CO 4)

Horse A	28	30	32	33	35	29	34
Horse B	29	30	30	24	27	29	-

Find

b).

(1.5M) (CO 5)

Test whether the two horses have the same running capacity.

b). Three samples of five, five and four motor car tyres are drawn respectively from three brands A , B and C manufactured by three machines. The life time of these tyres (in 1000 miles) is given below . Test whether the average life time of the three brands of tyres are equal or not . (2.5 M)(CO 3)

А	В	С
35	30	28
40	25	24
33	34	30
36	28	26
31	33	-

(OR)

4. a). Dividing the range into 10 equal parts , find the value of $\int_0^{\frac{\pi}{2}} \sin x \, dx$, using i). Trapezoidal rule

ii). Simpson's $\frac{1}{3}$ rd rule. iii) Simpson's $\frac{3}{8}$ th rule	(2.5 M)(CO 5)
b). Use R-K method to evaluate $y(0.1)$ and $y(0.2)$ given that $y' = x + y$, $y(0) = 1$.	(2.5 M)(CO 5)

11. Mapping of COs with POs and PSOs:

Course Outco mes	Relat	tionsh	ip of C	Course	outcom	ies(CO)) to P	rogra	m Ou	tcomes	(PO)			
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2										
CO2	3	3	2	2										
CO3	3	3	2	2										
CO4	3	3	2	2										

CO5	3	3	2	2					
CO6	3	3	2	2					

NOTE: 3- HIGH, 2-MEDIUM, 1-LOW

12.Attainment of COs,POs and PSOs (Excel Sheet):

13.University Question Papers/ Question Bank:

R13 Code No: 113AN JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November - 2015 PROBABILITY AND STATISTICS (Common to ME, CSE, IT, MCT, AME, MIE, MSNT) **Time: 3 Hours** Max, Marks: 75 Note: - This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. or man with in (25 Marks) PART-A 8 sent and book one colluctually observed i mumoren aismold e Explain, with suitable examples, discrete and continuous random variables.[2M] 1.a) Find the first 3 moments about origin from Moment generating function of the b) Binomial distribution. [3M] Write the relation between correlation and regression coefficients. Is it possible to c) have two variables x and y with regression coefficient as 2.8 and -0.5? Explain. [2M] $x e^{-y} \cdot 0 < x < 2, y > 0$ d) Is the function f(x)= 2 can be considered as a joint mati survei lui territet 0, Otherwise bi find the coefficient of a density function of two random variables X and Y? [3M] Write the standard error of (i) sample mean (ii) difference of two sample means. e) [2M] Mean of population = 0.700, mean of the sample = 0.742, standard deviation of f) the Sample = 0.040 sample size = 10. Test the null hypothesis for population mean = 0.700... [3M] A. And provide and Explain queue classification-Kendall's notation. g) satisant solioi ada so a [2M] h) Write: i) the relation between Expected number of customers in the queue and in the system. ii) waiting time of a customer in the queue and in the system iii) the formula for finding the probability that there are more than n customers in the system. [3M] Classify the random processes. [2M] i) futurise off Locales i no constants surfaces 0 x 1/3 A MILLION MERCHANES j) Find the values of x, y, z inorder for 0 0 y to be transition matrix. to for geen speed actions for the 1/3 1/4 owith action of most of constitution [3M]

		en ine Pi	PART-B	ar ar		(50 Marks)
2.a)	Is $f(x) = \frac{1}{2}x^2e^{-1}$	* when x	≥0 can be r	egarded a	sapı	robability function for a
		om variab	le? If, so fi	nd Mean	and '	Variance of the random
ъ)	variable. Find the momen odd order momen					stribution. Show that all [5+5]
3.a)	In a sample of 1	000 cases,	OR the mean of a	certain to	est is 1	4 and standard deviation
andra gana paka ta ara	is 2.5. Assumingi) How many stii) How many sc	udents sco	e between 12		i i nativ gener	
in the second second	iii) How many sc	ore below	18?			a compress
b)	Find the Momen moments.	t generatin	g function of	Poisson (listrib	ation and find the first 3 [5+5]
4.a)	If X and Y are tw	and the second second	and the state of the second		100.00	function
	$f(x,y) = \begin{cases} \frac{1}{8}(6-0) \\ 0, othe \end{cases}$	$(x-y), 0 \leq$	x≤2,2≤y<	4	u tani di 4 Julia	otaler og samt så . Graat ofsteler
in a star	0,0the	erwise /		nia esta 1-den veder 1-den veder		a substance have
. : 01.05	Find: i) $P(X <$	1/8 -3)	(ii) $f'_x(x) \otimes$	$f_{\gamma}(y)$.		હેલ્લાગોમાં તેલું છે.
b)	and the second of the second	A DO COLLEGATION OF THE PROPERTY OF			for th	e following data. [5+5]
	X	2 3	4 5	6 7	. 8	9
	<u>Y</u> (10(14 13 OR	15 10	5 17	<u>18</u>
5.a)	Joint distribution	of X and	and the second states and	f(x,y) =	4xy e	$(x^{2}+y^{2})$; $x \ge 0, y \ge 0$. Test
18/* b) ^{*1}	whether X and Y F or the following					ensity of X given Y=y. on lines. [5+5]
	· · · · · · · · · · · · · · · · · · ·	X 1	2 3	4 5		White
		<u>Y 15</u>	25 35	45 5	2	
6.a)	Fit a binomial dis	tribution to	the followin	g data and	test th	e good ness of fit.
10/2. 11.00		x 0	1 2	3 4		' on system. these the rand
b)	A researcher wan	f 38 ts to know	144 342 the intellige		04	in a school. He selected
	two groups of stud	lents. In th	e first group	here 150	auden	ts having mean IQ of 75 ats having mean IQ of
	70 with S.D of 2					ween the means of two
	groups?	ang Salah	OR			[5+5]
				ale de la dese resta de la dese		
	and the second state of the second state of the	au 655068 11986	(14) (1) 建设有 计数字	PROPERTY OF A	计学家编辑	一进行 医原子 医原子 网络白色 网络汉德尔 法正常投资 网络

at and the	(19) A 23	8. EPL	R.	- 18 B	報號	and the second		100 C	萬陵。"	. 200	R09	
1 Carde		le No: 53014 JAWAHARLA	L NEB	RUT	ECH	NOLO	GICA		TEDETT	W HVDE	the second states of the part of the	$\phi_{i}^{*}\phi_{i}^{*}[x, \hat{x}_{i}]$
*		B.Tec	h II Ye Filip Pl	ar I S ROB/	emest ABILI	er Exa TY AN	minati ND ST/	ons, No ATIST MIE, M	vember ICS	r - 2015	Marks: 75	儭.
and the second		생활가락 것 가지 않았다	翻	Aı	iswer	any fiv	e ques	tions	र्थाहरू	wax.	WIBERS: 75	
				All qı	Jestio	ns carr 	y equa	l mark	S		ana Na sana sa	- 14% 18
	- 1-á)	A box I con black and br balls. A box is from	ills 3 w	hite b	alls, B	ox III	contain	is 3 red	3 blac	k and ba	Ils 3 white	na i Na
		i) Box 1		ii) B	lox II	1	ii) Box I	n 🔤	的文		
	b)	A random sa random varia	ble X d	enote	the su	m of th	f size 2 e two r	taken	from S	= {1, 2, 3	3). Let the	
• 機関 2		i) Write the pii) The mean	robabili	ity dis	tributi	on of X		998 	38	58	. W.	3 88
		iii) The varia	nce.		1		an a			and the second s	[8+7]	
	-2.a)	Ten coms are i) At least 1 ii) At least se	head	X	taneo	isly. Fi	nd the	probabi Z	llitý of g	etting:	877	88
#	b)	ifi) Only 2 tin A sample of regarded as a deviation 311	121-stuc sample	lents i from	s four a pòr	id to ha	ive a n 1 with	ne nean we mean w	hight of eight 7	68 kgs. C 5 kgs. and	an this be l standard [8+7]	ШR.
	3.a)	A Random s deviation is 1 for the mean.	ample c 8 The n	of 300 ican c	item of the s	s is tal sample	ken fi is 82.	om a j constru	populati ct 95%	on whose confidenc	standard e interval	
	b)	A random san sample from p	uple of s opulation	ize 22 on wit	5 is ta h mea	ken wh n 82 an	nose mé d stanc	an is 8 lard dev	0. Can the other of the other of the other	his be rega 5.	urded as a [8+7]	頭
and the second sec	4.a);	Among 900 p confidence int	eople ir erval for	n a sta r the p	ite 90 roport	are fou	und to	be cha	pati, eato	ers, Const	ruct 99%	- HR
	b)	In a sample o students 1400	f 1000	stude	nts 50	0 use 1	ball pe	n and i	n anoth	er sample	of 3500	
· #R		proportions at	5% leve	1. 🗮		36	5annea U		accii iin		[7+8]	÷
	5. 御刊	Given below is this result with	the hyp	mber o othesi	of mal is that	e births male b	s.in100 irths ar	0 famil e equal	ies with ly proba	5 childrer	each. Is [15]	er.
		No. of I		0 40	1 300	2	3 200	4 30	5			
in an			1997			- 新聞	-1	1.22	- 100	ц 1 1	ar .	en -
			N41	€et		1.134	200 200					
				an.		1944) -						
1949년 (B				л. Л.		3				5		

SPE Calculate the coefficient of correlation and the two lines of regression between the two variables x and y. [15]

湖霞

6. 编辑 可定中

题院

秋带:

1

12:20%

1000

1001

[15]

彩

these.

調問

朝間

職

藏

國際

264

Ser.s.

國家

19 Car

職

就成

22

100

1972

1010

潮致

観念

in.

222

x	10	12	18	24	23	27
y.	13	18	12	25	30	10

胡乾

The milk plant at a city distributes its products by trucks, loaded at the loading 7.5 dock. It was its own fleet of trucks plus trucks of a private transport company. The trucks arrive at the interval of 20 minutes. The service time is 4 minutes. a) Average number of trucks in the queue 284

b)The probability that there are more than or equal to 4 trucks in the queue c) The waiting time of a truck in the queue. d) The variance of queue length.

A Professor has three pet questions, one of which occurs on every test he gives. He never uses the same question twice in successive examinations. If he used the question no 1, he tosses a coin and uses the question no. 2. If he uses the question no. 2, he tosses two coins and use the question no 3, if both are heads. If he uses the question no 3, he tosses three coins and use the question no 1, if all are heads. In long run which question does he use most often and with how much frequency is it used. [15]

-00000----

翻發

创

额

E.M.

-

· · · · ·

翻译

劇視

認識

嘉洪

TRA

1215

杨亮

識牌

勃察

1000

創設

-

15.25 100 m

調問

SEL.

國際

ALC: N

AR-

藏靴

1992

諁

822

62

Sales -

en.

40°

動調

30

- 19

200

and starting

おい

Reg.

MIC.

識

創

1000

認識

探风

1

343

1 283 12

振动

额

6. 6

8.

Ser.

202

の行き

ANT N

福祉

潮

識

劉

總統

、穴山市

翻

E B

题社

157

West.

(382) 875 m

國際

88

翻發

總限

100

徽建立

湖霞

22

B-311 /IXOIA03B3

Code No: 09A30302

R09

Max. Marks: 75

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year I Semester Examinations, November/December-2013 Probability and Statistics

(Common to ME, CSE, MCT, AME, MIE, MIM, MSNT)

Time: 3 hours

Answer any five questions All questions carry equal marks

1.a) If the probability density of a random variable X is given by $f(x) = \begin{cases} k(1-x^2), 0 < x < 1 \\ 0 < x < 1 \end{cases}$

0, Otherwise

Find (i) k and (ii) The cumulative distribution function of X.

b) Of the three men, the chances that a politician or businessman or an academician will be appointed as V.C of a university are 0.5, 0.3, and 0.2 respectively. Probabilities that these three persons promote research in the university, if they are appointed as V.C, are 0.3, 0.7, and 0.8 respectively. Determine
i) The probability that the research is promoted.

ii) If research is promoted, what is the probability that V.C is politician? [15]

- 2.a) Out of 800 families with 5 children each, How many would you expect to have ai) 3 boys
 - ii) at least one boy
 - iii) either 2 or 2 boys.

b) Suppose the weights of 800 male students are normally distributed with mean 28.8 kg and standard deviation of 2.06 kg. Find the number of students whose weights are

i) between 28.4 kg and 30.4 kgii) more than 31.3 kg.

[15]

- 3.a) The guaranteed average life of a battery is 700 days with standard deviation of 60 days. It is required to sample the output so as to ensure that 95% of the batteries do not fall short of guaranteed average life by more than 2.5%. What is the minimum sample size?
- A random sample of 500 items has mean20 and another sample of size 400 has mean 15.Can you conclude that the two samples are taken from the same population with 4 as Standard deviation. [15]
- A.a) In a referendum submitted to the student's body at a university 850 men and 566 women voted. 530 of the men and 304 of the women voted in favor of a matter. Does this indicate a significant difference of the opinion on the matter at least 1%level, between men and women students?
 - b) If the mean of a normal population is 6.48 and S.D is 1.5. How large a sample must be so that there will be 2% that the mean of the sample is less than 6.75?
- 5.a) The nine items of a sample had values 45,47,50,52,48,47,49,53,and 51. Does the mean of the nine items differ significantly from the assumed population mean of 47.57.
- b) A survey of 320 families with 5 children each revealed the following distribution

No boys	5	4	3	2	1	0
No. of Girls	0	1	2	3	4	5
No. of families	14	56	110	88	40	12

Is this result consistent with the hypothesis that male and female births are equally probable? [15]

Calculate the coefficient of Correlation for the following data.

Х	9	8	7	6	5	4	3	2	1
Y	15	16	14	13	1.1	12	10	8	9

Consider a self-service store with on cashier. Assume Poisson arrival and exponential service times. Suppose 9 customers arrive on the average every 5 minutes and the cashier can serve 10 in 5 minutes. Find

i) average number of customers queuing for service ii) probability of having more than 10 customers in the system

iii) Probability that a customer has to queue for more than 2 minutes.

-00000----

iv) average waiying time of the customers

v) probability for n persons in the system.

[15]

[15]

8. The transition probability matrix is given by 0.1 0.4 0.5

6.

7.

 $P = \begin{bmatrix} 0.2 & 0.2 & 0.6 \end{bmatrix}$ and $P_0 = \begin{bmatrix} 0.4, & 0.4, & 0.2 \end{bmatrix}$ 0.7 0.2 0.1

a) Find the distribution after three transitions.

2

b) Find the limiting probabilities.

[15]

14.Power Point Presentations (PPTs):

15.Websites/URLs/ e- Resources :

1.http://mathforcollege.com/nm/nbm/gen/05inp/

- 2.<u>http://www.mece.panam.edu/~jakypuros/Teaching/MECE2450/Notes/PolynomialInterpolation.pdf</u>
- 3.<u>http://nm.mathforcollege.com/topics/fft_continuous.html</u>
- 4.http://users.ece.gatech.edu/~mcclella/2025/labs-s01/Lab11s01.pdf
- 5.http://www.enm.bris.ac.uk/admin/courses/EMa2/PDEs/PDES_0203/EMa2_pdes_notes.pdf
- 6.http://ar-new.mak.ac.ug/academics/courses/partial-differential-equations.html-0
- 7.<u>http://maths.york.ac.uk/www/Vector1-0910</u>
- 8.<u>http://www.youtube.com/watch?v=NG9hkGQwT3k</u>
- 9.<u>http://www.youtube.com/watch?v=sDn5cc-8gHY</u>
- 10.<u>http://www.youtube.com/watch?v=ICNHXhLg2dI</u>
- 11. <u>http://www.youtube.com/watch?v=oYsb4rW2GUU</u>
- 12. <u>http://www.youtube.com/watch?v=U8riFeiiu3s</u>
- 13. <u>http://www.youtube.com/watch?v=6ozQ9INV59s</u>
- 14.http://www.cengage.com/aushed/instructor.do?product_isbn=9780534370145
- 15. <u>http://na.uni-tuebingen.de/~lubich/pcam-ode.pdf</u>
- 16.<u>http://www.youtube.com/watch?v=_oBgnTy85fM</u>
- 17. http://ocw.mit.edu/courses/mathematics/18-440-probability-and-random-variables-spring-
- 2011/lecture-notes/

18.http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systemsanalysis-and-applied-probability-fall-2010/video-lectures/

- 19.http://freevideolectures.com/Course/2950/Introduction-to-Probability-and-Statistics-Fall-2011
- 20. http://www.scribd.com/doc/38271591/MIT-Lecture-Notes-on-Probability
- $21. wiki. stat. ucla. edu/socr/index. php/Probability_and_statistics_EBook$
- 22.cran.r-project.org/web/packages/IPSUR/vignettes/IPSUR.pdf
- 23.www.mathwords.com/index prob stats.htm
- $24. www.math.utep.edu/Faculty/mleung/ {\it probability} and {\it statistics} / {\it pslinks.html}$
- 25.https://sites.google.com/a/iiitd.ac.in/probability-statistics/